EP4181313B1 - Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker - Google Patents

Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker Download PDF

Info

Publication number
EP4181313B1
EP4181313B1 EP21208497.4A EP21208497A EP4181313B1 EP 4181313 B1 EP4181313 B1 EP 4181313B1 EP 21208497 A EP21208497 A EP 21208497A EP 4181313 B1 EP4181313 B1 EP 4181313B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
radio frequency
inner conductor
antenna
adapter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21208497.4A
Other languages
English (en)
French (fr)
Other versions
EP4181313A1 (de
Inventor
Roland Baur
Klaus Kienzle
Fritz Lenk
Johannes Falk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Priority to EP21208497.4A priority Critical patent/EP4181313B1/de
Priority to CN202211328423.7A priority patent/CN116137376A/zh
Priority to US17/988,318 priority patent/US20230155278A1/en
Publication of EP4181313A1 publication Critical patent/EP4181313A1/de
Application granted granted Critical
Publication of EP4181313B1 publication Critical patent/EP4181313B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/38Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
    • H01R24/40Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
    • H01R24/42Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches
    • H01R24/44Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency comprising impedance matching means or electrical components, e.g. filters or switches comprising impedance matching means

Definitions

  • the invention relates to a high-frequency adapter for connecting a high-frequency antenna to an antenna plug.
  • the invention further relates to a use of the high-frequency adapter and a method for producing a high-frequency adapter.
  • electromagnetic energy for example from a high-frequency generator
  • a high-frequency antenna for example a horn antenna
  • the high-frequency waves are conducted from the antenna to the adapter via a waveguide.
  • moisture can get into the high-frequency adapter and lead to a disruption in the function of the adapter, e.g. to a short circuit of conductive parts.
  • the publication CN 103 268 971 A relates to a device for connecting a coaxial cable to a circular waveguide.
  • the publication JP H02 128 503 A relates to a coaxial intermediate piece between an outer conductor connected to a waveguide and an antenna section.
  • the publication DE 31 27 693 A1 16 relates to a transition element between a waveguide and a microstrip line.
  • the high-frequency adapter can be set up in particular to transmit high-frequency waves in a range of radar waves. At least some specifics of the adapter can, for example, be set up for a part of the radar frequency range, e.g. for the so-called K-band, which extends over a frequency range of 18 to 27 GHz.
  • the adapter can be connected on one side, for example, to a horn antenna and/or another high-frequency antenna.
  • the adapter can be connected on another side, for example to an antenna connector in the form of a coaxial connector.
  • the high-frequency waves can be transmitted or forwarded to the antenna using a waveguide, which can have a hollow cylindrical shape.
  • the antenna can be arranged in an environment that can contain moisture in at least some cases.
  • the high-frequency waves are conducted from the antenna to the adapter via a waveguide.
  • an impedance matching element can be arranged within the waveguide, which is set up to match the impedance to the high-frequency antenna.
  • the impedances at the two ends of the adapter can differ from each other: In the coaxial area, for example, the impedance can be around 50 - 75 ohms, and in the area of the waveguide, the impedance can be in the range of around 700 ohms, for example.
  • the impedance matching element can, for example, be designed in a step-shaped manner and significantly narrower than an inner diameter of the waveguide.
  • the impedance matching element designed in this way is sometimes referred to as a fin.
  • the impedance matching element can have a different shape for other frequency ranges.
  • the impedance matching element can have electrical contact with the outer conductor of the coaxial system at at least one point in the area of the transition between the coaxial and waveguide system and on the base surface of the fin.
  • the impedance matching element is electrically and mechanically connected to a conductive inner conductor.
  • the inner conductor can be electrically connectable directly or indirectly to the antenna plug.
  • the inner conductor can be guided to the end of the adapter that is opposite the antenna connection, so that in this case the antenna plug can be plugged onto this end of the inner conductor.
  • at least one further conductive component can be arranged on the inner conductor.
  • the inner conductor extends along a central axis of the waveguide.
  • the high-frequency adapter also has a conductive hollow cylindrical jacket that connects to the waveguide.
  • the jacket can connect seamlessly and/or tightly to the waveguide.
  • the jacket can have a different material than the waveguide; For example, the jacket can have or consist of stainless steel, the waveguide can have or consist of copper.
  • Both the waveguide and the jacket can advantageously be conductive in order to ensure electrical shielding and/or contribute to a defined impedance of the adapter.
  • the jacket can be arranged parallel to the central axis of the waveguide.
  • the high-frequency adapter also has an electrically insulating hollow cylindrical spacer element which is arranged between the jacket and the inner conductor, and which thus isolates the inner conductor from the jacket and seals the waveguide in a fluid-tight manner.
  • the waveguide and/or the jacket can have a rectangular, in particular square, shape.
  • the rectangular shape can affect the outer contour and/or the inner walls.
  • the inner and/or outer corners can be rounded.
