EP4181305A1 - Séparateur et batterie secondaire le comprenant - Google Patents
Séparateur et batterie secondaire le comprenant Download PDFInfo
- Publication number
- EP4181305A1 EP4181305A1 EP21864611.5A EP21864611A EP4181305A1 EP 4181305 A1 EP4181305 A1 EP 4181305A1 EP 21864611 A EP21864611 A EP 21864611A EP 4181305 A1 EP4181305 A1 EP 4181305A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon nanotube
- separator
- conductive layer
- positive electrode
- nanotube structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 196
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 69
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000010410 layer Substances 0.000 claims description 105
- 239000007774 positive electrode material Substances 0.000 claims description 22
- 239000011247 coating layer Substances 0.000 claims description 20
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 13
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 10
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 10
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 10
- 230000035699 permeability Effects 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 7
- 239000010954 inorganic particle Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 6
- 239000006185 dispersion Substances 0.000 description 43
- 238000002360 preparation method Methods 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 29
- -1 polyethylene Polymers 0.000 description 23
- 238000000034 method Methods 0.000 description 20
- 239000006258 conductive agent Substances 0.000 description 16
- 239000011148 porous material Substances 0.000 description 16
- 239000011324 bead Substances 0.000 description 14
- 239000002041 carbon nanotube Substances 0.000 description 12
- 229910021393 carbon nanotube Inorganic materials 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000007772 electrode material Substances 0.000 description 9
- 239000003792 electrolyte Substances 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 239000011259 mixed solution Substances 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 229920006254 polymer film Polymers 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000002612 dispersion medium Substances 0.000 description 7
- 239000011267 electrode slurry Substances 0.000 description 7
- 229920000098 polyolefin Polymers 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 238000010296 bead milling Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002048 multi walled nanotube Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 150000005676 cyclic carbonates Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000011356 non-aqueous organic solvent Substances 0.000 description 3
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229910020215 Pb(Mg1/3Nb2/3)O3PbTiO3 Inorganic materials 0.000 description 2
- 229910020294 Pb(Zr,Ti)O3 Inorganic materials 0.000 description 2
- 229910020351 Pb1-xLaxZr1-yTiyO3 Inorganic materials 0.000 description 2
- 229910020345 Pb1−xLaxZr1−yTiyO3 Inorganic materials 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000002180 crystalline carbon material Substances 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- GTAKOUPXIUWZIA-UHFFFAOYSA-N 2-[2-[2-(2-ethoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCOCCOCCOCCOCCO GTAKOUPXIUWZIA-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- XCKPLVGWGCWOMD-YYEYMFTQSA-N 3-[[(2r,3r,4s,5r,6r)-6-[(2s,3s,4r,5r)-3,4-bis(2-cyanoethoxy)-2,5-bis(2-cyanoethoxymethyl)oxolan-2-yl]oxy-3,4,5-tris(2-cyanoethoxy)oxan-2-yl]methoxy]propanenitrile Chemical compound N#CCCO[C@H]1[C@H](OCCC#N)[C@@H](COCCC#N)O[C@@]1(COCCC#N)O[C@@H]1[C@H](OCCC#N)[C@@H](OCCC#N)[C@H](OCCC#N)[C@@H](COCCC#N)O1 XCKPLVGWGCWOMD-YYEYMFTQSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- QXYRRCOJHNZVDJ-UHFFFAOYSA-N 4-pyren-1-ylbutanoic acid Chemical compound C1=C2C(CCCC(=O)O)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 QXYRRCOJHNZVDJ-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910014540 LiMn2O Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- 229910017095 Ni0.6Mn0.2Co0.2 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- NXPZICSHDHGMGT-UHFFFAOYSA-N [Co].[Mn].[Li] Chemical compound [Co].[Mn].[Li] NXPZICSHDHGMGT-UHFFFAOYSA-N 0.000 description 1
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- ZIXLDMFVRPABBX-UHFFFAOYSA-N alpha-methylcyclopentanone Natural products CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- MZNDIOURMFYZLE-UHFFFAOYSA-N butan-1-ol Chemical compound CCCCO.CCCCO MZNDIOURMFYZLE-UHFFFAOYSA-N 0.000 description 1
- GKMQWTVAAMITHR-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O.CCC(C)O GKMQWTVAAMITHR-UHFFFAOYSA-N 0.000 description 1
- FBSCWAJILZTGOJ-UHFFFAOYSA-N butan-2-ol;2-methylpropan-2-ol Chemical compound CCC(C)O.CC(C)(C)O FBSCWAJILZTGOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011883 electrode binding agent Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- TUEYHEWXYWCDHA-UHFFFAOYSA-N ethyl 5-methylthiadiazole-4-carboxylate Chemical compound CCOC(=O)C=1N=NSC=1C TUEYHEWXYWCDHA-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000002461 imidazolidines Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- NVSXNYFKHSNOQL-UHFFFAOYSA-N methanamine;pyrene Chemical compound NC.C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 NVSXNYFKHSNOQL-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- DLOBKMWCBFOUHP-UHFFFAOYSA-N pyrene-1-sulfonic acid Chemical compound C1=C2C(S(=O)(=O)O)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 DLOBKMWCBFOUHP-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a separator including a porous substrate and a conductive layer disposed on the porous substrate, wherein the conductive layer includes a carbon nanotube structure in which a plurality of single-walled carbon nanotube units are bonded to each other side by side, and the carbon nanotube structure has an average diameter of 2 nm to 500 nm, and a secondary battery including the same.
- a lithium secondary battery denotes a battery in which an electrode assembly which includes a positive electrode including a positive electrode active material capable of intercalating/deintercalating the lithium ions, a negative electrode including a negative electrode active material capable of intercalating/deintercalating the lithium ions, and a separator disposed between the positive electrode and the negative electrode; and an electrolyte containing lithium ions are included.
- the electrode Since movement of electrons must be smooth in the positive electrode and the negative electrode (hereinafter, referred to as an "electrode"), a conductive path of the electrode must be secured.
- the electrode uses a current collector having an active material layer disposed on a surface thereof, and the active material layer includes a conductive agent.
- the electrode in order to improve the conductive path of the electrode, a technique for modifying the surface of the current collector or uniform dispersion of the conductive agent has been introduced. However, it is insufficient to improve the conductive path of the electrode only by a conventional method using the current collector or conductive agent.
