EP4178735B1 - Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable - Google Patents

Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable Download PDF

Info

Publication number
EP4178735B1
EP4178735B1 EP21739384.2A EP21739384A EP4178735B1 EP 4178735 B1 EP4178735 B1 EP 4178735B1 EP 21739384 A EP21739384 A EP 21739384A EP 4178735 B1 EP4178735 B1 EP 4178735B1
Authority
EP
European Patent Office
Prior art keywords
rolling
roll
horizontal force
offset
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21739384.2A
Other languages
German (de)
English (en)
Other versions
EP4178735C0 (fr
EP4178735A1 (fr
Inventor
Andreas Ritter
Rainer Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4178735A1 publication Critical patent/EP4178735A1/fr
Application granted granted Critical
Publication of EP4178735C0 publication Critical patent/EP4178735C0/fr
Publication of EP4178735B1 publication Critical patent/EP4178735B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B2031/206Horizontal offset of work rolls

Definitions

  • the invention relates to a method and a corresponding computer program product for calculating a pass schedule for a stable rolling process when rolling metal strip in a rolling mill.
  • a disadvantage when using small work roll diameters is the horizontal deflection of the rolls due to the horizontal force acting with a large degree of slenderness (ratio of bearing center distance to roll diameter); please refer Figure 6 .
  • the horizontal deflection not only leads to instability of the entire set of rollers, it can even go so far that the rollers buckle.
  • the deflection can not only have a horizontal component, but also a vertical component in the direction of the roll supporting it.
  • the desired vertical bending of the work rolls to set a roll gap contour is not relevant in this consideration.
  • a fixed offset set is suitable for hot rolling mills where the strip tensions have little critical impact on the roll gap conditions and the stability of the roll set. In cold rolling mills, especially with a large product range and/or in reversing operation and/or in non-driven work rolls, a fixed offset set is not sufficient.
  • HS displacement means that the pair of work rolls, together with their chocks, is displaced in +/- strip running direction.
  • This is a variable setting of an offset set.
  • the amount and direction of the HS offset are set so that the force components occurring from the vertical setting force FA and offset (horizontal force), as well as the resulting tension difference from the inlet and outlet tension Ze, Za, compensate for each other as far as possible, preferably almost completely, in all rolling phases and the roller still rests stably on one side of the roller supporting it.
  • the page to be set can vary depending on the parameters, e.g. B. rolling force, torque, roll diameter of both rolls, inlet and outlet side strip tensions, are either on the inlet side (-) or on the outlet side (+).
  • the horizontal forces minimized by setting the HS offset result in only minimal horizontal deflection with an absolutely stable roller position.
  • the input data traditionally also includes a predetermined initial, manually determined offset of the work roll relative to another roll in the roll stand, which is stored in a database or table and against which the work roll is supported.
  • the target horizontal force calculated taking these input data into account is then checked in the prior art to see whether it meets a predetermined limit criterion when rolling under constant conditions. If so, the initial offset on which the calculation of the target horizontal force was based is set on the work roll and the rolling stock is rolled. Based on the set offset, it can then be assumed that the previously calculated target horizontal force, which meets the limit criterion, acts on the offset work roll. Compliance with the limit criterion is representative of a stable roll set and rolling process.
  • the calculation of the target horizontal force is repeated with a changed offset of the work roll from a set of N available different offsets, but with otherwise unchanged input data until determined that the last calculated target horizontal force meets the limit criterion as best as possible for the first time, taking into account the last changed (optimal) offset.
  • the invention is based on the object of developing a known method and a known computer program product for calculating a pass schedule for a stable rolling process when rolling, in particular, metallic rolling stock, in such a way that the stability of the roll set in the rolling stand and thus the stability of the rolling process, in particular when flat rolling thin metallic strips as rolling stock with high strength is further improved with the help of thin work rolls.
  • setting data refers to initialization or presetting data; These data are (pre)set on the rolling stand before the rolling process begins. Some of these can be changed later during the rolling process.
  • the “target horizontal force” calculated according to the invention is a pure calculation variable that cannot be set directly on the rolling stand before the start of a rolling process. As I said, this is a resultant force that results from the vectorial addition of in particular the inlet pull, the outlet pull and the setting force of the work roll in the roll stand.
  • the "target horizontal force” serves as a representative variable by which the stability of a rolling process, especially when using work rolls with a high degree of slenderness, can be predicted or determined, depending on whether it meets a predetermined limit criterion that represents the stability of the rolling process , fulfilled or not.