  • the high-frequency adapter not only has a defined impedance in the area of the coaxial system, but is also robust against diffused and then condensing moisture because the spacer element reduces or even prevents moisture from penetrating into fault-prone parts of a high-frequency adapter can prevent, and in particular can prevent a short circuit between the jacket and the inner conductor. A possible condensation point can therefore be moved to an area that is less sensitive to high-frequency waves.
  • the spacer element can simplify the assembly of the high-frequency adapter, e.g. serve as an insertion aid during assembly and thereby contribute to preventing incorrect assembly.
  • the adapter has proven to be particularly robust in experiments, especially with regard to vibrations, and has increased longevity, for example due to the additional support of the inner conductor of the coaxial system.
  • a first inside diameter of the jacket is smaller than a second inside diameter of the waveguide, so that a step is formed in the area of the connection between the waveguide and the jacket.
  • the spacer element is at least partially arranged in the waveguide and forms a collar in the waveguide. This can lead to better mechanical cohesion of the adapter as well contribute to a better seal against diffused moisture. In addition, this collar can prevent condensate from accumulating in the cavity.
  • the spacer element has or consists of materials such as polytetrafluoroethylene, PTFE, polyetheretherketone, PEEK, polyethylene, PE, or polyvinylidene fluoride, PVDF, which are suitable for HF technology. These materials not only have dielectric properties, but also a certain toughness and elasticity, so that the spacer element nestles particularly tightly between the adjacent components of the adapter and in this way fills the technically necessary gap between the fin and the coaxial feed.
  • the hole for the inner conductor also creates a guide for assembly in production, to which the relatively low friction - also during assembly - can contribute.
  • at least some of the usable materials can be temperature-resistant and/or hydrophobic.
  • the spacer element can be realized as a plastic turned part.
  • PTFE for example, can be used as a plastic. This type of production allows the spacer element to be manufactured particularly precisely.
  • the radio frequency adapter further comprises a process isolation disposed within the jacket and through which a conductive element is passed that is electrically connected to the inner conductor.
  • the process separation can be designed, for example, as a glass feedthrough. It should be noted that - thanks to the spacer element - moisture can no longer condense on the process separation, in particular because the spacer element creates a seal against the waveguide and other parts of the adapter.
  • the conductive element is designed in one piece with the inner conductor. This can contribute to particularly simple production. This embodiment can be implemented with and without process separation.
  • the conductive element has a similar coefficient of expansion as the process separation.
  • the conductive element remains advantageously arranged in the process separation in a robust and long-term manner, even in the event of large fluctuations in temperature.
  • the process separation comprises glass and/or ceramic, and/or the conductive element comprises a nickel alloy, or these elements may be made of these materials.
  • the conductive element is set up for direct connection to the antenna plug.
  • the conductive element can be designed to be particularly robust and/or have a particularly conductive and/or corrosion-resistant coating at the connection points, such as gold.
  • the spacer element can serve particularly advantageously as an insertion aid during assembly and thereby contribute to preventing incorrect assembly.
  • the method includes the further step: arranging a process separation in the jacket, wherein a conductive element is guided through the process separation and is set up for an electrical connection to the inner conductor.
  • the high-frequency adapter can be particularly suitable for level measurement, topology determination and/or limit level determination, because it can be used, for example, to implement a feedthrough between an antenna in a container and a high-frequency generator outside the container.
  • the container can also be a process tank, for example, which is designed in particular for high temperatures and/or pressures.
  • embodiments with process separation can further increase the robustness of the high-frequency adapter.
  • Fig. 1 shows schematically a high-frequency adapter 12 according to the prior art in a longitudinal section.
  • the high-frequency adapter 12 has a hollow cylindrical waveguide 20, which is set up to transmit high-frequency waves from and to a high-frequency antenna 80 (not shown).
  • a conductive jacket 50 adjoins the waveguide 20.
  • a conductive inner conductor 40 is arranged at least partially within the jacket 50 and is electrically and mechanically connected to an impedance matching element 30.
  • the inner conductor 40 is separated from the jacket 50 by a cavity 18.
  • the cavity 18 can be designed as a rotationally symmetrical cavity, for example in the case of a round high-frequency adapter; For other shapes of the high-frequency adapter - e.g. rectangular, hexagonal, etc. - adapted accordingly or also cylindrical. In at least some cases, moisture can penetrate into the cavity 18. This can significantly worsen the functionality of the high-frequency adapter, even causing the adapter to fail.
  • Fig. 2 schematically shows a high-frequency adapter 10 according to one embodiment in a longitudinal section.
  • the high-frequency adapter 10 is set up to connect a high-frequency antenna 80 (left side, not shown) with an antenna plug 90 (right side, not shown).
  • the high-frequency adapter 10 has a hollow cylindrical waveguide 20, which is set up to transmit high-frequency waves from and to the high-frequency antenna 80 - which is arranged to the left of the waveguide 20.
  • a step-shaped impedance matching element 30 is arranged within the waveguide 20 and is set up to match the impedance to the high-frequency antenna 80.
  • the high-frequency adapter 10 also has a conductive inner conductor 40, which is electrically and mechanically connected to the impedance matching element 30, the inner conductor 40 being connected electrically indirectly - namely via a conductive element 45 - to the antenna plug 90.
