EP4172310A1 - Verbesserte cystein produzierende stämme - Google Patents

Verbesserte cystein produzierende stämme

Info

Publication number
EP4172310A1
EP4172310A1 EP20735534.8A EP20735534A EP4172310A1 EP 4172310 A1 EP4172310 A1 EP 4172310A1 EP 20735534 A EP20735534 A EP 20735534A EP 4172310 A1 EP4172310 A1 EP 4172310A1
Authority
EP
European Patent Office
Prior art keywords
gene
ppsa
cysteine
enzyme
microorganism strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20735534.8A
Other languages
English (en)
French (fr)
Inventor
Rupert Pfaller
Johanna Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP4172310A1 publication Critical patent/EP4172310A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1294Phosphotransferases with paired acceptors (2.7.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/09Phosphotransferases with paired acceptors (2.7.9)
    • C12Y207/09002Pyruvate, water dikinase (2.7.9.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/0103Serine O-acetyltransferase (2.3.1.30)

Definitions

  • the invention relates to a microorganism strain which is suitable for the fermentative production of L-cysteine, characterized in that the relative enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2 inactivates or based on the specific activity of the wild-type enzyme is reduced, and compared to the microorganism strain with wild-type enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2 forms an increased amount of L-cysteine, the gene encoding this enzyme activity is referred to as ppsA.
  • the invention also provides a method for producing L-cysteine using these microorganism cells.
  • Cysteine abbreviated to Cys or C, is an ⁇ -amino acid with the -CH2-SH side chain. Since the naturally occurring enantiomeric form is L-cysteine and only this represents a proteinogenic amino acid, L-cysteine is meant in the context of this invention when the term cysteine is used without a descriptor.
  • L-enantiomer or L-cystine, or (R, R) -3,3'-dithio- bis (2-aminopropionic acid)
  • L-cysteine is a semi-essential amino acid for humans, as it can be formed from the amino acid methionine.
  • Cysteine plays a key role in sulfur metabolism in all organisms and is used in the synthesis of proteins, glutathione, biotin, lipoic acid, thiamine, taurine, methionine and other sulfur-containing metabolites.
  • L-cysteine serves as a precursor for the biosynthesis of coenzyme A.
  • the biosynthesis of cysteine has been studied in detail in bacteria, especially in enterobacteria. A summary of the cysteine biosynthesis can be found in Wada and Takagi, Appl. Microbiol. Biotechnol. (2006) 73: 48-54.
  • the amino acid L-cysteine is of economic importance.
  • a process for the fermentative production of cysteine is also available.
  • the prior art relating to the fermentative production of cysteine with microorganisms is disclosed, for example, in EP 0858510 B1, EP 0885962 B1, EP 1382 684 B1, EP 1220 940 B2, EP 1769 080 B1 and EP 2 138 585 B1.
  • the bacterial host organisms used include strains of the genus Corynebacterium and representatives of the Enterobacteriaceae family, such as B. Escherichia coli or Pantoea ananatis are used.
  • O-Acetyl-L-Serine is formed from L-Serine and Acetyl-CoA.
  • L-serine in sufficient quantities for cysteine production is therefore of great importance.
  • This can be achieved by introducing a serA allele which codes for a 3-phosphoglycerate dehydrogenase with reduced feedback inhibition by L-serine.
  • 3-hydroxypyruvate a biosynthetic precursor of L-serine
  • Examples of such SerA enzymes are described in EP 0620853 B1 and EP 1496 111 B1. But also Bell et al., Eur. J. Biochem. (2002) 269: 4176-4184 disclose changes to the serA gene for deregulating enzyme activity.
  • cysteine yield in fermentation can be increased by weakening or destroying genes which code for cysteine-degrading enzymes, such as the tryptophanase TnaA or the cystathionine ⁇ -lyases MalY or MetC (EP 1571223 Bl).
  • Increasing the transport of cysteine out of the cell is another way of increasing the product yield in the medium. This can be achieved through overexpression of so-called efflux genes. These genes code for membrane-bound proteins that mediate the export of cysteine from the cell.
  • L-cysteine is continuously withdrawn from the intracellular reaction equilibrium, with the result that the level of this amino acid in the cell is kept low and the feedback inhibition of sensitive enzymes by L-cysteine does not occur: (1) L-cysteine (intracellular) L-cysteine (medium)
  • the optimization of the fermentation process ie the way in which the cells are cultivated, also plays an important role in the development of an efficient production process.
  • Various cultivation parameters such as the type and dosage of the carbon and energy source, the temperature, the supply of oxygen (EP 2707 492 B1), the pH value and the composition of the culture medium, the product yield and / or the Influence the product range in the fermentative production of cysteine. Due to continuously increasing raw material and energy costs, there is a constant need to increase the product yield in the cysteine production in order to improve the economic efficiency of the process in this way.
  • the object of the present invention is to provide a microorganism strain for the fermentative production of cysteine with which, compared to known strains from the prior art, higher yields of L-cysteine or L-cystine in fermentation can be achieved.
  • the object is achieved by a microorganism strain that is suitable for the fermentative production of L-cysteine, characterized in that the relative enzyme activity of the enzyme class designated in the KEGG database with the number EC 2. ⁇ .9.2 inactivates or based on the specific activity of the wild-type enzyme is reduced, and compared to the microorganism strain with wild-type enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2 forms an increased amount of L-cysteine, this enzyme activity coding gene is referred to as ppsA.
  • the enzyme activity of the enzyme class designated in the KEGG database with the number EC 2. ⁇ .9.2 is defined by the fact that it can produce pyruvate from phosphoenolpyruvate in a reversible reaction according to the formula:
  • AMP adenosine monophosphate
  • ATP adenosine triphosphate
  • This enzyme activity is therefore also referred to as phosphoenolpyruvate synthase (PEP synthase, EC 2.7.9.2) or also synonymously as phosphoenolpyruvate H 2 O dikinase.
  • the gene coding for this protein is abbreviated as ppsA in the context of this invention.
  • Detection of enzyme activity (enzyme assay, PEP synthase assay): The PEP synthase activity of a microorganism strain can be determined by pelleting the cells from the cultivation in a liquid medium, washing them and using a fast prep 24 TM 5G Cell Homogenizer (MP Biomedicals) a cell extract is produced. The protein content of the extract can be determined, for example, using the “ Qubit® Protein Assay Kit” (Thermo Fisher Scientific).
  • the PEP synthase enzyme activity can be measured by the stoichiometric production of phosphate from the reaction of pyruvate and ATP, according to equation (4), for example with the aid of the "Malachite Green Phosphate Assay Kit” (SigmaAldrich).
  • the stoichiometric production of AMP or phosphoenolpyruvate or the stoichiometric consumption of pyruvate or ATP can be determined (cf. equation 4).
  • a test for determining the PEP synthase enzyme activity via the ATP-dependent consumption of pyruvate is described, for example, in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309-5318.
  • a test for the ATP-dependent formation of phosphoenolpyruvate is also described in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309-5318.
  • the specific enzyme activity is calculated by relating the enzyme activity to 1 mg total protein of the cell extract that has not been further purified or treated (U / mg protein). It must be taken into account that the cell extract must be produced in the same way in order to compare different PEP synthase enzymes. As already described, the cell extract can e.g. be produced with the help of a FastPrep-24 TM 5G cell homogenizer (MP Biomedicals).
  • the specific activity can also be related to 1 mg of the enzymes purified in the same way in each case (U / mg purified protein).
  • a method for purifying PEP synthase and for determining the specific activity of the purified protein is described, for example, in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309-5338.
  • the relative enzyme activity can be determined by setting the specific enzyme activity, determined in the PEP synthase assay, of the microorganism strain that carries the Wt allele in relation to the gene encoding the PEP synthase. The value measured in the PEP synthase assay for the specific enzyme activity of a sample is given as a percentage in relation to this strain with Wt enzyme.
  • the area of the DNA or RNA which begins with a start codon and ends with a stop codon and codes for the amino acid sequence of a protein is referred to as the open reading frame (ORF, synonymous with cds, coding sequence).
  • ORF is also known as the coding region or structural gene.
  • the gene is the segment of DNA that contains all the basic information required to produce a biologically active RNA.
  • a gene contains the DNA segment from which a single-stranded RNA copy is produced by transcription and the expression signals that are involved in the regulation of this copying process.
  • the expression signals include, for example, at least one promoter, a transcription start, a translation start and a ribosome binding site.
  • a terminator and one or more operators are also possible as expression signals.
  • proteins such as PpsA begin with a capital letter, while the sequences (cds) encoding these proteins are designated with a lower case letter (e.g. ppsA).
  • E. coli ppsA designates the cds of the ppsA gene from E. coli indicated in SEQ ID NO: 1 of nucleotide 333-2711.
  • E. coli PpsA denotes the protein encoded by this cds (E. coli ppsA), given in SEQ ID NO: 2.
  • the protein is a phosphoenolpyruvate synthase.
  • P. ananatis ppsA refers to the cds of the ppsA gene from P. ananatis indicated in SEQ ID NO: 3 from nucleotide 417-2801.
  • P. ananatis PpsA denotes the protein encoded by this cds (P. ananatis ppsA), given in SEQ ID NO: 4.
  • WT Wt
  • the wild-type gene is the form of the gene that emerged naturally through evolution and is present in the wild-type genome.
  • the DNA sequence of Wt genes is publicly accessible in databases such as NCBI.
  • Alleles are defined as the states of a gene that can be converted into one another by mutation, i.e. by changing the nucleotide sequence of the DNA.
  • the gene naturally occurring in a microorganism is called the wild-type allele and the variants derived from it are called mutated alleles of the gene.
  • homologous genes or homologous sequences are to be understood as meaning that the DNA sequences of these genes or DNA segments are at least 80%, preferably at least 90% and particularly preferably at least 95% identical.
  • the degree of DNA identity is determined by the program "nucleotide blast", to be found on the page http: //blast.ncbi.nlm,nih.gov/, which is based on the blastn algorithm.
  • the preset parameters were used for an alignment of two or more nucleotide sequences.
  • the program “protein blast” on the website http://blast.ncbi.nlm.nih.gov/ is used to compare protein sequences. This program uses the blastp algorithm.
  • the preset parameters were used for algorithm parameters for aligning two or more protein sequences.
  • the relative enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2 is inactivated or, based on the specific activity of the wild-type enzyme, preferably by at least 10%, particularly preferably by at least 25% , especially preferably by at least 60% and especially preferably by at least 70%.
  • An enzyme activity of the enzyme encoded by the ppsA gene reduced by at least 10% (or 25% / 60% / 70%) is also referred to as a residual activity of at most 90% (or 75% / 40% / 30%).
  • the microorganism strain is characterized in that it no longer contains any enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2, ie the relative enzyme activity in the KEGG database
  • the enzyme class designated with the number EC 2.7.9.2 is reduced by 100% based on the specific activity of the wild-type enzyme.
  • Compared with / compared to / based on the (corresponding) wild-type enzyme” means in the context of this invention compared to the activity of the protein which is encoded by the non-mutated form of the gene from a microorganism, ie of the gene that was created naturally through evolution and that is present in the wild-type genome of this microorganism.
  • the microorganism strains suitable for the fermentative production of L-cysteine include all microorganisms that contain a deregulated biosynthetic metabolic pathway (homologous or heterologous) that leads to the synthesis of cysteine, cystine or derivatives derived therefrom. Such strains are disclosed, for example, in EP 0885962 B1, EP 1382684 B1, EP 1 220 940 B2, EP 1769080 B1 and EP 2138585 B1.
  • the microorganisms suitable for fermentative production of L-cysteine are preferably characterized in that they have one of the following changes: a) The microorganism strains are characterized by a modified 3-phosphoglycerate dehydrogenase (serA) with a compared to the corresponding Wild-type enzyme reduced feedback inhibition by L-serine by at least a factor of two (as described, for example, in EP 1950287 B1). Particularly preferred variants of 3-phosphoglycerate dehydrogenase (serA) have, compared to the corresponding wild-type enzyme, a feedback factor that is at least a factor of 5, particularly preferably at least a factor of 10 and, in a further preferred embodiment, a factor of at least 50. Inhibition by L-serine. b) The microorganism strains contain a serine-O-acetyl-
  • Transferase which, compared to the corresponding wild-type enzyme, has feedback inhibition by at least a factor of two (as described, for example, in EP 0858 510 B1 or Nakamori et al., Appl. Env. Microbiol. (1998) 64 : 1607-1611).
  • Particularly preferred variants of the serine O-acetyl transferase have, compared to the corresponding wild-type enzyme, a by at least a factor of 5, in particular preferably by at least a factor of 10 and in a further preferred embodiment by at least the Factor 50 decreased feedback inhibition by cysteine.
  • the microorganism strains have an increased by at least a factor of two due to overexpression of an efflux gene Cysteine export from the cell compared to the corresponding wild-type cell.
  • an efflux gene leads, compared to a wild-type cell, preferably to a cysteine export from the cell which is increased by at least a factor of 5, particularly preferably by at least a factor 10, particularly preferably by at least a factor of 20.
  • the efflux gene preferably comes from the group ydeD (see EP 0885 962 Bl), yfiK (see EP 1382684 Bl), cydDC (see WO 2004/113373 A1), bcr (see US 2005-221453 AA) and emrAB (see US 2005- 221453 AA) from E. coli or the corresponding homologous gene from another microorganism.
  • strains are known, for example, from EP 0858510 B1 and EP 0 885 962 B1.
  • the microorganism strains suitable for the fermentative production of L-cysteine are furthermore preferably characterized in that at least one cysteine-degrading enzyme is weakened to such an extent that in the cell only a maximum of 50% of this enzyme activity compared to a wild-type cell is present.
  • the cysteine-degrading enzyme preferably comes from the group tryptophanase (TnaA) and cystathionine-ß-lyase (MalY, MetC).
  • microorganism strains described in the previous sections that are suitable for the fermentative production of L-cysteine are deregulated in their cysteine metabolism in such a way that they have wild-type enzyme activity in the KEGG compared to the microorganism strain not deregulated in the cysteine metabolism -Database with the number EC 2.7.9.2 designated enzyme class form an increased amount of L-cysteine. Since in the cells of a microorganism strain not deregulated in cysteine metabolism with wild-type enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2, the amount of L-cysteine in the culture mixture is approximately 0 g / 1 (cf. Tab. 2), increased amount means any amount that is 0.05 g / 1 L-cysteine measured in the culture after 24 hours of cultivation.
  • the microorganism strain is preferably characterized in that the microorganism strain is a strain from the Enterobacteriaceae or Corynebacteriaceae family, particularly preferably a strain from the Enterobacteriaceae family.
  • Such strains can be purchased, for example, from the DSMZ German Collection of Microorganisms and Cell Cultures GmbH (Braunschweig).
  • the microorganism strain is preferably selected from the group consisting of Escherichia coli, Pantoea ananatis and Corynehacterium glutamicum, particularly preferably from the group consisting of Escherichia coli and Pantoea ananatis.
  • the microorganism strain is particularly preferably a strain of the species Escherichia coli.
  • the E. coli strain is particularly preferably selected from E. coli K12, particularly preferably E. coli K12 W3110. Such strains are available, inter alia, from the DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braunschweig), including E. coli K12 W3110 DSM 5911 (id. ATCC 27325) and Pantoea ananatis DSM 30070 (id. ATCC 11530).
  • PpsA is preferably PpsA from E. coli with SEQ ID NO: 2 or PpsA from P. ananatis with SEQ ID NO: 4.
  • the microorganism strain is preferably characterized in that it contains at least one mutation in the ppsA gene. At the same time, in this preferred embodiment, too, the strain forms an increased amount of L-cysteine compared to wild-type cells.
  • the genetic change in the ppsA gene preferably leads to the protein expressed by this gene having no or reduced relative enzyme activity of the enzyme class designated in the KEGG database with the number EC 2.7.9.2 based on the specific activity of the wild-type enzyme owns.
  • the production strain according to the invention can be optimized even further in order to further improve the cysteine production.
  • the optimization can, for example, take place genetically by additional expression of one or more genes that are suitable for improving the production properties.
  • genes can be expressed in a manner known per se as their own gene constructs or, however, also combined as an expression unit (as a so-called operon) in the production strain.
  • the production strain can also be optimized by inactivating other genes in addition to the ppsA gene, the gene products of which have a negative effect on cysteine production.
  • genetic changes in the ppsA gene are defined such that a) the coding sequence of the ppsA gene is partially or completely deleted, b) the coding sequence of the ppsA gene by one or more insertions or 5'- , or 3'-elongations is changed, c) the ppsA structural gene contains one or more mutations, in particular point mutations, with the result that the expressed phosphoenolpyruvate synthase has a weakened enzyme activity or is completely inactive, d) the ppsA Structural gene contains one or more mutations, in particular point mutations, with the result that ppsA expression is greatly weakened or completely suppressed, or the stability of the mRNA is reduced, or e) due to genetic changes in the 5 'or 3' not encoding ppsA sequences (promoter, 5'-UTR, Shine-Dalgarno sequence or terminator) expression of the ppsA gene or the translation of the ppsA
  • any combination of the genetic changes listed in a) to e) in the ppsA gene is also possible.
  • the change in the ppsA gene in the strain according to the invention is preferably based on complete or partial deletion of the ppsA structural gene, mutation of the ppsA structural gene in a manner that leads to a weakening of the enzyme activity or inactivation of the enzyme, or mutation of the ppsA structural gene and / or its expression-regulating 5'- and 3'-flanking non-transcribed or non-translated gene regions in such a way that the expression or translation of the ppsA gene is weakened or completely is suppressed, or the stability of the ppsA-mRNA is reduced.
  • the inactivation of the ppsA gene in the strain according to the invention as a result of complete or partial deletion of the ppsA cds (ie for the ppsA cds of E. coli nucleotide 333-2711 of SEQ ID NO: 1, or for the ppsA cds. cds of P. ananatis nucleotide 417-2801 of SEQ ID NO: 3) or the mutation of the ppsA structural gene in a manner that leads to Weakening of the enzyme activity or inactivation of the enzyme or reduction of the stability of the mRNA.
  • the microorganism strain is characterized in that the mutated gene is selected from the group consisting of the ppsA gene from Escherichia coli, the ppsA gene from Pantoea ananatis and a gene homologous to these genes.
  • the ppsA Gene from E. coli is disclosed in the entry in the NCBI gene database with the gene ID 946209
  • the ppsA gene from P. ananatis is disclosed in the entry in the NCBI gene database with the gene ID 11796889.
  • the definition given above applies to the mological gene.
  • the mutated ppsA gene is particularly preferably the ppsA gene from Escherichia coli.
  • the cds of the ppsA gene from E. coli which is disclosed in SEQ ID NO: 1 nucleotide 333-2711 (coding for a protein with SEQ ID NO: 2), or the cds of the ppsA gene from Pantoea ananatis, which is disclosed in SEQ ID NO: 3 nucleotide 417-2801 (coding for a protein with SEQ ID NO: 4).
  • the microorganism strain is characterized in that the coding DNA sequence of the ppsA gene is SEQ ID NO: 5 or a sequence which is homogeneous thereto, particularly preferably SEQ ID NO: 5.
  • SEQ ID NO: 5 or a sequence which is homogeneous thereto, particularly preferably SEQ ID NO: 5.
  • the definition given above applies to the term homologous sequence.
  • the mutations of the DNA sequence given in SEQ ID NO: 1 lead to the mutation of the three amino acids of the WT protein sequence given in SEQ ID NO: 2, namely valine at position 126 mutated to methionine (V126M), arginine Position 427 mutates to histidine (R427H) and valine at position 434 mutates to isoleucine (V434I), corresponding to a ppsA-MHI gene with the DNA sequence as in SEQ ID NO: 5, coding for a ppsA-MHI protein with the Amino acid sequence as disclosed in SEQ ID NO: 6.
  • Various methods are known to the person skilled in the art for inactivating and mutating the ppsA gene.