  • the resulting horizontal forces can be determined during the rolling process directly via load cells on the bending blocks (additional design effort) or indirectly via load cells, pressure measurements in the stand or the deflection rollers and torque measurements on the drive spindles (soft sensors) for the drive and operating sides of the stand .
  • the degree of slenderness which is defined by the ratio of the bearing center distance to the work roll diameter, is a parameter which, as described above, affects the stability of the rolling process. With a slimness score of 5 or more, the risk of instability increases significantly.
  • the determination according to the invention of the optimal tensions on the rolling stock on the inlet side and/or on the outlet side of the rolling stand offers the advantage that the target horizontal force can still be kept within the limit criterion even if this is not possible through iterative variation of the offset alone is.
  • Another advantage of considering the target horizontal force as a whole is the minimization of the bearing load on the entire roll set, which significantly increases the service life of the roll bearings.
  • the calculation of the target horizontal force for different sections k of the metal strip to be rolled is carried out separately or individually, because the metal strip has different speeds in its different sections and experiences different strip tensions.
  • the calculated target horizontal force can still be kept within the limit criterion even if this cannot be achieved solely by varying the offset and the pulls on the inlet side and/or on the outlet side of the roll stand.
  • this third exemplary embodiment provides that the adjusting force for the work roll is then also varied with the optimal offset and optimal trains held constant and also with input input data otherwise held constant until it is determined that the last calculated target value is Horizontal force meets the limit criterion.
  • the input data for the pass schedule calculator is, in particular, data on technological limits.
  • this includes in particular: material-dependent load limits for the horizontal stability of the roll set of the roll stand, limit values including the signs for the horizontal forces, limit values for the force and work requirement, limit values for the position of the flow divide, limit values for the advance and for the torques of the rolls of the roll stand.
  • the said and claimed roll material-dependent load limits for the horizontal stability of the roll set and in particular the work rolls should be taken into account according to the invention, in particular when calculating the target horizontal force on the work roll, the target horizontal position of the work roll, the target tension of the rolling stock at the inlet and / or at the exit of the roll stand and when calculating the target decrease for at least one pass of the roll stand.
  • the claimed consideration of the material-dependent load limits when calculating the said target setting data offers the advantage that the stability of the roll set, which in addition to the work rolls also includes any intermediate and support rolls of the roll stand, and thus also the stability of the rolling process as a whole is improved. This means that unwanted movement of the strip to the right or left at the exit of the roll stand, strip cracks, roll-kissing and buckling or bending of the rolls are avoided or at least minimized.
  • the stable boundary conditions made possible by the method according to the invention can advantageously be predetermined for the rolling process and by presetting the said (target) setting data Roll stand must be ensured before the rolling process begins. In this way, automatic threading and unthreading of the rolling stock into and out of the rolling stand can be ensured in a stable manner without additional devices.
  • the method according to the invention enables permanent monitoring of the said target setting data and, if necessary, their correction in order to ensure the stability of the rolling process even during ongoing operation.
  • the product range of an existing rolling mill can be expanded regardless of the number of rolls and configuration, e.g. B. on rolling thinner final thicknesses.
  • smaller work rolls can be used for these rolling stands in order to roll the said thinner final thicknesses and at the same time save energy.
  • the method according to the invention is used not only in a single roll stand, but also in a rolling mill in which a plurality of roll stands are arranged one behind the other in the form of a rolling train.
  • the said target setting data can not only be used for an individual rolling stand, but also for the said pass plan of a rolling train, i.e. H. preferably calculated and set according to the invention for all of their rolling stands, taking into account the material-dependent load limits.
  • the actual horizontal force on the work roll is permanently monitored during the rolling process and regulated to a target horizontal force currently calculated by the pass schedule computer.
  • the horizontal force is regulated by suitable variations of actuators that are available on the rolling stand, such as the horizontal offset of the work rolls, the tension of the rolling stock on the inlet side and/or on the outlet side of the rolling stand and/or that of the rolling stand on the rolling stock thickness reduction (adjusting force).
  • a further improvement in the stability of the rolling process can be achieved by also using production planning data, such as: B.
  • Production planning data such as: B.