  • a conductive hollow cylindrical jacket 50 adjoins the waveguide 20.
  • the joint between the waveguide 20 and the jacket 50 can be tight, but in at least some cases it can also be faulty and / or due to long-term Loads allow moisture to penetrate. In at least some embodiments, the joint can be dispensed with.
  • the high-frequency adapter 10 also has an electrically insulating hollow cylindrical spacer element 60, which is arranged between the jacket 50 and the inner conductor 40 and thus isolates the inner conductor 40 from the jacket 50 and seals the waveguide 20 in a fluid-tight manner.
  • the spacer 60 may also not be designed to be fluid-tight.
  • the spacer element 60 can be designed so that it "occupies" the space where condensate could form and in this way can displace the condensate or reduce or prevent the formation of condensate. In this way, a malfunction of the high-frequency adapter 10 can advantageously be avoided even in the event of moisture penetration.
  • the high-frequency adapter 10 also has a process separation 70 to further increase the robustness of the high-frequency adapter.
  • the conductive element 45 is guided through the process separation 70.
  • the conductive element 45 is electrically connected to the inner conductor 40 on one side.
  • the conductive element 45 is set up for a connection to an antenna plug 90 (right side, not shown), via the end protruding from the process separation 70 and from a casing 55 on the right.
  • Fig. 3 shows schematically a high-frequency adapter 10 according to one embodiment in a further longitudinal section.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • This shows Fig. 3 It is particularly clear how the spacer element 60 isolates the inner conductor 40 from the jacket 50 and - with the cooperation of a collar 62 - also creates a seal against the wall 50.
  • the conductive element 45 is realized with pointed ends in order to further simplify assembly.
  • Fig. 4 schematically shows a high-frequency adapter 10 according to one embodiment in a perspective external view.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • the design of the impedance matching element 30 becomes clear, which in this exemplary embodiment is designed to be step-shaped and significantly narrower than an inner diameter of the waveguide. This way designed impedance matching element 30 is sometimes referred to as a fin. This design can be particularly suitable for lower-frequency radar bands, for example for the K-band. For other frequency ranges, the impedance matching element - and/or other components of the high-frequency adapter 10 - can be designed at least slightly differently.
  • Fig. 5 shows schematically a high-frequency adapter 10 according to a further embodiment in a longitudinal section.
  • the same reference numbers as in Fig. 2 same or similar elements.
  • This embodiment does not have a process separation 70.
  • the conductive element 45 is designed in one piece with the inner conductor (40), so that an antenna plug 90 (right, not shown) is electrically connected directly to the antenna plug 90.
  • a first inner diameter 52 of the jacket 50 (such as in Fig. 2 ) is smaller than a second inner diameter 22 of the waveguide 20, so that a step 25 is formed in the area of the connection between the waveguide and the jacket.
  • Fig. 6 shows a flowchart 100 with a manufacturing process for a high-frequency adapter 10 (see e.g Fig. 2 to Fig. 5 ) according to one embodiment.
  • a process separation 70 is arranged in the jacket 50, with a conductive element 45 being guided through the process separation 70, which is set up for an electrical connection to the inner conductor 40.
  • an electrically insulating spacer element 60 is arranged in a conductive jacket 50.
  • a conductive inner conductor 40 is inserted into the spacer element 60.
  • a waveguide 20 is connected, with an impedance matching element 30 which is arranged within the waveguide 20.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft einen Hochfrequenzadapter zur Verbindung einer Hochfrequenzantenne mit einem Antennenstecker. Weiterhin betrifft die Erfindung eine Verwendung des Hochfrequenzadapters und ein Verfahren zur Herstellung eines Hochfrequenzadapters.
  • Hintergrund
  • In der Hochfrequenztechnik, insbesondere in der Radartechnik, wird elektromagnetische Energie, z.B. von einem Hochfrequenzgenerator, an eine Hochfrequenzantenne, z.B. an eine Hornantenne, geleitet, um Hochfrequenzwellen aussenden und/oder empfangen zu können. Dies kann mittels eines Hochfrequenzadapters realisiert sein. In zumindest einigen Fällen werden die Hochfrequenzwellen über einen Hohlleiter von der Antenne an den Adapter geleitet. Beispielsweise auf diesem Weg kann Feuchtigkeit in den Hochfrequenzadapter gelangen und zu einer Störung der Funktion des Adapters führen, z.B. zu einem Kurzschluss von leitenden Teilen.
  • Die Druckschrift CN 103 268 971 A betrifft eine Vorrichtung zur Verbindung eines Koaxialkabels mit einem Rundhohlleiter.
  • Die Druckschrift JP H02 128 503 A betrifft ein koaxiales Zwischenstück zwischen einem äußeren Leiter, der mit einem Wellenleiter verbunden ist, und einem Antennenteilstück.
  • Die Druckschrift DE 31 27 693 A1 16 betrifft ein Übergangselement zwischen einem Hohlleiter und einer Mikrostreifenleitung.
  • Zusammenfassung
  • Es ist Aufgabe der Erfindung, ein Eindringen von Feuchtigkeit in störungsanfällige Teile eines Hochfrequenzadapters zu reduzieren. Diese Aufgabe wird durch den Gegenstand der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung.
  • Ein Aspekt betrifft einen Hochfrequenzadapter (kurz: Adapter) zur Verbindung einer Hochfrequenzantenne mit einem Antennenstecker. Der Hochfrequenzadapter weist auf: einen (insbesondere hohlzylindrischen) Hohlleiter, der zu einer Weiterleitung von Hochfrequenzwellen von und zu der Hochfrequenzantenne eingerichtet ist;
    • ein Impedanz-Anpassungselement, das innerhalb des Hohlleiters angeordnet ist und das zu einer Impedanz-Anpassung an die Hochfrequenzantenne eingerichtet ist;