  • the starting strain can be subjected to mutagenesis in a known manner (for example chemically by mutagenic chemicals such as N-methyl-N'-nitro-N-nitrosoguanidine or physically by UV radiation), with random mutations in the genomic DNA are generated and the desired ppsA mutant is then selected from the multitude of mutants generated, for example, in each case after the mutants have been isolated, due to the lack of a color reaction based on the enzyme activity or genetically by detection of a defective ppsA gene.
  • mutagenic chemicals such as N-methyl-N'-nitro-N-nitrosoguanidine or physically by UV radiation
  • the ppsA gene can be specifically inactivated in a simpler manner, for example by the known mechanism of homologous recombination.
  • Cloning systems for targeted gene inactivation by means of homologous recombination are known to the person skilled in the art and are commercially available, for example disclosed in the user manual of the “Quick and Easy E. coli Gene Deletion Kit”, based on the Red® / ET® technology from the company. Gene Bridges GmbH (see "Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red ® / ET ® Recombination, Cat. No.
  • the ppsA gene or a part of the gene can be isolated and a foreign DNA cloned into the ppsA gene, whereby the open reading frame of the ppsA gene that defines the protein is interrupted.
  • a DNA construct suitable for the targeted inactivation of the ppsA gene can therefore consist of a 5 'DNA segment that is homologous to the genomic ppsA gene, followed by a gene segment comprising the foreign DNA and connected to it 3 'DNA segment, which in turn is homologous to the genomic ppsA gene, exist.
  • the region of the ppsA gene that is suitable for homologous recombination can therefore not only include the region coding for phosphoenolpyruvate synthase.
  • the in The area in question can also include DNA sequences flanking the ppsA gene, namely in the 5 'area before the beginning of the coding area (promoter of gene transcription, e.g. nucleotide 1 - 332 in SEQ ID NO: 1, or nucleotide 1 - 416 in SEQ ID NO:
  • the foreign DNA is preferably a selection marker expression cassette.
  • This consists of a gene transcription promoter which is functionally linked to the actual selection marker gene and optionally followed by a gene transcription terminator.
  • the selection marker also contains 5 'and 3' flanking homologous sequences of the ppsA gene.
  • the selection marker preferably contains 5 'and 3' flanking homologous sequences of the ppsA gene each at least 30 nucleotides in length, particularly preferably each at least 50 nucleotides in length.
  • the DNA construct for inactivating the ppsA gene can therefore, starting from the 5 'end, consist of a sequence homologous to the ppsA gene, followed by the expression cassette of the selection marker, for example selected from the class of antibiotic resistance genes and followed by another sequence homologous to the ppsA gene.
  • the DNA construct for inactivating the ppsA gene starting from the 5 'end, consists of a sequence homologous to the ppsA gene of at least 30 nucleotides in length, particularly preferably at least 50 nucleotides in length, followed by the expression cassette of the selection marker , selected from the class of antibiotic resistance genes as well as followed by a further sequence from which is homologous to the ppsA gene at least 30 nucleotides in length, particularly preferably at least 50 nucleotides in length.
  • the selection marker genes are generally genes whose gene product enables the parent strain to grow under selective conditions under which the original parent strain cannot grow.
  • Preferred selection marker genes are selected from the group of antibiotic resistance genes such as the ampicillin resistance gene, the tetracycline resistance gene, the kanamycin resistance gene, the chloramphenicol resistance gene or also the neomycin resistance gene.
  • Other preferred selection marker genes enable parent strains with a metabolic defect (e.g. amino acid auotrophies) to grow under selective conditions by their expression correcting the metabolic defect.
  • selection marker genes are also possible, the gene product of which chemically changes and thus inactivates a compound that is toxic to the parent strain (eg the gene for the enzyme acetamidase, which converts the compound acetamide, which is toxic to many microorganisms, into the non-toxic products acetate and ammonia) splits).
  • selection marker genes are the ampicillin resistance gene, the tetracycline resistance gene, the kamycin resistance gene and the chloramphenicol resistance gene.
  • the tetracycline resistance gene and the kamycin resistance gene are particularly preferred.
  • strains according to the invention with inactivated ppsA gene are the strains E. coli W3110-AppsA and P. ananatis- ⁇ ppsA :: kan disclosed in the examples. Both strains are characterized in that their ppsA gene was inactivated by homologous recombination.
  • Example 3 Another such system for targeted gene inactivation based on homologous recombination is a method known to the person skilled in the art and described in Example 3 for gene inactivation or genetic modification, based on a combination of lambda red recombination with a counter-selection - ons screening. This system is described, for example, in Sun et al., Appl. Env. Microbiol. (2008) 74: 4241-4245.
  • a DNA construct is used to inactivate, for example, the ppsA gene, starting from the 5 'end, consisting of a sequence homologous to the ppsA gene, followed by two expression cassettes in any order, consisting of a) an expression cassette of the selection marker , selected from the class of antibiotic resistance genes and b) an expression cassette of the sacB gene, coding for the enzyme levansucrase and finally followed by a further sequence homologous to the ppsA gene.
  • the DNA construct is transformed into the production strain and antibiotic-resistant clones are isolated.
  • the clones obtained are distinguished by the fact that they cannot grow on sucrose as a result of the included sacB gene.
  • the two marker genes can be removed by replacing the two marker genes with homologous recombination in a second step using a suitable DNA fragment.
  • the clones obtained in this step can then grow again on sucrose and are then again sensitive to the antibiotic.
  • This method is used in Example 3 to replace the ppsA-WT gene from E. coli (SEQ ID NO: 1) by the triple mutant ppsA-MHI (SEQ ID NO: 5) described below.
  • the E. coli strain W3110-ppsA-MHI contains the cds of the PpsA triple mutant PpsA-V126M-R427H-V434I (ppsA-MHI).
  • the cds of the mutated gene of ppsA-MHI corresponds to the DNA sequence SEQ ID NO: 5 and codes for a PpsA protein with the sequence SEQ ID NO: 6.
  • PpsA-MHI is characterized in that the protein with the sequence SEQ ID NO: 6 contains the following changes in the amino acid sequence compared to the WT sequence given in SEQ ID NO: 2: Valine at position 126 is mutated to methionine (V126M), arginine at position 427 is mutated to histidine (R427H) and valine at position 434 is mutated to isoleucine (V434I).
  • the PpsA-MHI protein only had a relative enzyme activity of 26.8% compared to the specific wild-type enzyme activity (see Example 5, Tab. 1).
  • At least one of the mutations in the CD leads to at least one of the following changes in the amino acid sequence in SEQ ID NO:
  • valine at position 126 leads: valine at position 126, arginine at position 427 and / or valine at position 434, each of the three amino acids being able to be exchanged for any other amino acid.
  • the mutations in the ppsA-MHI gene according to the invention are introduced into the ppsA WT gene in a manner known per se, for example by so-called “site-directed” mutagenesis using a commercially available cloning kit, such as, for example, in the user manual for “QuickChange II Site-Directed Mutagenesis Kit "from Agilent disclosed.
  • the ppsA-MHI gene according to the invention can also be produced in a known manner by DNA synthesis.
  • the strain according to the invention characterized by mutating the ppsA structural gene in a way that leads to a weakening of the enzyme activity, such as the E.
  • coli ppsA-MHI triple mutant can be produced by using the combination of lambda-red recombination with a previously described Counter-selection screening for genetic modification (see, for example, Sun et al., Appl. Env. Microbiol. (2008) 74:
  • E. coli W3110 AppsA (described in Example 1) and E. coli W3110 ppsA-MHI (described in Example 3) are particularly preferred as strains.
  • the invention also relates to a fermentative process for the production of L-cysteine, characterized in that the microorganism cells according to the invention are used.
  • L-cysteine is formed as the primary product of the process according to the invention, from which the compounds L-cystine and thiazolidine can be formed.
  • L-cystine and thiazolidine arise during fermentation and accumulate in both the culture supernatant and the precipitate.
  • Thiazolidine is 2-methyl-2,4-thiazolidinedicarboxylic acid, an adduct of cysteine and pyruvate, which can be formed as a by-product of cysteine production (EP 0885962 B1).
  • the total cysteine yield is defined in the context of this invention as the sum of the cysteine, cystine and thiazolidine produced. This is determined from the entire culture batch, as described in Example 7. For example, you can use the colorimetric test of Gaitonde (Gaitonde, M.
  • the prior art does not disclose any processes or production strains in which, by attenuating or inactivating the Phosphoenolpyruvate synthase enzyme activity can improve the production of an amino acid, particularly cysteine.
  • the weakening or inactivation of the ppsA enzyme activity in a microorganism strain suitable for cysteine production is suitable for the yields of total cysteine, ie the sum of the cysteine, cystine and thiazolidine produced, in a fermentative process to increase significantly. According to the prior art, this was completely unexpected.
  • the attenuation or inactivation of the phosphoenolpyruvate synthase activity thus represents a new useful measure for improving the cysteine production in other cysteine-producing strains as well.
  • Example 7 shows that a strain capable of cysteine production encoding the ppsA mutant ppsA-MHI with reduced PpsA enzyme activity instead of the Wt enzyme achieves significantly higher cysteine yields in the fermentation than a strain containing a ppsA WT gene.
  • biomass of the production strain according to the invention and, on the other hand, cysteine and its oxidation product cystine are formed.
  • the formation of biomass and cysteine can correlate with time or be decoupled from one another in time.
  • Cultivation takes place in a manner familiar to the person skilled in the art. For this purpose, cultivation can take place in shake flasks (laboratory scale) or by fermentation (production scale).
  • a process on a production scale by fermentation with a fermentation volume of greater than 1 L is preferred, the production scale of greater than 10 L being preferred, greater than 1000 L being particularly preferred and a fermentation volume greater than 10,000 L being particularly preferred.
  • Culture media are familiar to the person skilled in the art from the practice of microbial cultivation. They typically consist of a carbon source (C source), a nitrogen source (N source) and additives such as vitamins, salts and trace elements as well as a sulfur source (S source), through which cell growth and cysteine production be optimized.
  • C source carbon source
  • N source nitrogen source
  • S source sulfur source
  • C sources are those that can be used by the production strain for cysteine product formation. This includes all forms of monosaccharides, including C6 sugars (hexoses) such as B. glucose, mannose, fructose or galactose as well as C5 sugars (pentosene) such as xylose, arabinose or ribose.
  • C6 sugars hexoses
  • pentosene pentosene
  • the production process according to the invention also includes all carbon sources in the form of disaccharides, in particular sucrose, lactose, maltose or cellobiose.
  • the production process according to the invention also includes all carbon sources in the form of higher saccharides, glycosides or carbohydrates with more than two sugar units such as. B. maltodextrin, starch, cellulose, hemicellulose, pectin or monomers or oligomers released from them by hydrolysis (enzymatically or chemically).
  • the hydrolysis of the higher carbon sources can take place upstream of the production process according to the invention or else take place in situ during the production process according to the invention.
  • carbon sources other than sugars or carbohydrates are acetic acid (or acetate salts derived therefrom), ethanol, glycerine, citric acid (and its salts) or pyruvate (and its salts).
  • gaseous C sources such as carbon dioxide or carbon monoxide are also conceivable.
  • the C sources affected by the production process according to the invention include both the isolated pure substances or, to increase profitability, mixtures of the individual C sources that have not been further purified, such as hydrolyzates through chemical or enzymatic digestion of the vegetable raw materials can be won.
  • hydrolysates of starch monosaccharide glucose
  • sugar beet monosaccharide glucose, fructose and arabinose
  • sugar cane disaccharide sucrose
  • pectin monosaccharide galacturonic acid
  • lignocellulose monosaccharide glucose
  • waste products from the digestion of vegetable raw materials can also serve as C sources, e.g. molasses (sugar beet) or bagasse (sugar cane).
  • Preferred carbon sources for growing the production strains are glucose, fructose, sucrose, mannose, xylose, arabinose and vegetable hydrolysates which can be obtained from starch, lignocellulose, sugar cane or sugar beet.
  • Particularly preferred carbon sources are glucose and sucrose, either in isolated form or as a component of a vegetable hydrolyzate.
  • a particularly preferred carbon source is glucose.
  • N-sources are those that can be used by the production strain to form biomass. This includes ammonia, gaseous or in aqueous solution as NH 4 OH or its salts such as. B. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium acetate or ammonium nitrate. Furthermore, the known nitrate salts such as. B. KNO 3 , NaNCb, ammonium nitrate, Ca (NO 3) 2 , Mg (NO 3 ) 2 and other N sources such as urea.
  • the N sources also include complex amino acid mixtures such as yeast extract, proteose peptone, malt extract, soy peptone, casamino acids, corn steep liquor (corn steep liquor, liquid or also dried as so-called CSD) as well as NZ amines and yeast nitrogen Base.
  • complex amino acid mixtures such as yeast extract, proteose peptone, malt extract, soy peptone, casamino acids, corn steep liquor (corn steep liquor, liquid or also dried as so-called CSD) as well as NZ amines and yeast nitrogen Base.
  • the addition of a sulfur source is necessary for the efficient production of cysteine and cysteine derivatives.
  • the continuous metering can take place as a pure feed solution or as a mixture with another feed component such as glucose.
  • Suitable sulfur sources are salts of sulfates, sulfites, dithionites, thiosulfates or sulfides, the use of the respective acids also being conceivable given a given stability.
  • Preferred sulfur sources are salts of sulfates, sulfites, thiosulfates and sulfides.
  • Particularly preferred sources of sulfur are salts of sulfates and thiosulfates.
  • Salts of thiosulfate such as, for example, sodium thiosulfate and ammonium thiosulfate, are particularly preferred.
  • the cultivation can take place in the so-called batch mode, whereby the cultivation medium is inoculated with a starter culture of the production strain and then the cells grow without further feeding of nutrient sources.
  • the cultivation can also take place in the so-called fed-batch mode, with additional nutrient sources being fed in after an initial phase of growth in the batch mode (feed) in order to compensate for their consumption.
  • the feed can consist of the C source, the N source, the sulfur source, one or more vitamins or trace elements that are important for production, or a combination of the above.
  • the feed components can be metered in together as a mixture or else separately in individual feed sections.
  • other media components and additives that specifically increase cysteine production can also be added to the feed.
  • the feed can be fed in continuously or in portions (discontinuously), or else in a combination of continuous and discontinuous feed. Cultivation according to the fed-batch mode is preferred.
  • Preferred C sources in the feed are glucose, sucrose, and plant hydrolysates containing glucose or sucrose, and mixtures of the preferred C sources in any mixing ratio.
  • a particularly preferred carbon source in the feed is glucose.
  • the carbon source is preferably metered into the culture in such a way that the content of the carbon source in the fermenter does not exceed 10 g / L during the production phase.
  • a maximum concentration of 2 g / L, particularly preferably 0.5 g / L, particularly preferably 0.1 g / L is preferred.
  • Preferred N sources in the feed are ammonia, in gaseous form or in aqueous solution as NH 4 OH and its salts ammonium sulfate, ammonium phosphate, ammonium acetate and ammonium chloride, furthermore Urea, KNO 3 , NaNO 3 and ammonium nitrate, yeast extract, proteose peptone, malt extract, soy peptone, casamino acids, corn steep liquor as well as NZ amines and yeast nitrogen base.
  • N sources in the feed are ammonia or ammonium salts, urea, yeast extract, soy peptone, malt extract or corn steep liquor (liquid or in dried form).
  • Preferred sulfur sources in the feed are salts of sulfates, sulfites, thiosulfates and sulfides.
  • Particularly preferred sulfur sources in the feed are salts of sulfates and thiosulfates.
  • Salts of thiosulphate such as sodium thiosulphate and ammonium thiosulphate, are particularly preferred as the source of sulfur in the feed.
  • Salts of the elements phosphorus, chlorine, sodium, magnesium, nitrogen, potassium, calcium, iron and in traces (ie in mM concentrations) salts of the elements molybdenum, boron, cobalt, manganese, zinc, copper and nickel can be added as additional media additives will.
  • organic acids e.g. acetate, citrate
  • amino acids e.g. isoleucine
  • vitamins e.g. vitamin B1, vitamin B6
  • the cultivation takes place under pH and temperature conditions, which favor the growth and the cysteine production of the production strain.
  • the useful pH range extends from pH 5 to pH 9.
  • a pH range from pH 5.5 to pH 8 is preferred.
  • a pH range from pH 6.0 to pH 7.5 is particularly preferred.
  • the preferred temperature range for the growth of the production stem is 20 ° C to 40 ° C.
  • the temperature range from 25 ° C. to 37 ° C. and particularly preferably from 28 ° C. to 34 ° C. is particularly preferred.
  • the production strain can optionally grow without oxygen supply (anaerobic cultivation) or with oxygen supply (aerobic cultivation). Aerobic cultivation with oxygen is preferred.
  • the regulation of the oxygen saturation in the culture takes place automatically in accordance with the state of the art via a combination of gas supply and stirring speed.
  • the oxygen supply is ensured by the introduction of compressed air or pure oxygen. Aerobic cultivation through the introduction of compressed air is preferred.
  • the useful range of the compressed air supply in aerobic cultivation is 0.05 vvm to 10 vvm (vvm: entry of compressed air into the fermentation batch given in liters of compressed air per liter of fermentation volume per minute).
  • a compressed air entry of 0.2 vvm to 8 vvm is preferred, particularly preferred from 0.4 to 6 vvm and especially preferred from 0.8 to 5 vvm.
  • the maximum stirring speed is 2500 rpm, preferably 2000 rpm and particularly preferably 1800 rpm.
  • the cultivation time is between 10 h and 200 h.
  • a cultivation time of 20 h to 120 h is preferred.
  • a cultivation time of 30 h to 100 h is particularly preferred.
  • Cultivation batches that are obtained by the method described above contain the cysteine either dissolved in the culture supernatant or, oxidized as cystine, in precipitated form.
  • the cysteine or cystine contained in the cultivation batches can either be used directly without further processing or else isolated from the cultivation batch.
  • the method is preferably characterized in that the cysteine formed is isolated.
  • Process steps known per se are available for isolating the cysteine and cystine, including centrifugation, decanting, dissolving the crude product with a mineral acid, filtration, extraction, chromatography or crystallization or precipitation. These process steps can be combined in any form in order to isolate the cysteine in the desired purity. The desired degree of purity depends on the further use.
  • the cystine obtained during processing can be reduced to cysteine for further use.
  • a method for reducing L-cystine to L-cysteine in an electrochemical process is disclosed in EP 0235908.
  • the invention can also be used to produce improved microorganism strains for the fermentative production of compounds whose biosynthesis starts from 3-phosphoglycerate and leads to L-cysteine and L-cystine via L-serine.
  • This also includes strains of microorganisms for the fermentative production of derivatives of L-serine and L-cysteine, including phosphoserine, O-acetylserine, N-acetylserine and thiazolidine, a condensation product of L-cysteine and pyruvate.
  • FIG. 1 shows the 3.4 kb vector pKD13 used in Example 1 and Example 2.
  • FIG. 2 shows the 6.3 kb vector pKD46 used in Example 1 and Example 3.
  • Example 4 shows the 4.2 kb vector pACYC184 used in Example 4.
  • Example 1 Production of a ppsA deletion mutant in Escherichia coli
  • Escherichia coli K12 W3110 was used as the starting strain for gene isolation and for strain development (available for purchase under the strain number DSM 5911 from the DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH).
  • the aim of the gene inactivation was the coding sequence of the ppsA gene from E. coli.
  • the DNA sequence of the ppsA gene from E. coli K12 (Genbank GenelD: 946209) is disclosed in SEQ ID NO: 1.
  • Nucleotides 333-2711 (designated E. coli ppsA) code for a phosphoenolpyruvate synthase protein with the in SEQ ID NO: 2 disclosed amino acid sequence (E. coli PpsA).
  • the E. coli ppsA gene was inactivated with the Red ® / ET ® technology from Gene Bridges GmbH as detailed below (described in the user manual of the "Quick and Easy E. coli Gene Deletion Kit", see “Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red ® / ET ® Recombination, Cat.
  • the 3.4 kb plasmid pKD13 (FIG. 1) is disclosed in the “GenBank” gene database under the accession number