- An aspect of the present invention provides a separator capable of improving input/output characteristics of a battery by improving a conductive path of an electrode while maintaining a degree of diffusion of lithium ions of the separator.
- Another aspect of the present invention provides a secondary battery including the separator.
- a separator including a porous substrate and a conductive layer disposed on the porous substrate, wherein the conductive layer includes a carbon nanotube structure in which a plurality of single-walled carbon nanotube units are bonded to each other side by side, and the carbon nanotube structure has an average diameter of 2 nm to 500 nm.
- a secondary battery including the separator.
- a separator according to the present invention may improve a conductive path of an electrode in contact with a conductive layer by including the conductive layer including a carbon nanotube structure in which a plurality of single-walled carbon nanotube units are bonded to each other side by side, the separator may improve input/output characteristics of a battery by reducing batter resistance. Also, since the conductive layer has little effect on a pore structure of a porous substrate (or porous substrate and inorganic coating layer) in the separator, it may minimize a decrease in degree of diffusion of lithium ions in the separator while improving the conductive path.
- the expression "specific surface area” is measured by a Brunauer-Emmett-Teller (BET) method, wherein, specifically, the specific surface area may be calculated from a nitrogen gas adsorption amount at a liquid nitrogen temperature (77K) using BELSORP-mini II by Bel Japan Inc.
- BET Brunauer-Emmett-Teller
- average particle diameter (D 50 ) in the present specification may be defined as a particle diameter at a cumulative volume of 50% in a particle size distribution curve.
- the average particle diameter (D 50 ), for example, may be measured by using a laser diffraction method.
- the laser diffraction method may generally measure a particle diameter ranging from a submicron level to a few mm and may obtain highly repeatable and high-resolution results.
- single-walled carbon nanotube unit denotes a unit in the form of a single-walled tube composed of carbon atoms
- multi-walled carbon nanotube unit denotes a unit in the form of a tube with multiple walls composed of carbon atoms
- a separator according to the present invention includes a porous substrate and a conductive layer disposed on the porous substrate, wherein the conductive layer includes a carbon nanotube structure in which a plurality of single-walled carbon nanotube units are bonded to each other side by side, and the carbon nanotube structure may have an average diameter of 2 nm to 500 nm.
- the porous substrate may be a porous polymer film substrate or a porous polymer nonwoven substrate.
- the porous polymer film substrate may be a porous polymer film formed of polyolefin such as polyethylene, polypropylene, polybutylene, and polypentene, and such a polyolefin porous polymer film substrate, for example, exhibits a shutdown function at a temperature of 80°C to 130°C.
- polyolefin such as polyethylene, polypropylene, polybutylene, and polypentene
- the polyolefin porous polymer film may be formed of any one of polyolefin-based polymers such as polyethylene, such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultrahigh molecular weight polyethylene, polypropylene, polybutylene, and polypentene or may be formed of a polymer obtained by mixing two or more thereof.
- polyethylene such as high-density polyethylene, linear low-density polyethylene, low-density polyethylene, and ultrahigh molecular weight polyethylene
- polypropylene, polybutylene, and polypentene or may be formed of a polymer obtained by mixing two or more thereof.
- the porous polymer film substrate may be prepared by forming into a film shape using various polymers, such as polyester, in addition to polyolefin.
- the porous polymer film substrate may be formed in a structure in which two or more film layers are stacked, and each film layer may be formed of a polymer, such as the above-described polyolefin or polyester, alone or a polymer obtained by mixing two or more thereof.
- the porous polymer film substrate and the porous nonwoven substrate may be formed of any one of polyethyleneterephthalate, polybutyleneterephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalene, in addition to the polyolefin as described above, or a polymer obtained by mixing these materials.
- a thickness of the porous substrate is not particularly limited, but is specifically in a range of 1 um to 100 ⁇ m, for example, 5 um to 50 ⁇ m, and diameter and porosity of pores present in the porous substrate are also not particularly limited, but may be in a range of 0.01 um to 50 um and 10% to 95%, respectively.
- the conductive layer may be disposed on the porous substrate. Specifically, the conductive layer may be disposed on one surface of the porous substrate, and more specifically, the conductive layer may be disposed only on one surface of the porous substrate.
- the conductive layer may include a carbon nanotube structure, and specifically, the conductive layer may be formed of the carbon nanotube structure.
- the carbon nanotube structure may include a plurality of single-walled carbon nanotube units.
- the carbon nanotube structure may be a carbon nanotube structure in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other side by side.
- the carbon nanotube structure may be a carbon nanotube structure in which 2 to 4,500, preferably 50 to 4,500, and more preferably 1,000 to 4,500 single-walled carbon nanotube units are bonded to each other.
- the carbon nanotube structure may be one in which 1,000 to 4,500 single-walled carbon nanotube units are arranged side by side and bonded to each other.
- the single-walled carbon nanotube units may be arranged side by side and bonded in the carbon nanotube structure (bundle type cylindrical structure having flexibility in which the units are bonded such that long axes of the units are parallel to each other) to form the carbon nanotube structure.
- the carbon nanotube structures are interconnected in the conductive layer to have a network structure.
- the carbon nanotube structure is different from a typical carbon nanotube.
- the typical carbon nanotube denotes a carbon nanotube unit which is formed by dispersing bundle type or entangled type carbon nanotubes (a form in which single-walled carbon nanotube units or multi-walled carbon nanotube units are attached or entangled with each other) in a dispersion medium as much as possible (conductive agent dispersion).
- conductive agent dispersion a dispersion medium as much as possible
- the carbon nanotube units are easily cut by an excessive dispersion process, the carbon nanotube units have lengths shorter than their respective initial lengths.
- the separator is coated by using the conductive agent dispersion, since the carbon nanotube units having a small average diameter are located in the pores in the separator, a volume of the pores on a surface and inside of the separator is excessively reduced, and thus, lithium ion diffusion in the separator is not smooth.
- the carbon nanotube units are connected to each other through the pores in the separator to cause a local short circuit between a positive electrode and a negative electrode which are present with the separator disposed therebetween.
- the multi-walled carbon nanotube units Furthermore, with respect to the multi-walled carbon nanotube units, structural defects are high due to a mechanism in which nodes grow (the units are not smooth and linear, but the nodes are present due to defects generated during the growth process). Thus, the multi-walled carbon nanotube units are more easily cut in the dispersion process, and the short-cut multi-walled carbon nanotube units may be easily aggregated by ⁇ - ⁇ stacking caused by carbon of the unit. Accordingly, it is more difficult for the multi-walled carbon nanotube units to be more uniformly dispersed in the conductive layer of the separator.