    • einen leitfähigen Innenleiter, der elektrisch und mechanisch mit dem Impedanz-Anpassungselement verbunden ist, wobei der Innenleiter elektrisch direkt oder indirekt mit dem Antennenstecker verbunden ist;
    • ein einen leitfähigen (insbesondere hohlzylindrischen) Mantel, der an den Hohlleiter anschließt; und
    • ein elektrisch isolierendes hohlzylindrisches Abstandselement, das zwischen dem Mantel und dem Innenleiter angeordnet ist und so den Innenleiter von dem Mantel isoliert und den Hohlleiter fluiddicht abschließt.
  • Der Hochfrequenzadapter kann insbesondere zur Weiterleitung von Hochfrequenzwellen in einem Bereich von Radarwellen eingerichtet sein. Zumindest einige Spezifika des Adapters können beispielsweise für einen Teil des Radarfrequenzbereichs eingerichtet sein, z.B. für das sog. K-Band, das sich über einen Frequenzbereich von 18 bis 27 GHz erstreckt.
  • Zumindest ein Teil dieser Spezifika kann - z.B. durch geringfügige Modifikationen - auch an andere Frequenzbereiche des Radarfrequenzbereichs anpassbar sein. Der Adapter kann an einer Seite beispielsweise an eine Hornantenne und/oder eine andere Hochfrequenzantenne angeschlossen sein. Der Adapter kann an einer anderen Seite z.B. an einen Antennenstecker in Form eines Koaxialsteckers angeschlossen sein. Das Übermitteln oder Weiterleiten der Hochfrequenzwellen an die Antenne kann mittels eines Hohlleiters erfolgen, der eine hohlzylindrische Form aufweisen kann. Dabei kann die Antenne in einer Umgebung angeordnet sein, die in zumindest einigen Fällen Feuchtigkeit aufweisen kann.
  • In zumindest einigen Fällen werden die Hochfrequenzwellen über einen Hohlleiter von der Antenne an den Adapter geleitet. Dabei kann für zumindest einige Frequenzbereiche ein Impedanz-Anpassungselement innerhalb des Hohlleiters angeordnet sein, das zu einer Impedanz-Anpassung an die Hochfrequenzantenne eingerichtet ist. Dabei können sich die Impedanzen an den beiden Enden des Adapters voneinander unterscheiden: Im koaxialen Bereich kann die Impedanz beispielsweise bei ca. 50 - 75 Ohm liegen, und im Bereich des Hohlleiters kann die Impedanz z.B. in einem Bereich von etwa 700 Ohm liegen. Für niederfrequentere Radarbänder, z.B. für das K-Band, kann das Impedanz-Anpassungselement zum Beispiel stufenförmig und deutlich schmaler als ein Innendurchmesser des Hohlleiters gestaltet sein. Das so gestaltete Impedanz-Anpassungselement wird gelegentlich als Finne bezeichnet. Das Impedanz-Anpassungselement kann für andere Frequenzbereiche eine andere Form aufweisen. Das Impedanz-Anpassungselement kann, zur Realisierung der Anpassung und/oder Abstrahlung, an mindestens einem Punkt im Bereich des Übergangs zwischen koaxialem und Hohlleitersystem sowie an der Grundfläche der Finne elektrischen Kontakt haben mit dem Außenleiter des koaxialen Systems.
  • Das Impedanz-Anpassungselement ist elektrisch und mechanisch mit einem leitfähigen Innenleiter verbunden. Der Innenleiter kann elektrisch direkt oder indirekt mit dem Antennenstecker verbindbar sein. Dabei kann bei einer direkten Verbindung der Innenleiter bis zu dem Ende des Adapters geführt werden, das dem Antennenanschluss gegenüberliegt, so dass in diesem Fall der Antennenstecker auf dieses Ende des Innenleiters aufgesteckt werden kann. Bei einer indirekten Verbindung kann mindestens eine weitere leitfähige Komponente an dem Innenleiter angeordnet sein. Der Innenleiter erstreckt sich entlang einer Mittelachse des Hohlleiters.
  • Der Hochfrequenzadapter weist weiterhin einen leitfähigen hohlzylindrischen Mantel auf, der an den Hohlleiter anschließt. Der Mantel kann lückenlos und/oder dicht an den Hohlleiter anschließen. Der Mantel kann ein anderes Material als der Hohlleiter aufweisen; beispielsweise kann der Mantel Edelstahl aufweisen oder daraus bestehen, der Hohlleiter kann Kupfer aufweisen oder daraus bestehen. Sowohl der Hohlleiter als auch der Mantel können vorteilhafterweise leitfähig sein, um eine elektrische Abschirmung zu gewährleiten und/oder zu einer definierten Impedanz des Adapters beitragen. Der Mantel kann parallel zu der Mittelachse des Hohlleiters angeordnet sein.
  • Der Hochfrequenzadapter weist ferner ein elektrisch isolierendes hohlzylindrisches Abstandselement auf, das zwischen dem Mantel und dem Innenleiter angeordnet ist, und das so den Innenleiter von dem Mantel isoliert und den Hohlleiter fluiddicht abschließt.
  • In einer Variation kann der Hohlleiter und/oder der Mantel eine rechteckige, insbesondere eine quadratische, Form aufweisen. Die rechteckige Form kann die Außenkontur und/oder die Innenwände betreffen. Die inneren und/oder äußeren Ecken kann abgerundet sein.
  • Mit dieser Gestaltung, insbesondere durch das Abstandselement, weist der Hochfrequenzadapter nicht nur eine definierte Impedanz im Bereich des koaxialen Systems auf, sondern ist auch robust gegen eindiffundierte und dann kondensierende Feuchtigkeit, weil das Abstandselement ein Eindringen von Feuchtigkeit in störungsanfällige Teile eines Hochfrequenzadapters reduzieren oder sogar verhindern kann, und insbesondere einen Kurzschluss zwischen Mantel und Innenleiter verhindern kann. Eine mögliche Kondensationsstelle kann sich damit an einen für hochfrequente Wellen unempfindlicheren Bereich verschieben. Darüber hinaus kann das Abstandselement die Montage des Hochfrequenzadapters vereinfachen, z.B. als eine Einführhilfe bei der Montage dienen und dadurch zu einer Verhinderung von Fehlmontage beitragen. Ferner hat sich der Adapter in Experimenten als besonders robust erwiesen, insbesondere in Bezug auf Vibrationen, und weist eine erhöhte Langlebigkeit auf, z.B. durch die zusätzliche Abstützung des Innenleiters des koaxialen Systems.
  • Ein erster Innendurchmesser des Mantels ist kleiner als ein zweiter Innendurchmesser des Hohlleiters, so dass im Bereich des Anschlusses zwischen dem Hohlleiter und dem Mantel eine Stufe gebildet wird. Zudem ist das Abstandselement zumindest teilweise in dem Hohlleiter angeordnet und bildet einen Kragen in dem Hohlleiter. Dies kann sowohl zu einem besseren mechanischen Zusammenhalt des Adapters als auch zu einer besseren Dichtigkeit gegen eindiffundierte Feuchtigkeit beitragen. Zudem kann dieser Kragen eine Anlagerung von Kondensat in dem Hohlraum verhindern.