  • the 6.3 kb plasmid pKD46 (FIG. 2) is disclosed in the “GenBank” gene database under the accession number
  • the 9.4 kb plasmid pCP20 is disclosed in Cherepanov and Wackernagel, Gene 158 (1995): 9-14.
  • E. coli W3110 was transformed with the plasmid pKD46 (so-called “Red Recombinase” plasmid, FIG. 2) and an ampicillin-resistant clone was isolated (designated as W3110 ⁇ pKD46).
  • a ppsA-specific DNA fragment suitable for its inactivation was in a PCR reaction (“Phusion TM High-Fidelity” DNA polymerase, Thermo Scientific TM) with DNA from plasmid pKD13 (FIG. 1) and the primers pps-5f (SEQ ID NO:
  • Primer pps-5f contained 30 nucleotides (nt) from the 5 'region of the ppsA gene (nt 333-362 in SEQ ID NO: 1) and, connected to it, 20 nt specific for the plasmid pKD13 (referred to as “pr-1 "in Fig. 1).
  • Primer pps-6r contained 30 nt from the 3 'region of the ppsA gene (nt 2682-2711 in SEQ ID NO: 1, in reverse complementary form) and connected to it 20 nt specific for the plasmid pKD13 (designated as “pr -2 "in Fig. 1).
  • DNA of the plasmid pKD13 was used to prepare a 1.4 kb PCR product with the primers pps-5f and pps-6r, which contained a DNA segment of 30 nt at the 5 'and at the 3' end, the was specific for the ppsA gene from E. coli W3110.
  • the PCR product contained the expression cassette of the kanamycin resistance gene contained in pKD13 and, flanking the 5 'and 3' end of the kanamycin expression cassette, so-called “FRT direct repeats” (referred to as “FRT1” and “FRT2 "in FIG. 1), short DNA segments which were used in a later work step to remove the antibiotic marker kanamycin as the recognition sequence for the" FLP recombinase "(contained on the plasmid pCP20).
  • FRT direct repeats referred to as “FRT1” and “FRT2 "in FIG. 1
  • the 1.4 kb PCR product was isolated and treated with the methylated DNA-cutting restriction endonuclease Dpn I, which is familiar to the person skilled in the art, in order to remove residual pKD13 plasmid DNA. Non-methylated DNA from the PCR reaction is not degraded.
  • LBkan plates contained LB medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl), 1.5% agar and 15 mg / L kamenycin.
  • Ten of the kanamycin-resistant clones obtained were purified on LBkan plates (ie isolation of a clone by singulation) and checked in a PCR reaction whether the kamycin-resistance cassette had been correctly integrated into the ppsA gene.
  • the genomic DNA used for the PCR reaction (“Phusion TM High-Fidelity” DNA Polymerase, Thermo Scientific TM) was isolated with a DNA isolation kit (Qiagen) from cells of the cultivation of kanamycin-resistant clones of E. coli W3110 in LBkan medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl, 15 mg / L kanamycin) isolated using genomic DNA of the E. coli W3110 wild type strain as control
  • Primers used were pps-7f (SEQ ID NO: 9) and pps-8r (SEQ ID NO: 10).
  • Primer pps-7f contained nt 167-188 from SEQ ID NO: 1, primer pps-8r from nt 2779-2800 SEQ ID NO:
  • E. coli W3110 wild type DNA resulted in a DNA fragment of 2630 bp in the PCR reaction, as expected for the intact gene.
  • a kanamycin-resistant clone examined resulted in a DNA fragment of approx. 1660 bp in the PCR reaction, as expected in the event that the 1.4 kb PCR product was linked to the primers pps-5f and pps-6r defined sites in the ppsA gene had been integrated. This result showed that the kanamycin resistance gene could be successfully integrated at the gene location of the ppsA gene and thus the ppsA gene had been inactivated.
  • the clone with inactivated ppsA gene was selected and was given the designation W3110-AppsA :: kan.
  • W3110-AppsA :: kan was transformed with the plasmid pCP20 and transformants were selected at 30.degree.
  • the 9.4 kb vector pCP20 is disclosed in Cherepanov and Wackernagel (1995), Gene 158: 9-14.
  • the gene for the FLP recombinase is contained in the vector pCP20.
  • the FLP recombinase recognizes the FRT sequences which flank the expression cassette of the kanamycin resistance gene and removes the kamycin expression cassette.
  • the clones obtained at 30.degree. C. were incubated at 37.degree. Under these conditions, on the one hand, the expression of the FLP recombinase was induced and, on the other hand, the replication of the pCP20 vector was prevented.
  • W3110-AppsA kan was kanamycin-sensitive again after treatment with the pCP20 plasmid, which was checked as follows:
  • genomic DNA was isolated from the kanamycin-sensitive clones (Qiagen DNA isolation kit) and in a PCR reaction (“Phusion TM High-Fidelity” DNA polymerase, Thermo Scientific TM) with the primers pps-7f (SEQ ID NO: 9 ) and pps-8r (SEQ ID NO: 10) E. coli W3110 wild-type DNA resulted in a DNA fragment of about 2630 bp in the PCR reaction, as expected for the intact ppsA gene.
  • the kamycin-sensitive clone on the other hand, the PCR reaction resulted in a DNA fragment of approx.
  • the strain isolated from this step was named E. coli W3110- ⁇ ppsA. This strain is distinguished by the fact that it contained an inactivated ppsA gene and that this strain was again sensitive to the antibiotic kamenycin.
  • Pantoea ananatis was used as the starting strain for gene isolation and strain development (available for purchase under the strain number DSM 30070 from the DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH).
  • the aim of the gene inactivation was the ppsA gene from Pantoea ananatis.
  • the DNA sequence of the ppsA gene from P. ananatis (Genbank GelD: 31510655) is disclosed in SEQ ID NO: 3.
  • Nucleotides 417-2801 (designated P. ananatis ppsA) also code for a phosphoenolpyruvate synthase protein the amino acid sequence disclosed in SEQ ID NO: 4 (P. ananatis PpsA).
  • the P. ananatis ppsA gene has been with the Red ® / ET ® technology the company. Gene Bridges GmbH as listed below in detail inactivated fourth (described in the user manual for the "Quick and Easy E. coli Gene Deletion Kit", see “Technical Protocol , Quick & Easy E. coli Gene deletion Kit, by Red ® / ET ® recombination. Cat. No. K006, version 2.3, June 2012 and literature cited therein, for example Datsenko and Wanner, Proc. Natl. Acad Sci. USA 97 (2000): 6640-6645) using the plasmids pKD13 and pRedET.
  • the 3.4 kb plasmid pKD13 (FIG. 1) is disclosed in the “GenBank” gene database under the accession number
  • P. ananatis was transformed with the plasmid pRedET (so-called “Red Recombinase” plasmid) and a tetracycline-resistant clone was isolated (referred to as P. ananatis x pRedET).
  • a ppsA-specific DNA fragment suitable for its inactivation was in a PCR reaction (“Phusion TM High-Fidelity” DNA polymerase, Thermo Scientific TM) with DNA from plasmid pKD13 (FIG. 1) and the primers ppsapa-3f (SEQ ID NO: 11) and pps-4r (SEQ ID NO: 12).
  • Primer ppsapa-3f contained 49 nt from the 5 'region of the ppsA gene (nt 417-465 in SEQ ID NO: 3) and, connected thereto, 20 nt specific for the plasmid pKD13 (designated as “pr-1” in FIG. 1 ).
  • Primer ppsapa-4r contained 49 nt from the 3 'region of the ppsA gene (nt 2753-2801 in SEQ ID NO: 3, in reverse complementary form) and, connected to it, 20 nt specific for the plasmid pKD13 (designated as “pr -2 "in Fig. 1).
  • DNA of the plasmid pKD13 was used to prepare a 1.4 kb PCR product with the primers ppsapa-3f and pps-4r, which contained a DNA segment of 49 nt at the 5 'and 3' ends was specific for the ppsA gene from P. ananatis.
  • the PCR product contained the expression cassette of the kanamycin resistance gene contained in pKD13 and, flanking the 5 'and 3' end of the kanamycin expression cassette, so-called “FRT direct repeats” (referred to as “FRT1” and “FRT2 "in Fig. 1), short DNA segments which, if necessary, enable the antibiotic marker kanamycin in ppsA deletion mutants to be removed.
  • the 1.4 kb PCR product was isolated and treated with the methylated DNA-cutting restriction endonuclease Dpn I, which is familiar to the person skilled in the art, to remove residual pKD13 Remove plasmid DNA. Non-methylated DNA from the PCR reaction is not degraded.
  • the 1.4 kb PCR product specific for the ppsA gene and containing an expression cassette for the kanamycin resistance gene was transformed into P. ananatis x pRedET and isolated on LBkan plates at 30.degree. C. kanamycin-resistant clones.
  • LBkan plates contained LB medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl), 1.5% agar and 15 mg / L kamenycin.
  • a kanamycin-resistant clone was purified on LBkan plates (ie a clone was isolated by singulation) and it was checked in a PCR reaction whether the kanamycin-resistance cassette had been correctly integrated into the ppsA gene.
  • the genomic DNA used for the PCR reaction (“Phusion TM High-Fidelity” DNA Polymerase, Thermo Scientific TM) was isolated from cells of the kanamycin-resistant clone of P. ananatis in LBkan using a DNA isolation kit (Qiagen) -Medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl, 15 mg / L Kanamycin) isolated. Genomic DNA of the P. anatis wild-type strain served as control.
  • the PCR - Primers used in the reaction were ppsapa-lf (SEQ ID NO: 13) and ppsapa-2r (SEQ ID NO: 14). Primer ppsapa-lf contained nt 281-302 in SEQ ID NO: 3, primer ppsapa-2r nt 2901- 2922 in SEQ ID NO: 3, in reverse complementary form).
  • P. ananatis wild type DNA resulted in a DNA fragment of 2640 bp in the PCR reaction, as expected for the intact gene.
  • a kanamycin-resistant clone examined resulted in a DNA fragment of approx. 1670 bp in the PCR reaction, as expected in the event that the 1.4 kb PCR product was linked to the primer ppsapa-3f (SEQ ID NO : 11) and ppsapa-4r (SEQ ID NO: 12) defined sites in the ppsA gene had been integrated.
  • ppsapa-3f SEQ ID NO : 11
  • ppsapa-4r SEQ ID NO: 12
  • E. coli W3110-ppsA-MHI characterized by mutations of the ppsA structural gene in a manner which lead to a weakening of the enzyme activity, was produced by using the combination of lambda-red recombination and counter-selection screening for genetic modification, which is known to the person skilled in the art (see e.g. Sun et al., Appl. Env. Microbiol. (2008) 74: 4241-
  • ppsA-MHI The DNA sequence of the ppsA-MHI gene is disclosed in SEQ ID NO: 5 (ppsA-MHI), coding for a protein with the sequence as given in SEQ ID NO: 6 (PpsA-MHI).
  • ppsA-MHI was obtained from the ppsA WT gene by successively introducing the mutations into the ppsA WT gene by “site-directed” mutagenesis. This was done using the commercially available cloning kit, “QuickChange II Site-Directed Mutagenesis Kit "from Agilent according to the information in the user manual.
  • the 3.2 kb Kan-sacB cassette was first removed from the plasmid pKan-SacB (FIG. 3) by PCR with the primers pps-9f (SEQ ID NO: 15) and pps-10r (SEQ ID NO: 16) isolated.
  • the plasmid pKan-sacB contains expression cassettes both for the kanamycin (Kan) resistance gene and for the sacB gene, coding for the enzyme levansucrase.
  • the primer pps-9f contained 30 nt starting from the start ATG of the ppsA gene (nt 333-362 in SEQ ID NO: 1) and, connected to it, 20 nt specific for the plasmid pKan-SacB (referred to as “pr-f "in Fig. 3).
  • the primer pps-10r contained 30 nt starting from the stop codon of the ppsA gene (nt 2682-2711 in SEQ ID NO: 1, in reverse complementary form) and connected to it 21 nt specific for the plasmid pKan-SacB (designated as "Pr-r” in Fig. 3).
  • E. coli W3110 x pKD46 (production see Example 1) was transformed with the ppsA-specific 3.2 kb PCR product and kanamycin-resistant clones were isolated.
  • the clones were inoculated onto LBSC plates (10 g / L tryptone, 5 g / L yeast extract, 7% sucrose, 1.5% agar and 15 mg / L kanamycin).
  • Clones with an integrated sacB gene produced toxic levan from the saccharose, which led to growth inhibition. Such clones were selected and checked in a PCR reaction whether the Kan-sacB cassette had been correctly integrated into the ppsA gene.
  • the genomic DNA used for the PCR reaction (“Phusion TM High-Fidelity” DNA Polymerase, Thermo Scientific TM) was previously grown with a DNA isolation kit (Qiagen) from cells of kanamycin-resistant clones of E. coli W3110 in LBkan medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl, 15 mg / L kanamycin) using genomic DNA of the E. coli W3110 wild type strain as a control.
  • the primers used for the PCR reaction were pps-7f (SEQ ID NO: 9) and pps-8r (SEQ ID NO: 10).
  • E. coli W3110 wild-type DNA produced a DNA fragment of 2630 nt in the PCR reaction, as expected for the intact gene.
  • Kamycin-resistant clones produced a DNA fragment of approx. 3400 nt in the PCR reaction, as expected in the event that the 3.2 kb PCR product is linked to the primer pps-9f (SEQ ID NO: 15) and pps-10r (SEQ ID NO: 16) defined sites in the ppsA gene had been integrated. This result showed that successful at the locus of the ppsA gene the Kan-sacB cassette could be integrated and thus the ppsA gene was inactivated.
  • a clone with an integrated Kan-sacB cassette was selected and was given the designation W3110- ⁇ ppsA :: kan-sacB x pKD46.
  • the Kan-sacB cassette was exchanged for the ppsA-MHI gene.
  • the ppsA-MHI DNA fragment from step 2 was used in a PCR reaction ("Phusion TM High-Fidelity" DNA polymerase, Thermo Scientific TM) with the primers pps-llf (SEQ ID NO: 17) and pps-12r ( SEQ ID NO: 18) a 2.5 kb DNA fragment was amplified, primer pps-llf contained nt 300-319 in SEQ ID NO: 1, primer pps-12r nt 2743-2763 in SEQ ID NO: 1, in reverse complementary shape.
  • the 2.5 kb ppsA-MHI gene was transformed into E. coli W3110-AppsA :: kan-sacB x pKD46 and clones on LBS plates (10 g / L tryptone, 5 g / L yeast extract, 7% sucrose, 1.5% agar) selected without kanamycin. Only clones which no longer contained an active sacB gene could grow on LBS plates.
  • Genomic DNA was obtained from cells grown in LB medium (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl) using a DNA isolation kit (Qiagen). Genomic DNA of the E. coli W3110 wild type strain was used as a control.
  • the primers used for the PCR reaction were pps-7f (SEQ ID NO: 9) and pps-8r (SEQ ID NO: 10).
  • PCR products of the expected size of 2630 nt were analyzed by DNA sequencing (Eurofins Genomics). Clones with correctly integrated ppsA-MHI gene gave the DNA sequence as disclosed in SEQ ID NO: 5, coding for a protein corresponding to the sequence from SEQ ID NO: 6. A clone with the correct ppsA-MHI gene, containing the mutations V126M, R427H and V434I, was selected and was given the designation E. coli W3110-ppsA-MHI.
  • pACYC184-cysEX-GAPDH-ORF306-serA317 derived from the starting vector pACYC184 (FIG. 4) was used as the cysteine-specific production plasmid.
  • pACYCl84-cysEX-GAPDH-ORF306-serA317 is a derivative of the plasmid pACYC184-cysEX-GAPDH-ORF306 disclosed in EP 0885962 B1.
  • the plasmid pACYC184-cysEX-GAPDH-ORF306 contains, in addition to the origin of replication and a tetracycline resistance gene (starting vector pACYC184), the cysEX allele, which codes for a serine O-acetyl transferase with reduced feedback inhibition by cysteine ydeDlux gene (ORF306), the expression of which is controlled by the constitutive GAPDH promoter.
  • pACYC184-cysEX-GAPDH-ORF306-serA317 also contains, cloned behind the ydeD (ORF306) efflux gene, the serA317 gene fragment, coding for the N-terminal 317 amino acids of the SerA protein (total length 410 amino acids).
  • the E. coli serA gene is disclosed in the “GenBank” gene database with the Gene ID 945258.
  • serA317 is disclosed in Bell et al., Eur. J. Biochem. (2002) 269: 4176-4184, therein referred to as “NSD: 317 "and codes for a serine feedback-resistant variant of 3-phosphoglycerate dehydrogenase.
  • the expression of serA317 is controlled by the serA promoter.
  • Plasmid-carrying transformants were selected on LBtet agar plates (10 g / L tryptone, 5 g / L yeast extract, 5 g / L NaCl, 1.5% agar, 15 mg / L tetracycline). Selected Transformants were checked for the transformed pCYS plasmid by plasmid isolation using the QIAprep Spin Plasmid Kit (Qiagen) and restriction analysis. Transformants with correctly incorporated plasmid pCYS were used in the cultivation to check the ppsA enzyme activity (example 5) and to determine the cysteine production (example 6 and example 7).
  • the ppsA enzyme activity of the E. coli strains W3110, W3110-AppsA, W3110-ppsA-MHI, each transformed with the production plasmid pCYS was determined.
  • Cells from the shake flask culture in 50 ml of SMI medium (composition see example 6) of the three strains were pelleted by centrifugation for 10 min and washed once with 10 ml of 0.9% (w / v) NaCl.
  • the cell pellets were taken up in 10 ml test buffer (100 mM Tris-HCl, pH 8.0; 10 mM MgCl 2 ) and a cell extract was prepared.
  • the FastPrep-24 TM 5G cell homogenizer from MP Biomedicals was used.
  • 2 x 1 ml cell suspension was disrupted in 1.5 ml tubes with glass beads ("Lysing Matrix B") prefabricated by the manufacturer (3 x 20 sec at a shaking frequency of 6000 rpm with a 30 sec pause between each inter- vallen)
  • the resulting homogenate was centrifuged and the supernatant used as a cell extract for the determination of the activity.
  • the protein content of the extract was determined with a Qubit 3.0 fluorometer from Thermo Fisher Scientific using the “ Qubit® Protein Assay Kit” according to the manufacturer's instructions.
  • the phosphate detection kit “Malachite Green Phosphate Assay Kit” from SigmaAldrich (catalog number MAK307) was used in accordance with the manufacturer's instructions. This is based on the fact that in the equilibrium reaction (4) by the ppsA enzyme activity Pyruvate is converted with ATP to phosphoenolpyruvate. This creates phosphate in stoichimetric amounts, which is used to determine the activity.
  • test batches contained 100 ⁇ g cell extract, 4 mM Na pyruvate and 4 mM ATP in 1 ml test buffer (100 mM Tris-HCl, pH 8.0; 10 mM MgCl 2).
  • the specific ppsA enzyme activity was calculated by relating the ppsA enzyme activity to 1 mg total protein of the cell extract (U / mg protein).
  • Composition of the SMl medium 12 g / LK 2 HPO 4 , 3 g / L KH 2 PO 4 , 5 g / L (NH 4 ) 2 SO 4 , 0.3 g / L MgSO 4 x 7 H 2 0, 0.015 g / L CaCl 2 x 2 H 2 O, 0.002 g / L FeSO 4 x 7 H 2 0, 1 g / L Na 3 citrate x 2 H 2 O, 0.1 g / L NaCl;
  • composition of the trace element solution 0.15 g / L Na 2 MoO 4 x 2 H 2 0, 2.5 g / LH 3 BO 3 , 0.7 g / L COCI 2 x 6 H 2 O, 0.25 g / L CuSO 4 x 5 H 2 O, 1.6 g / L MnCl 2 x 4 H 2 O, 0.3 g / L ZnSO 4 x 7 H 2 O.
  • the main culture was inoculated with preculture so much that an initial cell density OÜ 6 oo / ml (optical density of the main culture, as measured at 600 nm) of 0.025 / ml was adjusted. Starting from this, the entire 30 ml mixture was incubated for 24 h at 30 ° C. and 135 rpm.
  • Table 2 Cell density and total cysteine content after a culture time of 24 h in the shake flask
  • Table 3 Cell density and total cysteine content after a culture time of 24 h in the shake flask
  • the preculture 1 was then completely transferred into 100 ml of SM1 medium supplemented with 5 g / L glucose, 5 mg / L vitamin B1 and 15 mg / L tetracycline (composition of SM1 medium see Example 6).
  • the cultures were shaken in Erlenmeyer flasks (1 L volume) at 30 ° C. for 17 h at 150 rpm (Infors chest shaker). After this incubation, the cell density OD 600 / ml was between 3 and 5.
  • the fermentation was carried out in a fermenter of type Pendorf "® DASGIP In parallel Bioreactor Systems for microbiology" from Epstein. There were used volume culture vessels with 1.81 total.
  • the fermentation medium (900 ml) containing 15 g / L Glucose, 10 g / L tryptone (Difco), 5 g / L yeast extract (Difco), 5 g / L (NH 4 ) 2 SO 4 , 1.5 g / L KH 2 PO 4 , 0.5 g / L NaCl , 0.3 g / L MgSO 4 x 7 H 2 O, 0.015 g / L CaCl 2 x 2 H 2 O, 0.075 g / L FeSO 4 x 7 H 2 O, 1 g / L Na3 citrate x 2 H 2 O and 1 ml trace element solution (see Example 6), 0.005 g / L vitamin B1 and 15 mg / L tetracycline.
  • the pH in the fermenter was initially adjusted to 6.5 by pumping in a 25% NH 4 OH solution. During the fermentation, the pH was kept at a value of 6.5 by automatic correction with 25% NH 4 OH.
  • 100 ml of preculture 2 were pumped into the fermenter vessel. The initial volume was thus about 1 L.
  • the cultures were initially stirred at 400 rpm and gassed with a ventilation rate of 2 vvm (volume of air per volume of culture medium per minute) of compressed air disinfected via a sterile filter. Under these starting conditions, the oxygen probe was calibrated to 100% saturation before the inoculation.
  • the target value for the O 2 saturation during the fermentation was set to 30%. After the level of the 0 2 saturation below the desired value a regulatory cascade was started again introduce to the target value by the 0 2 saturation.
  • the gas supply was initially increased continuously (to a maximum of 5 vvm) and then the stirring speed was increased continuously (to a maximum of 1,500 rpm).
  • the fermentation was carried out at a temperature of 30 ° C. After a fermentation time of 2 h, the feed was added a sulfur source in the form of a sterile 60% (w / v) stock solution of sodium thiosulfate x 5 H 2 O at a rate of 1.5 ml per hour.
  • the fermentation time was 48 hours. Samples were then taken from the fermentation batch and the content of L-cysteine and the derivatives derived from it in the culture supernatant (especially L-cysteine and thiazolidine) and in the precipitate (L-cystine) were determined separately from one another.
  • the colorimetric test of Gaitonde was used in each case (Gaitonde, M.K. (1967), Biochem. J. 104, 627-633).
  • the L-cystine in the precipitate first had to be dissolved in 8% (v / v) hydrochloric acid before it could be quantified in the same way. Finally, the total amount of cysteine was determined as the sum of the cysteine in the pellet and in the supernatant.
  • the cell density OD 600 / ml of the strains examined was comparable, albeit somewhat higher for the control strain W3110 x pCYS.
  • the cysteine volume production (in g / L) was significantly higher (approx. Factor 3) in both W3110-ppsA-MHI x pCYS and in W3110-AppsA x pCYS than in the control strain W3110 x pCYS with the wild-type ppsA gene.
  • bla gene that confers resistance to ampicillin ( ⁇ -lactamase)
  • rrnB term rrnB terminator for transcription
  • kanR gene that confers resistance to kanamycin
  • FRT1 recognition sequence 1 for FLP recombinase
  • FRT2 recognition sequence 2 for FLP recombinase araC: araC gene (repressor gene)
  • P araC promoter of the araC gene
  • P araB promoter of the araB gene
  • Bet lambda phage Bet recombination gene
  • RepA gene for the plasmid replication protein
  • a sacB levansucrase gene pr-f: binding site f for primer (forward)
  • pr-r binding site r for primer (reverse)
  • IHF binding site for DNS binding protein IHF ("Integration Host Factor")
  • CamR gene that confers resistance to chloramphenicol TetR: gene that confers resistance to tetracycline P15A ORI: origin of replication