- the carbon nanotube structure included in the conductive layer of the separator of the present invention is in the form of a rope in which a plurality of single-walled carbon nanotube units maintaining relatively high crystallinity without structural defects are arranged side by side and bonded together. Since the carbon nanotube structure has a large average diameter, it is not easily disposed inside the pores of the porous substrate (or porous substrate and inorganic coating layer) of the separator, and thus, a pore structure may be maintained. Accordingly, since a decrease in lithium ion diffusion in the separator may be minimized, input/output characteristics of a battery may be maintained.
- the conductive layer may act as a kind of current collector with respect to the electrode in contact with the conductive layer due to the network structure.
- the conductive layer may be in contact with not only the electrode but also a current applying part (e.g., lower can in a coin cell, electrode tab in a typical full-cell) connected to the electrode, a current may flow along the conductive layer in addition to the current collector in the electrode when the current is applied from the outside.
- a current may uniformly flow over an entire surface of the electrode along the conductive layer, resistance of the battery may be significantly improved and the input/output characteristics and life characteristics of the battery may be improved.
- the conductive network by the carbon nanotube structure may be formed relatively uniformly and strongly, the above-described effect of improving a conductive path is better than a case of using a typical carbon nanotube unit.
- the single-walled carbon nanotube unit may have an average diameter of 0.5 nm to 10 nm, for example, 1 nm to 9 nm.
- the average diameter corresponds to an average value of diameters of the top 100 single-walled carbon nanotube units with a larger diameter and the bottom 100 single-walled carbon nanotube units with a smaller diameter when a surface of the prepared separator is observed by a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the single-walled carbon nanotube unit may have an average length of 1 um to 100 ⁇ m, for example, 5 um to 50 um.
- the average length corresponds to an average value of lengths of the top 100 single-walled carbon nanotube units with a larger length and the bottom 100 single-walled carbon nanotube units with a sma ller length when the surface of the prepared separator is observed by a TEM.
- the single-walled carbon nanotube unit may have a specific surface area of 500 m 2 /g to 1,000 m 2 /g, for example, 600 m 2 /g to 800 m 2 /g.
- the specific surface area of the single-walled carbon nanotube unit may specifically be calculated from a nitrogen gas adsorption amount at a liquid nitrogen temperature (77K) using BELSORP-mini II by Bel Japan Inc.
- the carbon nanotube structure may have an average diameter of 2 nm to 500 nm, particularly 10 nm to 500 nm, and more particularly 100 nm to 500 nm.
- the carbon nanotube structure may block the pore structure of the porous substrate (or porous substrate and inorganic coating layer) to degrade performance of the battery, and an internal short circuit may occur because a conductive network may be formed in a path through the separator.
- the average diameter of the carbon nanotube structure corresponds to an average value of diameters of the top 100 carbon nanotube structures with larger diameters and the bottom 100 carbon nanotube structures with smaller diameters when the surface of the prepared separator is observed by a scanning electron microscope (SEM).
- the carbon nanotube structure may have an average length of 1 um to 500 um, particularly 5 um to 300 ⁇ m, and more particularly 10 um to 100 um.
- the average length of the carbon nanotube structure corresponds to an average value of lengths of the top 100 carbon nanotube structures with larger lengths and lengths of the bottom 100 carbon nanotube structures with smaller lengths when the surface of the prepared separator is observed by an SEM.
- the single-walled carbon nanotube unit may be surface-treated through an oxidation treatment or nitridation treatment to improve affinity with a dispersant.
- the carbon nanotube structure may be included in an amount of 0.01 part by weight to 20 parts by weight based on 100 parts by weight of the porous substrate, and may specifically be included in an amount of 0.01 part by weight to 10 parts by weight.
- the amount of the carbon nanotube structure satisfies the above range, since the pore structure of the porous substrate may be exposed to the surface, the surface of the separator may have a porous structure.
- the conductive layer may act as a kind of current collector on the surface of the electrode in contact with the separator, the resistance of the battery may be reduced and the input/output characteristics of the battery may be improved.
- the carbon nanotube structure is a highly crystalline carbon-based material, high-temperature stability and chemical resistance are high. Thus, even if the temperature in the battery is rapidly increased, the carbon nanotube structure may maintain a solid network structure.
- the conductive layer may have a thickness of 10 nm to 2,000 nm, particularly 50 nm to 2,000 nm, and more particularly 100 nm to 1,000 nm.
- the thickness of the conductive layer satisfies the above range, since the pore structure of the porous substrate may be exposed to the surface, the surface of the separator may have a porous structure.
- the conductive layer may act as a kind of current collector on the surface of the electrode in contact with the separator, the resistance of the battery may be reduced and the input/output characteristics of the battery may be improved.
- the thickness of the conductive layer is most preferably in a range of 100 nm to 1,000 nm.
- the thickness may be measured by checking a cross section of the separator through an SEM.
- the conductive layer may have a surface resistance of 5 ⁇ 10 -1 ⁇ / ⁇ to 5 ⁇ 10 4 ⁇ / ⁇ , for example, 5 ⁇ 10 ⁇ / ⁇ to 5 ⁇ 10 4 ⁇ / ⁇ . Since the carbon nanotube structure is used, the above range may be derived by forming a long and robust conductive network in the form of a rope and high electrical conductivity of the carbon nanotube structure. When the surface resistance of the conductive layer satisfies the above range, since the conductive layer may act as a kind of current collector on the surface of the electrode in contact with the separator while the surface of the separator maintains a porous structure, the resistance of the battery may be reduced and the input/output characteristics of the battery may be improved.
- the conductive layer may further include an additive covering at least a portion of the surface of the carbon nanotube structure.
- the additive may play a role in appropriately dispersing the bundle type or entangled type carbon nanotubes in the formation of the carbon nanotube structure. Since the additive is present while covering the at least a portion of the surface of the carbon nanotube structure, the conductive layer may not be easily exfoliated from the separator and may be strongly bonded to the porous substrate.
- the additives may be at least one selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-co-HFP), polyvinyl alcohol, polyacrylonitrile, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, hydrogenated nitrile butadiene rubber, polystyrene, pyrene butyric acid, pyrene sulfonic acid, tannic acid, pyrene methylamine, sodium dodecyl sulfate, carboxymethyl cellulose, styrene butadiene rubber, and fluoro rubber, and may specifically be a carboxymethyl cellulose.