  • In einigen Ausführungsformen weist das Abstandselement Materialien auf wie Polytetrafluorethylen, PTFE, Polyetheretherketon, PEEK, Polyethylen, PE, oder Polyvinylidenfluorid, PVDF, die HF-technisch geeignet sind, oder besteht aus diesem. Dabei weisen diese Materialien nicht nur dielektrische Eigenschaften auf, sondern auch eine gewisse Zähigkeit und Elastizität, so dass sich das Abstandselement besonders eng zwischen die benachbarten Komponenten des Adapters einschmiegt und auf diese Weise den technisch notwendigen Spalt zwischen Finne und koaxialer Zuführung ausfüllt. Durch die Bohrung für den Innenleiter entsteht zusätzlich eine Führung für den Zusammenbau in der Fertigung, wozu auch die relativ geringe Reibung - auch bei der Montage - beitragen kann. Darüber hinaus können zumindest einige der verwendbaren Materialien temperaturbeständig und/oder hydrophob sein.
  • In einer Ausführungsform kann das Abstandselement als ein Kunststoff-Drehteil realisiert sein. Als Kunststoff kann beispielsweise PTFE verwendet werden. Durch diese Art der Herstellung kann das Abstandselement besonders präzise gefertigt werden.
  • In einigen Ausführungsformen weist der Hochfrequenzadapter weiterhin eine Prozesstrennung auf, die innerhalb des Mantels angeordnet ist und durch die ein leitfähiges Element geführt ist, das mit dem Innenleiter elektrisch verbunden ist. Die Prozesstrennung kann z.B. als eine Glasdurchführung gestaltet sein. Es sei angemerkt, dass sich - durch das Abstandselement - an der Prozesstrennung auch keine Feuchtigkeit mehr niederschlagen kann, insbesondere weil das Abstandselement eine Abdichtung gegenüber dem Hohlleiter und andere Teile des Adapters realisiert.
  • In einer Ausführungsform ist das leitfähige Element einstückig mit dem Innenleiter ausgeführt. Dies kann zu einer besonders einfachen Herstellung beitragen. Diese Ausführungsform kann mit und ohne die Prozesstrennung realisiert sein.
  • In einer Ausführungsform weist das leitfähige Element einen ähnlichen Ausdehnungskoeffizienten auf wie die Prozesstrennung. Dadurch bleibt vorteilhafterweise auch bei großen Schwankungen der Temperatur das leitfähige Element robust und langfristig in der Prozesstrennung angeordnet.
  • In einigen Ausführungsformen weist die Prozesstrennung Glas und/oder Keramik auf, und/oder das leitfähige Element weist eine Nickellegierung auf, oder diese Elemente können aus diesen Materialien bestehen.
  • In einer Ausführungsform ist das leitfähige Element zum direkten Anschluss an den Antennenstecker eingerichtet. Dabei kann das leitfähige Element besonders robust gestaltet sein und/oder an den Anschlusspunkten eine besonders leitfähige und/oder korrosionsfeste Beschichtung aufweisen, wie z.B. Gold.
  • Ein Aspekt betrifft ein Verfahren zur Herstellung eines Hochfrequenzadapters, mit den Schritten:
    • anordnen eines elektrisch isolierenden hohlzylindrischen Abstandselements in einem leitfähigen hohlzylindrischen Mantel; und
    • einfügen eines leitfähigen Innenleiters in das Abstandselement; und
    • anschließen eines Hohlleiters mit einem Impedanz-Anpassungselement, das innerhalb des Hohlleiters angeordnet ist, beispielsweise durch Einpressen in eine vorhandene Bohrung in dem Impedanz-Anpassungselement.
  • Dabei kann das Abstandselement besonders vorteilhaft als eine Einführhilfe bei der Montage dienen, und dadurch zu einer Verhinderung von Fehlmontage beitragen.
  • In einigen Ausführungsformen weist das Verfahren den dem weiteren Schritt auf:
    anordnen einer Prozesstrennung in dem Mantel, wobei durch die Prozesstrennung ein leitfähiges Element geführt ist, das für eine elektrische Verbindung mit dem Innenleiter eingerichtet ist.
  • Ein Aspekt betrifft eine Verwendung eines Hochfrequenzadapters wie oben und/oder nachfolgend beschrieben zur Verbindung einer Hochfrequenzantenne mit einem Antennenstecker. Der Hochfrequenzadapter kann besonders geeignet sein insbesondere zur Füllstandmessung, zur Topologiebestimmung und/oder zur Grenzstandbestimmung, weil damit z.B. eine Durchführung zwischen einer Antenne in einem Behälter und einen Hochfrequenzgenerator außerhalb des Behälters realisiert sein kann. Durch die robuster Ausführung des Hochfrequenzadapters kann der Behälter z.B. auch ein Prozesstank sein, der insbesondere für hohe Temperaturen und/oder Drücke ausgelegt ist. Darüber hinaus können Ausführungsformen mit einer Prozesstrennung die Robustheit des Hochfrequenzadapters weiter erhöhen.
  • Zur weiteren Verdeutlichung wird die Erfindung anhand von in den Figuren abgebildeten Ausführungsformen beschrieben. Diese Ausführungsformen sind nur als Beispiel, nicht aber als Einschränkung zu verstehen.
  • Kurze Beschreibung der Figuren
  • Dabei zeigt:
  • Fig. 1
    schematisch einen Hochfrequenzadapter gemäß dem Stand der Technik in einem Längsschnitt;
    Fig. 2
    schematisch einen Hochfrequenzadapter gemäß einer Ausführungsform in einem Längsschnitt;
    Fig. 3
    schematisch einen Hochfrequenzadapter gemäß einer Ausführungsform in einem weiteren Längsschnitt;
    Fig. 4
    schematisch einen Hochfrequenzadapter gemäß einer Ausführungsform in einer perspektivischen Außenansicht;
    Fig. 5
    schematisch einen Hochfrequenzadapter gemäß einer weiteren Ausführungsform in einem Längsschnitt;
    Fig. 6
    ein Flussdiagramm mit einem Verfahren gemäß einer Ausführungsform.
    Detaillierte Beschreibung von Ausführungsformen
  • Fig. 1 zeigt schematisch einen Hochfrequenzadapter 12 gemäß dem Stand der Technik in einem Längsschnitt. Der Hochfrequenzadapter 12 weist einen hohlzylindrischen Hohlleiter 20, der zu einer Weiterleitung von Hochfrequenzwellen von und zu einer Hochfrequenzantenne 80 (nicht dargestellt) eingerichtet ist. An den Hohlleiter 20 schließt sich ein leitfähiger Mantel 50 an. Zumindest teilweise innerhalb des Mantels 50 ist ein leitfähiger Innenleiter 40 angeordnet, der elektrisch und mechanisch mit einem Impedanz-Anpassungselement 30 verbunden ist. Der Innenleiter 40 ist von dem Mantel 50 durch einen Hohlraum 18 getrennt. Der Hohlraum 18 kann, z.B. bei einem runden Hochfrequenzadapter als ein rotationssymmetrischer Hohlraum gestaltet sein; bei anderen Formen des Hochfrequenzadapters - z.B. recheckig, sechseckig, etc. - entsprechend angepasst oder ebenfalls zylindrisch. In zumindest einigen Fällen kann in den Hohlraum 18 Feuchtigkeit eindringen. Dies kann die Funktionsfähigkeit des Hochfrequenzadapters deutlich verschlechtern, bis hin zu einem Ausfall des Adapters.