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft einen Mikroorganismenstamm, der zur fermentativen Herstellung von L-Cystein geeignet ist, dadurch gekennzeichnet, dass die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse inaktiviert oder bezogen auf die spezifische Aktivität des Wildtyp-Enzyms reduziert ist, und der gegenüber dem Mikroorganismenstamm mit Wildtyp-Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.Ί.9.2 bezeichneten Enzymklasse eine erhöhte Menge an L-Cystein bildet, wobei das diese Enzymaktivität kodierende Gen mit ppsA bezeichnet wird. Des Weiteren stellt die Erfindung ein Verfahren zur Herstellung von L-Cystein unter Verwendung dieser Mikroorganismenzellen zur Verfügung.

Description

Verbesserte Cy tein produzierende Stämme
Die Erfindung betrifft einen Mikroorganismenstamm, der zur fer- mentativen Herstellung von L-Cystein geeignet ist, dadurch ge- kennzeichnet, dass die relative Enzymaktivität der in der KEGG- Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse inaktiviert oder bezogen auf die spezifische Aktivität des Wildtyp-Enzyms reduziert ist, und der gegenüber dem Mikroorga- nismenstamm mit Wildtyp-Enzymaktivität der in der KEGG- Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse eine erhöhte Menge an L-Cystein bildet, wobei das diese Enzym- aktivität kodierende Gen mit ppsA bezeichnet wird. Des Weiteren stellt die Erfindung ein Verfahren zur Herstellung von L-Cys- tein unter Verwendung dieser Mikroorganismenzellen zur Verfü- gung.
Cystein, abgekürzt Cys oder C, ist eine α-Aminosäure mit der Seitenkette -CH2-SH. Da die natürlich vorkommende enantiomere Form L-Cystein ist und nur diese eine proteinogene Aminosäure darstellt, ist im Rahmen dieser Erfindung L-Cystein gemeint, wenn der Ausdruck Cystein ohne Deskriptor gebraucht wird. Durch Oxidation der Sulfhydrylgruppen können zwei Cysteinreste mitei- nander eine Disulfidbrücke bilden, womit Cystin entsteht, für das das gleiche gilt, d.h. ohne Deskriptor ist in dieser Erfin- dung das L-Enantiomer (oder L-Cystin, bzw. (R,R)-3,3'-Dithio- bis (2-aminopropionsäure)) gemeint. L-Cystein ist für den Men- schen eine semi-essenzielle Aminosäure, da sie aus der Amino- säure Methionin gebildet werden kann.
Cystein nimmt in allen Organismen eine Schlüsselposition im Schwefelmetabolismus ein und wird in der Synthese von Protei- nen, Glutathion, Biotin, Liponsäure, Thiamin, Taurin, Methionin und anderen schwefelhaltigen Metaboliten verwendet. Zudem dient L-Cystein als Vorläufer für die Biosynthese von Coenzym A. Die Biosynthese von Cystein wurde in Bakterien, insbesondere in Enterobakterien, detailliert untersucht. Eine Zusammenfassung über die Cystein Biosynthese findet sich in Wada und Takagi, Appl. Microbiol. Biotechnol. (2006) 73: 48-54.
Die Aminosäure L-Cystein ist von wirtschaftlicher Bedeutung.
Sie wird beispielsweise als Lebensmittelzusatzstoff (insbeson- dere in der Backmittelindustrie), als Einsatzstoff in der Kos- metik, sowie als Ausgangsprodukt für die Herstellung von Phar- mawirkstoffen (insbesondere N-Acetyl-Cystein und S-Carboxyme- thyl-Cystein) verwendet.
Neben der klassischen Gewinnung von Cystein mittels Extraktion aus keratinhaltigem Material wie Haaren, Borsten, Hörnern,
Hufen und Federn, oder mittels Biotransformation durch enzyma- tische Umsetzung von Vorstufen, steht auch ein Verfahren zur fermentativen Herstellung von Cystein zur Verfügung. Der Stand der Technik bezüglich der fermentativen Gewinnung von Cystein mit Mikroorganismen ist z.B. in EP 0858510 Bl, EP 0885962 Bl, EP 1382 684 Bl, EP 1220 940 B2, EP 1769 080 Bl und EP 2 138 585 Bl offenbart. Als bakterielle Wirtsorganismen werden dabei u.a. Stämme der Gattung Corynebakterium sowie Vertreter aus der Familie der Enterobacteriaceae, wie z. B. Escherichia coli oder Pantoea ananatis eingesetzt.
Zur Verbesserung der Cystein-Produktion in einem Mikroorganis- menstamm stehen verschiedene Methoden zur Verfügung. Neben der klassischen Vorgehensweise, um durch Mutation und Selektion zu verbesserten Cystein-Produzenten zu gelangen, wurden auch ge- zielt genetische Veränderungen an den Stämmen vorgenommen, um eine effektive Cystein-Überproduktion zu erreichen.
So führte das Einbringen eines cysE-Allels, das für eine Serin- O-Acetyl-Transferase mit verminderter Feedback-Hemmung durch Cystein kodiert, zu einer Steigerung der Cystein-Produktion (EP 0 858 510 Bl; Nakamori et al., Appl. Env. Microbiol. (1998) 64:
1607-1611). Durch ein Feedback-resistentes CysE-Enzym wird die Bildung von O-Acetyl-L-Serin, der direkten Vorstufe von Cys- tein, weitgehend vom Cystein-Spiegel der Zelle entkoppelt.
O-Acetyl-L-Serin wird aus L-Serin und Acetyl-CoA gebildet. Da- her ist die Bereitstellung von L-Serin in ausreichender Menge für die Cystein-Produktion von großer Bedeutung. Dies kann durch das Einbringen eines serA-Allels, das für eine 3-Phospho- glycerat-Dehydrogenase mit verminderter Feedback- Hemmbarkeit durch L-Serin kodiert, erreicht werden. Dadurch wird die Bil- dung von 3-Hydroxypyruvat, einer biosynthetischen Vorstufe von L-Serin, weitgehend vom L-Serin-Spiegel der Zelle entkoppelt. Beispiele für derartige SerA-Enzyme sind in EP 0620853 Bl und EP 1496 111 Bl beschrieben. Aber auch Bell et al., Eur. J. Biochem. (2002) 269: 4176-4184 offenbaren Veränderungen am serA-Gen zur Deregulierung der Enzymaktivität.
Darüber hinaus ist bekannt, dass die Cystein-Ausbeute in der Fermentation dadurch erhöht werden kann, dass Gene abgeschwächt oder zerstört werden, die für Cystein-abbauende Enzyme kodie- ren, wie z.B. die Tryptophanase TnaA oder die Cystathionin-ß- Lyasen MalY oder MetC (EP 1571223 Bl).
Die Steigerung des Transports von Cystein aus der Zelle ist eine weitere Möglichkeit, um die Produktausbeute im Medium zu erhöhen. Dies kann durch Überexpression sogenannter Efflux-Gene erreicht werden. Diese Gene kodieren für membrangebundene Pro- teine, die den Export von Cystein aus der Zelle vermitteln.
Verschiedene Effluxgene für den Cystein-Export wurden beschrie- ben (EP 0885 962 Bl, EP 1382684 Bl). Der Export von Cystein aus der Zelle in das Fermentationsmedium hat mehrere Vorteile:
1) L-Cystein wird kontinuierlich aus dem intrazellulären Reak- tionsgleichgewicht entzogen mit der Folge, dass der Spiegel dieser Aminosäure in der Zelle niedrig gehalten wird und somit die Feedback-Hemmung von sensitiven Enzymen durch L- Cystein unterbleibt: (1) L-Cystein (intrazellulär) L-Cystein (Medium)
2) Das in das Medium ausgeschiedene L-Cystein wird in Gegen- wart von Sauerstoff, der während der Kultivierung in das Medium eingebracht wird, zum Disulfid L-Cystin oxidiert (EP 0 885962 Bl):
(2) 2 L-Cystein + 1/2 O2 -> L-Cystin + H2O
Da die Löslichkeit von L-Cystin in wässriger Lösung bei ei- nem neutralen pH-Wert im Vergleich zu Cystein nur sehr ge- ring ist, fällt das Disulfid schon bei einer niedrigen Kon- zentration aus und bildet einen weissen Niederschlag:
(3) L-Cystin (gelöst) -> L-Cystin (Niederschlag)
Durch die Präzipitation von L-Cystin wird der Spiegel des im Medium gelösten Produkts abgesenkt, wodurch auch jeweils das Reaktionsgleichgewicht von (1) und (2) auf die Produkt- seite gezogen wird.
3) Der technische Aufwand für die Reinigung des Produkts ist bedeutend geringer, wenn die Aminosäure direkt aus dem Fer- mentationsmedium gewonnen werden kann, als wenn das Produkt intrazellulär akkumuliert und zuerst ein Zellaufschluß er- folgen muss.
Neben der gentechnischen Veränderung des Cystein Produktions- stammes spielt bei der Entwicklung eines effizienten Produkti- onsprozesses auch die Optimierung des Fermentationsverfahrens, d. h. die Art und Weise der Kultivierung der Zellen, eine wich- tige Rolle. Dabei können verschiedene Kultivierungsparameter, wie z.B. die Art und Dosierung der Kohlenstoff- und Energie- quelle, die Temperatur, die Versorgung mit Sauerstoff (EP 2707 492 Bl), der pH-Wert sowie die Zusammensetzung des Kulturmedi- ums die Produktausbeute und/oder das ProduktSpektrum bei der fermentativen Herstellung von Cystein beeinflussen. Aufgrund laufend steigender Rohstoff- und Energiekosten besteht fortwährend der Bedarf, die Produktausbeute bei der Cystein- Herstellung zu steigern, um auf diese Weise die Wirtschaftlich- keit des Prozesses zu verbessern.
Aufgabe der vorliegenden Erfindung ist es, einen Mikroorganis- menstamm zur fermentativen Herstellung von Cystein zur Verfü- gung zu stellen, mit dem im Vergleich zu bekannten Stämmen aus dem Stand der Technik in der Fermentation höhere Ausbeuten von L-Cystein, bzw. L-Cystin erzielt werden können.
Gelöst wird die Aufgabe durch einen Mikroorganismenstamm, der zur fermentativen Herstellung von L-Cystein geeignet ist, dadurch gekennzeichnet, dass die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.Ί.9.2 bezeichneten En- zymklasse inaktiviert oder bezogen auf die spezifische Aktivi- tät des Wildtyp-Enzyms reduziert ist, und der gegenüber dem Mikroorganismenstamm mit Wildtyp-Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzym- klasse eine erhöhte Menge an L-Cystein bildet, wobei das diese Enzymaktivität kodierende Gen mit ppsA bezeichnet wird.
Die Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.Ί.9.2 bezeichneten Enzymklasse ist definiert dadurch, dass diese in einer reversiblen Reaktion Pyruvat aus Phos- phoenolpyruvat hersteilen kann gemäß der Formel:
(4) Phosphoenolpyruvat + Phosphat + AMP <-> Pyruvat + H2O + ATP
(AMP: Adenosin-Monophosphat; ATP: Adenosin-Triphosphat)
Diese Enzymaktivität wird daher auch bezeichnet als Phos- phoenolpyruvat-Synthase (PEP-Synthase, EC 2.7.9.2) oder auch synonym als Phosphoenolpyruvat-H20-Dikinase. Das dieses Protein kodierende Gen wird im Rahmen dieser Erfindung mit ppsA abge- kürzt. Nachweis der Enzymaktivität (Enzymassay, PEP-Synthase-Assay): Die PEP-Synthase-Aktivität eines Mikroorganismenstamms kann be- stimmt werden, indem die Zellen aus der Anzucht in einem Flüs- sigmedium pelletiert, gewaschen und z.B. mit Hilfe eines Fast- Prep-24™ 5G Zellhomogenisators (MP Biomedicals) ein Zellextrakt hergestellt wird. Der Proteingehalt des Extrakts kann z.B. mit- tels „Qubit® Protein Assay Kit" (Thermo Fisher Scientific) be- stimmt werden.
Die PEP-Synthase-Enzymaktivität kann durch die stöchiometrische Produktion von Phosphat aus der Reaktion von Pyruvat und ATP, entsprechend Gleichung (4), gemessen werden, beispielsweise mit Hilfe des "Malachite Green Phosphate Assay Kit" (SigmaAldrich). Alternativ kann auch die stöchiometrische Produktion von AMP o- der Phosphoenolpyruvat oder der stöchiometrische Verbrauch von Pyruvat oder ATP bestimmt werden (vgl. Gleichung 4). Ein Test zur Bestimmung der PEP-Synthase-Enzymaktivität über den ATP- abhängigen Verbrauch von Pyruvat ist z.B. beschrieben in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309-5318. Ebenfalls in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309-5318 ist ein Test zur ATP-abhängigen Bildung von Phosphoenolpyruvat be- schrieben.
Die spezifische Enzymaktivität berechnet sich, indem die Enzym- aktivität auf 1 mg Gesamtprotein des nicht weiter aufgereinig- ten oder behandelten Zellextrakts bezogen wird (U/mg Protein). Dabei ist zu berücksichtigen, dass zum Vergleich verschiedener PEP-Synthase Enzyme der Zellextrakt in gleicher Weise herge- stellt werden muss. Wie bereits beschrieben, kann der Zellex- trakt z.B. mit Hilfe eines FastPrep-24™ 5G Zellhomogenisators (MP Biomedicals) hergestellt werden.
Alternativ kann, um verschiedene Enzyme zu vergleichen, die spezifische Aktivität auch auf 1 mg der jeweils in gleicher Weise gereinigten Enzyme bezogen werden (U/mg gereinigtes Pro- tein). Ein Verfahren zur Reinigung von PEP-Synthase und zur Be- stimmung der spezifischen Aktivität des gereinigten Proteins ist z.B. in Berman and Cohn, J. Biol. Chem. (1970) 245: 5309- 5318 beschrieben. Die relative Enzymaktivität kann bestimmt werden, indem die spezifische Enzymaktivität, bestimmt im PEP-Synthase-Assay des Mikroorganismenstamms, der in Bezug auf das Gen kodierend die PEP-Synthase das Wt-Allel trägt, auf 100% gesetzt wird. Der im PEP-Synthase-Assay gemessene Wert für die spezifische Enzymak- tivität einer Probe wird prozentual im Verhältnis zu diesem Stamm mit Wt-Enzym angegeben.
Als offener Leserahmen (open reading frame, ORF, gleichbedeu- tend mit cds, coding sequence) wird derjenige Bereich der DNS bzw. RNS bezeichnet, der mit einem Startcodon beginnt und mit einem Stoppcodon endet und für die Aminosäuresequenz eines Pro- teins codiert. Der ORF wird auch als codierende Region oder Strukturgen bezeichnet.
Als Gen wird der DNS-Abschnitt bezeichnet, der alle Grundinfor- mationen zur Herstellung einer biologisch aktiven RNS enthält. Ein Gen enthält den DNS-Abschnitt, von dem durch Transkription eine einzelsträngige RNS-Kopie hergestellt wird und die Expres- sionssignale, die an der Regulation dieses Kopiervorgangs be- teiligt sind. Zu den Expressionssignalen zählen z.B. mindestens ein Promotor, ein Transkriptions-, ein Translationsstart und eine Ribosomenbindestelle. Des Weiteren sind als Expressions- signale ein Terminator und ein oder mehrere Operatoren möglich.
Im Rahmen dieser Erfindung beginnen die Proteine wie z.B. PpsA mit einem Großbuchstaben, während die diese Proteine kodieren- den Sequenzen (cds) mit einem Kleinbuchstaben bezeichnet werden (z.B. ppsA).
Dementsprechend bezeichnet E. coli ppsA die in SEQ ID NO: 1 von Nukleotid 333-2711 angegebene cds des ppsA-Gens aus E. coli. E. coli PpsA bezeichnet das von dieser cds (E. coli ppsA) kodierte Protein, angegeben in SEQ ID NO: 2. Beim Protein handelt es sich um eine Phosphoenolpyruvat-Synthase. P. ananatis ppsA bezeichnet die in SEQ ID NO: 3 von Nukleotid 417-2801 angegebene cds des ppsA-Gens aus P. ananatis. P. ananatis PpsA bezeichnet das von dieser cds (P. ananatis ppsA) ko- dierte Protein, angegeben in SEQ ID NO: 4.
Die Abkürzung WT (Wt) bezeichnet den Wildtyp. Als Wildtyp-Gen wird die Form des Gens bezeichnet, die natürlicherweise durch die Evolution entstanden und im Wildtyp-Genom vorhanden ist.
Die DNS-Sequenz von Wt-Genen ist in Datenbanken wie NCBI öf- fentlich zugänglich.
Als Allele werden die Zustandsformen eines Gens definiert, die durch Mutation, d.h. durch Änderungen der Nucleotidsequenz der DNS ineinander übergeführt werden können. Dabei wird das natür- licherweise in einem Mikroorganismus vorkommende Gen als Wild- typ-Allel bezeichnet und die davon abgeleiteten Varianten als mutierte Allele des Gens.
Unter homologen Genen bzw. homologen Sequenzen ist zu verste- hen, dass die DNS-Sequenzen dieser Gene bzw. DNS-Abschnitte zu mindestens 80%, bevorzugt zu mindestens 90% und besonders be- vorzugt zu mindestens 95% identisch sind.
Der Grad der DNA-Identität wird durch das Programm „nucleotide blast", zu finden auf der Seite http://blast.ncbi.nlm,nih.gov/, bestimmt, welches auf dem blastn-Algorithmus basiert. Als Algo- rithmus-Parameter für ein Alignment zweier oder mehrerer Nukle- otidsequenzen wurden die voreingestellten Parameter genutzt.
Die voreingestellten generellen Parameter sind: Max target se- quences = 100; Short queries = "Automatically adjust parameters for short input sequences"; Expect Threshold = 10; Word size = 28; Automatically adjust parameters for short input sequences = 0. Die entsprechenden voreingestellten Scoring Parameter sind: Match/Mismatch Scores = 1,-2; Gap Costs = Linear. Für den Vergleich von Proteinsequenzen wird das Programm „pro- tein blast", auf der Seite http://blast.ncbi.nlm.nih.gov/, ge- nutzt. Dieses Programm greift auf den blastp-Algorithmus zu- rück. Als Algorithmus-Parameter für ein Alignment zweier oder mehrerer Proteinsequenzen wurden die voreingestellten Parameter genutzt. Die voreingestellten generellen Parameter sind: Max target sequences = 100; Short queries = "Automatically adjust Parameters for short input sequences"; Expect Threshold = 10; Word size = 3; Automatically adjust pararaeters for short input sequences = 0. Die voreingestellten Scoring Parameter sind: Ma- trix = BLOSUM62; Gap Costs = Existence: 11 Extension: 1; Compo- sitional adjustments = Conditional compositional score matrix adjustment.
Bei den erfindungsgemäßen Mikroorganismen ist die relative En- zymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse inaktiviert oder bezogen auf die spezifische Aktivität des Wildtyp-Enzyms bevorzugt um min- destens 10%, besonders bevorzugt um mindestens 25%, insbeson- dere bevorzugt um mindestens 60% und im speziellen bevorzugt um mindestens 70% reduziert. Eine um mindestens 10% (bzw. 25%/60%/70%) reduzierte Enzymaktivität des durch das ppsA-Gen kodierten Enzyms wird auch als Restaktivität von höchstens 90% (bzw. 75%/40%/30%) bezeichnet.
In einer bevorzugten Ausführungsform ist der Mikroorganismen- stamm dadurch gekennzeichnet, dass in diesem keine Enzymaktivi- tät der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 be- zeichneten Enzymklasse mehr vorhanden ist, d.h. die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse ist bezogen auf die spezifi- sche Aktivität des Wildtyp-Enzyms um 100% reduziert.
„Verglichen mit dem/im Vergleich zum/bezogen auf das (entspre- chende) Wildtyp-Enzym" bedeutet im Rahmen dieser Erfindung im Vergleich zur Aktivität des Proteins, das von der nicht mutier- ten Form des Gens aus einem Mikroorganismus kodiert wird, d.h. von dem Gen, das natürlicherweise durch die Evolution entstan- den und im Wildtyp-Genom dieses Mikroorganismus vorhanden ist. Zu den zur fermentativen Herstellung von L-Cystein geeigneten Mikroorganismenstämmen zählen alle Mikroorganismen, die einen deregulierten biosynthetischen Stoffwechselweg (homolog oder heterolog) enthalten, der zur Synthese von Cystein, Cystin oder davon abgeleiteten Derivaten führt. Derartige Stämme sind bei- spielsweise offenbart in EP 0885962 Bl, EP 1382684 Bl, EP 1 220 940 B2, EP 1769080 Bl und EP 2138585 Bl.
Die zur fermentativen Herstellung von L-Cystein geeigneten Mik- roorganismen sind bevorzugt dadurch gekennzeichnet, dass sie eine der folgenden Veränderungen aufweisen: a) Die Mikroorganismenstämme zeichnen sich durch eine verän- derte 3-Phosphoglycerat-Dehydrogenase (serA) mit einer im Vergleich zum entsprechenden Wildtypenzym um mindestens den Faktor zwei verminderten Feedback-Hemmung durch L-Serin aus (wie beispielsweise beschrieben in EP 1950287 Bl). Besonders bevorzugte Varianten der 3-Phosphoglycerat Dehyd- rogenase (serA) weisen im Vergleich zum entsprechenden Wildtypenzym eine um mindestens den Faktor 5, insbesondere bevorzugt um mindestens den Faktor 10 und in einer darüber hinausgehend bevorzugten Ausführung um mindestens den Fak- tor 50 verminderte Feedback-Hemmung durch L-Serin auf. b) Die Mikroorganismenstämme enthalten eine Serin-O-Acetyl-
Transferase (cysE), die im Vergleich zu dem entsprechenden Wildtypenzym eine um mindestens den Faktor zwei verminderte Feedback-Hemmung durch Cystein aufweist (wie beispielsweise beschrieben in EP 0858 510 Bl oder Nakamori et al., Appl. Env. Microbiol. (1998) 64: 1607-1611).
Besonders bevorzugte Varianten der Serin-O-Acetyl-Trans- ferase (cysE) weisen im Vergleich zum entsprechenden Wild- typenzym eine um mindestens den Faktor 5, insbesondere be- vorzugt um mindestens den Faktor 10 und in einer darüber hinausgehend bevorzugten Ausführung um mindestens den Fak- tor 50 verminderte Feedback-Hemmung durch Cystein auf. c) Die Mikroorganismenstämme weisen einen durch Überexpression eines Effluxgens um mindestens den Faktor zwei erhöhten Cystein-Export aus der Zelle im Vergleich zu der entspre- chenden Wildtypzelle auf.
Die Überexpression eines Effluxgens führt im Vergleich zu einer Wildtypzelle bevorzugt zu einem um mindestens den Faktor 5, besonders bevorzugt um mindestens den Faktor 10, insbesondere bevorzugt um mindestens den Faktor 20 erhöhten Cystein-Export aus der Zelle.
Das Effluxgen stammt vorzugsweise aus der Gruppe ydeD (siehe EP 0885 962 Bl), yfiK (siehe EP 1382684 Bl), cydDC (siehe WO 2004/113373 Al), bcr (siehe US 2005-221453 AA) und emrAB (siehe US 2005-221453 AA) von E. coli oder dem entsprechend homologen Gen aus einem anderen Mikroorga- nismus.
Derartige Stämme sind beispielsweise aus EP 0858510 Bl und EP 0 885 962 Bl bekannt.
Die zur fermentativen Herstellung von L-Cystein geeigneten Mik- roorganismenstämme sind darüber hinaus bevorzugt dadurch ge- kennzeichnet, dass mindestens ein Cystein-abbauendes Enzym so- weit abgeschwächt ist, dass in der Zelle nur noch maximal 50% dieser Enzym-Aktivität im Vergleich zu einer Wildtypzelle vor- handen ist. Das Cystein-abbauende Enzym stammt vorzugsweise aus der Gruppe Tryptophanase (TnaA) und Cystathionin-ß-Lyase (MalY, MetC).
Die in den vorherigen Abschnitten beschriebenen Mikroorganis- menstämme, die zur fermentativen Herstellung von L-Cystein ge- eignet sind, sind in ihrem Cysteinstoffwechsel so dereguliert, dass sie im Vergleich zum im Cysteinstoffwechsel nicht deregu- lierten Mikroorganismenstamm mit Wildtyp-Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten En- zymklasse eine erhöhte Menge an L-Cystein bilden. Da in den Zellen eines im Cysteinstoffwechsel nicht deregulierten Mikro- organismenstamms mit Wildtyp-Enzymaktivität der in der KEGG- Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse die Menge an L-Cystein im Kulturansatz ungefähr 0 g/1 ist (vgl. Tab. 2), ist mit erhöhter Menge jede Menge gemeint, die 0,05 g/1 L-Cystein gemessen im Kulturansatz nach 24-stündiger An- zucht übersteigt.
Bevorzugt ist der Mikroorganismenstamm dadurch gekennzeichnet, dass es sich beim Mikroorganismenstamm um einen Stamm aus der Familie der Enterobacteriaceae oder Corynebacteriaceae, beson- ders bevorzugt um einen Stamm aus der Familie der Enterobacte- riaceae handelt. Solche Stämme sind unter anderem käuflich er- hältlich z.B. bei der DSMZ Deutsche Sammlung von Mikroorganis- men und Zellkulturen GmbH (Braunschweig).
Bevorzugt ist der Mikroorganismenstamm ausgewählt aus der Gruppe bestehend aus Escherichia coli, Pantoea ananatis und Co- rynehacterium glutamicum, besonders bevorzugt aus der Gruppe bestehend aus Escherichia coli und Pantoea ananatis. Insbeson- dere bevorzugt handelt es sich beim Mikroorganismenstamm um ei- nen Stamm der Spezies Escherichia coli.
Insbesondere bevorzugt ist der E. coli-Stamm ausgewählt aus E. coli K12, besonders bevorzugt E. coli K12 W3110. Solche Stämme sind unter anderem käuflich erhältlich z.B. bei der DSMZ Deut- sche Sammlung von Mikroorganismen und Zellkulturen GmbH (Braun- schweig), darunter auch E. coli K12 W3110 DSM 5911 (id. ATCC 27325) und Pantoea ananatis DSM 30070 (id. ATCC 11530). Bei PpsA handelt es sich bevorzugt um PpsA aus E. coli mit der SEQ ID NO: 2 oder PpsA aus P. ananatis mit SEQ ID NO: 4.
Bevorzugt ist der Mikroorganismenstamm dadurch gekennzeichnet, dass dieser mindestens eine Mutation im ppsA-Gen enthält. Gleichzeitig bildet der Stamm auch in dieser bevorzugten Aus- führungsform im Vergleich zu Wildtyp-Zellen eine erhöhte Menge an L-Cystein. Bevorzugt führt die genetische Veränderung im ppsA-Gen dazu, dass das von diesem Gen exprimierte Protein keine oder eine reduzierte relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzym- klasse bezogen auf die spezifische Aktivität des Wildtyp-Enzyms besitzt. Der erfindungsgemäße Produktionsstamm kann darüber hinaus noch weiter optimiert werden, um die Cystein Produktion noch zusätz- lich zu verbessern.
Die Optimierung kann z.B. gentechnisch erfolgen durch zusätzli- che Expression eines oder mehrerer Gene, die zur Verbesserung der Produktionseigenschaften geeignet sind. Diese Gene können in an sich bekannter Weise als jeweils eigene Genkonstrukte o- der aber auch kombiniert als eine Expressionseinheit (als sog. Operon) im Produktionsstamm exprimiert werden.
Der Produktionsstamm kann darüber hinaus dadurch optimiert wer- den, dass neben dem ppsA Gen noch weitere Gene inaktiviert wer- den, deren Genprodukte sich negativ auf die Cystein Produktion auswirken.
Die Optimierung ist jedoch auch in an sich bekannter Weise mög- lich durch Mutagenese und Selektion von Stämmen mit verbesser- ter Cystein Produktion.
Im Sinne der Erfindung sind genetische Veränderungen im ppsA- Gen so definiert, dass a) die codierende Sequenz des ppsA-Gens teilweise oder ganz deletiert ist, b) die codierende Sequenz des ppsA-Gens durch eine oder meh- rere Insertionen oder 5'-, bzw. 3'-Elongationen verändert ist, c) das ppsA-Strukturgen eine oder mehrere Mutationen, insbe- sondere Punktmutationen, enthält mit der Folge, dass die exprimierte Phosphoenolpyruvat-Synthase eine abgeschwächte Enzymaktivität besitzt oder völlig inaktiv ist, d) das ppsA-Strukturgen eine oder mehrere Mutationen, insbe- sondere Punktmutationen enthält mit der Folge, dass die ppsA-Expression stark abgeschwächt oder völlig unterdrückt wird, oder die Stabilität der mRNS reduziert wird oder e) durch genetische Veränderungen der 5'- oder 3'-nicht-codie- renden ppsA-Sequenzen (Promotor, 5'-UTR, Shine-Dalgarno-Se- quenz bzw. Terminator) die Expression des ppsA-Gens oder die Translation der ppsA-mRNS abgeschwächt oder vollständig unterdrückt wird und das von dieser Sequenz exprimierte Protein eine reduzierte relative PEP-Synthase-Enzymaktivität bezogen auf die spezifi- sche Aktivität des Wildtyp-Enzyms besitzt.
Im Sinne der Erfindung ist auch eine beliebige Kombination der in a) bis e) aufgeführten genetischen Veränderungen im ppsA-Gen möglich. Zusammengefasst ist es im Sinne der Erfindung also so- wohl möglich, dass weniger bis kein PpsA-Protein gebildet wird und/oder dass das exprimierte PpsA-Protein weniger aktiv bis inaktiv ist.
In einem alternativen Ansatz ist es auch möglich, auf der Ebene der Gen-Transkription die Abschwächung, bzw. vollständige Inak- tivierung der ppsA-Enzymaktivität durch eine dem Fachmann be- kannte sog. „anti-sense RNS " Strategie zu erreichen. Es ist auch denkbar, dass die Abschwächung, bzw. vollständige Inakti- vierung der ppsA-Enzymaktivität durch Zugabe eines Inhibitors, sei es ein chemischer oder Proteininhibitor, erreicht wird.
Vorzugsweise beruht die Veränderung des ppsA-Gens im erfin- dungsgemäßen Stamm auf vollständiger oder teilweiser Deletion des ppsA-Strukturgens, Mutation des ppsA-Strukturgens in einer Weise, die zur Schwächung der Enzymaktivität, bzw. Inaktivie- rung des Enzyms führt, oder Mutation des ppsA-Strukturgens und/oder seiner die Expression regulierenden 5'- und 3'-flan- kierenden nicht transkribierten, bzw. nicht translatierten Gen- bereiche in einer Weise, dass die Expression, bzw. Translation des ppsA-Gens geschwächt, bzw. völlig unterdrückt wird, oder aber die Stabilität der ppsA-mRNS verringert wird.
Besonders bevorzugt sind entweder die Inaktivierung des ppsA- Gens im erfindungsgemäßen Stamm infolge vollständiger oder teilweiser Deletion der ppsA-cds (d.h. für die ppsA-cds von E. coli Nukleotid 333 - 2711 von SEQ ID NO: 1, bzw. für die ppsA- cds von P. ananatis Nukleotid 417 - 2801 von SEQ ID NO: 3) oder die Mutation des ppsA-Strukturgens in einer Weise, die zur Schwächung der Enzymaktivität, bzw. Inaktivierung des Enzyms o- der Reduktion der Stabilität der mRNS führt.
In einer bevorzugten Ausführungsform ist der Mikroorganismen- stamm dadurch gekennzeichnet, dass das mutierte Gen ausgewählt ist aus der Gruppe bestehend aus dem ppsA-Gen aus Escherichia coli, dem ppsA-Gen aus Pantoea ananatis und einem zu diesen Ge- nen homologen Gen. Das ppsA-Gen aus E. coli ist offenbart im Eintrag in der NCBI Gendatenbank mit der Gene-ID 946209, das ppsA-Gen aus P. ananatis ist offenbart im Eintrag in der NCBI Gendatenbank mit der Gene-ID 11796889. Für den Begriff des ho- mologen Gens gilt die oben angegebene Definition. Insbesondere bevorzugt handelt es sich beim mutierten ppsA-Gen um das ppsA- Gen aus Escherichia coli. In einer darüber hinaus bevorzugten Ausführungsform handelt es sich um die cds des ppsA-Gens aus E. coli, die in SEQ ID NO: 1 Nukleotid 333-2711 (kodierend für ein Protein mit SEQ ID NO: 2) offenbart ist, oder um die cds des ppsA-Gens aus Pantoea ananatis, die in SEQ ID NO: 3 Nukleotid 417-2801 (kodierend für ein Protein mit SEQ ID NO: 4) offenbart ist .
In einer bevorzugten Ausführungsform ist der Mikroorganismen- stamm dadurch gekennzeichnet, dass es sich bei der kodierenden DNS-Sequenz des ppsA-Gens um SEQ ID NO: 5 oder einer dazu homo- logen Sequenz, besonders bevorzugt um SEQ ID NO: 5 handelt. Für den Begriff der homologen Sequenz gilt die oben angegebene De- finition.
In diesem Fall führen die Mutationen der in SEQ ID NO: 1 ange- gebenen DNS-Sequenz zur Mutation der drei Aminosäuren der in SEQ ID NO: 2 angegebenen WT-Proteinsequenz, nämlich Valin an Position 126 mutiert zu Methionin (V126M), Arginin an Position 427 mutiert zu Histidin (R427H) und Valin an Position 434 mu- tiert zu Isoleucin (V434I), entsprechend einem ppsA-MHI Gen mit der DNS-Sequenz wie in SEQ ID NO: 5, codierend für ein ppsA-MHI Protein mit der Aminosäuresequenz wie in SEQ ID NO: 6 offen- bart. Zur Inaktivierung und Mutation des ppsA Gens sind dem Fachmann verschiedene Methoden bekannt. Im einfachsten Fall kann der Ausgangsstamm in bekannter Weise einer Mutagenese (z.B. che- misch durch mutagen wirkende Chemikalien wie N-Methyl-N'-Nitro- N-Nitrosoguanidin oder physikalisch durch UV-Bestrahlung) un- terzogen werden, wobei zufällig Mutationen in der genomischen DNS erzeugt werden und die gewünschte ppsA-Mutante dann aus der Vielzahl erzeugter Mutanten selektiert wird, z.B., jeweils nach Vereinzelung der Mutanten, durch Fehlen einer auf der Enzymak- tivität basierenden Farbreaktion oder genetisch durch Nachweis eines fehlerhaften ppsA Gens.
Im Gegensatz zur aufwendigen, zufälligen Mutagenese und Selek- tion der gesuchten ppsA-Mutante kann das ppsA Gen in einfache- rer Weise gezielt inaktiviert werden, z.B. durch den bekannten Mechanismus der homologen Rekombination. Kloniersysteme zur ge- zielten Geninaktivierung mittels homologer Rekombination sind dem Fachmann bekannt und kommerziell erhältlich, wie z.B. of- fenbart im Anwenderhandbuch des „Quick and Easy E. coli Gene Deletion Kit", basierend auf der Red®/ET®-Technologie der Fa. Gene Bridges GmbH (siehe „Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red®/ET® Recombination, Cat. No.
K006 , Version 2.3, Juni 2012" und darin zitierter Literatur).
Dem Stand der Technik entsprechend kann das ppsA-Gen oder ein Teil des Gens isoliert und eine Fremd-DNS in das ppsA-Gen klo- niert werden, wodurch der das Protein definierende offene Le- serahmen des ppsA-Gens unterbrochen wird. Ein für die gezielte Inaktivierung des ppsA-Gens geeignetes DNS-Konstrukt kann also aus einem 5'-DNS-Abschnitt, der zum genomischen ppsA-Gen homo- log ist, gefolgt von einem die Fremd-DNS umfassenden Genab- schnitt und daran angeschlossen einem 3'-DNS-Abschnitt, der wiederum zum genomischen ppsA-Gen homolog ist, bestehen.
Der für die homologe Rekombination in Frage kommende Bereich des ppsA-Gens kann dabei also nicht nur den für die Phos- phoenolpyruvat Synthase kodierenden Bereich umfassen. Der in Frage kommende Bereich kann auch das ppsA-Gen flankierende DNS- Sequenzen umfassen, nämlich im 5'-Bereich vor Beginn des kodie- renden Bereichs (Promotor der Gentranskription, z.B. Nukleotid 1 - 332 in SEQ ID NO: 1, bzw. Nukleotid 1 - 416 in SEQ ID NO:
3) sowie im 3'-Bereich nach dem Ende des kodierenden Bereichs (Terminator der Gentranskription, z.B. Nukleotid 2712 - 3000 in SEQ ID NO: 1, bzw. Nukleotid 2802 - 3062 in SEQ ID NO: 3), de- ren Veränderung durch homologe Rekombination ebenso wie die Veränderung des kodierenden Bereichs zur Inaktivierung des ppsA-Gens führen kann.
Bei der Fremd-DNS handelt es sich bevorzugt um eine Selektions- marker-Expressionskassette. Diese besteht aus einem Promotor der Gentranskription, der funktionell verbunden ist mit dem ei- gentlichen Selektionsmarkergen und gegebenenfalls gefolgt von einem Terminator der Gentranskription. Der Selektionsmarker enthält in diesem Fall außerdem 5'- und 3'-flankierende homo- loge Sequenzen des ppsA-Gens.
Vorzugsweise enthält der Selektionsmarker 5'- und 3'-flankie- rende homologe Sequenzen des ppsA-Gens von jeweils mindestens 30 Nukleotiden Länge, besonders bevorzugt jeweils mindestens 50 Nukleotiden Länge.
Das DNS-Konstrukt zur Inaktivierung des ppsA-Gens kann also, beginnend vom 5'-Ende, aus einer zum ppsA-Gen homologen Se- quenz, gefolgt von der Expressionskassette des Selektionsmar- kers, z.B. ausgewählt aus der Klasse der Antibiotikaresistenz- gene sowie gefolgt von einer weiteren, zum ppsA-Gen homologen Sequenz bestehen.
In einer bevorzugten Ausführung besteht das DNS-Konstrukt zur Inaktivierung des ppsA-Gens, beginnend vom 5'-Ende, aus einer zum ppsA-Gen homologen Sequenz von mindestens 30 Nukleotiden Länge, insbesondere bevorzugt mindestens 50 Nukleotiden Länge, gefolgt von der Expressionskassette des Selektionsmarkers, aus- gewählt aus der Klasse der Antibiotikaresistenzgene sowie ge- folgt von einer weiteren, zum ppsA-Gen homologen Sequenz von mindestens 30 Nukleotiden Länge, insbesondere bevorzugt mindes- tens 50 Nukleotiden Länge.
Bei den Selektionsmarkergenen handelt es sich im Allgemeinen um Gene, deren Genprodukt dem Ausgangsstamm das Wachstum unter se- lektiven Bedingungen ermöglicht, unter denen der ursprüngliche Ausgangsstamm nicht wachsen kann.
Bevorzugte Selektionsmarkergene sind ausgewählt aus der Gruppe der Antibiotika-Resistenzgene wie z.B. das Ampicillin-Resis- tenzgen, das Tetracyclin-Resistenzgen, das Kanamycin-Resistenz- gen, das Chloramphenicol-Resistenzgen oder aber auch das Neomy- cin-Resistenzgen. Andere bevorzugte Selektionsmarkergene ermög- lichen Ausgangsstämmen mit einem Stoffwechseldefekt (z.B. Ami- nosäureauxotrophien) das Wachstum unter selektiven Bedingungen, indem ihre Expression den Stoffwechseldefekt korrigiert. Schliesslich sind auch Selektionsmarkergene möglich, deren Gen- produkt eine an sich für den Ausgangsstamm toxische Verbindung chemisch verändert und somit inaktiviert (z.B. das Gen des En- zyms Acetamidase, welches die für viele Mikroorganismen toxi- sche Verbindung Acetamid in die ungiftigen Produkte Acetat und Ammoniak spaltet).
Unter den Selektionsmarkergenen besonders bevorzugt sind das Ampicillin-Resistenzgen, das Tetracyclin-Resistenzgen, das Ka- namycin-Resistenzgen, das Chloramphenicol-Resistenzgen. Insbe- sondere bevorzugt sind das Tetracyclin-Resistenzgen und das Ka- namycin-Resistenzgen.
Auf Basis der homologen Rekombination gibt es weiterhin Sys- teme, die zusätzlich zur gezielten Geninaktivierung auch die Möglichkeit bieten, den Selektionsmarker wieder aus dem Genom zu entfernen, womit die Möglichkeit der Herstellung von Doppel- und Mehrfachmutanten gegeben ist. Ein solches System ist z.B. die sog. Lambda-Red Technologie, käuflich erhältlich als „Quick and Easy E. coli Gene Deletion Kit", basierend auf der Red®/ET®~ Technologie der Fa. Gene Bridges GmbH (siehe „Technical Proto- col, Quick & Easy E. coli Gene Deletion Kit, by Red®/ET® Recombination, Cat. No. K006, Version 2.3, Juni 2012" und darin zitierte Literatur).
Beispiele für erfindungsgemäße Stämme mit inaktiviertem ppsA- Gen sind die in den Beispielen offenbarten Stämme E. coli W3110-AppsA und P. ananatis-ΔppsA::kan. Beide Stämme sind dadurch gekennzeichnet, dass ihr ppsA-Gen durch homologe Rekom- bination inaktiviert wurde.
Ein weiteres solches System zur gezielten Geninaktivierung auf Basis der homologen Rekombination ist eine dem Fachmann be- kannte und im Beispiel 3 beschriebene Methode zur Geninaktivie- rung, bzw. genetischen Modifikation, beruhend auf einer Kombi- nation aus der Lambda-Red Rekombination mit einem Gegenselekti- ons-Screening. Dieses System ist z.B. beschrieben in Sun et al., Appl. Env. Microbiol. (2008) 74: 4241-4245. Verwendet wird dabei ein DNS-Konstrukt zur Inaktivierung z.B. des ppsA-Gens, beginnend vom 5'-Ende, bestehend aus einer zum ppsA-Gen homolo- gen Sequenz gefolgt von zwei Expressionskassetten beliebiger Reihenfolge, bestehend a) aus einer Expressionskassette des Se- lektionsmarkers, ausgewählt aus der Klasse der Antibiotikare- sistenzgene sowie b) einer Expressionskassette des sacB-Gens, kodierend für das Enzym Levansucrase und schließlich gefolgt von einer weiteren, zum ppsA-Gen homologen Sequenz.
In einem ersten Schritt wird das DNS-Konstrukt in den Produkti- onsstamm transformiert und Antibiotika-resistente Klone iso- liert. Die erhaltenen Klone zeichnen sich dadurch aus, dass sie infolge des mit-aufgenommenen sacB-Gens nicht auf Saccharose wachsen können. Durch das Prinzip der Gegenselektion können die beiden Markergene entfernt werden, indem in einem zweiten Schritt ein geeignetes DNS-Fragment die beiden Markergene durch homologe Rekombiation ersetzt. Die in diesem Schritt erhaltenen Klone können dann wieder auf Saccharose wachsen und sind dann auch wieder sensitiv gegen das Antibiotikum. Dieses Verfahren findet Anwendung in Beispiel 3 zum Austausch des ppsA-WT-Gens von E. coli (SEQ ID NO: 1) durch die im Folgenden beschriebene Dreifachmutante ppsA-MHI (SEQ ID NO: 5). Als Beispiel für einen erfindungsgemäßen Stamm, der aufgrund einer Mutation der kodierenden Sequenz des ppsA-Gens eine abge- schwächte PpsA-Enzymaktivität aufweist, ist in den Beispielen der E. coli Stamm W3110-ppsA-MHI offenbart. W3110-ppsA-MHI ent- hält die cds der PpsA-Dreifachmutante PpsA-V126M-R427H-V434I (ppsA-MHI). Die cds des mutierten Gens von ppsA-MHI entspricht der DNS-Sequenz SEQ ID NO: 5 und codiert für ein PpsA-Protein mit der Sequenz SEQ ID NO: 6. PpsA-MHI ist dadurch gekennzeich- net, dass das Protein mit der Sequenz SEQ ID NO: 6 gegenüber der in SEQ ID NO: 2 angegebenen WT-Sequenz folgende Änderungen der AminosäureSequenz enthält: Valin an Position 126 ist mu- tiert zu Methionin (V126M), Arginin an Position 427 ist mutiert zu Histidin (R427H) und Valin an Position 434 ist mutiert zu Isoleucin (V434I).
Als Folge dieser Mutationen hatte das PpsA-MHI-Protein nur noch eine relative Enzymaktivität von 26,8% im Vergleich zur spezi- fischen Wildtyp-Enzymaktivität (s. Beispiel 5, Tab. 1).
Im Falle des E. coli ppsA-Gens ist es bevorzugt, dass mindes- tens eine der Mutationen in der cds zu mindestens einer der folgenden Veränderungen in der Aminosäuresequenz in SEQ ID NO:
2 führt: Valin an Position 126, Arginin an Position 427 und/o- der Valin an Position 434, wobei jede der drei Aminosäuren durch eine beliebige, andere Aminosäure ausgetauscht werden kann.
Besonders bevorzugt sind Mutationen, die zur gleichzeitigen Mu- tation der drei Aminosäuren der in SEQ ID NO: 2 angegebenen Aminosäure-Sequenz des WT-Proteins führen.
Die Mutationen im erfindungsgemäßen ppsA-MHI Gen werden in an sich bekannter Weise in das ppsA WT-Gen eingeführt, beispiels- weise durch sog. „site-directed" Mutagenese unter Verwendung eines kommerziell erhältlichen Klonierkits, wie z.B. im Anwen- derhandbuch zum „QuickChange II Site-Directed Mutagenesis Kit" der Fa. Agilent offenbart. Alternativ kann das erfindungsgemäße ppsA-MHI Gen in bekannter Weise auch durch DNS-Synthese herge- stellt werden. Der erfindungsgemäße Stamm, gekennzeichnet durch Mutation des ppsA Strukturgens in einer Weise, die zur Abschwächung der En- zymaktivität führt, wie beispielsweise die E. coli ppsA-MHI Dreifachmutante, kann hergestellt werden durch Verwendung der bereits beschriebenen Kombination der Lambda-Red Rekombination mit einem Gegenselektions-Screening zur genetischen Modifika- tion (siehe z.B. Sun et al., Appl. Env. Microbiol. (2008) 74:
4241-4245), wie in den Beispielen offenbart.
Als Stämme besonders bevorzugt sind E. coli W3110 AppsA (be- schrieben in Beispiel 1) und E. coli W3110 ppsA-MHI (beschrie- ben in Beispiel 3).
Ein weiterer Gegenstand der Erfindung ist ein fermentatives Verfahren zur Herstellung von L-Cystein, dadurch gekennzeich- net, dass die erfindungsgemäßen Mikroorganismenzellen einge- setzt werden.
Als Primärprodukt des erfindungsgemäßen Verfahrens wird L-Cys- tein gebildet, woraus die Verbindungen L-Cystin und Thiazolidin gebildet werden können. L-Cystin und Thiazolidin entstehen wäh- rend der Fermentation und akkumulieren sowohl im Kulturüber- stand wie im Niederschlag. Bei Thiazolidin handelt es sich um 2-Methyl-2,4-Thiazolidindicarbonsäure, ein Addukt aus Cystein und Pyruvat, das als Nebenprodukt der Cystein Produktion gebil- det werden kann (EP 0885962 Bl).
Die Ausbeute an Gesamtcystein wird im Rahmen dieser Erfindung definiert als Summe des hergestellten Cysteins, Cystins und Thiazolidins. Diese wird aus dem gesamten Kulturansatz be- stimmt, wie in Beispiel 7 beschrieben. Sie kann beispielsweise mit Hilfe des colorimetrische Test von Gaitonde (Gaitonde, M.
K. (1967), Biochem. J. 104, 627-633) quantifiziert werden.
Der Stand der Technik offenbart keine Verfahren oder Produkti- onsstämme, bei denen durch Abschwächung, bzw. Inaktivierung der Phosphoenolpyruvat-Synthase-Enzymaktivität die Produktion einer Aminosäure, insbesondere von Cystein, verbessert werden kann.
Wie in den Beispielen der vorliegenden Anmeldung gezeigt, ist die Abschwächung, bzw. Inaktivierung der ppsA-Enzymaktivität in einem zur Cystein-Produktion geeigneten Mikroorganismenstamm dazu geeignet, in einem fermentativen Verfahren die Ausbeuten an Gesamtcystein, d.h. die Summe des hergestellten Cysteins, Cystins und Thiazolidins, signifikant zu steigern. Nach dem Stand der Technik war dies völlig unerwartet.
Es war überraschend, wie in Tabelle 4 des Beispiels 7 zusammen- gefasst, dass in der Fermentation der ppsA-Mutanten von E. coli W3110 signifikant höhere Cystein Ausbeuten im Vergleich zum entsprechenden Wildtyp-Stamm erzielt werden konnten. Entgegen dem Stand der Technik und für den Fachmann unerwartet, führte die Abschwächung, bzw. die Inaktivierung der Phos- phoenolpyruvat-Synthase-Aktivität zu verbesserten Cystein-pro- duzierenden Stämmen.
Diese neue und erfinderische Maßnahme zur Verbesserung Cystein- produzierender Stämme wurde bestätigt durch die in Tabelle 2 und Tabelle 3 des Beispiels 6 zusammengefassten Ergebnisse, in denen die Inaktivierung des ppsA-Gens, bzw. ein mutiertes ppsA- Gen resultierend in einem PpsA-Enzym mit abgeschwächter Enzym- aktivität in Escherichia coli und die Inaktivierung des ppsA- Gens in Pantoea ananatis bereits in der Anzucht in Schüttelkol- ben zu verbesserten Cystein Ausbeuten führte.
Für den Fachmann stellt die Abschwächung, bzw. die Inaktivie- rung der Phosphoenolpyruvat-Synthase-Aktivität somit eine neue nützliche Maßnahme dar, die Cystein-Produktion auch in anderen Cystein-produzierenden Stämmen zu verbessern.
Im erfindungsgemäßen, zur Cystein-Produktion geeigneten Mikro- organismenstamm wird dementsprechend die Enzymaktivität des durch das ppsA-Gen codierten Proteins im Produktionsstamm abge- schwächt, bzw. vollständig gehemmt und gleichzeitig die Cystein-Produktion erhöht. Beispiel 7 belegt, dass ein zur Cys- tein-Produktion befähigter Stamm kodierend die ppsA-Mutante ppsA-MHI mit reduzierter PpsA-Enzymaktivität anstelle des Wt- Enzyms in der Fermentation signifikant höhere Cystein Ausbeuten erzielt als ein Stamm enthaltend ein ppsA WT-Gen.
Im betreffenden fermentativen Verfahren werden einerseits Bio- masse des erfindungsgemäßen Produktionsstammes und andererseits Cystein und sein Oxidationsprodukt Cystin gebildet. Die Bildung von Biomasse und Cystein kann dabei zeitlich korrelieren oder aber zeitlich voneinander entkoppelt erfolgen. Die Anzucht er- folgt in einer dem Fachmann geläufigen Weise. Dazu kann die An- zucht in Schüttelkolben (Labormaßstab) erfolgen oder aber auch durch Fermentation (Produktionsmaßstab).
Bevorzugt ist ein Verfahren im Produktionsmaßstab durch Fermen- tation mit einem Fermentationsvolumen von grösser 1 L, wobei der Produktionsmaßstab grösser 10 L bevorzugt, grösser 1000 L besonders bevorzugt und ein Fermentationsvolumen grösser 10000 L insbesondere bevorzugt ist.
Anzuchtsmedien sind dem Fachmann aus der Praxis der mikrobiel- len Kultivierung geläufig. Sie bestehen typischerweise aus ei- ner Kohlenstoffquelle (C-Quelle), einer Stickstoffguelle (N- Quelle) sowie Zusätzen wie Vitaminen, Salzen und Spurenelemen- ten sowie einer Schwefelquelle (S-Quelle), durch die das Zell- wachstum und die Cystein Produktion optimiert werden.
C-Quellen sind solche, die vom Produktionsstamm zur Cystein- Produktbildung genutzt werden können. Dazu gehören alle Formen von Monosacchariden, umfassend C6-Zucker (Hexosen) wie z. B. Glucose, Mannose, Fructose oder Galactose sowie C5-Zucker (Pen- tosen) wie z.B. Xylose, Arabinose oder Ribose.
Das erfindungsgemäße Produktionsverfahren umfasst jedoch auch alle C-Quellen in Form von Disacchariden, insbesondere Saccha- rose, Lactose, Maltose oder Cellobiose. Das erfindungsgemäße Produktionsverfahren umfasst weiterhin auch alle C-Quellen in Form höherer Saccharide, Glycoside oder Kohlehydrate mit mehr als zwei Zuckereinheiten wie z. B. Malto- dextrin, Stärke, Cellulose, Hemicellulose, Pektin bzw. daraus durch Hydrolyse (enzymatisch oder chemisch) freigesetzte Mono- mere oder Oligomere. Dabei kann die Hydrolyse der höheren C- Quellen dem erfindungsgemäßen Produktionsverfahren vorgeschal- tet sein oder aber in situ während des erfindungsgemäßen Pro- duktionsverfahrens erfolgen.
Andere verwertbare, von Zuckern oder Kohlehydraten verschiedene C-Quellen sind Essigsäure (bzw. davon abgeleitete Acetatsalze), Ethanol, Glycerin, Zitronensäure (sowie deren Salze) oder Pyruvat (und dessen Salze). Es sind aber auch gasförmige C- Quellen wie Kohlendioxid oder Kohlenmonoxid denkbar.
Die vom erfindungsgemäßen Produktionsverfahren betroffenen C- Quellen umfassen sowohl die isolierten Reinsubstanzen oder aber auch, zur Erhöhung der Wirtschaftlichkeit, nicht weiter aufge- reinigte Gemische der einzelnen C-Quellen, wie sie als Hydroly- sate durch chemischen oder enzymatischen Aufschluss der pflanz- lichen Rohstoffe gewonnen werden können. Dazu gehören z.B. Hyd- rolysate der Stärke (Monosaccharid Glucose), der Zuckerrübe (Monosaccharide Glucose, Fructose und Arabinose), des Zucker- rohrs (Disaccharid Saccharose), des Pektins (Monosaccharid Ga- lacturonsäure) oder auch der Lignozellulose (Monosaccharid Glu- cose aus Cellulose, Monosaccharide Xylose, Arabinose, Mannose, Galactose aus Hemicellulose sowie das nicht zu den Kohlehydra- ten gehörende Lignin). Weiterhin können als C-Quellen auch Ab- fallprodukte aus dem Aufschluss pflanzlicher Rohstoffe dienen, so z.B. Melasse (Zuckerrübe) oder Bagasse (Zuckerrohr).
Bevorzugte C-Quellen zur Anzucht der Produktionsstämme sind Glucose, Fructose, Saccharose, Mannose, Xylose, Arabinose sowie pflanzliche Hydrolysate, die aus Stärke, Lignozellulose, Zu- ckerrohr oder Zuckerrübe gewonnen werden können. Besonders bevorzugte C-Quellen sind Glucose und Saccharose, entweder in isolierter Form oder als Bestandteil eines pflanz- lichen Hydrolysats.
Insbesondere bevorzugte C-Quelle ist Glucose.
N-Quellen sind solche, die vom Produktionsstamm zur Biomasse- bildung genützt werden können. Dazu gehört Ammoniak, gasförmig oder in wässriger Lösung als NH4OH oder aber auch dessen Salze wie z. B. Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumacetat oder Ammoniumnitrat. Des Weiteren sind als N- Quelle geeignet die bekannten Nitratsalze wie z. B. KNO3, NaNCb, Ammoniumnitrat, Ca(NO3)2, Mg(NO3)2 sowie andere N-Quellen wie z.B. Harnstoff. Zu den N-Quellen gehören auch komplexe Amino- säuregemische wie z.B. Hefeextrakt, Proteose Pepton, Malzex- trakt, Sojapepton, Casaminosäuren, Maisquellwasser (Corn Steep Liquor, flüssig oder aber auch getrocknet als sog. CSD) sowie auch NZ-Amine und Yeast Nitrogen Base.
Die Zudosierung einer Schwefel-Quelle, entweder als einmalige Zugabe in Batch-Form oder als kontinuierlicher Feed, ist für die effiziente Produktion von Cystein und Cystein-Derivaten er- forderlich. Die kontinuierliche Zudosierung kann dabei als reine Feedlösung oder aber auch im Gemisch mit einer weiteren Feed-Komponente wie z.B. Glucose erfolgen.
Geeignete Schwefel-Quellen sind Salze der Sulfate, Sulfite, Dithionite, Thiosulfate oder Sulfide, wobei auch bei gegebener Stabilität der Einsatz der jeweiligen Säuren denkbar ist.
Bevorzugte Schwefelquellen sind Salze der Sulfate, Sulfite, Thiosulfate und Sulfide.
Besonders bevorzugte Schwefelquellen sind Salze der Sulfate und Thiosulfate.
Insbesondere bevorzugt sind Salze des Thiosulfats, wie z.B. Natriumthiosulfat und Ammoniumthiosulfat. Die Anzucht kann erfolgen im sog. Batch Modus, wobei das An- zuchtsmedium mit einer Starterkultur des Produktionsstammes in- okuliert wird und dann das Zellwachstum ohne weitere Fütterung von Nährstoffquellen erfolgt.
Die Anzucht kann auch erfolgen im sog. Fed-Batch Modus, wobei nach einer anfänglichen Phase des Wachstums im Batch Modus zu- sätzlich Nährstoffquellen zugefüttert werden (Feed), um deren Verbrauch auszugleichen. Der Feed kann bestehen aus der C- Quelle, der N-Quelle, der Schwefel-Quelle, einem oder mehreren für die Produktion wichtigen Vitaminen, bzw. Spurenelementen o- der aus einer Kombination der Vorgenannten. Dabei können die Feedkomponenten zusammen als Gemisch oder aber auch getrennt in einzelnen Feedstrecken zudosiert werden. Zusätzlich können auch andere Medienbestandteile sowie spezifisch die Cystein Produk- tion steigernde Zusätze dem Feed zugesetzt sein. Der Feed kann dabei kontinuierlich oder in Portionen (diskontinuierlich) zu- geführt werden, oder aber auch in Kombination aus kontinuierli- chem und diskontinuierlichem Feed. Bevorzugt ist die Anzucht nach dem Fed-Batch Modus.
Bevorzugte C-Quellen im Feed sind Glucose, Saccharose sowie Glucose oder Saccharose enthaltende pflanzliche Hydrolysate so- wie Mischungen der bevorzugten C-Quellen in beliebigem Mi- schungsverhältnis.
Besonders bevorzugte C-Quelle im Feed ist Glucose.
Bevorzugt wird die C-Quelle der Kultur so zudosiert, dass der Gehalt der Kohlenstoffquelle im Fermenter während der Produktionsphase 10 g/L nicht übersteigt. Bevorzugt ist eine maximale Konzentration von 2 g/L, besonders bevorzugt von 0,5 g/L, insbesondere bevorzugt von 0,1 g/L.
Bevorzugte N-Quellen im Feed sind Ammoniak, gasförmig oder in wässriger Lösung als NH4OH und dessen Salze Ammoniumsulfat, Am- moniumphosphat, Ammoniumacetat und Ammoniumchlorid, weiterhin Harnstoff, KNO3, NaNO3 und Ammoniumnitrat, Hefeextrakt, Proteose Pepton, Malzextrakt, Sojapepton, Casaminosäuren, Maisquellwas- ser (Corn Steep Liquor) sowie auch NZ-Amine und Yeast Nitrogen Base.
Besonders bevorzugte N-Quellen im Feed sind Ammoniak, bzw. Am- moniumsalze, Harnstoff, Hefeextrakt, Sojapepton, Malzextrakt o- der Corn Steep liquor (flüssig oder in getrockneter Form).
Bevorzugte Schwefelquellen im Feed sind Salze der Sulfate, Sul- fite, Thiosulfate und Sulfide.
Besonders bevorzugte Schwefelquellen im Feed sind Salze der Sulfate und Thiosulfate.
Insbesondere bevorzugt als Schwefelquelle im Feed sind Salze des Thiosulfats, wie z.B. Natriumthiosulfat und Ammoniumthio- sulfat.
Als weitere Medienzusätze können Salze der Elemente Phosphor, Chlor, Natrium, Magnesium, Stickstoff, Kalium, Calcium, Eisen und in Spuren (d. h. in mM Konzentrationen) Salze der Elemente Molybdän, Bor, Kobalt, Mangan, Zink, Kupfer und Nickel zuge- setzt werden. Des Weiteren können organische Säuren (z.B. Ace- tat, Citrat), Aminosäuren (z.B. Isoleucin) und Vitamine (z.B. Vitamin Bl, Vitamin B6) dem Medium zugesetzt werden.
Die Anzucht erfolgt unter pH- und Temperaturbedingungen, welche das Wachstum und die Cystein Produktion des Produktionsstammes begünstigen. Der nützliche pH-Bereich reicht von pH 5 bis pH 9. Bevorzugt ist ein pH-Bereich von pH 5,5 bis pH 8. Besonders be- vorzugt ist ein pH-Bereich von pH 6,0 bis pH 7,5.
Der bevorzugte Temperaturbereich für das Wachstum des Produkti- onsstammes beträgt 20°C bis 40°C. Besonders bevorzugt ist der Temperaturbereich von 25°C bis 37°C und insbesondere bevorzugt von 28°C bis 34°C. Das Wachstum des Produktionsstammes kann fakultativ ohne Sauer- stoffzufuhr erfolgen (anaerobe Kultivierung) oder aber auch mit Sauerstoffzufuhr (aerobe Kultivierung). Bevorzugt ist die ae- robe Kultivierung mit Sauerstoff.
Bei der aeroben Kultivierung des erfindungsgemäßen Stammes zur Cystein-Produktion wird eine Sättigung des Sauerstoff-Gehalts von mindestens 10% (v/v), bevorzugt von mindestens 20% (v/v) und besonders bevorzugt von mindestens 30% (v/v) eingestellt. Die Regulation der Sauerstoff-Sättigung in der Kultur erfolgt dabei entsprechend dem Stand der Technik automatisch über eine Kombination aus Gaszufuhr und Rührgeschwindigkeit.
Die Sauerstoffversorgung wird durch Eintrag von Pressluft oder reinem Sauerstoff gewährleistet. Bevorzugt ist die aerobe Kul- tivierung durch Eintrag von Pressluft. Der nützliche Bereich der Pressluftzufuhr bei der aeroben Kultivierung beträgt 0,05 vvm bis 10 vvm (vvm: Eintrag von Pressluft in den Fermentati- onsansatz angegeben in Liter Pressluft je Liter Fermentations- volumen pro Minute). Bevorzugt ist ein Presslufteintrag von 0,2 vvm bis 8 vvm, besonders bevorzugt von 0,4 bis 6 vvm und insbe- sondere bevorzugt von 0,8 bis 5 vvm.
Die maximale Rührgeschwindigkeit beträgt 2500 rpm, bevorzugt 2000 rpm und besonders bevorzugt 1800 rpm.
Die Kultivierungsdauer beträgt zwischen 10 h und 200 h. Bevor- zugt ist eine Kultivierungsdauer von 20 h bis 120 h. Besonders bevorzugt ist eine Kultivierungsdauer von 30 h bis 100 h.
Kultivierungsansätze, die durch das oben beschriebene Verfahren gewonnen werden, enthalten das Cystein entweder gelöst im Kul- turüberstand oder, oxidiert als Cystin, in präzipitierter Form. Das in den Kultivierungsansätzen enthaltene Cystein, bzw. Cys- tin kann entweder ohne weitere Aufarbeitung direkt weiterver- wendet oder aber aus dem Kultivierungsansatz isoliert werden. Bevorzugt ist das Verfahren dadurch gekennzeichnet, dass das gebildete Cystein isoliert wird. Zur Isolierung des Cysteins und Cystins stehen an sich bekannte Verfahrensschritte zur Ver- fügung, darunter Zentrifugation, Dekantierung, Lösen des Roh- produkts mit einer Mineralsäure, Filtration, Extraktion, Chro- matographie oder Kristallisation, bzw. Fällung. Diese Verfah- rensschritte können dabei in jeder beliebigen Form kombiniert werden, um das Cystein in der gewünschten Reinheit zu isolie- ren. Der dabei angestrebte Reinheitsgrad ist abhängig von der weiteren Verwendung.
Das bei der Aufarbeitung erhaltene Cystin kann für die weitere Verwendung zu Cystein reduziert werden. Ein Verfahren zur Re- duktion von L-Cystin zu L-Cystein in einem elektrochemischen Prozess ist in EP 0235908 offenbart.
Verschiedene analytische Methoden zur Identifizierung, Quanti- fizierung und Bestimmung des Reinheitsgrades des Cystein, bzw. Cystin Produkts sind verfügbar, darunter Spektralphotometrie, NMR, Gaschromatographie, HPLC, Massenspektroskopie, Gravimetrie oder auch eine Kombination aus diesen Analysemethoden.
Mit der Erfindung können auch verbesserte Mikroorganismenstämme zur fermentativen Herstellung von Verbindungen, deren Biosyn- these von 3-Phosphoglycerat ausgeht und über L-Serin zu L-Cys- tein und L-Cystin führt, hergestellt werden. Dies umfasst auch Mikroorganismenstämme zur fermentativen Herstellung von Deriva- ten des L-Serins und L-Cysteins, darunter Phosphoserin, O-Ace- tylserin, N-Acetylserin und Thiazolidin, ein Kondensationspro- dukt aus L-Cystein und Pyruvat.
Die Figuren zeigen die in den Beispielen verwendeten Plasmide. Fig. 1 zeigt den in Beispiel 1 und Beispiel 2 verwendeten 3,4 kb grossen Vektor pKD13. Fig. 2 zeigt den in Beispiel 1 und Beispiel 3 verwendeten 6,3 kb grossen Vektor pKD46.
Fig. 3 zeigt den in Beispiel 3 verwendeten 5 kb grossen Vektor pKan-SacB.
Fig. 4 zeigt den in Beispiel 4 verwendeten 4,2 kb grossen Vek- tor pACYC184.
Die Erfindung wird durch die folgenden Beispiele weiter erläu- tert, ohne durch sie eingeschränkt zu werden:
Beispiel 1: Herstellung einer ppsA-Deletionsmutante in E- scherichia coli
Als Ausgangsstamm für die Genisolierung sowie für die Stamment- wicklung wurde Escherichia coli K12 W3110 verwendet (käuflich erhältlich unter der Stammnummer DSM 5911 bei der DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH).
Ziel der Geninaktivierung war die kodierende Sequenz des ppsA- Gens aus E. coli. Die DNS-Sequenz des ppsA-Gens aus E. coli K12 (Genbank GenelD: 946209) ist offenbart in SEQ ID NO: 1. Die Nukleotide 333-2711 (bezeichnet mit E. coli ppsA) kodieren für ein Phosphoenolpyruvat-Synthase Protein mit der in SEQ ID NO: 2 offenbarten Aminosäuresequenz (E. coli PpsA).
Das E. coli ppsA-Gen wurde mit der Red®/ET®-Technologie der Fa. Gene Bridges GmbH wie unten detailliert aufgeführt inaktiviert (beschrieben im Anwenderhandbuch des „Quick and Easy E. coli Gene Deletion Kit", siehe „Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red®/ET® Recombination, Cat. No.
KO06, Version 2.3, Juni 2012 und darin zitierter Literatur, z.B. Datsenko und Wanner, Proc. Natl. Acad. Sei. USA 97 (2000): 6640-6645). Dazu wurden die Plasmide pKD13, pKD46 und pCP20 verwendet:
- Das 3,4 kb grosse Plasmid pKD13 (Fig. 1) ist offenbart in der „GenBank" Gendatenbank unter der Zugangsnummer
AY048744.1.
- Das 6,3 kb grosse Plasmid pKD46 (Fig. 2) ist offenbart in der „GenBank" Gendatenbank unter der Zugangsnummer
AY048746.1.
- Das 9,4 kb grosse Plasmid pCP20 ist offenbart in Cherepanov und Wackernagel, Gene 158 (1995): 9-14.
Zur Inaktivierung des ppsA Gens in E. coli W3110 durch homologe Rekombination mit dem Lambda Red System wurden folgende Schritte durchgeführt: 1. E. coli W3110 wurde mit dem Plasmid pKD46 (sog. „Red Recom- binase" Plasmid, Fig. 2) transformiert und ein Ampicillin- resistenter Klon isoliert (bezeichnet als W3110 x pKD46).
2. Ein ppsA-spezifisches, zu dessen Inaktivierung geeignetes DNS-Fragment wurde in einer PCR-Reaktion („Phusion™ High-Fi- delity" DNS Polymerase, Thermo Scientific™) mit DNS des Plasmids pKD13 (Fig. 1) und den Primern pps-5f (SEQ ID NO:
7) und pps-6r (SEQ ID NO: 8) hergestellt.
Primer pps-5f enthielt 30 Nukleotide (nt) aus dem 5'-Bereich des ppsA Gens (nt 333-362 in SEQ ID NO: 1) und daran ange- schlossen 20 nt spezifisch für das Plasmid pKD13 (bezeichnet als „pr-1" in Fig. 1).
Primer pps-6r enthielt 30 nt aus dem 3'-Bereich des ppsA Gens (nt 2682-2711 in SEQ ID NO: 1, in revers komplementärer Form) und daran angeschlossen 20 nt spezifisch für das Plas- mid pKD13 (bezeichnet als „pr-2" in Fig. 1).
DNS des Plasmids pKD13 wurde verwendet, um mit den Primern pps-5f und pps-6r ein 1,4 kb PCR-Produkt herzustellen, das am 5'- und am 3'-Ende jeweils einen DNS-Abschnitt von 30 nt enthielt, der spezifisch für das ppsA Gen aus E. coli W3110 war. Darüber hinaus enthielt das PCR-Produkt die Expressi- onskassette des in pKD13 enthaltenen Kanamycin Resistenzgens und, jeweils flankierend zum 5'- und 3'-Ende der Kanamycin Expressionskassette, sog. „FRT direct repeats" (bezeichnet als „FRT1 " und „FRT2 " in Fig. 1), kurze DNS-Abschnitte, die in einem späteren Arbeitsschritt zur Entfernung des Antibio- tikamarkers Kanamycin als Erkennungssequenz für die „FLP Re- kombinase" (enthalten auf dem Plasmid pCP20) dienten.
3. Das 1,4 kb große PCR-Produkt wurde isoliert und mit der, dem Fachmann geläufigen, nur methylierte DNS schneidenden Rest- rikitonsendonuclease Dpn I behandelt, um restliche pKD13 Plasmid-DNS zu entfernen. Nicht-methylierte DNS aus der PCR- Reaktion wird dabei nicht abgebaut.
4. Das 1,4 kb große, für das ppsA-Gen spezifische und eine Ex- pressionskassette für das Kanamycin Resistenzgen enthaltende PCR-Produkt wurde in E. coli W3110 x pKD46 transformiert und auf LBkan-Platten bei 30°C Kanamycin-resistente Klone iso- liert. LBkan-Platten enthielten LB-Medium (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl), 1,5% Agar und 15 mg/L Ka- namycin. Zehn der erhaltenen Kanamycin-resistenten Klone wurden auf LBkan-Platten gereinigt (d.h. Isolieren eines Klons durch Vereinzeln) und in einer PCR-Reaktion überprüft, ob die Ka- namycin-Resistenz Kassette korrekt im ppsA-Gen integriert worden war.
Die für die PCR-Reaktion („Phusion™ High-Fidelity" DNS Poly- merase, Thermo Scientific™) verwendete genomische DNS wurde mit einem DNS-Isolierungskit (Qiagen) aus Zellen der Anzucht von Kanamycin-resistenten Klonen von E. coli W3110 in LBkan- Medium (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl, 15 mg/L Kanamycin) isoliert. Dabei diente genomische DNS des E. coli W3110 Wildtyp Stammes als Kontrolle. Die für die PCR- Reaktion verwendeten Primer waren pps-7f (SEQ ID NO: 9) und pps-8r (SEQ ID NO: 10). Primer pps-7f enthielt nt 167-188 aus SEQ ID NO: 1, Primer pps-8r nt 2779-2800 aus SEQ ID NO:
1 in revers komplementärer Form).
E. coli W3110 Wildtyp DNS ergab bei der PCR-Reaktion ein DNS Fragment von 2630 bp, wie für das intakte Gen erwartet. Ein untersuchter Kanamycin-resistenter Klon hingegen ergab bei der PCR-Reaktion ein DNS-Fragment von ca. 1660 bp, wie für den Fall erwartet, dass das 1,4 kb PCR-Produkt an den durch die Primer pps-5f und pps-6r definierten Stellen im ppsA-Gen integriert worden war. Dieses Ergebnis zeigte, dass am Gen- ort des ppsA Gens erfolgreich das Kanamycin-Resistenzgen in- tegriert werden konnte und somit das ppsA-Gen inaktiviert worden war. Der Klon mit inaktiviertem ppsA Gen wurde ausge- wählt und erhielt die Bezeichnung W3110-AppsA::kan. Zur Eliminierung des Kanamycin Selektionsmarkers wurde W3110-AppsA::kan mit dem Plasmid pCP20 transformiert und Transformanten bei 30°C selektiert. Der 9,4 kb Vektor pCP20 ist offenbart in Cherepanov und Wackernagel (1995), Gene 158: 9-14. Auf dem Vektor pCP20 ist das Gen der FLP- Rekombinase enthalten. Die FLP-Rekombinase erkennt die FRT- Sequenzen, welche die Expressionskassette des Kanamycin-Re- sistenzgens flankieren und bewirkt die Entfernung der Ka- namycin Expressionskassette. Dazu wurden die bei 30°C erhal- tenen Klone bei 37°C inkubiert. Unter diesen Bedingungen wurde zum einen die Expression der FLP-Rekombinase induziert und zum zweiten die Replikation des pCP20 Vektors unterbun- den.
Das Resultat dieses Schrittes waren Klone, in denen zum ei- nen das ppsA Gen inaktiviert worden war und die zum anderen wieder sensitiv gegen Kanamycin waren (sog. „Curing" des An- tibiotika Selektionsmarkers). Die Entfernung der Kanamycin- Kassette aus dem Genom der AppsA Mutanten ermöglicht die Einführung weiterer Mutationen, um Doppel- oder auch Mehr- fachmutanten herzustellen.
W3110-AppsA::kan war nach der Behandlung mit dem pCP20 Plas- mid wieder Kanamycin-sensitiv, was wie folgt überprüft wurde:
- durch Plattieren auf LB- und LBkan-Platten:
Wachstum auf LB-Platten war positiv, während auf LBkan- Platten kein Wachstum mehr beobachtet werden konnte, was auf die erfolgreiche Entfernung der Kanamycin-Kassette aus dem Genom hindeutete.
- durch PCR-Reaktion:
Dazu wurde von den Kanamycin-sensitiven Klonen genomische DNS isoliert (Qiagen DNS-Isolierungskit) und in einer PCR- Reaktion („Phusion™ High-Fidelity" DNS Polymerase, Thermo Scientific™) mit den Primern pps-7f (SEQ ID NO: 9) und pps-8r (SEQ ID NO: 10) eingesetzt. E. coli W3110 Wildtyp DNS ergab bei der PCR-Reaktion ein DNS Fragment von ca. 2630 bp, wie für das intakte ppsA Gen erwartet. Der Ka- namycin-sensitive Klon hingegen ergab bei der PCR-Reaktion ein DNS-Fragment von ca. 300 bp, was der erwarteten Größe der nach der homologen Rekombination verbliebenen 5'- und 3 '-Fragmente des inaktivierten ppsA Gens entsprach. Der aus diesem Schritt isolierte Stamm erhielt die Bezeich- nung E. coli W3110-ΔppsA. Dieser Stamm zeichnet sich dadurch aus, dass er ein inaktiviertes ppsA Gen enthielt, und dass dieser Stamm wieder sensitiv gegen das Antibiotikum Ka- namycin war.
Beispiel 2: Herstellung einer ppsA-Deletionsmutante in Pan- toea ananatis
Als Ausgangsstamm für die Genisolierung sowie für die Stamment- wicklung wurde Pantoea ananatis verwendet (käuflich erhältlich unter der Stammnummer DSM 30070 bei der DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH).
Ziel der Geninaktivierung war das ppsA Gen aus Pantoea ananatis. Die DNS-Sequenz des ppsA-Gens aus P. ananatis (Genbank Ge- nelD: 31510655) ist offenbart in SEQ ID NO: 3. Die Nukleotide 417 - 2801 (bezeichnet mit P. ananatis ppsA) kodieren für ein Phosphoenolpyruvat-Synthase Protein mit der in SEQ ID NO: 4 of- fenbarten Aminosäuresequenz (P. ananatis PpsA).
Das P. ananatis ppsA Gen wurde mit der Red®/ET®-Technologie der Fa. Gene Bridges GmbH wie unten detailliert aufgeführt inakti- viert (beschrieben im Anwenderhandbuch des „Quick and Easy E. coli Gene Deletion Kit", siehe „Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red®/ET® Recombination, Cat. No. K006, Version 2.3, Juni 2012 und darin zitierter Literatur, z.B. Datsenko und Wanner, Proc. Natl. Acad. Sei. USA 97 (2000): 6640-6645). Dazu wurden die Plasmide pKD13 und pRedET verwen- det.
- Das 3,4 kb grosse Plasmid pKD13 (Fig. 1) ist offenbart in der „GenBank" Gendatenbank unter der Zugangsnummer
AY048744.1.
- Das kommerziell erhältliche, 9,3 kb grosse Plasmid pRedET ist offenbart im Anwenderhandbuch des „Quick and Easy E. coli Gene Deletion Kit", siehe „Technical Protocol, Quick & Easy E. coli Gene Deletion Kit, by Red®/ET® Recombination, Cat. No. K006, Version 2.3, Juni 2012. Zur Inaktivierung des ppsA Gens in P. ananatis durch homologe
Rekombination mit dem Lambda Red System wurden, folgende
Schritte durchgeführt:
1. P. ananatis wurde mit dem Plasmid pRedET (sog. „Red Recombi- nase" Plasmid) transformiert und ein Tetracyclin-resistenter Klon isoliert (bezeichnet als P. ananatis x pRedET).
2. Ein ppsA-spezifisches, zu dessen Inaktivierung geeignetes DNS-Fragment wurde in einer PCR-Reaktion („Phusion™ High-Fi- delity" DNS Polymerase, Thermo Scientific™) mit DNS des Plasmids pKD13 (Fig. 1) und den Primern ppsapa-3f (SEQ ID NO: 11) und pps-4r (SEQ ID NO: 12) hergestellt.
Primer ppsapa-3f enthielt 49 nt aus dem 5'-Bereich des ppsA Gens (nt 417-465 in SEQ ID NO: 3) und daran angeschlossen 20 nt spezifisch für das Plasmid pKD13 (bezeichnet als „pr-1" in Fig. 1).