- PVdF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
- PVdF-co-HFP polyvinyl alcohol
- polyacrylonitrile
- the separator may further include the inorganic coating layer.
- the inorganic coating layer may be disposed between the porous substrate and the conductive layer. In this case, even if heat generation/ignition occurs or the temperature rises rapidly for various reasons in the battery, since the inorganic coating layer maintains a shape of the separator to prevent a short circuit between the positive electrode and the negative electrode, the inorganic coating layer may improve safety of the battery.
- the inorganic coating layer may include inorganic particles.
- the inorganic particle is not particularly limited as long as it does not reduce conductivity and does not cause an oxidation and/or reduction reaction, that is, an electrochemical reaction, with a positive electrode or negative electrode collector in an operating voltage range (e.g., 0 V - 5 V based on Li/Li + ) of the battery, and, for example, may be at least one inorganic material selected from the group consisting of Al 2 O 3 , BaTiO 3 , CaO, CeO 2 , NiO, MgO, SiO 2 , SnO 2 , SrTiO 3 , TiO 2 , Y 2 O 3 , ZnO, ZrO 2 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y TiyO 3 (PLZT), Pb (Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), and hafn
- the inorganic coating layer may further include a binder.
- the binder plays a role in increasing a binding force between the inorganic particles.
- the binder may include polyvinylidene fluoride-co-trichloroethylene, polymethylmethacrylate, polyethylhexyl acrylate, polybutylacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan, and carboxylmethyl cellulose, but is not limited thereto.
- the carbon nanotube structure is a highly crystalline carbon-based material, high-temperature stability and chemical resistance are high. Thus, even if the temperature in the battery is rapidly increased, the carbon nanotube structure may maintain a solid network structure. Also, in a case in which the inorganic coating layer and the carbon nanotube structure are bonded, since the inorganic coating layer and the carbon nanotube structure maintain the shape of the separator to prevent the short circuit between the positive electrode and the negative electrode even if heat generation/ignition occurs or the temperature rises rapidly for various reasons in the battery, the safety of the battery may be further improved.
- Air permeability of the separator may be in a range of 50 s/100cc to 500 s/100cc, particularly 100 s/100cc to 300 s/100cc, and more particularly 150 s/100cc to 250 s/100cc.
- air permeability means time taken for 100 cc of air to permeate through the separator. Satisfying the air permeability means that the pore structure of the separator is effectively established, and, in other words, means that the pore structure of the separator may be maintained even if the conductive layer has been formed.
- the method of preparing the separator of the present invention includes the steps of: preparing a carbon nanotube structure; and disposing the carbon nanotube structure on a porous substrate, wherein the carbon nanotube structure includes a structure in which a plurality of single-walled carbon nanotube units are bonded to each other side by side, and the carbon nanotube structure may have an average diameter of 2 nm to 500 nm.
- the porous substrate and the carbon nanotube structure may be the same as the porous substrate and the carbon nanotube structure which have been described in the separator of the above-described embodiment.
- the preparation of the carbon nanotube structure may include the steps of: preparing a mixed solution including a dispersion medium, a dispersant, and bundle type single-walled carbon nanotubes (bonded body or aggregate of single-walled carbon nanotube units) (S1-1); and forming a carbon nanotube structure, in which a plurality of single-walled carbon nanotube units are bonded side by side, by dispersing the bundle type single-walled carbon nanotubes by applying a shear force to the mixed solution (S1-2).
- the mixed solution may be prepared by adding bundle type single-walled carbon nanotubes and a dispersant to a dispersion medium.
- the bundle type single-walled carbon nanotubes are present in the form of a bundle in which the above-described single-walled carbon nanotube units are bonded, wherein the bundle type carbon nanotube includes usually 2 or more, substantially 500 or more, for example, 5,000 or more single-walled carbon nanotube units.
- the bundle type single-walled carbon nanotube may have a specific surface area of 500 m 2 /g to 1,000 m 2 /g, for example, 600 m 2 /g to 800 m 2 /g.
- the specific surface area satisfies the above range, since the conductive path in the electrode may be smoothly secured by the wide specific surface area, the conductivity in the electrode may be maximized even with a very small amount of the conductive agent.
- the bundle type single-walled carbon nanotubes may be included in an amount of 0.1 wt% to 1.0 wt%, for example, 0.2 wt% to 0.5 wt% in the mixed solution.
- amount of the bundle type single-walled carbon nanotubes satisfies the above range, since the bundle type single-walled carbon nanotubes are dispersed in an appropriate level, a carbon nanotube structure may be formed at an appropriate level and dispersion stability may be improved.
- the dispersion medium may include water, an amide-based polar organic solvent such as dimethylformamide (DMF), diethylformamide, dimethylacetamide (DMAc), and N-methylpyrrolidone (NMP); alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol (n-butanol), 2-methyl-1-propanol (isobutanol), 2-butanol (sec-butanol), 1-methyl-2-propanol (tert-butanol), pentanol, hexanol, heptanol, or octanol; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, or hexylene glycol; polyhydric alcohols such as
- the dispersant may include at least one selected from a hydrogenated nitrile butadiene rubber, polyvinylidene fluoride, and carboxymethyl cellulose, and may specifically be carboxymethyl cellulose.
- the dispersant may correspond to the additive of the above-described embodiment.
- a weight ratio of the bundle type carbon nanotubes to the dispersant may be in a range of 1:0.1 to 1:10, for example, 1:1 to 1:10. In a case in which the weight ratio satisfies the above range, since the bundle type single-walled carbon nanotubes are dispersed in an appropriate level, a carbon nanotube structure may be formed at an appropriate level and the dispersion stability may be improved.
- a solid content in the mixed solution may be in a range of 0.1 wt% to 20 wt%, for example, 1 wt% to 10 wt%.
- the solid content satisfies the above range
- a carbon nanotube structure may be formed at an appropriate level and the dispersion stability may be improved.
- an electrode slurry may have viscosity and elasticity suitable for an electrode preparation process, and it also contributes to increase the solid content of the electrode slurry.
- a process of dispersing the bundle type carbon nanotubes in the mixed solution may be performed by using a mixing device such as a homogenizer, a bead mill, a ball mill, a basket mill, an attrition mill, a universal stirrer, a clear mixer, a spike mill, a TK mixer, or sonication equipment.