  • Fig. 2 zeigt schematisch einen Hochfrequenzadapter 10 gemäß einer Ausführungsform in einem Längsschnitt. Der Hochfrequenzadapter 10 ist zur Verbindung einer Hochfrequenzantenne 80 (linke Seite, nicht dargestellt) mit einem Antennenstecker 90 (rechte Seite, nicht dargestellt) eingerichtet. Der Hochfrequenzadapter 10 weist einen hohlzylindrischen Hohlleiter 20 auf, der zu einer Weiterleitung von Hochfrequenzwellen von und zu der Hochfrequenzantenne 80 - die links von dem Hohlleiter 20 angeordnet ist - eingerichtet ist. Innerhalb des Hohlleiters 20 ist ein stufenförmiges Impedanz-Anpassungselement 30 angeordnet, das zu einer Impedanz-Anpassung an die Hochfrequenzantenne 80 eingerichtet ist. Der Hochfrequenzadapter 10 weist weiterhin einen leitfähigen Innenleiter 40 auf, der elektrisch und mechanisch mit dem Impedanz-Anpassungselement 30 verbunden ist, wobei der Innenleiter 40 elektrisch indirekt - nämlich über ein leitfähiges Element 45 - mit dem Antennenstecker 90 verbunden ist. An den Hohlleiter 20 schließt ein leitfähiger hohlzylindrischer Mantel 50 an. Die Fuge zwischen dem Hohlleiter 20 und dem Mantel 50 kann dicht sein, sie kann aber in zumindest einigen Fällen auch fehlerhafterweise und/oder durch langfristige Belastungen ein Eindringen von Feuchtigkeit zulassen. In zumindest einigen Ausführungsformen kann auf die Fuge verzichtet werden. Der Hochfrequenzadapter 10 weist ferner ein elektrisch isolierendes hohlzylindrisches Abstandselement 60 auf, das zwischen dem Mantel 50 und dem Innenleiter 40 angeordnet ist und so den Innenleiter 40 von dem Mantel 50 isoliert und den Hohlleiter 20 fluiddicht abschließt. In zumindest einigen Ausführungsformen, die nicht unter den Schutzumfang der Ansprüche fallen, kann das Abstandselement 60 auch nicht fluiddicht gestaltet sein. Das Abstandselement 60 kann so gestaltet sein, dass es den Raum "besetzt", an dem sich Kondensat bilden könnte, und auf diese Weise das Kondensat verdrängen kann bzw. die Bildung von Kondensat reduzieren oder unterbinden kann. Damit kann vorteilhafterweise auch im Falle des Eindringens von Feuchtigkeit eine Fehlfunktion des Hochfrequenzadapters 10 vermieden werden. Der Hochfrequenzadapter 10 weist zudem eine Prozesstrennung 70 auf, um die Robustheit des Hochfrequenzadapters weiter zu erhöhen. Das leitfähige Element 45 ist durch die Prozesstrennung 70 geführt. Das leitfähige Element 45 ist auf seiner einen Seite mit dem Innenleiter 40 elektrisch verbunden. Auf der anderen Seite ist das leitfähige Element 45 für eine Verbindung mit einem Antennenstecker 90 (rechte Seite, nicht dargestellt) eingerichtet, über das rechts aus der Prozesstrennung 70 und aus einer Ummantelung 55 herausragende Ende.
  • Fig. 3 zeigt schematisch einen Hochfrequenzadapter 10 gemäß einer Ausführungsform in einem weiteren Längsschnitt. Dabei bezeichnen gleiche Bezugszeichen wie in Fig. 2 gleiche oder ähnliche Elemente. Dabei zeigt Fig. 3 besonders deutlich, wie das Abstandselement 60 den Innenleiter 40 von dem Mantel 50 isoliert und - unter Mitwirkung eines Kragens 62 - auch gegen die Wandung 50 eine Abdichtung realisiert. Das leitfähige Element 45 ist in diesem Ausführungsbeispiel mit spitzen Enden realisiert, um die Montage weiter zu vereinfachen.
  • Fig. 4 zeigt schematisch einen Hochfrequenzadapter 10 gemäß einer Ausführungsform in einer perspektivischen Außenansicht. Dabei bezeichnen gleiche Bezugszeichen wie in Fig. 2 gleiche oder ähnliche Elemente. Insbesondere wird die Gestaltung des Impedanz-Anpassungselements 30 deutlich, das in diesem Ausführungsbeispiel stufenförmig und deutlich schmaler als ein Innendurchmesser des Hohlleiters gestaltet ist. Das auf diese Weise gestaltete Impedanz-Anpassungselement 30 wird gelegentlich als Finne bezeichnet. Diese Gestaltung kann insbesondere für niederfrequentere Radarbänder, z.B. für das K-Band, besonders geeignet sein. Für andere Frequenzbereiche kann das Impedanz-Anpassungselement - und/oder weitere Komponenten des Hochfrequenzadapter 10 - zumindest geringfügig anders gestaltet sein.
  • Fig. 5 zeigt schematisch einen Hochfrequenzadapter 10 gemäß einer weiteren Ausführungsform in einem Längsschnitt. Dabei bezeichnen gleiche Bezugszeichen wie in Fig. 2 gleiche oder ähnliche Elemente. Diese Ausführungsform weist keine Prozesstrennung 70 auf. Weiterhin ist das leitfähige Element 45 einstückig mit dem Innenleiter (40) ausgeführt, so dass ein Antennenstecker 90 (rechts, nicht dargestellt) elektrisch direkt mit dem Antennenstecker 90 verbunden ist. Weiterhin wird deutlich dass ein erster Innendurchmesser 52 des Mantels 50 (wie z.B. auch bei Fig. 2 ) kleiner ist als ein zweiter Innendurchmesser 22 des Hohlleiters 20, so dass im Bereich des Anschlusses zwischen dem Hohlleiter und dem Mantel eine Stufe 25 gebildet wird.
  • Fig. 6 zeigt ein Flussdiagramm 100 mit einem Herstellungsverfahren für einen Hochfrequenzadapter 10 (siehe z.B. Fig. 2 bis Fig. 5 ) gemäß einer Ausführungsform. In einem optionalen Schritt 102 wird eine Prozesstrennung 70 in dem Mantel 50 angeordnet, wobei durch die Prozesstrennung 70 ein leitfähiges Element 45 geführt ist, das für eine elektrische Verbindung mit dem Innenleiter 40 eingerichtet ist. In einem Schritt 104 wird ein elektrisch isolierendes Abstandselement 60 in einem leitfähigen Mantel 50 angeordnet. In einem Schritt 106 wird ein leitfähiger Innenleiters 40 in das Abstandselement 60 eingefügt. In einem Schritt 108 wird ein Hohlleiter 20 angeschlossen, mit einem Impedanz-Anpassungselement 30, das innerhalb des Hohlleiters 20 angeordnet ist.
  • Liste der Bezugszeichen
  • 10
    Hochfrequenzadapter
    12
    Hochfrequenzadapter
    15
    Mittelachse
    18
    Hohlraum
    20
    Hohlleiter
    22
    Innendurchmesser des Hohlleiters
    25
    Stufe
    30
    Impedanz-Anpassungselement
    40
    Innenleiter
    45
    leitfähiges Element
    50
    Mantel
    52
    Innendurchmesser des Mantels
    55
    Ummantelung
    60
    Abstandselement
    62
    Kragen des Abstandselements
    70
    Prozesstrennung
    80
    Antenne
    90
    Antennenstecker
    100
    Flussdiagramm
    102 - 108
    Schritte