  • Data relating to the optimization of the rolling program, data from production planning, factory planning and system utilization can be taken into account.
  • the measurement data obtained when monitoring the ongoing rolling process such as the actual horizontal force, the actual horizontal position of the work rolls, the actual tension on the rolling stand at the inlet and/or outlet of the rolling stand and/or the actual actual thickness reduction of the rolling stock the roll stand are preferably compared with the associated current target setting data. Any deviations between target and actual values that may be detected in this way can be used for a preferably continuous adaptation of the process model.
  • Figure 1 illustrates the process of the complex calculation of a pass schedule for at least one roll stand according to the method according to the invention.
  • the core component for controlling a rolling process for rolling rolled stock With the help of at least one rolling stand there is a so-called pass schedule computer on which a process model of the rolling process runs.
  • the process model depicts the complex forming process in the roll gap using known basic equations from forming technology and the condition of the roll set.
  • the roll set can also include intermediate and/or support rolls of the roll stand.
  • the stitch plan calculator is supplied with input data that can be used in a suitable manner, e.g. B. must be stored in databases or in parameter files so that the pass schedule computer can access them.
  • input data e.g. B.
  • the rolling stand or the multi-stand rolling mill must be described as input data using system data.
  • the forming behavior of the rolling stock to be rolled must be described mathematically using its material data.
  • the rolling stock to be rolled must be defined using product data.
  • so-called coil data and the rolling strategy must each be specified as input data via strategy data.
  • production planning data can also be used to take into account higher-level goals, such as: B. plant utilization or rolling program optimization can be taken into account. All of the terms mentioned for the input data are collective terms for various individual data that are included in Figure 1 are shown.
  • the pass schedule computer calculates so-called setup data, hereinafter referred to as target or initialization data, for the next step to be carried out Rolling process and sends it to the at least one rolling stand for presetting.
  • Figure 1 shows the pass schedule calculation according to the prior art
  • Figure 1 both roll material-dependent load limits for the horizontal stability of the roll set as well as process technology limits, such as an impermissible change of sign of the horizontal force during different rolling phases of a pass schedule.
  • the horizontal stability HS position ie the offset of the work roll to the other roll supporting it in the rolling stand
  • the HS force ie the horizontal force is determined during an ongoing rolling process. preferably measured and used in particular for an adaptation of the process model.
  • setup data in Figure 1 underlined in the "Setup data” block
  • setup data is not just specified once for the entire rolling process, but are determined iteratively with a view to achieving the highest possible stability of the rolling process.
  • the horizontal stability of the roll set in particular the calculation of the horizontal forces on the work roll, is integrated into the pass schedule calculation.
  • Figure 2 shows schematically the sequence of the method according to the invention, as claimed in particular in claim 1.
  • the input data for the pass schedule computer is provided, as previously with reference to Figure 1 described. Included according to the invention This input data also shows an initial offset of the work roll relative to another roll in the roll stand that supports the work roll. The initial offset can be determined either from a table or database, but it is preferred to determine it from Figure 7 known formula, whereby the belt tensions Ze and Za are set to zero.
  • the method according to the invention then provides that in a second step ii) the target horizontal force on the work roll is calculated using the pass schedule computer.
  • a process model of the rolling process runs on the pass schedule computer and the pass schedule calculator calculates the target horizontal force taking the input data into account.
  • the method according to the invention provides that the (optimal) offset saw opt , which was the basis for the calculation of the target horizontal force, ie here the initial offset, is set on the roll stand and that the rolling stock or the metal strip is then rolled with the said initial optimal offset. Due to the optimal offset set, it can be assumed that rolling will then take place with the calculated target horizontal force that meets the limit criterion.
  • the method according to the invention provides for steps i), ii) and iii) in further maximum N iteration steps, each with a corrected/changed offset saw of the work roll from a set N available different offsets, but otherwise with unchanged input data, until it is finally determined in step iii) that the last calculated target horizontal force, taking into account the last changed or set optimal offset, meets the limit criterion.