- a mixing device such as a homogenizer, a bead mill, a ball mill, a basket mill, an attrition mill, a universal stirrer, a clear mixer, a spike mill, a TK mixer, or sonication equipment.
- a bead-mill method is preferred in that it may precisely control the diameter of the carbon nanotube structure, may achieve a uniform distribution of the carbon nanotube structure, and may have advantages in terms of cost.
- the bead-mill method may be as follows.
- the mixed solution may be put in a vessel containing beads, and the vessel may be rotated to disperse the bundle type single-walled carbon nanotubes.
- conditions under which the bead-mill method is performed are as follows.
- the beads may have an average diameter of 0.5 mm to 1.5 mm, for example, 0.5 mm to 1.0 mm.
- the diameter of the carbon nanotube structure may be properly controlled without breaking the carbon nanotube structure during a dispersion process, and a dispersion solution with a uniform composition may be prepared.
- a rotational speed of the vessel may be in a range of 500 RPM to 10,000 RPM, for example, 2,000 RPM to 6,000 RPM.
- the diameter of the carbon nanotube structure may be properly controlled without breaking the carbon nanotube structure during the dispersion process, and a dispersion solution with a uniform composition may be prepared.
- the time during which the bead mill is performed may be in a range of 0.5 hours to 2 hours, particularly 0.5 hours to 1.5 hours, and more particularly 0.8 hours to 1 hour.
- the diameter of the carbon nanotube structure may be properly controlled without breaking the carbon nanotube structure during the dispersion process, and a dispersion solution with a uniform composition may be prepared.
- the performance time of the bead mill means total time during which the bead mill is used, and, thus, for example, if the bead mill is performed several times, the performance time means total time required for performing the bead mill several times.
- the above bead mill conditions are for dispersing the bundle type single-walled carbon nanotubes at an appropriate level, and specifically exclude the case where the bundle type single-walled carbon nanotubes are completely dispersed into single-stranded single-walled carbon nanotubes. That is, the above bead mill conditions are for forming the carbon nanotube structure in which a plurality of single-walled carbon nanotube units are bonded together side by side in the conductive agent dispersion prepared by appropriately dispersing the bundle type single-walled carbon nanotubes. This may be achieved only when a composition of the mixed solution and dispersion process (e.g., bead mill process) conditions are strictly controlled.
- a composition of the mixed solution and dispersion process e.g., bead mill process
- a carbon nanotube structure dispersion may be formed through the above process.
- the carbon nanotube structure may be disposed on the porous substrate by applying the carbon nanotube structure dispersion on the porous substrate and solidifying the applied carbon nanotube structure dispersion.
- the porous substrate may include or may not include the above-described inorganic coating layer, but it is preferable to include the inorganic coating layer in order to improve safety.
- a conventional method such as a Mayer bar, a die coater, a reverse roll coater, and a gravure coater, may be used to apply the carbon nanotube structure dispersion.
- a secondary battery according to another embodiment of the present invention may include an electrode and the separator of the above-described embodiment.
- the electrode may include a positive electrode and a negative electrode.
- the electrode may include an electrode active material layer.
- the electrode may further include a current collector, and, in this case, the electrode active material layer may be disposed on one surface or both surfaces of the current collector.
- the current collector is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, for example, copper, stainless steel, aluminum, nickel, titanium, alloys thereof, these materials that are surface-treated with one of carbon, nickel, titanium, silver, or the like, or fired carbon may be used.
- the current collector may typically have a thickness of 3 um to 500 ⁇ m, and microscopic irregularities may be formed on the surface of the collector to improve the adhesion of the electrode active material.
- the electrode collector for example, may be used in various shapes such as that of a film, a sheet, a foil, a net, a porous body, a foam body, a non-woven fabric body, and the like.
- the electrode active material layer may include an electrode active material and a conductive agent.
- the electrode active material may be a positive electrode active material or negative electrode active material commonly used in the art, but types thereof are not particularly limited.
- the lithium oxide including lithium and at least one metal such as cobalt, manganese, nickel, or aluminum
- the lithium oxide may include lithium-manganese-based oxide (e.g., LiMnO 2 , LiMn 2 O, etc.), lithium-cobalt-based oxide (e.g., LiCoO 2 , etc.), lithium-nickel-based oxide (e.g., LiNiO 2 , etc.), lithium-nickel-manganese-based oxide (e.g., LiNi 1-Y1 Mn Y1 O 2 (where 0 ⁇ Y1 ⁇ 1), LiMn 2-Z1 Ni z1 O 4 (where 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel-cobalt-based oxide (e.g., LiNi 1-Y2 Co Y2 O 2 (where 0 ⁇ Y2 ⁇ 1), lithium-manganese-cobalt-based oxide (e.g., LiCo 1-Y
- the negative electrode active material may include a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; a metallic compound alloyable with lithium such as silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), bismuth (Bi), indium (In), magnesium (Mg), gallium (Ga), cadmium (Cd), a Si alloy, a Sn alloy, or an Al alloy; a metal oxide which may be doped and undoped with lithium such as SiO v (0 ⁇ v ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; or a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one thereof or a mixture of two or more thereof may be used.
- a metallic lithium thin film may be used as the negative electrode active material.
- both low crystalline carbon and high crystalline carbon may be used as the
- the electrode active material may be included in an amount of 70 wt% to 99.5 wt%, for example, 80 wt% to 99 wt% based on a total weight of the electrode active material layer.
- amount of the electrode active material satisfies the above range, excellent energy density, electrode adhesion, and electrical conductivity may be achieved.
- the conductive agent is not particularly limited as long as it has conductivity without causing adverse chemical changes in the battery, and, conductive materials, for example, graphite such as natural graphite and artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers or metal fibers; conductive tubes such as carbon nanotubes; metal powder such as fluorocarbon powder, aluminum powder, and nickel powder; conductive whiskers such as zinc oxide whiskers and potassium titanate whiskers; conductive metal oxide such as titanium oxide; or polyphenylene derivatives, may be used.
- graphite such as natural graphite and artificial graphite
- carbon black such as acetylene black, Ketjen black, channel black, furnace black, Royal black, and thermal black
- conductive fibers such as carbon fibers or metal fibers
- conductive tubes such as carbon nanotubes
- metal powder such as fluorocarbon powder, aluminum powder, and nickel powder
- the electrode may further include a binder.