Claims (10)

  1. Hochfrequenzadapter (10) zur Verbindung einer Hochfrequenzantenne (80) mit einem Antennenstecker (90), der Hochfrequenzadapter (10) aufweisend:
    einen Hohlleiter (20), der zu einer Weiterleitung von Hochfrequenzwellen von und zu der Hochfrequenzantenne (80) eingerichtet ist;
    ein Impedanz-Anpassungselement (30), das innerhalb des Hohlleiters (20) angeordnet ist und das zu einer Impedanz-Anpassung an die Hochfrequenzantenne (80) eingerichtet ist;
    einen leitfähigen Innenleiter (40), der elektrisch und mechanisch mit dem Impedanz-Anpassungselement (30) verbunden ist, wobei der Innenleiter (40) elektrisch direkt oder indirekt mit dem Antennenstecker (90) verbindbar ist, wobei sich der Innenleiter (40) entlang einer Mittelachse (15) des Hohlleiters (20) erstreckt;
    einen leitfähigen Mantel (50), der an den Hohlleiter (20) anschließt; und
    ein elektrisch isolierendes Abstandselement (60), das zwischen dem Mantel (50) und dem Innenleiter (40) angeordnet ist und so den Innenleiter (40) von dem Mantel (50) isoliert und den Hohlleiter (20) fluiddicht abschließt,
    wobei ein erster Innendurchmesser des Mantels (50) kleiner ist als ein zweiter Innendurchmesser des Hohlleiters (20), so dass im Bereich des Anschlusses zwischen dem Hohlleiter (20) und dem Mantel (50) eine Stufe gebildet wird, und
    wobei das Abstandselement (60) zumindest teilweise in dem Hohlleiter (20) angeordnet ist und dadurch gekennzeichnet, dass das Abstandselement einen Kragen (62) in dem Hohlleiter (20) bildet
  2. Hochfrequenzadapter (10) nach Anspruch 1,
    wobei das Abstandselement (60) Polytetrafluorethylen, PTFE, Polyetheretherketon, PEEK, Polyethylen, PE, oder Polyvinylidenfluorid, PVDF, aufweist oder aus diesem besteht.
  3. Hochfrequenzadapter (10) nach einem der vorhergehenden Ansprüche, weiterhin aufweisend: ein leitfähiges Element (45) und eine Prozesstrennung (70), die innerhalb des Mantels (50) angeordnet ist und durch die das leitfähige Element (45) geführt ist, das mit dem Innenleiter (40) elektrisch verbunden ist.
  4. Hochfrequenzadapter (10) nach Anspruch 3,
    wobei das leitfähige Element (45) einstückig mit dem Innenleiter (40) ausgeführt ist.
  5. Hochfrequenzadapter (10) nach Anspruch 3 oder 4,
    wobei das leitfähige Element (45) einen ähnlichen Ausdehnungskoeffizienten wie die Prozesstrennung (70) aufweist.
  6. Hochfrequenzadapter (10) nach einem der Ansprüche 4 oder 5,
    wobei die Prozesstrennung (70) Glas und/oder Keramik, und/oder das leitfähige Element (45) eine Nickellegierung, aufweist oder daraus besteht.
  7. Hochfrequenzadapter (10) nach einem der Ansprüche 3 bis 6,
    wobei das leitfähige Element (45) zum direkten Anschluss an den Antennenstecker (90) eingerichtet ist.
  8. Verfahren zur Herstellung eines Hochfrequenzadapters (10), mit den Schritten:
    anordnen eines elektrisch isolierenden hohlzylindrischen Abstandselements (60) in einem leitfähigen hohlzylindrischen Mantel (50);
    einfügen eines leitfähigen Innenleiters (40) in das Abstandselement (60);
    anschließen eines Hohlleiters (20) mit einem Impedanz-Anpassungselement (30), das innerhalb des Hohlleiters (20) angeordnet ist, wobei sich der Innenleiter (40) entlang einer Mittelachse (15) des Hohlleiters (20) erstreckt,
    wobei ein erster Innendurchmesser des Mantels (50) kleiner ist als ein zweiter Innendurchmesser des Hohlleiters (20), so dass im Bereich des Anschlusses zwischen dem Hohlleiter (20) und dem Mantel (50) eine Stufe gebildet wird, und
    wobei das Abstandselement (60) zumindest teilweise in dem Hohlleiter (20) angeordnet ist und dadurch gekennzeichnet, dass das Abstandselement (60) einen Kragen (62) in dem Hohlleiter (20) bildet
  9. Verfahren nach Anspruch 8, mit dem weiteren Schritt:
    anordnen einer Prozesstrennung (70) in dem Mantel (50), wobei durch die Prozesstrennung (70) ein leitfähiges Element (45) geführt ist, das für eine elektrische Verbindung mit dem Innenleiter (40) eingerichtet ist.
  10. Verwendung eines Hochfrequenzadapters (10) nach einem der Ansprüche 1 bis 7 für die Verbindung einer Hochfrequenzantenne (80) mit einem Antennenstecker (90).
EP21208497.4A 2021-11-16 2021-11-16 Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker Active EP4181313B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21208497.4A EP4181313B1 (de) 2021-11-16 2021-11-16 Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker
CN202211328423.7A CN116137376A (zh) 2021-11-16 2022-10-26 用于将高频天线与天线连接器连接的高频适配器
US17/988,318 US20230155278A1 (en) 2021-11-16 2022-11-16 High frequency adapter for connecting a high frequency antenna with an antenna connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21208497.4A EP4181313B1 (de) 2021-11-16 2021-11-16 Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker

Publications (2)

Publication Number Publication Date
EP4181313A1 EP4181313A1 (de) 2023-05-17
EP4181313B1 true EP4181313B1 (de) 2024-03-20

Family

ID=78676341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21208497.4A Active EP4181313B1 (de) 2021-11-16 2021-11-16 Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker

Country Status (3)

Country Link
US (1) US20230155278A1 (de)
EP (1) EP4181313B1 (de)
CN (1) CN116137376A (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127693A1 (de) * 1981-07-14 1983-05-26 AEG-Telefunken Nachrichtentechnik GmbH, 7150 Backnang "uebergangselement zwischen einem hohlleiter und einer mikrostreifenleitung"
JPH02128503A (ja) * 1988-11-08 1990-05-16 Nec Yamagata Ltd 同軸導波管変換器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268971A (zh) * 2013-04-28 2013-08-28 中国电子科技集团公司第三十八研究所 小型化端馈式同轴线到圆形波导的转换器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3127693A1 (de) * 1981-07-14 1983-05-26 AEG-Telefunken Nachrichtentechnik GmbH, 7150 Backnang "uebergangselement zwischen einem hohlleiter und einer mikrostreifenleitung"
JPH02128503A (ja) * 1988-11-08 1990-05-16 Nec Yamagata Ltd 同軸導波管変換器

Also Published As

Publication number Publication date
EP4181313A1 (de) 2023-05-17
CN116137376A (zh) 2023-05-19
US20230155278A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
DE102016100227B4 (de) Hochfrequenz-Miniaturverbinder mit Canted-Coil-Federn und zugehörige Verfahren
EP1932218B1 (de) Koaxialverbinder
EP2569828B1 (de) Koaxialer hochfrequenzverbinder
EP3387710B1 (de) Aussenleiteranordnung für einen koaxial-steckverbinder
EP3091613B1 (de) Anschlussverbindung mit einem hf-leiter, insbesondere für ein koaxialkabel und verfahren zur herstellung dieser anschlussverbindung
WO2018197641A1 (de) Kontaktkörper für einen steckverbinder
EP3403296A1 (de) Aussenleiteranordnung für einen koaxial-steckverbinder
EP3126852B1 (de) Kontaktieranordnung, insbesondere hf-messspitze
EP2374182B1 (de) Filternanordnung
DE102018102564A1 (de) Elektrische Ferrule, elektrische Verbindungseinrichtung, sowie Verfahren zum Konfektionieren eines elektrischen Kabels
EP3029782B1 (de) Hochfrequenzsignaldurchführung
DE102004045707A1 (de) Antenne
EP3482465B1 (de) Federbelastetes innenleiter-kontaktelement
EP4181313B1 (de) Hochfrequenzadapter zur verbindung einer hochfrequenzantenne mit einem antennenstecker
EP2489095B1 (de) Antennenkoppler
EP3837741B1 (de) Kabelanordnung
DE102018115389B3 (de) Sonde zur Messung von Plasmaparametern
DE102021112505A1 (de) Crimpkontakt, Crimpverbindung und Verfahren zur Herstellung einer Crimpverbindung
EP4297182A1 (de) Wellenleiter mit zwei wellenleiterteilstücken
DE102019111479B4 (de) Hochfrequenz-Verbinderpärchen
DE112017007001T5 (de) Basisplatinenmodul
EP3001515B1 (de) Hf-gehäuse mit koaxialer hf-steckverbindung
EP3018768A1 (de) Elektrischer steckverbinder mit abgedichtetem anschlussabschnitt
DE2130167C3 (de) Koaxiale Steckverbindung
WO2018153777A1 (de) Stecker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20220916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240208

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003032

Country of ref document: DE