  • the method according to the invention provides that steps i), ii) and iii) in further maximum L and / or M iteration steps with one each changed tension Ze on the rolling stock on the inlet side of the rolling stand from a quantity of L ⁇ N available different trains on the inlet side and / or with a different train Za on the rolling stock on the outlet side of the rolling stand from a quantity of M ⁇ N Available different trains on the outlet side of the roll stand and with the optimal offset saw opt , which is kept constant, and with otherwise unchanged input data are repeated until it is finally determined in step iii) that the last calculated target horizontal force takes into account the last changed optimal train meets the limit criterion.
  • the optimal offset in question is the offset for which the calculated target horizontal force most closely meets the limit criterion in the previously carried out iteration of the offset.
  • the calculation of the target horizontal force is not carried out uniformly for an entire metal strip, but rather individually for different sections of the metal strip.
  • the band tensions exerted on the metal band are also different in sections of the metal band.
  • FIG 3 illustrates these technological connections, which are generally known in the prior art.
  • the target horizontal force is calculated individually for the individual sections k ⁇ N of the metal strip.
  • Figure 2 to calculate each of the target horizontal forces in the individual sections of the metal strip must be run through individually.
  • Figure 4a illustrates a further exemplary embodiment of the method according to the invention in the case that the calculated target horizontal force neither with sole iterative change of the offset nor with sole iterative change of the strip tension Ze on the inlet side of the rolling stand nor with sole change of the strip tension Za on the outlet side of the Metal strip means that the calculated target horizontal force meets the limit criterion.
  • the method according to the invention provides that initially those optimal trains from the set of L available different trains on the inlet side and / or from the set of M available different trains on the outlet side of the roll stand, with which the calculated target horizontal forces The limit criterion is best met when the optimal offset is kept constant and the input data is otherwise kept constant.
  • the optimal values determined in this way for the offset, for the strip tensions on the inlet side and the outlet side of the roll stand as well as for the setting force are then set on the roll stand before and during a rolling process. Because the calculation of the optimal values for the individual sections of the metal strip is carried out individually, the calculated optimal parameters are also individually readjusted during a rolling process, depending on which section of the metal strip is currently being rolled.
  • the calculated target horizontal force cannot be directly Roll stand can be preset. Rather, it is a resulting quantity that is automatically adjusted and results when the parameters in question are set on the rolling stand. If the optimal values for the said parameters are set, one can be confident that the target horizontal force meets the limit criterion and that the process will therefore run stably.
  • the target horizontal force for the work rolls is determined individually in the individual stands as part of the pass schedule calculation and the assigned ones are determined Iteratively determined optimal parameters for a stitch sequence on the work rolls of the rolling stands are individually preset or adjusted.
  • these are in particular material-dependent load limits for the horizontal stability of the roll neck of the roll stand, limit values, including sign information, for the horizontal forces and limit values for the force and work requirement, limit values for the position of the flow divider, and limit values for the advance and for torques of drives e.g. B. for the rolls of the rolling stand.
  • both the resulting horizontal force HAW/2 and the maximum bending force FaBW are taken into account and compared as the Fres - resulting total force with the permissible limit criterion.
  • Figure 5 shows a further aspect of the method according to the invention.
  • the actual horizontal force determined in this way is compared with a current target horizontal force and / or that the actual horizontal position is compared with the current target horizontal position of the work roll.
  • This comparison consists in particular of forming a difference. Any deviations (delta) between the target and actual values that may be detected in this way are then checked according to the invention to see whether they lie within predetermined permissibility ranges.
  • the deviations are used for a preferably continuous adaptation of the process model running on the pass schedule computer. This makes the process self-learning. If the deviations (delta) between the target and actual values are not permissible, the tape tensions are adjusted during the current stitch so that the deviations determined are as permissible again as possible.
  • the measurement data can also be, for example: rolling forces exerted on the rolling stock by the at least one rolling stand, the thickness of the rolling stock, the temperature of the rolling stock, the rolling speed, the offset of the work rolls, the tensile load on the rolling stock, motor torques from the rolling stand assigned drives, e.g. B. to start or rotate the rollers and / or cooling data, which z. B. represent the cooling of the rolling stock.
  • At least one, preferably both, work rolls of the rolling stock of the rolling stand are driven.
  • the rolling stand can be designed as a reversing stand, in which case the rolling stock is rolled in reversing operation with the help of the rolling stand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Claims (13)