- the binder may include at least one selected from the group consisting of a polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylate, an ethylene-propylene-diene monomer (EPDM), a sulfonated EPDM, a styrene-butadiene rubber (SBR), a fluorine rubber, poly acrylic acid, and a material having hydrogen thereof substituted with lithium (Li), sodium (Na), or calcium (Ca), or may include various copolymers thereof.
- PVDF-co-HFP polyvinyliden
- the electrode is connected to a current applying part.
- the secondary battery is a coin cell
- an external current is applied to the electrode in contact with a lower can through the lower can, and, in this case, the lower can corresponds to the current applying part.
- the secondary battery is a mono-cell (or a pouch type or cylindrical type battery having more stacks than the mono-cell) rather than the coin cell
- an external current is applied to the electrode through an electrode tab, and, in this case, the electrode tab corresponds to the current applying part.
- the electrode is a positive electrode in the mono-cell
- an end (an end region of a portion in which a positive electrode active material layer is not formed (uncoated portion)) of a positive electrode collector in the positive electrode may correspond to the current applying part.
- the separator may be disposed between the positive electrode and the negative electrode.
- the positive electrode includes a positive electrode collector and a positive electrode active material layer
- the negative electrode includes a negative electrode collector and a negative electrode active material layer.
- the positive electrode collector and the negative electrode collector include uncoated portions in which the positive electrode active material layer and the negative electrode active material layer are not disposed (not overlapped with the positive electrode active material layer), respectively.
- the conductive layer of the separator may be in contact with the uncoated portion of the positive electrode collector and the current applying part (corresponding to a positive electrode tab). Accordingly, the current flowing into the secondary battery through the current applying part may be uniformly transmitted to the positive electrode active material layer through the conductive layer as well as the positive electrode collector.
- a separator 130 including a porous substrate 131 and a conductive layer 132 is disposed between a negative electrode 120 and a positive electrode 110 so that the conductive layer 132 of the separator 130 comes into contact with an upper surface of the positive electrode 110.
- a lower cap 111a is disposed to be in contact with a lower surface of the positive electrode 110, and a portion of the lower cap 111a comes into contact with the conductive layer 132 in an assembly process of the coin cell.
- a current applied through the lower cap 111a which is a current applying part, not only evenly spreads to the lower surface of the positive electrode 110 along the lower cap 111a, but may also evenly spread to the upper surface of the positive electrode 110 along the conductive layer 132. Accordingly, battery resistance may be reduced, and input/output characteristics of the battery may be significantly improved.
- a separator 130 including a porous substrate 131 and a conductive layer 132 are included in the mono-cell, and an end portion of the positive electrode collector 111, in a state in which the positive electrode active material layer 112 is not disposed on a surface thereof, protrudes long to constitute a positive electrode tab 111a, which is a current applying part, and the positive electrode tabs 111a are in contact with each other.
- a portion of the conductive layer 132 comes into contact (C) with a portion of the positive electrode tab 111a.
- the current may flow evenly in the positive electrode active material layer 112. Accordingly, battery resistance may be reduced, and input/output characteristics of the battery may be significantly improved.
- FIG. 9 is a schematic diagram illustrating a positional relationship between a positive electrode collector 111, a positive electrode active material layer 112, a positive electrode tab 111a, and a conductive layer 132 of a separator in a jelly-roll type battery in a state of an unrolled battery before the jelly-roll type battery is completed.
- the positive electrode collector 111 includes an uncoated portion that does not overlap the positive electrode active material layer, and the uncoated portion and a portion of the positive electrode tab 111a come into contact with the conductive layer 132 (a region corresponding to C).
- the positive electrode tab 111a since a current applied through the positive electrode tab 111a not only flows to the positive electrode collector 111, but also flows to the conductive layer 132, the current may flow evenly in the positive electrode active material layer 112. Accordingly, battery resistance may be reduced, and input/output characteristics of the battery may be significantly improved.
- FIGS. 10 and 11 although similar to FIG. 9 , it may be understood that a plurality of positive electrode tabs 111a are present, and a plurality of positive electrode active material layers 112 are also present in spaced apart regions.
- a region of the positive electrode tab 111a and a region of the uncoated portion, which are in contact with the conductive layer are increased, a current applied through the plurality of positive electrode tabs 111a more uniformly flows into the conductive layer 132, and thus, the current may flow more evenly in the positive electrode active material layer 112. Accordingly, battery resistance may be further reduced, and input/output characteristics of the battery may be significantly improved.
- positions of the positive electrode and the negative electrode may be changed with each other.
- the secondary battery may further include an electrolyte.
- the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, or a molten-type inorganic electrolyte which may be used in the preparation of the lithium secondary battery, but the present invention is not limited thereto.
- the electrolyte may include a non-aqueous organic solvent and a metal salt.
- an aprotic solvent such as N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, diemthylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, a dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, a propylene carbonate derivative, a tetrahydrofuran derivative, ether, methyl propionate, and ethyl propionate
- an aprotic solvent such as N-methyl
- the cyclic carbonate since ethylene carbonate and propylene carbonate, as cyclic carbonate, well dissociate a lithium salt due to high permittivity as a highly viscous organic solvent, the cyclic carbonate may be preferably used. Since an electrolyte having high electrical conductivity may be prepared when the above cyclic carbonate is mixed with low viscosity, low permittivity linear carbonate, such as dimethyl carbonate and diethyl carbonate, in an appropriate ratio and used, the cyclic carbonate may be more preferably used.
- a lithium salt may be used as the metal salt, and the lithium salt is a material that is readily soluble in the non-aqueous organic solvent, wherein, for example, at least one selected from the group consisting of F-, Cl-, I - , NO 3 - , N(CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3
- At least one additive for example, a halo-alkylene carbonate-based compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric triamide, a nitrobenzene derivative, sulfur, a quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, may be further added to the electrolyte in addition to the electrolyte components.
- a halo-alkylene carbonate-based compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric
- a battery module including the secondary battery as a unit cell and a battery pack including the battery module are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate capability, and high cycle characteristics, the battery module and the battery pack may be used as a power source of a medium and large sized device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system.
- bundle type carbon nanotubes (specific surface area of 650 m 2 /g) composed of single-walled carbon nanotube units having an average diameter of 1.5 nm and an average length of 5 um or more and 0.6 part by weight of carboxymethyl cellulose (weight-average molecular weight: 400,000 g/mol, degree of substitution: 1.0) were mixed in 99.0 parts by weight of water, as a dispersion medium, to prepare a mixture such that a solid content was 1.0 wt%.