Primer ppsapa-4r enthielt 49 nt aus dem 3'-Bereich des ppsA Gens (nt 2753-2801 in SEQ ID NO: 3, in revers komplementärer Form) und daran angeschlossen 20 nt spezifisch für das Plas- mid pKD13 (bezeichnet als „pr-2" in Fig. 1).
DNS des Plasmids pKD13 wurde verwendet, um mit den Primern ppsapa-3f und pps-4r ein 1,4 kb PCR-Produkt herzustellen, das am 5'- und am 3'-Ende jeweils einen DNS-Abschnitt von 49 nt enthielt, der spezifisch für das ppsA Gen aus P. ananatis war. Darüber hinaus enthielt das PCR-Produkt die Expressi- onskassette des in pKD13 enthaltenen Kanamycin Resistenzgens und, jeweils flankierend zum 5'- und 3'-Ende der Kanamycin Expressionskassette, sog. „FRT direct repeats" (bezeichnet als „FRT1 " und „FRT2 " in Fig. 1), kurze DNS-Abschnitte, die bei Bedarf eine Entfernung des Antibiotikamarkers Kanamycin in ppsA Deletionsmutanten ermöglichen.
3. Das 1,4 kb grosse PCR-Produkt wurde isoliert und mit der, dem Fachmann geläufigen, nur methylierte DNS schneidenden Restrikitonsendonuclease Dpn I behandelt, um restliche pKD13 Plasmid-DNS zu entfernen. Nicht-methylierte DNS aus der PCR- Reaktion wird dabei nicht abgebaut. Das 1,4 kb grosse, für das ppsA Gen spezifische und eine Ex- pressionskassette für das Kanamycin Resistenzgen enthaltende PCR-Produkt wurde in P. ananatis x pRedET transformiert und auf LBkan-Platten bei 30°C Kanamycin-resistente Klone iso- liert. LBkan-Platten enthielten LB-Medium (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl), 1,5% Agar und 15 mg/L Ka- namycin. Ein Kanamycin-resistenter Klon wurde auf LBkan-Platten ge- reinigt (d.h. Isolieren eines Klons durch Vereinzeln) und in einer PCR-Reaktion überprüft, ob die Kanamycin-Resistenz Kassette korrekt im ppsA-Gen integriert worden war.
Die für die PCR-Reaktion („Phusion™ High-Fidelity" DNS Poly- merase, Thermo Scientific™) verwendete genomische DNS wurde mit einem DNS-Isolierungskit (Qiagen) aus Zellen der Anzucht des Kanamycin-resistenten Klons von P. ananatis in LBkan-Me- dium (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl, 15 mg/L Kanamycin) isoliert. Dabei diente genomische DNS des P. ana- natis Wildtyp Stammes als Kontrolle. Die für die PCR- Reaktion verwendeten Primer waren ppsapa-lf (SEQ ID NO: 13) und ppsapa-2r (SEQ ID NO: 14). Primer ppsapa-lf enthielt nt 281-302 in SEQ ID NO: 3, Primer ppsapa-2r nt 2901-2922 in SEQ ID NO: 3, in revers komplementärer Form).
P. ananatis Wildtyp DNS ergab bei der PCR-Reaktion ein DNS Fragment von 2640 bp, wie für das intakte Gen erwartet. Ein untersuchter Kanamycin-resistenter Klon hingegen ergab bei der PCR-Reaktion ein DNS-Fragment von ca. 1670 bp, wie für den Fall erwartet, dass das 1,4 kb PCR-Produkt an den durch die Primer ppsapa-3f (SEQ ID NO: 11) und ppsapa-4r (SEQ ID NO: 12) definierten Stellen im ppsA-Gen integriert worden war. Dieses Ergebnis zeigte, dass am Genort des ppsA Gens erfolgreich das Kanamycin-Resistenzgen integriert werden konnte und somit das ppsA-Gen inaktiviert worden war. Der Klon mit inaktiviertem ppsA Gen wurde ausgewählt und erhielt die Bezeichnung P. ananatis-AppsA::kan.
Beispiel 3; Herstellung von Escherichia coli W3110-ppsA-MHI
E. coli W3110-ppsA-MHI, gekennzeichnet durch Mutationen des ppsA Strukturgens in einer Weise, die zur Abschwächung der En- zymaktivität führen, wurde hergestellt durch Verwendung der dem Fachmann bekannten Kombination aus Lambda-Red Rekombination und einem Gegenselektions-Screening zur genetischen Modifikation (siehe z.B. Sun et al., Appl. Env. Microbiol. (2008) 74: 4241-
4245). Die DNS-Sequenz des Gens ppsA-MHI ist offenbart in SEQ ID NO: 5 (ppsA-MHI), codierend für ein Protein mit der Sequenz wie in SEQ ID NO: 6 (PpsA-MHI) angegeben.
Es wurde verfahren wie folgt:
1. Ein 2,6 kb DNS-Fragment, umfassend Teile des ppsA WT-Gens (nt 167 bis nt 2800 in SEQ ID NO: 1), d.h. die cds sowie 5'- und 3'-flankierende Sequenzen, wurde unter Verwendung der Primer pps-7f (SEQ ID NO: 9) und pps-8r (SEQ ID NO: 10) durch PCR aus genomischer DNS von E. coli W3110 isoliert.
2. ppsA-MHI wurde aus dem ppsA WT-Gen erhalten, indem die Muta- tionen sukzessive durch „site-directed" Mutagenese in das ppsA WT-Gen eingeführt wurden. Dies erfolgte unter Verwen- dung des kommerziell erhältlichen Klonierkits, „QuickChange II Site-Directed Mutagenesis Kit" der Fa. Agilent entspre- chend den Angaben im Anwenderhandbuch.
3. Um das ppsA WT-Gen von E. coli W3110 gegen ppsA-MHI auszu- tauschen wurde zuerst vom Plasmid pKan-SacB (Fig. 3) die 3,2 kb Kan-sacB-Kassette durch PCR mit den Primern pps-9f (SEQ ID NO: 15) und pps-10r (SEQ ID NO: 16) isoliert.
Das Plasmid pKan-sacB enthält Expressionskassetten sowohl für das Kanamycin (Kan) Resistenz Gen wie für das sacB Gen, codierend für das Enzym Levansucrase. Der Primer pps-9f enthielt 30 nt beginnend vom Start-ATG des ppsA-Gens (nt 333-362 in SEQ ID NO: 1) und daran angeschlos- sen 20 nt spezifisch für das Plasmid pKan-SacB (bezeichnet als „pr-f" in Fig. 3).
Der Primer pps-10r enthielt 30 nt ausgehend vom stop-Codon des ppsA Gens (nt 2682-2711 in SEQ ID NO: 1, in revers kom- plementärer Form) und daran angeschlossen 21 nt spezifisch für das Plasmid pKan-SacB (bezeichnet als „pr-r" in Fig. 3).
4. E. coli W3110 x pKD46 (Herstellung siehe Beispiel 1) wurde mit dem ppsA-spezifischen 3,2 kb PCR-Produkt transformiert und Kanamycin-resistente Klone isoliert.
5. Die Klone wurden auf LBSC-Platten (10 g/L Trypton, 5 g/L He- feextrakt, 7% Saccharose, 1,5% Agar und 15 mg/L Kanamycin) überimpft.
Klone mit integriertem sacB-Gen produzierten aus der Saccha- rose toxisches Levan, was zur Wachstumshemmung führte. Sol- che Klone wurden ausgewählt und in einer PCR-Reaktion über- prüft, ob die Kan-sacB Kassette korrekt im ppsA Gen inte- griert worden war. Die für die PCR-Reaktion („Phusion™ High- Fidelity" DNS Polymerase, Thermo Scientific™) verwendete ge- nomische DNS war zuvor mit einem DNS-Isolierungskit (Qiagen) aus Zellen der Anzucht von Kanamycin-resistenten Klonen von E. coli W3110 in LBkan-Medium (10 g/L Trypton, 5 g/L Hefe- extrakt, 5 g/L NaCl, 15 mg/L Kanamycin) gewonnen worden. Da- bei diente genomische DNS des E. coli W3110 Wildtyp Stammes als Kontrolle. Die für die PCR-Reaktion verwendeten Primer waren pps-7f (SEQ ID NO: 9) und pps-8r (SEQ ID NO: 10).
E. coli W3110 Wildtyp DNS ergab bei der PCR-Reaktion ein DNS Fragment von 2630 nt, wie für das intakte Gen erwartet. Ka- namycin-resistente Klone hingegen ergaben bei der PCR- Reaktion ein DNS-Fragment von ca. 3400 nt, wie für den Fall erwartet, dass das 3,2 kb PCR-Produkt an den durch die Pri- mer pps-9f (SEQ ID NO: 15) und pps-10r (SEQ ID NO: 16) defi- nierten Stellen im ppsA-Gen integriert worden war. Dieses Ergebnis zeigte, dass am Genort des ppsA Gens erfolgreich die Kan-sacB Kassette integriert werden konnte und somit das ppsA Gen inaktiviert worden war. Ein Klon mit integrierter Kan-sacB Kassette wurde ausgewählt und erhielt die Bezeich- nung W3110-ΔppsA::kan-sacB x pKD46.
6. Im nächsten Schritt wurde die Kan-sacB Kassette durch das ppsA-MHI Gen ausgetauscht. Dazu wurde aus dem ppsA-MHI DNS- Fragment aus Schritt 2 in einer PCR Reaktion („Phusion™ High-Fidelity" DNS Polymerase, Thermo Scientific™) mit den Primern pps-llf (SEQ ID NO: 17) und pps-12r (SEQ ID NO: 18) ein 2,5 kb DNS-Fragment amplifiziert. Primer pps-llf en- thielt nt 300-319 in SEQ ID NO: 1, Primer pps-12r nt 2743- 2763 in SEQ ID NO: 1, in revers komplementärer Form.
7. Das 2,5 kb ppsA-MHI Gen wurde in E. coli W3110-AppsA::kan- sacB x pKD46 transformiert und Klone auf LBS-Platten (10 g/L Trypton, 5 g/L Hefeextrakt, 7% Saccharose, 1,5% Agar) ohne Kanamycin selektiert. Auf LBS-Platten konnten nur Klone wachsen, die kein aktives sacB-Gen mehr enthielten.
Diese Klone wurden auf LBkan-Platten überimpft, um solche Klone zu selektieren, die auch kein aktives Kan-Gen mehr enthielten und deren Wachstum in Gegenwart von Kanamycin ge- hemmt wurde.
Klone mit positivem Wachstum in Gegenwart von Saccharose und negativem Wachstum in Gegenwart von Kanamycin wurden ausge- wählt und in einer PCR-Reaktion überprüft, ob die Kan-sacB Kassette korrekt durch das ppsA-MHI Gen ersetzt worden war. Genomische DNS wurde mit einem DNS-Isolierungskit (Qiagen) aus Zellen der Anzucht in LB-Medium (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl) gewonnen. Dabei diente genomische DNS des E. coli W3110 Wildtyp Stammes als Kontrolle. Die für die PCR-Reaktion verwendeten Primer waren pps-7f (SEQ ID NO: 9) und pps-8r (SEQ ID NO: 10). PCR-Produkte von der erwarte- ten Größe von 2630 nt wurden durch DNS-Sequenzierung (Euro- fins Genomics) analysiert. Klone mit korrekt integriertem ppsA-MHI Gen ergaben die DNS-Sequenz wie in SEQ ID NO: 5 of- fenbart, kodierend für ein Protein entsprechend der Sequenz aus SEQ ID NO: 6. Ein Klon mit korrektem ppsA-MHI Gen, enthaltend die Mutationen V126M, R427H und V434I, wurde aus- gewählt und erhielt die Bezeichnung E. coli W3110-ppsA-MHI.
Beispiel 4: Erzeugung von Cystein-Produktionsstämmen
Als Cystein-spezifisches Produktionsplasmid verwendet wurde das vom Ausgangsvektor pACYC184 (Fig. 4) abgeleitete Plasmid pACYC184-cysEX-GAPDH-ORF306-serA317. pACYCl84-cysEX-GAPDH- ORF306-serA317 ist ein Derivat des in EP 0885962 Bl offenbar- ten Plasmids pACYC184-cysEX-GAPDH-ORF306. Das Plasmid pACYC184- cysEX-GAPDH-ORF306 enthält neben dem Replikationsursprung und einem Tetracyclin-Resistenzgen (Ausgangsvektor pACYC184) das cysEX-Allel, das für eine Serin-O-Acetyl-Transferase mit einer verminderten Feedback-Hemmung durch Cystein kodiert sowie das Effluxgen ydeD (ORF306), dessen Expression durch den konstitu- tiven GAPDH Promotor gesteuert wird. pACYC184-cysEX-GAPDH-ORF306-serA317 enthält darüber hinaus, kloniert hinter das ydeD (ORF306) Efflux Gen, noch das serA317 Genfragment, kodierend für die N-terminalen 317 Aminosäuren des SerA Proteins (Gesamtlänge 410 Aminosäuren). Das E. coli serA Gen ist offenbart in der „GenBank" Gendatenbank mit der Gene ID 945258. serA317 ist offenbart in Bell et al., Eur. J. Biochem. (2002) 269: 4176-4184, darin bezeichnet als „NSD:317" und ko- diert für eine gegen Serin Feedback-resistente Variante der 3- Phosphoglycerat Dehydrogenase. Die Expression von serA317 wird gesteuert durch den serA-Promotor.
Es wurden die Stämme E. coli W3110, E. coli W3110-AppsA, E. coli W3110-ppsA-MHI, P. ananatis und P. ananatis-AppsA::kan je- weils mit dem Plasmid pACYC184-cysEX-GAPDH-ORF306-serA317 (in den folgenden Beispielen bezeichnet als pCYS) transformiert.
Die Transformation erfolgte nach dem Stand der Technik mittels Elektroporation, wie in EP 0885962 Bl beschrieben.
Die Selektion von Plasmid-tragenden Transformanten erfolgte auf LBtet-Agarplatten (10 g/L Trypton, 5 g/L Hefeextrakt, 5 g/L NaCl, 1,5% Agar, 15 mg/L Tetracyclin). Ausgewählte Transformanten wurden auf das transformierte pCYS-Plasmid durch Plasmidisolierung mittels des QIAprep Spin Plasmid Kit (Qiagen) und Restriktionsanalyse überprüft. Transformanten mit korrekt aufgenommenem Plasmid pCYS wurden in der Kultivierung einge- setzt zur Überprüfung der ppsA-Enzymaktivität (Beispiel 5) und zur Bestimmung der Cystein-Produktion (Beispiel 6 und Beispiel 7).
Beispiel 5: Bestimmung der ppsA-Enzymaktivität
Bestimmt wurde die ppsA-Enzymaktivität der E. coli Stämme W3110, W3110-AppsA, W3110-ppsA-MHI, jeweils transformiert mit dem Produktionsplasmid pCYS (Beispiel 4). Zellen aus der Schüt- telkolbenanzucht in 50 ml SMl-Medium (Zusammensetzung siehe Beispiel 6) der drei Stämme wurden durch 10 min Zentrifugation pelletiert und einmal mit 10 ml 0,9% (w/v) NaCl gewaschen. Die Zellpellets wurden in 10 ml Testpuffer (100 mM Tris-HCl, pH 8,0; 10 mM MgCl2) aufgenommen und ein Zellextrakt hergestellt.
Verwendet wurde der Zellhomogenisator FastPrep-24™ 5G der Fa. MP Biomedicals. Dazu wurden 2 x 1 ml Zellsuspension in vom Her- steller vorgefertigten 1,5 ml Röhrchen mit Glaskugeln („Lysing Matrix B") aufgeschlossen (3 x 20 sec bei einer Schüttelfre- quenz von 6000 rpm mit jeweils 30 sec Pause zwischen den Inter- vallen). Das resultierende Homogenat wurde zentrifugiert und der Überstand als Zellextrakt für die Aktivitätsbestimmung ver- wendet.
Der Proteingehalt des Extrakts wurde mit einem Qubit 3.0 Fluo- rometer der Fa. Thermo Fisher Scientific unter Einsatz des „Qubit® Protein Assay Kits" nach Angaben des Herstellers be- stimmt.
Zur Bestimmung der ppsA-Enzymaktivität wurde der Phosphat De- tektionskit "Malachite Green Phosphate Assay Kit" der Fa. Sig- maAldrich (Katalog Nummer MAK307) entsprechend den Angaben des Herstellers verwendet. Dieser basiert darauf, dass bei der Gleichgewichtsreaktion (4) durch die ppsA-Enzymaktivität Pyruvat mit ATP zu Phosphoenolpyruvat umgesetzt wird. Dabei entsteht in stöchimetrischen Mengen Phosphat, was zur Aktivi- tätsbestimmung verwendet wird.
Die Testansätze enthielten in 1 ml Testpuffer (100 mM Tris- HCl, pH 8,0; 10 mM MgCl2) 100 μg Zellextrakt, 4 mM Na- Pyruvat und 4 mM ATP.
Die verschiedenen Ansätze wurden bei 30°C inkubiert.
0 min, 10 min, 20 min, 30 min und 60 min nach Start der In- kubation wurden 50 mΐ des jeweiligen Ansatzes entnommen, in 750 μl H20 gegeben und schließlich mit 200 mΐ Reagens aus dem "Malachite Green Phosphate Assay Kit" versetzt.
Nach 30 min Inkubation erfolgte die Bestimmung der gebilde- ten Phosphatmenge anhand einer Phosphat Eichgeraden, ent- sprechend den Angaben des Herstellers photometrisch durch Bestimmung der Extinktion bei 620 nm. Schließlich wurde aus der gemessenen Phosphatmenge, bezogen auf den Zeitpunkt der Probenahme aus dem jeweiligen Testansatz, die ppsA-Enzymak- tivität in U/ml Extrakt bestimmt (1 U = μmol Substratum- satz/min). Die spezifische ppsA-Enzymaktivität berechnete sich, indem die ppsA-Enzymaktivität auf 1 mg Gesamtprotein des Zellextrakts bezogen wurde (U/mg Protein).
Tabelle 1: Bestimmung der ppsA-Enzymaktivität
Beispiel 6: Cystein-Produktion im Schüttelkolben
Als Vorkultur für die Kultivierung im Schüttelkolben wurden 3 ml LB-Medium (10 g/L Trypton, 5 g/L Hefeextrakt, 10 g/L NaCl), das zusätzlich 15 mg/L Tetracyclin enthielt, mit dem jeweiligen Stamm beimpft und bei 30°C und 135 rpm für 16 h in einem Schüttler inkubiert. Die untersuchten Stämme waren E. coli W3110, W3110-ΔppsA, W3110-ppsA-MHI, sowie in einem zweiten Ver- such P. ananatis und P. ananatis-ΔppsA::kan, jeweils transfor- miert mit dem Produktionsplasmid pCYS (Beispiel 4).
Hauptkultur: Anschließend wurde ein Teil der jeweiligen Vorkul- tur in einen 300 ml Erlenmeyerkolben (mit Schikane) mit 30 ml SM1-Medium, enthaltend 15 g/L Glucose, 5 mg/L Vitamin Bl und 15 mg/L Tetracyclin, überführt.
Zusammensetzung des SMl-Mediums: 12 g/L K2HPO4, 3 g/L KH2PO4, 5 g/L (NH4)2SO4, 0,3 g/L MgSO4 x 7 H20, 0,015 g/L CaCl2 x 2 H2O, 0,002 g/L FeSO4 x 7 H20, 1 g/L Na3Citrat x 2 H2O, 0,1 g/L NaCl;
1 ml/L Spurenelementlösung.
Zusammensetzung der Spurenelementlösung: 0,15 g/L Na2MoO4 x 2 H20, 2,5 g/L H3BO3, 0,7 g/L C0CI2 x 6 H2O, 0,25 g/L CuSO4 x 5 H20, 1,6 g/L MnCl2 x 4 H2O, 0,3 g/L ZnSO4 x 7 H2O.
Die Hauptkultur wurde mit so viel Vorkultur beimpft, dass eine anfängliche Zelldichte OÜ6oo/ml (optischen Dichte der Hauptkul- tur, gemessen bei 600 nm) von 0,025/ml eingestellt wurde. Davon ausgehend wurde der gesamte 30 ml-Ansatz für 24 h bei 30°C und 135 rpm inkubiert.
Nach 24 h wurden Proben entnommen und die Zelldichte OD600/ml sowie der Gesamtcystein-Gehalt im Kulturüberstand bestimmt, wo- bei zur quantitativen Bestimmung von Cystein der colorimetri- sche Test von Gaitonde (Gaitonde, M. K. (1967), Biochem. J.
104, 627-633) verwendet wurde. Dabei ist zu berücksichtigen, dass dieser Test unter den stark sauren Reaktionsbedingungen nicht zwischen Cystein und dem in EP 0885962 Bl beschriebenen Kondensationsprodukt von Cystein und Pyruvat, der 2-Methyl-thi- azolidin-2,4-Dicarbonsäure (Thiazolidin), unterscheidet. L-Cys- tin, dass entsprechend Gleichung (2) durch Oxidation zweier Cystein-Moleküle entsteht, wird im Test durch Reduktion mit Dithiothreitol in verdünnter Lösung bei pH 8,0 ebenfalls als Cystein nachgewiesen. Die Ergebnisse sind für die genannten E. coli-Stämme in Tabelle 2 und für die P. ananatis-Stämme in Ta- belle 3 angegeben.
Tabelle 2: Zelldichte und Gesamt-Cysteingehalt nach einer Kulturzeit von 24 h im Schüttelkolben
Tabelle 3: Zelldichte und Gesamt-Cysteingehalt nach einer Kul- turzeit von 24 h im Schüttelkolben
Beispiel 7: Cystein-Produktion im Fermenter:
Verglichen wurden E. coli W3110 x pCYS, W3110-ppsA-MHI x pCYS und W3110-AppsA x pCYS im Produktionsmaßstab der Fed-Batch Fer- mentation.
Vorkultur 1:
20 ml LB-Medium mit 15 mg/L Tetracyclin wurden in einem 100 ml Erlenmeyerkolben mit dem jeweiligen Stamm beimpft und 7 h auf einem Schüttler (150 rpm, 30°C) inkubiert.
Vorkultur 2:
Anschließend wurde die Vorkultur 1 vollständig in 100 ml SM1- Medium, supplementiert mit 5 g/L Glucose, 5 mg/L Vitamin Bl und 15 mg/L Tetracyclin (Zusammensetzung SMl-Medium siehe Beispiel 6), überführt. Die Kulturen wurden in Erlenmeyerkolben (1 L Volumen) bei 30°C für 17 h bei 150 rpm geschüttelt (Infors Truhenschüttler). Nach dieser Inkubation lag die Zelldichte OD600/ml zwischen 3 und 5.
Hauptkultur:
Die Fermentation wurde in einem Fermenter des Typs „DASGIP® Pa- rallel Bioreactor Systems für die Mikrobiologie" der Firma Ep- pendorf durchgeführt. Es wurden Kulturgefäße mit 1,81 Gesamt- volumen verwendet. Das Fermentationsmedium (900 ml) enthielt 15 g/L Glucose, 10 g/L Trypton (Difco), 5 g/L Hefeextrakt (Difco), 5 g/L (NH4)2SO4, 1,5 g/L KH2PO4, 0,5 g/L NaCl, 0,3 g/L MgSO4 x 7 H2O, 0,015 g/L CaCl2 x 2 H2O, 0,075 g/L FeSO4 x 7 H2O, 1 g/L Na3Citrat x 2 H2O und 1 ml Spurenelementlösung (siehe Beispiel 6), 0,005 g/L Vitamin Bl und 15 mg/L Tetracyclin.
Der pH-Wert im Fermenter wurde zu Beginn durch Zupumpen einer 25% NH4OH-Lösung auf 6,5 eingestellt. Während der Fermentation wurde der pH-Wert durch automatische Korrektur mit 25% NH4OH auf einem Wert von 6,5 gehalten. Zum Animpfen wurden 100 ml der Vorkultur 2 in das Fermentergefäß gepumpt. Das Anfangsvolumen betrug somit etwa 1 L. Die Kulturen wurden zu Beginn mit 400 rpm gerührt und mit einer Belüftungsrate von 2 vvm (Vol. Luft pro Vol. Kulturmedium pro min) einer über einen Sterilfilter entkeimten Druckluft begast. Unter diesen Startbedingungen war die Sauerstoff-Sonde vor der Inokulation auf 100% Sättigung ka- libriert worden.
Der Soll-Wert für die 02-Sättigung während der Fermentation wurde auf 30% eingestellt. Nach Absinken der 02-Sättigung unter den Soll-Wert wurde eine Regulationskaskade gestartet, um die 02-Sättigung wieder an den Soll-Wert heranzuführen. Dabei wurde zunächst die Gaszufuhr kontinuierlich erhöht (auf max. 5 vvm) und anschließend die Rührgeschwindigkeit (auf max. 1.500 rpm) kontinuierlich gesteigert.
Die Fermentation wurde bei einer Temperatur von 30°C durchge- führt. Nach 2 h Fermentationsdauer erfolgte die Zufütterung einer Schwefelquelle in Form einer sterilen 60% (w/v) Stammlö- sung von Natrium-Thiosulfat x 5 H2O mit einer Rate von 1,5 ml pro Stunde.
Sobald der Glucose-Gehalt im Fermenter von anfänglich 15 g/L auf ca. 2 g/L abgesunken war, erfolgte eine kontinuierliche Zu- dosierung einer 56% (w/w) Glucose-Lösung. Die Fütterungsrate wurde so eingestellt, dass die Glucosekonzentration im Fermen- ter 2 g/L fortan nicht mehr überstieg. Die Glucose-Bestimmung erfolgte mit einem Glucoseanalysator der Firma YSI (Yellow Springs, Ohio, USA).
Die Fermentationsdauer betrug 48 h. Danach wurden Proben vom Fermentationsansatz entnommen und der Gehalt von L-Cystein und den davon abgeleiteten Derivaten im Kulturüberstand (v.a. L- Cystein und Thiazolidin) und im Niederschlag (L-Cystin) jeweils getrennt voneinander bestimmt. Zu diesem Zweck wurde jeweils der colorimetrische Test von Gaitonde verwendet (Gaitonde, M.K. (1967), Biochem. J. 104, 627-633). Das im Niederschlag befind- liche L-Cystin musste zuerst in 8% (v/v) Salzsäure aufgelöst werden, bevor es auf dieselbe Art quantifiziert werden konnte. Schließlich wurde die Gesamtmenge Cystein als Summe aus Cystein im Pellet und im Überstand bestimmt.
Wie in Tabelle 4 zusammengefasst, war die Zelldichte OD600/ml der untersuchten Stämme vergleichbar, wenn auch etwas höher für den Kontrollstamm W3110 x pCYS . Die Cystein-Volumenproduktion (in g/L) hingegen war sowohl in W3110-ppsA-MHI x pCYS wie in W3110-AppsA x pCYS signifikant höher (ca. Faktor 3) als im Kon- trollstamm W3110 x pCYS mit dem Wildtyp ppsA Gen.
Unter den kontrollierten Bedingungen einer Fermentation ergibt sich für den Produktionsmaßstab somit das bisher nicht be- schriebene und aufgrund des Stands der Technik für den Fachmann auch nicht erwartete Resultat, dass eine Aktivitätsabschwächung oder auch Inaktivierung der ppsA Enzymaktivtät zu einer signi- fikant verbesserten Cystein Produktion führt und somit eine ge- eignete Maßnahme zur Stammverbesserung ist. Tabelle 4: Zelldichte und Gesamt-Cysteingehalt nach einer Kul- turzeit von 24 h im Fermenter
In den Figuren verwendete Abkürzungen: bla: Gen, das Resistenz gegenüber Ampicillin verleiht (ß-Lacta- mase) rrnB term: rrnB-Terminator für die Transkription kanR: Gen, das Resistenz gegenüber Kanamycin verleiht
ORI : Replikationsursprung („origin of replication") pr-1: Bindungsstelle 1 für Primer pr-2: Bindungsstelle 2 für Primer
FRT1: Erkennungssequenz 1 für FLP Recombinase
FRT2: Erkennungssequenz 2 für FLP Recombinase araC: araC-Gen (Repressorgen)
P araC: Promotor des araC-Gens
P araB: Promotor des araB-Gens
Garn: Lambda Phage Gam-Rekombinationsgen
Bet: Lambda Phage Bet-Rekombinationsgen
Exo: Lambda Phage Exo-Rekombinationsgen
ORI101: Temperatur-sensitiver Replikationsursprung
RepA: Gen für das Plasmid-Replikationsprotein A sacB: Levansucrase-Gen pr-f: Bindungsstelle f für Primer (vorwärts) pr-r: Bindungsstelle r für Primer (revers)
OriC: Replikationsursprung C
IHF: Bindungsstelle für DNS-Bindeprotein IHF („Integration Host Factor")
CamR: Gen, das Resistenz gegen Chloramphenicol verleiht TetR: Gen, das Resistenz gegen Tetracyclin verleiht P15A ORI: Replikationsursprung

Claims

Patentansprüche
1. Mikroorganismenstamm, der zur fermentativen Herstellung von L-Cystein geeignet ist, dadurch gekennzeichnet, dass die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse in- aktiviert oder bezogen auf die spezifische Aktivität des Wildtyp-Enzyms reduziert ist und der gegenüber dem Mikroorganismenstamm mit Wildtyp-En- zymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse eine erhöhte Menge an L-Cystein bildet wobei das diese Enzymaktivität kodierende Gen mit ppsA be- zeichnet wird.
2. Mikroorganismenstamm nach Anspruch 1, dadurch gekennzeich- net, dass es sich beim Mikroorganismenstamm um einen Stamm aus der Familie der Enterobacteriaceae oder Corynebacteri- aceae handelt.
3. Mikroorganismenstamm nach Anspruch 1 oder 2, dadurch ge- kennzeichnet, dass der Mikroorganismenstamm ausgewählt ist aus der Gruppe bestehend aus Escherichia coli, Pantoea ana- natis und Corynebacterium glutamicum.
4. Mikroorganismenstamm nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Mikroorganismenstamm aus- gewählt ist aus der Gruppe bestehend aus Escherichia coli und Pantoea ananatis.
5. Mikroorganismenstamm nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich beim Mikroorganismen- stamm um einen Stamm der Spezies Escherichia coli handelt.
6. Mikroorganismenstamm nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dieser mindestens eine Muta- tion im ppsA-Gen enthält.
7. Mikroorganismenstamm nach Anspruch 6, dadurch gekennzeich- net, dass das mutierte Gen ausgewählt ist aus der Gruppe bestehend aus dem ppsA-Gen aus Escherichia coli, dem ppsA- Gen aus Pantoea ananatis und einem zu diesen Genen homolo- gen Gen.
8. Mikroorganismenstamm nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass es sich bei der kodierenden DNS-Sequenz des ppsA-Gens um SEQ ID NO: 5 handelt.
9. Mikroorganismenstamm nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in diesem Stamm die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse bezogen auf die spezifi- sche Aktivität des Wildtyp-Enzyms um mindestens 25% redu- ziert ist.
10. Mikroorganismenstamm nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in diesem Stamm die relative Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 bezeichneten Enzymklasse bezogen auf die spezifi- sche Aktivität des Wildtyp-Enzyms um mindestens 70% redu- ziert ist.
11. Mikroorganismenstamm nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dieser keine Enzymaktivität der in der KEGG-Datenbank mit der Nummer EC 2.7.9.2 be- zeichneten Enzymklasse aufweist.
12. Fermentatives Verfahren zur Herstellung von L-Cystein, dadurch gekennzeichnet, dass ein Mikroorganismenstamm nach einem der Ansprüche 1 bis 11 eingesetzt wird.
EP20735534.8A 2020-06-26 2020-06-26 Verbesserte cystein produzierende stämme Pending EP4172310A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/068021 WO2021259491A1 (de) 2020-06-26 2020-06-26 Verbesserte cystein produzierende stämme

Publications (1)

Publication Number Publication Date
EP4172310A1 true EP4172310A1 (de) 2023-05-03

Family

ID=71409393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20735534.8A Pending EP4172310A1 (de) 2020-06-26 2020-06-26 Verbesserte cystein produzierende stämme

Country Status (6)

Country Link
US (1) US20230265473A1 (de)
EP (1) EP4172310A1 (de)
JP (1) JP2023532871A (de)
KR (1) KR20230025010A (de)
CN (1) CN116018400A (de)
WO (1) WO2021259491A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165684A1 (de) 2022-03-01 2023-09-07 Wacker Chemie Ag Verbesserte cystein produzierende stämme

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8601582D0 (en) 1986-01-23 1986-02-26 Electricity Council Production of l-cysteine
TW313589B (de) 1991-12-12 1997-08-21 Wacker Chemie Gmbh
DE19539952A1 (de) 1995-10-26 1997-04-30 Consortium Elektrochem Ind Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten
DE19726083A1 (de) 1997-06-19 1998-12-24 Consortium Elektrochem Ind Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten
DE19949579C1 (de) 1999-10-14 2000-11-16 Consortium Elektrochem Ind Verfahren zur fermentativen Herstellung von L-Cystein oder L-Cystein-Derivaten
DE10232930A1 (de) 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
WO2004113373A1 (en) 2003-06-21 2004-12-29 University Of Sheffield Overexpression of the cyddc transporter
DE10331291A1 (de) 2003-07-10 2005-02-17 Consortium für elektrochemische Industrie GmbH Varianten der 3-Phosphoglyceratdehydrogenase mit reduzierter Hemmung durch L-Serin und dafür codierende Gene
JP4479283B2 (ja) 2004-03-04 2010-06-09 味の素株式会社 L−システイン生産菌及びl−システインの製造法
JP4604537B2 (ja) 2004-03-31 2011-01-05 味の素株式会社 L−システイン生産菌及びl−システインの製造法
DE102004035052A1 (de) 2004-07-20 2006-02-16 Basf Ag Mikroorganismen zur Herstellung von schwefelhaltigen Verbindungen
US8383372B2 (en) * 2008-03-06 2013-02-26 Ajinomoto Co., Inc. L-cysteine producing bacterium and a method for producing L-cysteine
DE102011075656A1 (de) 2011-05-11 2012-03-29 Wacker Chemie Ag Verfahren zur fermentativen Produktion von L-Cystin
DE102012216527A1 (de) * 2012-09-17 2014-03-20 Wacker Chemie Ag Verfahren zur fermentativen Produktion von L-Cystein und Derivaten dieser Aminosäure

Also Published As

Publication number Publication date
US20230265473A1 (en) 2023-08-24
WO2021259491A1 (de) 2021-12-30
KR20230025010A (ko) 2023-02-21
JP2023532871A (ja) 2023-08-01
CN116018400A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
EP0885962B1 (de) Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolindinderivaten
EP1382684B1 (de) Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
EP1220940B2 (de) Verfahren zur fermentativen herstellung von l-cystein oder l-cystein-derivaten
EP2726625B1 (de) Verfahren zur fermentativen produktion von natürlichem l-cystein
EP2707492B1 (de) Verfahren zur fermentativen Herstellung von L-Cystin bei kontrollierter Sauerstoffsättigung
DE19539952A1 (de) Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten
DE602004008183T2 (de) Verfahren zur Herstellung von L-Cystein unter Verwendung eines zur Gattung Escherichia gehörenden Bakteriums
EP1445310B1 (de) Verfahren zur fermentativen Herstellung von L-Methionin
EP1907559A1 (de) Rekombinante mikroorganismen für die methionin-produktion
BR112012016908B1 (pt) Linhagens e métodos para a produção de metionina
WO2014117992A1 (de) Mikroorganismus und verfahren zur fermentativen herstellung von aminosäuren
EP2808394A1 (de) Mikroorganismus und Verfahren zur fermentativen Überproduktion von Gamma-Glutamylcystein und Derivaten dieses Dipeptids
EP4172310A1 (de) Verbesserte cystein produzierende stämme
EP1924694B1 (de) Verfahren zur produktion von aminosäuren mit mikroorganismen
DE60210184T2 (de) L-Cystein herstellendes Bakterium und Verfahren zur Herstellung von L-Cystein
WO2023165684A1 (de) Verbesserte cystein produzierende stämme
EP2895597B1 (de) Verfahren zur fermentativen produktion von l-cystein und derivaten dieser aminosäure
KR101770150B1 (ko) 메티오닌 히드록시 유사체 (mha)의 발효 생산
EP4208560A1 (de) Verfahren zur enzymatischen oxidation von sulfinsäuren zu sulfonsäuren
WO2023094011A1 (de) Verfahren zur herstellung von l-cysteinsäure
WO2013171098A2 (de) Verfahren zur fermentativen produktion von l-cystein und derivaten dieser aminosäure
WO2023094010A1 (de) Verfahren zur herstellung von taurin
WO2023232233A1 (de) Verfahren zur herstellung von l-cysteinsäure und dessen verwendung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)