  1. Procédé de calcul d'un plan de passe pour un processus de laminage stable lors du laminage d'au moins une section d'une bande métallique dans une cage de laminoir, comprenant les étapes suivantes consistant à :
    i) fournir des données d'entrée à un calculateur de plan de passe, lesdites données d'entrée comprenant également un décalage initial prédéterminé du cylindre de travail par rapport à un autre cylindre le soutenant dans la cage de laminoir ; et
    Avant et/ou pendant le processus de laminage :
    ii) calculer la force horizontale de consigne sur le cylindre de travail à l'aide du calculateur de plan de passe sur lequel s'exécute un modèle de processus de laminage, en tenant compte des données d'entrée ; et
    iii) vérifier si la force horizontale de consigne calculée par le calculateur de plan de passe satisfait à un critère limite prédéfini ;
    dans l'affirmative : ajuster le décalage qui a servi de base au calcul de la force horizontale de consigne au niveau du cylindre de travail et laminer le matériau à laminer avec la force horizontale de consigne qui en résulte; ou
    dans la négative : - répéter les étapes i), ii) et iii) en modifiant à chaque fois le décalage (saw) du cylindre de travail à partir d'un ensemble de N décalages différents disponibles et avec des données d'entrée par ailleurs inchangées, jusqu'à ce que l'on constate à l'étape iii) que la force horizontale de consigne calculée en dernier lieu, compte tenu du décalage modifié en dernier lieu, satisfait au critère limite ;
    caractérisé en ce que,
    si la répétition itérative des étapes i), ii) et iii) avec seulement une modification du décalage ne permet pas d'obtenir à l'étape iii) que la force horizontale de consigne satisfasse au critère limite, le procédé prévoit à l'étape iii), pour l'option « dans la négative », la première modification suivante :
    Sélectionner le décalage optimal parmi l'ensemble de N décalages avec lequel la force horizontale de consigne calculée satisfait au mieux le critère limite, et
    Répéter les étapes i), ii) et iii) avec une traction respectivement modifiée sur le produit laminé du côté entrée de la cage de laminoir parmi un ensemble de L tractions différentes disponibles et/ou avec une traction respectivement modifiée sur le produit laminé du côté sortie de la cage de laminoir parmi un ensemble de M tractions différentes disponibles et avec le décalage optimal respectivement maintenu constant et avec des données d'entrée également inchangées par ailleurs, jusqu'à ce que l'on constate à l'étape iii) que la force horizontale de consigne calculée en dernier lieu, compte tenu de la traction modifiée en dernier lieu, satisfait au critère limite.
  2. Procédé selon la revendication 1,
    caractérisé en ce que,
    la bande métallique à laminer présente une pluralité k de sections, en particulier une section d'entrée avec k=1, une section centrale sous forme de filet avec k=2 et une section de sortie avec k=3 ; et
    en ce que les forces horizontales de consigne pour au moins l'une de ces sections sont calculées individuellement sous la forme de la force horizontale (Haw section d'entrée) sur le cylindre de travail lors de l'enfilage du produit laminé avec sa section d'entrée dans l'emprise de la cage de laminoir, sous la forme de la force horizontale (Haw filet) sur le cylindre de travail lors du laminage du filet du produit laminé et/ou sous la forme de la force horizontale (Haw section de sortie) lors du désenfilage du produit laminé avec sa section de sortie de la cage de laminoir, en passant individuellement par les étapes i), ii) et iii) pour calculer chacune des forces horizontales de consigne dans les différentes sections de la bande métallique.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que,
    l'on définit comme critère limite un critère limite pour la stabilité horizontale du processus de laminage, en particulier pour le cylindre de travail, selon lequel
    1. les au moins deux forces horizontales de consigne calculées pour les différentes sections de la bande métallique doivent avoir le même signe ; et/ou
    2. les forces horizontales de consigne calculées ne dépassent pas respectivement des limites de charge prédéfinies en fonction du matériau pour le cylindre de travail.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que,
    si la répétition itérative des étapes i), ii) et iii) avec la modification apportée à la traction, tout en maintenant constant le décalage optimal, ne conduit pas à ce qu'à l'étape iii), ladite au moins une force horizontale de consigne calculée satisfasse au critère limite, le procédé prévoit à l'étape iii), pour l'option « dans la négative », la seconde modification suivante :
    Sélectionner les tractions optimales parmi l'ensemble de L tractions différentes disponibles du côté entrée et/ou parmi l'ensemble des M tractions différentes disponibles du côté sortie avec lesquelles les forces horizontales de consigne calculées satisfont au mieux le critère limite avec un décalage optimal maintenu constant et avec des données d'entrée maintenues constantes par ailleurs ; et
    Répéter les étapes i), ii) et iii) avec une force de réglage (FR) modifiée de manière itérative pour le cylindre de travail, avec un décalage optimal maintenu constant et des tractions optimales maintenues constantes et des données d'entrée maintenues constantes par ailleurs, jusqu'à ce que l'on constate à l'étape iii) que la force horizontale de consigne calculée en dernier lieu satisfait au critère limite.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que,
    dans le laminoir, une pluralité de cages de laminoir sont disposées les unes derrière les autres dans la direction de laminage ;
    ladite au moins une force horizontale de consigne est déterminée individuellement pour une pluralité de cylindres de travail dans les cages de laminoir disposées les unes derrière les autres ; et
    les paramètres optimaux associés, déterminés de manière itérative, sont préréglés ou réglés pour une séquence de passes sur les cylindres de travail des cages de laminoir.
  6. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que,
    les données d'entrée sont des données relatives à l'installation, des données relatives aux limites technologiques, des données relatives aux matériaux, des données relatives à la stratégie de laminage, des données relatives aux bobines, des données relatives au produit et/ou, en option, des données relatives à la planification de la production.
  7. Procédé selon la revendication 6,
    caractérisé en ce que,
    les données relatives aux limites technologiques présentent au moins des valeurs limites pour certains des paramètres suivants :
    des limites de charge dépendant du matériau pour la stabilité horizontale de l'ensemble des cylindres de la cage de laminoir, des valeurs limites, y compris les signes pour les forces horizontales, des valeurs limites pour la force et le travail requis, des valeurs limites pour la position du fourreau d'écoulement, des valeurs limites pour l'avance et pour les couples d'entraînement, par exemple pour les cylindres de la cage de laminoir.
  8. Procédé selon l'une des revendications 3 à 7,
    caractérisé en ce que,
    pendant le processus de laminage en cours, des données de mesure, en particulier ladite au moins une force horizontale réelle et/ou la position horizontale réelle d'au moins l'un des cylindres de travail, sont saisies, de préférence de manière cyclique ; et
    en ce que la force horizontale réelle est comparée à la force horizontale de consigne actuelle et/ou la position horizontale réelle est comparée à la position horizontale de consigne actuelle du cylindre de travail.
  9. Procédé selon la revendication 8,
    caractérisé en ce que,
    que les écarts éventuels entre les valeurs de consigne et les valeurs réelles sont vérifiés de cette manière pour voir s'ils se situent à l'intérieur de plages d'admissibilité prédéfinies ; et
    que - si l'admissibilité est confirmée - :
    les écarts sont utilisés pour une adaptation, de préférence continue, du modèle de processus exécuté sur le calculateur de plan de passe.
  10. Procédé selon la revendication 8 ou 9,
    caractérisé en ce que,
    les données de mesure sont en outre, par exemple : les forces de laminage exercées par au moins une cage de laminoir sur le produit laminé, l'épaisseur du produit laminé, la température du produit laminé, la vitesse de laminage, le décalage des cylindres de travail, la charge de traction sur le produit laminé, les couples moteurs des entraînements associés à la cage de laminoir, par exemple pour la mise en marche ou la rotation des cylindres, et/ou des données de refroidissement qui représentent par exemple le refroidissement du produit laminé.
  11. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que,
    au moins un, de préférence deux, des cylindres de la cage de laminoir sont entraînés.
  12. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que,
    la cage de laminoir est conçue comme une cage réversible ; et
    en ce que le produit laminé est laminé à l'aide de la cage de laminoir en mode réversible.
  13. Produit de programme informatique pouvant être chargé directement dans la mémoire interne d'un ordinateur numérique, ici en particulier la mémoire d'un calculateur de plan de passe d'une cage de laminoir ou d'un train de laminoir, et comprenant des sections de code logiciel permettant d'exécuter les étapes selon l'une quelconque des revendications de procédé précédentes, lorsque le produit est en cours d'exécution sur l'ordinateur.
EP21739384.2A 2020-07-09 2021-07-06 Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable Active EP4178735B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020208633 2020-07-09
PCT/EP2021/068604 WO2022008486A1 (fr) 2020-07-09 2021-07-06 Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable

Publications (3)

Publication Number Publication Date
EP4178735A1 EP4178735A1 (fr) 2023-05-17
EP4178735C0 EP4178735C0 (fr) 2024-02-14
EP4178735B1 true EP4178735B1 (fr) 2024-02-14

Family

ID=76829564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21739384.2A Active EP4178735B1 (fr) 2020-07-09 2021-07-06 Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable

Country Status (5)

Country Link
US (1) US20230249234A1 (fr)
EP (1) EP4178735B1 (fr)
JP (1) JP7506820B2 (fr)
CN (1) CN115803127A (fr)
WO (1) WO2022008486A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850007731A (ko) * 1984-04-02 1985-12-09 빈센트 지. 지오이아 압연기의 압연롤 편향제어방법
JP3526554B2 (ja) 2001-02-13 2004-05-17 株式会社日立製作所 タンデム圧延設備及びその圧延方法
EP1514616A1 (fr) * 2003-09-12 2005-03-16 Josef Fröhling GmbH & Co. KG Dispositif de laminage et procédé de laminage
WO2011018126A1 (fr) 2009-08-12 2011-02-17 Siemens Vai Metals Technologies Sas Méthode et dispositif de réglage automatique de la position des cylindres de travail d'une installation de laminage
JP6470134B2 (ja) 2015-07-08 2019-02-13 Primetals Technologies Japan株式会社 圧延機および圧延方法
CN106994465B (zh) 2017-05-31 2018-09-25 中冶南方工程技术有限公司 十八辊冷轧机侧支撑装置调节机构及控制方法

Also Published As

Publication number Publication date
JP2023533257A (ja) 2023-08-02
EP4178735C0 (fr) 2024-02-14
EP4178735A1 (fr) 2023-05-17
WO2022008486A1 (fr) 2022-01-13
CN115803127A (zh) 2023-03-14
JP7506820B2 (ja) 2024-06-26
US20230249234A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
DE102010064512B3 (de) Walzstrasse und Steuerverfahren dafür
EP0121148B1 (fr) Procédé pour la fabrication de feuillard à chaud avec section et planéité de bande de haute qualité
DE69710817T2 (de) Walzverfahren und Walzwerk für Band zur Reduzierung der Kantenanschärfung
EP2691188B1 (fr) Procédé permettant de faire fonctionner un train de laminoir
DE69404527T2 (de) Walzwerk und Verfahren
EP3271092B1 (fr) Procédé de fabrication de bandes métalliques
WO2013110399A1 (fr) Procédé de traitement de produit à laminer dans un laminoir à chaud
EP4178735B1 (fr) Procédé et produit programme d'ordinateur pour calculer un programme de passes afin d'obtenir un procédé de laminage stable
EP3208673B1 (fr) Étalonnage en ligne d'une emprise de laminage d'une cage de laminoir
EP0721811A1 (fr) Procédé pour le réglage du profil d'emprise
DE102019219917A1 (de) Walzsteuervorrichtung, walzsteuerverfahren und walzsteuerprogramm
EP0734795B1 (fr) Procédé pour la régulation à action directe d'épaisseur dans le laminage de feuillards
DE102017212106B4 (de) Walzsteuervorrichtung, walzsteuerverfahren und programm dafür
DE102004005011B4 (de) Regelverfahren und Regler für ein Walzgerüst
DE102015223600A1 (de) Verfahren zum Herstellen eines metallischen Bandes durch Endloswalzen
EP1080800B1 (fr) Procédé pour le laminage flexible d'une bande métallique
EP4061552B1 (fr) Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage
DE102018200166A1 (de) Steuervorrichtung, Steuerverfahren und Steuerprogramm eines Walzwerks
DE3401894A1 (de) Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete
DE4413913A1 (de) Verfahren zum Verhindern eines Faltungsstaus beim Walzen von Metallband
EP3798750A1 (fr) Procédé de surveillance et de commande d'une installation de laminage de produits métalliques
DE102004022334A1 (de) Verfahren zum Walzen eines Walzgutes mit Übergangsbereich
EP3231522B1 (fr) Controle robuste de tension de bande
EP3795267B1 (fr) Procédé de fonctionnement d'une cage de laminoir
DE102022211278B3 (de) Verfahren und Computerprogramm zum Anpassen des Soll-Dickenwertes für eine Regelung der Dicke eines neu zu walzenden Bandes für mindestens ein Walzgerüst

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002707

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240313

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240408

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214