- the bundle type single-walled carbon nanotubes were dispersed in the solvent by stirring the mixture by a bead-mill method and thus, a carbon nanotube structure dispersion was prepared.
- beads had a diameter of 1 mm
- a rotational speed of a stirring vessel containing the beads was 3,000 RPM
- the stirring was performed for 60 minutes.
- the carbon nanotube structure dispersion included a carbon nanotube structure in the form in which 2 to 5,000 single-walled carbon nanotube units were bonded side by side (see FIG. 5 ).
- an amount of the carbon nanotube structure was 0.4 wt%
- an amount of the carboxymethyl cellulose was 0.6 wt%.
- 0.2 part by weight of bundle type carbon nanotubes (specific surface area of 650 m 2 /g) composed of single-walled carbon nanotube units having an average diameter of 1.5 nm and an average length of 5 um or more and 1.2 parts by weight of carboxymethyl cellulose (weight-average molecular weight: 100,000 g/mol, degree of substitution: 1.0) were mixed in 98.6 parts by weight of water, as a dispersion medium, to prepare a mixture such that a solid content was 1.4 wt%.
- the bundle type single-walled carbon nanotubes were dispersed in the solvent by stirring the mixture by a bead-mill method and thus, a conductive agent dispersion was prepared.
- beads had a diameter of 1 mm
- a rotational speed of a stirring vessel containing the beads was 3,000 RPM
- stirring for 60 minutes under the above conditions was set as one cycle and total 4 cycles (natural cooling was performed for 60 minutes between each cycle) were performed.
- a single-walled carbon nanotube unit dispersion was prepared.
- the single-walled carbon nanotube unit since the bundle-type single-walled carbon nanotubes were completely dispersed, the single-walled carbon nanotube unit only existed as a single-strand unit, but the above-described carbon nanotube structure was not detected (see FIG. 6 ).
- an amount of the single-walled carbon nanotube unit was 0.2 wt%
- an amount of the carboxymethyl cellulose was 1.2 wt%.
- Acetone and a PVDF-HFP binder were mixed to prepare a polymer solution (solid content of 5 wt% concentration).
- Al 2 O 3 (Nippon Light Metal Company, Ltd., LS235) was added to the polymer solution in an amount of 20 wt% based on a total amount of the polymer solution and then dispersed by a ball mill method to prepare a slurry for an inorganic porous coating layer.
- the slurry was coated on a porous substrate (Toray Industries, Inc. B12PA1, thickness 12 um) by a dip coating method, and humidified phase separation was induced at a relative humidity (RH) of about 40%.
- RH relative humidity
- a separator including an inorganic coating layer was prepared by such a method.
- the carbon nanotube structure dispersion of Preparation Example 1 was surface coated on the separator prepared by the above method to have a thickness of 500 nm based on a cross section by a doctor blade coating method, and dried in an oven at 120°C for 1 minute to prepare a separator.
- Li[Ni 0.6 Mn 0.2 Co 0.2 ]O 2 was used as a positive electrode active material.
- the positive electrode active material, carbon black as a conductive agent, and polyvinylidene fluoride (PVdF), as a binder, were mixed in an N-methyl-2-pyrrolidone solvent at weight ratio of 94:4:2 to prepare a positive electrode slurry.
- the prepared slurry was applied to a 15 um thick positive electrode collector (Al) at a loading amount of 5 mAh/cm 2 and dried. In this case, a temperature of circulating air was 110°C. Subsequently, the positive electrode collector was rolled and dried in a vacuum oven at 130°C for 2 hours to form a positive electrode active material layer.
- Al positive electrode collector
- a separator and a battery were prepared in the same manner as in Example 1 except that a thickness of a conductive layer was 250 nm.
- a separator and a battery were prepared in the same manner as in Example 1 except that a loading amount of a positive electrode was 2.5 mAh/cm 2 .
- a separator and a battery were prepared in the same manner as in Example 1 except that a thickness of a conductive layer was 250 nm and a loading amount of a positive electrode was 2.5 mAh/cm 2 .
- a separator and a battery were prepared in the same manner as in Example 1 except that a conductive layer was not formed.
- a separator and a battery were prepared in the same manner as in Example 3 except that a conductive layer was not formed.
- a separator and a battery were prepared in the same manner as in Example 1 except that the single-walled carbon nanotube unit dispersion of Preparation Example 2 was used instead of the carbon nanotube structure dispersion of Preparation Example 1.
- a separator and a battery were prepared in the same manner as in Example 2 except that the single-walled carbon nanotube unit dispersion of Preparation Example 2 was used instead of the carbon nanotube structure dispersion of Preparation Example 1.
- a separator and a battery were prepared in the same manner as in Example 3 except that the single-walled carbon nanotube unit dispersion of Preparation Example 2 was used instead of the carbon nanotube structure dispersion of Preparation Example 1.
- a separator and a battery were prepared in the same manner as in Example 4 except that the single-walled carbon nanotube unit dispersion of Preparation Example 2 was used instead of the carbon nanotube structure dispersion of Preparation Example 1.
- an average diameter of the carbon nanotube structure was 100 nm, and an average length thereof was 15.6 um.
- the average diameter and average length corresponded to an average value of diameters and lengths of the top 100 carbon nanotube structures with larger diameters (or lengths) and the bottom 100 carbon nanotube structures with smaller diameters (or lengths) when the prepared negative electrode was observed by a TEM.
- an average diameter of the single-walled carbon nanotube unit was 1.6 nm, and an average length thereof was 1.8 um.
- the average diameter and average length corresponded to an average value of diameters and lengths of top 100 single-walled carbon nanotube units with a larger diameter (or length) and bottom 100 single-walled carbon nanotube units with a smaller diameter (or length) when the prepared negative electrode was observed by a TEM.
- Example 1 The separators of Example 1 and Comparative Example 2 were observed by an SEM.
- FIG. 1 is SEM images of the separator of Comparative Example 1
- FIG. 2 is SEM images of the separator of Example 1
- FIG. 3 is SEM images of the separator of Example 2
- FIG. 4 is an SEM image of the separator of Comparative Example 3.
- carbon nanotube structures in the form of a thick rope (form in which 2 to 5,000 single-walled carbon nanotube units are bonded to each other side by side) were disposed on a surface of an inorganic coating layer while forming a network, and the carbon nanotube structures constitute a uniformly entangled net structure without blocking a pore structure on the surface of the inorganic coating layer.
- carboxymethyl cellulose was disposed on the carbon nanotube structure.
- FIG. 4 a thick and long carbon nanotube structure was not observed, and a thin and short single-walled carbon nanotube unit was present as a single strand unit.
- the number of the single-walled carbon nanotube units relative to the number of the carbon nanotube structures would increase exponentially, and, in this case, since the single-walled carbon nanotube units were dense with each other to such an extent that the pore structure of the surface was completely blocked, the single-walled carbon nanotube units were not only disposed in pores, but also disposed while coating the inorganic layer in the form of a kind of surface layer without a gap.
- Air permeability was evaluated for the separators prepared in Examples 1 to 4 and Comparative Examples 1 to 6 as follows.
- the surface resistance of the conductive layer of the separator was measured using a surface resistance meter (manufacturer: Mitsubishi, product name: MCP-T610) equipped with a 4-pin probe. An average was calculated by measuring 1 point each on the left/middle/right side (total of 3 points) of each separator, and the results thereof are presented in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Separators (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200112867A KR20220031207A (ko) | 2020-09-04 | 2020-09-04 | 분리막 및 이를 포함하는 이차 전지 |
PCT/KR2021/011638 WO2022050651A1 (fr) | 2020-09-04 | 2021-08-31 | Séparateur et batterie secondaire le comprenant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4181305A1 true EP4181305A1 (fr) | 2023-05-17 |
EP4181305A4 EP4181305A4 (fr) | 2024-08-14 |
Family
ID=80491206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21864611.5A Pending EP4181305A4 (fr) | 2020-09-04 | 2021-08-31 | Séparateur et batterie secondaire le comprenant |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240039117A1 (fr) |
EP (1) | EP4181305A4 (fr) |
JP (1) | JP2023539172A (fr) |
KR (1) | KR20220031207A (fr) |
CN (1) | CN115868082A (fr) |
WO (1) | WO2022050651A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116632455B (zh) * | 2023-07-20 | 2023-10-20 | 宁德新能源科技有限公司 | 隔膜、包括其的电化学装置和电子装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101570470B1 (ko) * | 2013-11-27 | 2015-11-23 | 한국과학기술원 | 탄소나노튜브―다공성 막 복합체를 포함하는 리튬―황 전지 |
JP6439293B2 (ja) * | 2014-06-26 | 2018-12-19 | 東レ株式会社 | 積層多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス |
KR101817239B1 (ko) * | 2015-03-30 | 2018-01-11 | 주식회사 엘지화학 | 전기화학소자용 전극 조립체 |
CN109686905B (zh) * | 2017-10-18 | 2020-08-11 | 清华大学 | 锂硫电池隔膜 |
KR102229452B1 (ko) * | 2017-11-08 | 2021-03-17 | 주식회사 엘지화학 | 분리막 및 이를 포함하는 리튬-황 전지 |
KR102285981B1 (ko) * | 2018-04-06 | 2021-08-05 | 주식회사 엘지에너지솔루션 | 전극, 상기 전극을 포함하는 이차 전지, 및 상기 전극의 제조 방법 |
-
2020
- 2020-09-04 KR KR1020200112867A patent/KR20220031207A/ko active Search and Examination
-
2021
- 2021-08-31 EP EP21864611.5A patent/EP4181305A4/fr active Pending
- 2021-08-31 WO PCT/KR2021/011638 patent/WO2022050651A1/fr active Application Filing
- 2021-08-31 US US18/020,753 patent/US20240039117A1/en active Pending
- 2021-08-31 CN CN202180050410.5A patent/CN115868082A/zh active Pending
- 2021-08-31 JP JP2023512414A patent/JP2023539172A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2022050651A1 (fr) | 2022-03-10 |
CN115868082A (zh) | 2023-03-28 |
US20240039117A1 (en) | 2024-02-01 |
KR20220031207A (ko) | 2022-03-11 |
JP2023539172A (ja) | 2023-09-13 |
EP4181305A4 (fr) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3370279B1 (fr) | Cathode pour batterie secondaire et batterie secondaire comprenant celle-ci | |
US11121357B2 (en) | Positive electrode active material for secondary battery and method of preparing the same | |
US11876210B2 (en) | Positive electrode active material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode active material | |
KR102641907B1 (ko) | 전극 및 이를 포함하는 이차 전지 | |
KR102666155B1 (ko) | 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극 | |
KR102314626B1 (ko) | 이차전지용 전극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR102657450B1 (ko) | 양극 및 이를 포함하는 이차 전지 | |
EP4044274A1 (fr) | Anode et batterie secondaire la comprenant | |
EP4216307A1 (fr) | Procédé de fabrication d'électrode positive pour batterie rechargeable au lithium et électrode positive pour batterie rechargeable au lithium ainsi fabriquée | |
US20220367855A1 (en) | Composite negative electrode active material, method of preparing the same, negative electrode and secondary battery comprising the same | |
KR20200090128A (ko) | 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지 | |
EP3982440B1 (fr) | Électrode et batterie secondaire la comprenant | |
EP4109593A1 (fr) | Anode et batterie secondaire la comprenant | |
EP4181305A1 (fr) | Séparateur et batterie secondaire le comprenant | |
CN113383445B (zh) | 锂二次电池用正极和包含所述正极的锂二次电池 | |
KR20220014190A (ko) | 이차 전지용 전극 및 이를 포함하는 이차 전지 | |
EP4439698A1 (fr) | Électrode positive pour batterie secondaire au lithium et son procédé de fabrication | |
EP4394930A1 (fr) | Matériau actif de cathode et son procédé de préparation | |
KR20240129526A (ko) | 리튬 이차전지 및 이의 제조 방법 | |
KR20230051104A (ko) | 양극 및 이를 포함하는 이차전지 | |
CN113661586A (zh) | 电极和包括所述电极的二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: H01M0050431000 Ipc: H01M0050449000 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20240715 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01M 50/44 20210101ALI20240709BHEP Ipc: H01M 10/058 20100101ALI20240709BHEP Ipc: H01M 50/446 20210101ALI20240709BHEP Ipc: H01M 50/431 20210101ALI20240709BHEP Ipc: H01M 50/449 20210101AFI20240709BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |