EP4161720A1 - Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials - Google Patents

Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials

Info

Publication number
EP4161720A1
EP4161720A1 EP21729569.0A EP21729569A EP4161720A1 EP 4161720 A1 EP4161720 A1 EP 4161720A1 EP 21729569 A EP21729569 A EP 21729569A EP 4161720 A1 EP4161720 A1 EP 4161720A1
Authority
EP
European Patent Office
Prior art keywords
mass
content
steel material
steel
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21729569.0A
Other languages
English (en)
French (fr)
Inventor
Johannes Boes
Arne RÖTTGER
Werner Theisen
Christoph Escher
Christian MUTKE
Horst HILL
Philipp Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doerrenberg Edelstahl GmbH
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Original Assignee
Doerrenberg Edelstahl GmbH
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doerrenberg Edelstahl GmbH, Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG filed Critical Doerrenberg Edelstahl GmbH
Publication of EP4161720A1 publication Critical patent/EP4161720A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a steel material for forming components by additive manufacturing.
  • the invention also relates to the use of such a steel material for additive manufacturing.
  • phase and other constituents present in the structure of a component produced from steel material according to the invention can be determined by means of conventional metallographic examinations or by means of X-ray diffraction ("XRD"), whereby the analysis of the structure proportions can be carried out according to the Rietveid method.
  • XRD X-ray diffraction
  • the Vickers hardness test was carried out in accordance with DIN EN ISO 6507-1: 2006-3 and the Rockwell hardness test in accordance with DIN EN ISO 6508-1: 2016-12.
  • the conversion of hardness values given in Vickers hardness HV into hardness values given in Rockwell HRC was carried out in accordance with DIN EN ISO 18625: 2014-02.
  • Additive manufacturing methods are now used in many industrial and application areas.
  • Metallic components are typically manufactured using additive manufacturing based on a metal powder.
  • adjacent particles of the powder are selectively and locally limitedly exposed to an energy source in order to establish a solid material bond between adjacent particles by melting or diffusion.
  • additive manufacturing process is used here to summarize all manufacturing processes in which a filler material, which is provided in powder form, for example, is added to produce a component. This addition is usually done in layers.
  • additive manufacturing processes which are often referred to as “generative processes” or generally as “3D printing” in technical terms, are in contrast to the classic subtractive manufacturing processes such as machining processes (e.g. milling, drilling and turning), in which material is removed in order to give the component to be manufactured its shape.
  • Additive processes also differ fundamentally from conventional solid forming processes, such as forging and the like, in which the respective steel part is formed from a starting or intermediate product while maintaining the mass.
  • the additive manufacturing principle makes it possible to manufacture geometrically complex structures that cannot be implemented or can only be implemented with great effort using conventional manufacturing processes, such as the machining processes or primary / forming processes (casting, forging) mentioned above (see VDI status report "Additive Manufacturing", November 2019, published by the Association of German Engineers eV, VDI Society Production and Logistics, Düsseldorf, Germany) Department of Production Technology and Manufacturing Processes, www.vdi.de/statusadditiv).
  • L-PBF Laser-Powder Bed Fusion
  • LMD Laser-Metal-Deposition
  • WAAM Wire Are Additive Manufacturing
  • the material to be processed is applied as a powder in a thin layer to a base plate and remelted in the area of impact of the laser beam by means of a laser moved over the powder layer.
  • the locally limited melt formed in this way then solidifies to form a solid volume element of the component to be shaped.
  • a solid material layer is successively formed, which extends over the cross-sectional area and shape of the component to be formed that is assigned to it in each case.
  • a further powder layer is applied to the previously formed solid layer of the component, which is solidified in the same way by means of the laser beam to form a materially bonded layer to the previously formed component layer. This process is repeated until the component is completely assembled.
  • the structure of the component is computer-aided, taking into account Volume slice data sets take place, which can be generated using computer programs known to those skilled in the art.
  • a laser In the LMD process, also known as "laser deposition welding", a laser generates a locally delimited melt pool on a surface of a component and at the same time melts powder material introduced into the melt pool.
  • melt formed in this way solidifies to form a solid section of the component to be built up.
  • material can be applied selectively and a component can be successively formed in this way.
  • WAAM WAAM
  • arc wire deposition welding a welding torch through which a welding wire is passed is used to generate a locally limited weld pool which then solidifies to form a solid section of the component to be built.
  • maraging steels For additive tool production, powders made from maraging steels (“martensitic-agina”) are typically used at present.
  • An example of this type of steel is that under DIN material number 1.2709 Standardized steel made from, all data in% by mass, ⁇ 0.03% C, ⁇ 0.25% Cr, ⁇ 0.15% Mn, ⁇ 0.1% P, ⁇ 0.1% S, ⁇ 0 0.05% Si, 0.8-1.20% Ti, 4.5-5.2% Mo, 17.0-19.0% Ni, the remainder Fe and technically unavoidable impurities.
  • martensitic hardening is due to the lowering of the austenite-ferrite transformation temperature ("g -» a - transformation ”) due to increased Co and Ni contents and the associated formation of a high dislocation density as a result of the transformation.
  • the components formed from 1.27 ⁇ 9 steel can be subjected to hardening at temperatures in the range from 450 ° C to 500 ° C to further increase their strength, in which fine, strength-increasing intermetallic phases are formed as a result of the presence of elements such as Al, Ti and Ni the metal matrix form.
  • the soft martensitic matrix of the component is retained. This ensures a sufficiently high level of toughness, so that the level of thermal and transformation-related internal stresses in the component remains so low, despite high cooling speeds, that cracking is avoided.
  • the structure of these steels consists of a carbon martensitic metal matrix in which tempered carbides are present as a result of tempering treatment after previous hardening.
  • a High-speed steel "M2” which is also offered as “Premium 1.3343 steel” and is alloyed with high contents of W and Mo in addition to the content of alloying elements intended for steel 1.3343.
  • a Premium 1.3343 steel consists of, in% by mass, 0.80 - 0.88% C, ⁇ 0.40% Mn, ⁇ 0.45% Si, 3.80 - 4.50% Cr, 1.70 - 2.10% V, 5.90 - 6.70% W, 4.70 - 5.20% W and the remainder of Fe and other technically unavoidable impurities.
  • the high W and Mo contents ensure the formation of eutectic carbides of the M2C and MeC types.
  • steel "M2" is suitable for the production of tools for the machining of metals or tools that are exposed to high abrasive loads at elevated temperatures when in use.
  • the formation of cold cracks can be due to the formation of martensite from the supercooled residual austenite matrix and the subsequent strong increase in Residual tensile stresses as a result of the low plasticity of martensite can be reduced.
  • a preheating of at least those parts of the machine used for the respective additive manufacturing process that come into direct contact with the component to be additively manufactured has been proposed in several works. It is also known to keep the entire installation space of the machine in which the construction of the component to be formed takes place at an increased preheating temperature.
  • the preheating temperature is above the martensite start temperature, ie the temperature below which martensite is formed, the formation of martensite during the construction of the component to be formed can be avoided by the introduction of heat in this way and a process control at an increased temperature.
  • the risk of crack formation can also be reduced with preheating temperatures below the martensite start temperature, since the material built up additively to the component cools more slowly and on the one hand has more time to relieve stresses through plastic flow at higher temperatures, and on the other hand it passes through phase fields due to the slower cooling which have a higher toughness and a higher plastic deformability.
  • preheating leads to increased oxidation of the powder bed that has not been remelted, which limits its recyclability.
  • the preheating can lead to a coarsening of the structure with the result that the fine-cell structure of the component that is basically achievable and the associated increase in strength cannot be achieved.
  • the aim is to process materials of the type discussed here without additional heating.
  • the object has therefore arisen to provide a for use in an additive To provide manufacturing processes with suitable steel material that allows components to be formed with low defects, residual stresses and distortion by additive manufacturing, without the need for preheating or reheating.
  • the invention has achieved this object by the steel material specified in claim 1.
  • a steel material according to the invention for forming components by additive manufacturing accordingly consists of a steel with the following composition:
  • Ni_eq [% by mass] 30% C +% Ni + 0.5% Mn with% C: respective C content in% by mass,
  • Ni equivalent Ni_eq fulfills the following condition (1):
  • % XX the respective sum of the contents of at least one element of the group "Sc, Y, Ti, Zr, Hf, V, Ta", in% by mass, calculated Cr equivalent Cr_eq fulfills the following condition (2):
  • the invention thus provides an Fe-based starting material that can be hardened by carbon martensitic, which is alloyed with molybdenum (“Mo”) and chromium (“Cr”) and which is built up with the component by layering compaction or in the form of a green body and is supplied with an energy source (e.g. Laser, electron beam, arc, flame, induction, thermal radiation) can be compacted.
  • Mo molybdenum
  • Cr chromium
  • FIG. 2 shows a diagram in which the retained austenite content RA is plotted against the martensite start temperature Ms;
  • FIG. 3 shows a diagram in which, for various steel material samples, the residual stresses sE that arise during processing in the L-PBF method are plotted against the retained austenite content
  • FIG. 4 shows a diagram in which the core porosity (without taking into account contour connection errors) of the model alloy processed by means of L-PBF is plotted as a function of the exposure time for samples produced and created according to the invention
  • FIG. 5 shows a diagram in which hardness tempering curves determined for a steel material according to the invention processed by means of L-PBF are reproduced.
  • the alloy of the steel of a steel material according to the invention is set in such a way that the martensite start temperature "Ms" of a steel material according to the invention and, associated therewith, the so-called “transformation plasticity” is shifted in the direction of lower temperatures. So the minimum of the curve (1) shown in Fig. 1 should in the best case at room temperature “RT” are present, as indicated in FIG. 1 by the variant of curve (1) shown in dashed lines. As the Ms temperature falls, the temperature at which the martensite formation is complete (“martensite finish”) also falls below RT, so that more of the converted austenite, so-called retained austenite ("RA”), remains in the structure.
  • Ms the martensite start temperature
  • RA retained austenite
  • the Ms temperature can be calculated according to the approach of Andrews, published in KW Andrews: Empirical Formulas for the Calculation of Some T ransformation Temperatu res. In: JISI. Vol 302, 1965, pp. 721-727, can be calculated as follows:
  • (Ma -%) ieg: respective content of C, Mn, Cr, Mo, Ni
  • the temperature is reduced in such a way that the plasticity of the transformation results in a stress neutrality in the component formed by L-PBF.
  • FIG. 3 The relationship between RA content and Ms temperature is shown in FIG. The result is a linear approximation curve ("Fit"), in which the RA content decreases with increasing Ms temperature. From FIG. 3 it can be seen that the residual stresses se decrease with increasing RA content, so that when an RA limit content of 14% by volume is reached, on average, stress neutrality is present. 3 also shows the RA content and the level of internal stresses that arise when processing a powder whose particles consist of the austenitic steel known as 316L (Cr: 17.00 - 19.00%, Ni:
  • the alloy of a steel material according to the invention is thus designed so that when a component is formed from it by an additive manufacturing process, a residual austenite proportion RA of at least 10% by volume, in particular at least 15% by volume, is established in the component obtained. 2 shows that such RA contents result at a martensite start temperature Ms of less than 260 ° C.
  • the martensite start temperature Ms and thus the RA content can be set in a targeted manner via the chemical composition.
  • the alloy of the steel material according to the invention was determined accordingly, taking into account the effect that the individual alloy elements have on the austenite (RA) and ferrite phases contained in the structure of a steel material according to the invention by additive manufacturing.
  • the elements Ni, Co, C, Mn and N stabilize the austenite phase, whereas the carbide formers of the 3rd to 6th subgroup elements and additionally Si stabilize the ferrite phase.
  • the stabilizing effect that emanates from each alloy element can be described using the Cr equivalent "Cr_eq” and the Ni equivalent "Ni_eq”, which according to Schaeffler, published in P. Guiraldenq, OH Kurc: The genesis of the Schaeffler diagram in the history of stainless steel, In: Metal. Res. Technol. 114, 613, 2017, pp. 1-9, can be calculated.
  • Ni_eq should be at least 10% by mass and at most 20% by mass (10% by mass ⁇ Ni_eq ⁇ 20% by mass).
  • the Cr equivalent Cr eq should be at least 4% by mass and at most 16% by mass (4% by mass ⁇ Cr_eq ⁇ 16% by mass).
  • the inventive coordination of the Ni and Cr equivalents of a steel material according to the invention ensures that components made from the steel material according to the invention are free of cracks and have only minimal thermally induced residual stresses, without additional technical measures such as preheating or post-heat treatment, must be carried out.
  • the Ni equivalent of materials according to the invention is in the range of 10-20 mass%. Materials alloyed according to the invention, the Ni equivalents of which are 12-20% by mass, in particular at least 12.00% by mass or more than 12% by mass, have proven to be particularly suitable with regard to the property profile aimed at according to the invention the Ni equivalent is preferably limited to a maximum of 20.00% by mass, in particular ⁇ 20% by mass.
  • the Cr equivalent of materials according to the invention is 4-16% by mass, Cr equivalents of at least 5.50% by mass, in particular more than 5.5% by mass or at least 5.70% by mass, proving to be particularly advantageous to have.
  • Optimized properties of a steel material according to the invention can be achieved by adding the sum of the Cr and Ni equivalents
  • the contents of the individual alloy elements are determined as follows:
  • Carbon is contained in the steel material according to the invention in contents of 0.28% by mass to 0.65% by mass in order to achieve the carbon-martensitic transformation during the material processing. For this, at least 0.28% by mass of C is required, whereby this effect can be achieved particularly reliably with C contents of at least 0.45% by mass. C contents of more than 0.65% by mass would lead to the formation of too high a residual austenite content with which the targeted tribomechanical properties would not be able to be realized. In addition, would be If the C content is too high, the martensite start temperature Ms is lowered in such a way that the internal stress-reducing effect due to the transformation plasticity only occurs at temperatures below room temperature and the effects used by the invention would not be effective.
  • Such unfavorable effects of excessively high C contents can, if necessary, be avoided particularly reliably in the material according to the invention by limiting the C content to a maximum of 0.60% by mass.
  • An embodiment of the invention that is particularly advantageous in practice therefore provides that the C content of a steel material according to the invention is 0.40-0.60% by mass.
  • Chromium (“Cr”) is present in a steel material according to the invention in contents of 3.5% by mass to 12% by mass.
  • Molybdenum (“Mo”) can optionally be present in the steel material according to the invention in contents of 0.5% by mass to 12.5% by mass.
  • molybdenum can substitute chromium in a ratio of 1: 1.
  • Cr in a content of at least 3.5% and Mo in a content of at least 0.5 mass% are present at the same time, Mo and Cr thus make the same contribution to setting the Cr equivalent Cr eq.
  • the Cr content and the optional Mo content of the steel of a steel material according to the invention are set so that the Cr equivalent is stabilized in the range specified according to the invention and in this way, taking into account the stipulations prescribed according to the invention for the Ni equivalent, the martensite start temperature Ms des Steel is shifted in a temperature range ranging from 125 ° C to 260 ° C, in particular up to 200 ° C, a residual austenite content of at least 10% by volume, in particular at least 15% by volume, is stabilized in the structure of the component produced in each case and the effect of the transformation plasticity at room temperature is maximal.
  • the requirement that the sum of the contents of Cr and Mo should be 4% by mass to 16% by mass can be met by adding 4.0% by mass to 12.5% by mass of Cr are present in the steel of the steel material according to the invention if Mo is absent in it, or in that at least 3.5% by mass of Cr are present and at the same time at least 0.5% by mass of Mo are contained in the steel, the Cr and Mo present in each case -Contents in this case are adapted to each other so that their total does not exceed 16% by mass.
  • the advantageous influences of the presence of Cr in the steel of the steel material according to the invention can be used particularly reliably if the Cr contents are at least 4.5% by mass, with Cr contents of at least 5.0% by mass, in particular at least
  • Contents of at least 0.75% by mass of Mo also contribute to the advantageous properties of the steel material according to the invention. Contents of more than
  • manganese (“Mn”), nickel (“Ni”), silicon (“Si”), niobium (“Nb”), as well as titanium (“Ti”), scandium (“Sc”), yttrium (“Y “), Zirconium (“ Zr “), hafnium (“ Hf “), vanadium (“ V ”) or tantalum (“ Ta ”) can each optionally be present in the steel of a steel material according to the invention in order to achieve the nickel equivalent Ni_eq and the Set Cr equivalent Cr_eq according to the requirements of the invention. If necessary, Mn and Ni will serve to adjust the Ni equivalent Ni_eq to the steel.
  • Si, Nb, Ti, Sc, Y, Zr, Hf, V, Ta can be provided in the steel of the steel material according to the invention in order to bring the Cr equivalent into the range according to the invention.
  • Ni equivalent Ni_eq Since the C content is included in the calculation of the Ni equivalent Ni_eq with a factor of 30, a Ni equivalent Ni_eq of at least 10.0% by mass results for C contents of more than 0.33% by mass.
  • the requirement set according to the invention for the value of the nickel equivalent Ni_eq can therefore already be met if C alone is present in sufficiently high contents.
  • the presence of Ni in the steel can also have positive influences on the properties of a steel material according to the invention, such as an increase in toughness. If this effect is to be used, at least 0.25% by mass of Ni, in particular at least 0.5% by mass of Ni, can be provided for this purpose.
  • the Ni content should not exceed 4.5% by mass, in particular 3.0% by mass, in order to avoid an excessive increase in the Ni equivalent.
  • Ni contents of 0.75 to 1.25 mass% in the steel material according to the invention have proven to be particularly practical.
  • Mn contents in the steel alloyed according to the invention can substitute Ni contents in a ratio of 2: 1, if necessary.
  • 1% by mass of Ni can be replaced by 2% by mass Mn to be replaced.
  • the Mn content should remain limited to a maximum of 9 mass%, in particular a maximum of 7 mass%, in order to avoid an excessive increase in the Ni equivalent.
  • the effect of Mn can be used already at levels of at least 0.25% by mass of Mn, wherein Mn contents of at least 0.5 mass% or at least 1.0 mass%, especially at least 2 wt:% advantageous have turned out.
  • a steel material according to the invention accordingly contains 2-3% by mass of Mn.
  • Si has a comparatively strong effect on the value of the Cr equivalent and can be added to the steel of a steel material according to the invention if it is required for deoxidation during steel production.
  • Si contents of at least 0.15% by mass, in particular 0.75% by mass can be used to set a melt viscosity that is favorable for atomizing the melt into powder particles.
  • excessively high Si contents can, among other things, impair the mechanical properties of a component made from steel according to the invention. Therefore, the Si content is limited to 2 mass% or less.
  • the positive influences of Si can be used particularly effectively with contents of at most 1.25% by mass.
  • a mono-carbide-forming element or several mono-carbide-forming elements from the group “Sc, Y, Ti, Zr, Hf, V, Ta”.
  • Ti which is preferably used as the only one of the mono-carbide-forming elements of this group in the steel according to the invention and can then be present in contents of up to 2% by mass.
  • the other elements of the group “Sc, Y, Ti, Zr, Hf, V, Ta” can be added to the steel in combination or as a substitute for Ti.
  • the content of the respective elements is set so that the total content of the elements of the group “Sc, Y, Ti, Zr, Hf, V, Ta" does not exceed the upper limit of the content applicable to Ti alone.
  • the mass fraction of the contents of the elements of the group “Sc, Y, Ti, Zr, Hf, V, Ta” present in the steel should not be greater than the mass fraction of 2%, which is the maximum permitted for Ti is when only Ti is present in the steel from the elements of the group "Sc, Y, Ti, Zr, Hf, V, Ta".
  • Co Co
  • Co can optionally be added to the steel of a steel material according to the invention in order to promote the formation of the secondary hardness maximum in the direction of higher tempering temperatures as well as the increase in the solidus temperature and the associated increase in the solution state through higher hardening temperatures.
  • the rest of the steel of a steel material according to the invention in each case not by the contents of the invention in the manner explained above to alloyed alloy elements is ingested, is filled with iron and technically unavoidable impurities, the total content of which may amount to a maximum of 0.5% by mass and up to 0.025% by mass of phosphorus ("P") and up to 0.025% by mass Count sulfur ("S").
  • the impurities include, in particular, all the elements of the periodic table not listed here that are not specifically added to the steel, but can inevitably get into the steel due to the processing of recycling material or the processes used in steel production and processing.
  • the contents of these elements in the steel of a steel material according to the invention are in any case set so low that they are not considered to be present in the technical sense because they have no influence on the properties of the steel material according to the invention.
  • this also includes, for example, N contents of less than 0.1% N.
  • the contents of impurities are preferably limited in such a way that their total is ⁇ 0.3% by mass, in particular ⁇ 0.15% by mass , with impurities, the total content of which is at most 0.05% by mass, have proven to be particularly advantageous with regard to the desired work result.
  • the steel material according to the invention is provided as steel powder which is produced in a conventional manner, for example by atomizing a melt alloyed according to the invention.
  • the grain sizes of the steel particles of a powder alloyed according to the invention are typically 15-180 ⁇ m.
  • steel powder alloyed according to the invention is particularly suitable for processing by means of the additive manufacturing processes "L-PBF” or "LMD".
  • Steel powders with a particle size of 15-63 ⁇ m are particularly suitable for the L-PBF process, while powder particles with a grain size of 63-180 ⁇ m are suitable for the LMD process.
  • the particles of the corresponding grain size from the commercially produced powder particles in conventionally selected by sieving and / or sifting.
  • the steel material according to the invention can also be provided in wire form.
  • the steel material according to the invention is particularly suitable for processing in the WAAM process or comparable additive manufacturing processes based on the principle of build-up welding.
  • the steel material in the form of a hollow body which is filled with a steel powder designed according to the invention.
  • a hollow body can typically be a filler wire or the like. It is conceivable to fill the respective hollow body, such as a filler wire or a tube, with the individual elements of the alloy of a steel material according to the invention in pure form, the mass fractions of the elements in question in the filling taking into account the alloy and the mass of the material from which the hollow body is made, their contents correspond to the alloy of a steel material according to the invention. From the hollow body filled in this way, the alloy of the steel material according to the invention is formed in situ in the course of the respective additive manufacturing process in the active area of the respective heat source used.
  • the steel material according to the invention provides a starting material that is ideally suited for the production of components by additive manufacturing.
  • the invention thus by using a steel material that consists of steel alloyed according to the invention for the additive manufacturing of components.
  • the steel material according to the invention is particularly suitable for use in an L-PBF or LMD or WAAM process.
  • the steel material according to the invention can be used to produce mechanically or tribologically highly stressed components or tools, in particular through powder- or wire-based additive manufacturing, which have an optimal quality without the use of preheating strategies and the like.
  • the components produced from steel material according to the invention are characterized by residual austenite contents of typically at least 10% by volume, in particular at least 15% by volume.
  • the melt was atomized in the conventional way by means of gas atomization to a steel powder, from which the particles were then selected by sieving and sifting, which had a grain size of 10-63 ⁇ m suitable for processing in the L-PBF process.
  • the steel powder obtained in this way was processed into test pieces with an L-PBF system offered by Realizer under the name “SLM 100” using the process parameters listed in Table 2.
  • SLM 100 an L-PBF system offered by Realizer under the name “SLM 100” using the process parameters listed in Table 2.
  • no building board preheating was used, as is usually used in the processing of martensitic hardenable tool steels in order to counteract the formation of cold cracks. In this way it was possible to test whether the alloy can be processed with few defects without using preheating of the substrate plate.
  • a high initial hardness and a pronounced secondary hardness maximum can be set by suitable heat treatment and prove that steel materials according to the invention are particularly suitable for the production of tools by additive manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung stellt ein Stahlmaterial zur Verfügung, das ein eigenspannungsarmes Formen von Bauteilen durch additive Fertigung ohne eine Vor- oder Nachwärmung erlaubt. Das Stahlmaterial besteht aus einem Stahl, der, in Masse-%, mit folgender Zusammensetzung: C: 0,28 - 0,65 %, Co: < 10,0 Cr: 3,5 - 12,5 %, optional Mo: 0,5 - 12,5 %, wobei die Summe der Gehalte an Cr und Mo 4 - 16 % beträgt, das gemäß der Formel Ni_eq [%] = 30 %C + %Ni + 0,5 %Mn aus dem C-Gehalt %C, dem Ni-Gehalt %Ni, dem Mn-Gehalt %Mn berechnete Ni-Äquivalent Ni_eq die Bedingung (1) 10 % ≤ Ni eq ≤ 20 % erfüllt, und zur Erfüllung von Bedingung (1) neben C jeweils optional bis zu 9 % Mn und bis zu 4,5 % Ni vorhanden sind, wobei das gemäß der Formel Cr_eq [Masse-] = %Cr + %Mo + 1,5 %S + 0,5 %Nb + 2 %XX aus dem Cr-Gehalt Cr%, dem Mo-Gehalt Mo%, dem Si-Gehalt Si%, dem Nb-Gehalt %Nb und der Summe %XX: der Gehalte an mindestens einem Element der Gruppe "Sc, Y, Ti, Zr, Hf, V, Ta" berechnete Cr-Äquivalent Cr_eq die Bedingung (2) 4 % ≤ Cr_eq ≤ 16 % erfüllt und zur Erfüllung von Bedingung (2) jeweils optional bis zu 2 % Si, bis zu 2 % Nb oder mindestens ein Element der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta" vorhanden sind, wobei der Anteil der Elemente dieser Gruppe in Summe höchstens gleich dem Massenanteil von 2 % ist, den Ti maximal einnehmen darf, wenn Ti von den Elementen der Gruppe "Sc, Y, Ti, Zr, Hf, V, Ta" alleine vorhanden ist, und wobei der Rest des Stahls aus Fe und < 0,5 % Verunreinigungen besteht, zu denen ≤ 0,025 % P und 50,025% S gehören. Das Stahlmaterial eignet sich insbesondere als Pulver für das L-PBF oder LMD-Verfahren und als Draht für das WAAM-Verfahren.

Description

STAHLMATERIAL ZUM FORMEN VON BAUTEILEN DURCH ADDITIVE FERTIGUNG UND VERWENDUNG EINES SOLCHEN STAHLMATERIALS
Die Erfindung betrifft ein Stahlmaterial zum Formen von Bauteilen durch additive Fertigung.
Ebenso betrifft die Erfindung die Verwendung eines solchen Stahlmaterials für die additive Fertigung.
Wenn nachfolgend "%"-Angaben zu Legierungen oder
Stahlzusammensetzungen gemacht werden, so beziehen diese sich jeweils auf die Masse (Angabe in „Masse-"), soweit nicht ausdrücklich etwas anderes genannt ist.
Die Anteile bestimmter Bestandteile am Gefüge eines Stahlzwischenprodukts oder eines Stahlbauteils sind im vorliegenden Text in Volumen-% angegeben, soweit nicht ausdrücklich etwas anderes vermerkt ist.
Die im Gefüge eines in aus erfindungsgemäßem Stahlmaterial erzeugten Bauteils vorhandenen Phasen und sonstigen Bestandteile können mittels konventioneller metallografischer Untersuchungen oder mittels Röntgendiffraktometrie ("XRD") ermittelt werden, wobei die Auswertung der Gefügeanteile nach der Rietveid-Methode erfolgen kann.
Sämtliche der im vorliegenden Text angegebenen mechanischen Eigenschaften eines Stahlzwischenprodukts oder Stahlbauteils werden, soweit nicht anders angegeben, gemäß DIN 50125 bestimmt. Sofern der vorliegende Text Angaben zur Kerbschlagarbeit oder Kerbschlagzähigkeit enthält, werden diese gemäß DIN EN 10045 bestimmt.
Die Härteprüfung nach Vickers wurde gemäß DIN EN ISO 6507-1:2006-3 und die Härteprüfung nach Rockwell gemäß DIN EN ISO 6508-1 : 2016-12 durchgeführt. Die Umrechnung von in Vickershärte HV angegebenen Härtewerten in Härtewerte, die in Rockwell HRC angegeben sind, erfolgte gemäß DIN EN ISO 18625:2014-02.
Additive Fertigungsmethoden werden inzwischen in vielen Industrie- und Anwendungsbereichen angewendet. Die Herstellung metallischer Bauteile über eine additive Fertigung erfolgt typischerweise auf Grundlage eines Metallpulvers. Um aus dem Pulver einen festen Körper zu formen, werden aneinander angrenzende Partikel des Pulvers selektiv und lokal begrenzt einer Energiequelle ausgesetzt, um durch Aufschmelzen oder Diffusion eine feste stoffschlüssige Verbindung benachbarter Partikel herzustellen.
Unter dem Begriff „additive Fertigungsverfahren“ werden hier alle Herstellverfahren zusammengefasst, bei denen ein Zusatzwerkstoff, der beispielsweise pulverförmig bereitgestellt wird, zur Erzeugung eines Bauteils hinzugefügt wird. Dabei erfolgt dieses Hinzufügen in der Regel schichtweise. "Additive Herstellverfahren", die in der Fachsprache oft auch als "generative Verfahren" oder allgemein als "3D-Drucken" bezeichnet werden, stehen damit im Gegensatz zu den klassischen subtraktiven Fertigungsverfahren, wie den spanenden Verfahren (z.B. Fräsen, Bohren und Drehen), bei denen Material abgetragen wird, um dem jeweils herzustellenden Bauteil seine Form zu verleihen. Ebenso unterscheiden sich additive Verfahren grundsätzlich von den konventionellen Massivformgebungsverfahren, wie Schmieden und desgleichen, bei denen unter Beibehaltung der Masse aus einem Ausgangsoder Zwischenprodukt das jeweilige Stahlteil geformt wird. Das additive Fertigungsprinzip ermöglicht es, geometrisch komplexe Strukturen herzustellen, die mit konventionellen Fertigungsverfahren, wie den schon genannten spanabhebenden Verfahren oder Ur/-Umformverfahren (Gießen, Schmieden), nicht oder nur aufwendig realisiert werden können (s. VDI Statusreport "Additive Fertigung", November 2019, herausgegeben vom Verein Deutscher Ingenieure e.V., VDI Gesellschaft Produktion und Logistik, Düsseldorf, Deutschland) Fachbereich Produktionstechnik und Fertigungsverfahren, www.vdi.de/statusadditiv).
Nähere Definitionen der Verfahren, die unter dem Oberbegriff "Additive Verfahren" zusammengefasst sind, finden sich beispielsweise in den VDI- Richtlinien 3404 und 3405.
Zu den additiven Fertigungsverfahren, die die Darstellung komplex geformter metallischer Bauteile ermöglichen, zählen insbesondere die unter den Kurzbezeichnungen "L-PBF" (Laser-Powder Bed Fusion), "LMD" (Laser-Metal- Deposition) und "WAAM" (WAAM = Wire Are Additive Manufacturing) bekannten Verfahren.
Beim L-PBF-Verfahren wird in einem ersten Arbeitsschritt der zu verarbeitende Werkstoff als Pulver in einer dünnen Schicht auf eine Grundplatte aufgebracht und mittels eines über die Pulverschicht bewegten Lasers im Auftreffbereich des Laserstrahls umgeschmolzen. Die so lokal begrenzt gebildete Schmelze erstarrt anschließend zu einem festen Volumenelement des zu formenden Bauteils. Auf diese Weise wird sukzessive eine feste Materialschicht gebildet, die sich über die ihr jeweils zugeordnete Querschnittsfläche und -form des zu formenden Bauteils erstreckt. Im folgenden Schritt wird auf die zuvor gebildete feste Schicht des Bauteils eine weitere Pulverschicht aufgetragen, die in derselben Weise mittels des Laserstrahls zu einer stoffschlüssig an die zuvor gebildete Bauteilschicht angebundene Schicht verfestigt wird. Dieser Vorgang wird solange wiederholt, bis das Bauteil fertig aufgebaut ist. Der Aufbau des Bauteils wird dabei in der Praxis computergestützt unter Berücksichtigung von Volumen- Schichtdatensätzen erfolgen, die sich mit dem Fachmann bekannten Computerprogrammen erzeugen lassen.
Beim LMD-Verfahren, auch "Laserauftragsschweißen" genannt, erzeugt ein Laser ein lokal begrenztes Schmelzbad auf einer Oberfläche eines Bauteils und schmilzt zeitgleich in das Schmelzenbad eingebrachtes Pulvermaterial auf.
Auch hier erstarrt die so gebildete Schmelze zu einem festen Abschnitt des aufzubauenden Bauteils. Material kann auf diese Weise selektiv aufgetragen und auf diese Weise sukzessive ein Bauteil geformt werden.
Beim WAAM-Verfahren, auch Lichtbogendrahtauftragsschweißen genannt, wird wie beim konventionellen Lichtbogenschweißen mittels eines Schweißbrenners, durch den ein Schweißdraht geführt wird, ein lokal begrenztes Schmelzbad erzeugt, das anschließend zu einem festen Abschnitt des aufzubauenden Bauteils erstarrt. Durch eine Relativbewegung von Brenner und Bauteil kann auf diese Weise beliebigen Konturen folgend Material aufgetragen und so das zu formende Bauteil sukzessive aufgebaut werden.
In der Praxis besteht ein großer Bedarf an komplex geformten Werkzeugen, die hohe Anforderungen an ihre tribo-mechanischen Eigenschaften erfüllen. Es ist daher versucht worden, Werkzeugstähle, deren Eigenschaftsprofil diesen Anforderungen genügt, mittels additiver Fertigungsverfahren, wie L-PBF (Laser- Powder Bed Fusion) oder LMD (Laser-Metal- Deposition) für die Herstellung von Werkzeugen nutzbar zu machen, die für die Ur- und Umformung von Metallen, Keramiken, Polymeren und desgleichen eingesetzt werden sollen. Die additive Fertigung solcher Werkzeuge wird auch als "Rapid Tooling" bezeichnet und erlaubt die Erzeugung komplexer Werkzeuggeometrien, die in dieser Form in konventioneller, subtraktiver Fertigungsweise nicht darstellbar wären.
Für die additive Werkzeugerzeugung wird derzeit typischerweise auf Pulver zurückgegriffen, die aus Maraging-Stählen ("martensitic-agina") bestehen. Ein Beispiel für diesen Stahltyp ist der unter der DIN-Werkstoffnummer 1.2709 genormte Stahl, der aus, alle Angaben in Masse-%, < 0,03 % C, < 0,25 % Cr, < 0,15 % Mn, < 0,1 % P, < 0,1 % S, < 0,05 % Si, 0,8 - 1,20 % Ti, 4,5 - 5,2 % Mo, 17,0 - 19,0 % Ni, Rest Fe und technisch unvermeidbaren Verunreinigungen besteht. Die martensitische Härtung geht bei Maraging-Stählen auf die Absenkung der Austenit-Ferrit-Umwandlungstemperatur ("g -» a- Umwandlung") durch erhöhte Co- und Ni-Gehalte und die damit verbundene Bildung einer hohen Versetzungsdichte als Folge der Umwandlung zurück.
Dabei können die aus dem Stahl 1.27Ö9 geformten Bauteile zur weiteren Festigkeitserhöhung einem Aushärten bei Temperaturen im Bereich von 450 °C bis 500 °C unterzogen werden, bei dem sich in Folge der Anwesenheit von Elementen wie AI, Ti und Ni feine festigkeitssteigernde intermetallische Phasen in der Metallmatrix ausbilden. Gleichzeitig bleibt die weichmartensitische Matrix des Bauteils erhalten. Diese gewährleistet eine ausreichend hohe Zähigkeit, so dass das Niveau der thermisch- und umwandlungsbedingten Eigenspannungen im Bauteil trotz hoher Abkühlgeschwindigkeiten so niedrig bleibt, dass eine Rissbildung vermieden wird.
Wegen seiner daraus folgenden geringen Tendenz zur Kaltrissbildung konnte Pulver, dessen Partikel aus dem Maraging-Stahl 1.2709 bestehen, beispielsweise für die additiv erfolgende Herstellung von Werkzeugen für den Kunststoffspritzguss qualifiziert werden. Für die Herstellung von Werkzeugen für die Metallverarbeitung und Metallbearbeitung erweist sich der Stahl 1.2709 jedoch allenfalls eingeschränkt als einsatzfähig, da er insbesondere eine für diese Anwendungen unzureichende Härte und eine eingeschränkte Beständigkeit bei Einsatztemperaturen besitzt, die oberhalb von 500 °C liegen.
Aus diesem Grunde wurde in den letzten Jahren versucht, im Markt verfügbare Werkzeugstähle, von denen es bekannt ist, dass sie das Potenzial für eine höhere Härte oder Temperaturbeständigkeit mitbringen, als Werkstoff für Pulver für die additive Fertigung zu nutzen. Ein Beispiel hierfür ist der unter der Bezeichnung „H13“ bekannte Warmarbeitsstahl, der unter der DIN- Werkstoffnummer 1 .2344 genormt ist und aus, in Masse-%, 0,35 - 0,42 % C, 0,80 - 1 ,20 % Si, 0,25 - 0,5 % Mn, < 0,030 % P, < 0,020 % S, 4,80 - 5,50 %
Cr, 1 ,20 - 1 ,50 % Mo, 0,85 - 1 ,15 % V, Rest Fe und sonstigen technisch unvermeidbaren Verunreinigungen besteht. Ein anderes Beispiel ist der Schnellarbeitsstahl M2, der unter der DIN-Werkstoffnummer 1.3343 genormt ist und aus, in Masse-%, 0,86 - 0,94 % C, 3,80 - 4,50 % Cr, < 0,40 % Mn, < 0,030 % P, < 0,030 % S, < 0,45 % Si, 1 ,70 - 2,0 V, Rest Fe und sonstigen technisch unvermeidbaren Verunreinigungen besteht. Das Gefüge dieser Stähle besteht im Zustand „Guss“ aus einer kohlenstoffmartensitischen Metallmatrix, in der Anlasskarbide als Folge einer Anlassbehandlung nach vorangegangener Härtung vorliegen.
Ein weiteres Beispiel ist der ebenfalls zu den Schnellarbeitsstählen gehörende Stahl „M2“, der auch als „Premium 1.3343 Stahl“ angeboten wird und zusätzlich zu den für den Stahl 1.3343 vorgesehenen Gehalten an Legierungselementen mit hohen Gehalten an W und Mo legiert ist. Gemäß einer handelsüblichen Züsammensetzung besteht ein Premium 1.3343 Stahl aus, in Masse-%, 0,80 - 0,88 % C, < 0,40 % Mn, < 0,45 % Si, 3,80 - 4,50 % Cr, 1 ,70 - 2,10 % V, 5,90 - 6,70 % W, 4,70 - 5,20 % W und als Rest aus Fe und sonstigen technisch unvermeidbaren Verunreinigungen. Die hohen W- und Mo-Gehalte gewährleisten die Bildung eutektischer Karbide vom Typ M2C und MeC. In Folge seines Eigenschaftsspektrums ist der Stahl „M2“ für die Herstellung von Werkzeugen für die spanabhebende Bearbeitung von Metallen oder Werkzeugen geeignet, die bei Benutzung hohen abrasiven Belastungen bei erhöhten Temperaturen ausgesetzt sind.
Praktische Erfahrungen zeigen, dass es bei der Verarbeitung von Stahlpulvern, die aus den voranstehend erläuterten Werkzeugstählen bestehen, zur Kaltrissbildung kommt, wenn sie mittels L-PBF oder LMD verarbeitet werden.
Die Entstehung der Kaltrisse kann auf die Bildung von Martensit aus der unterkühlten Restaustenitmatrix und der anschließenden starken Zunahme von Zugeigenspannungen als Folge der geringen Plastizität des Martensits zurückgeführt werden. Um dieses Problem zu beseitigen, ist in mehreren Arbeiten eine Vorwärmung zumindest der Teile der für das jeweilige additive Fertigungsverfahren eingesetzten Maschine vorgeschlagen worden, die mit dem additiv zu fertigenden Bauteil unmittelbar in Kontakt kommen. Auch ist es bekannt, den gesamten Bauraum der Maschine, in dem der Aufbau des zu formenden Bauteils stattfindet, auf einer erhöhten Vorwärmtemperatur zu halten. Liegt die Vorwärmtemperatur oberhalb der Martensitstarttemperatur, d.h. der Temperatur, bei deren Unterschreiten sich Martensit bildet, so kann durch die so erfolgende Wärmeeinbringung und eine Prozessführung bei erhöhter Temperatur die Martensitbildung während des Aufbaus des zu formenden Bauteils vermieden werden. Jedoch lässt sich auch mit Vorwärmtemperaturen unterhalb der Martensitstarttemperatur die Gefahr von Rissbildung reduzieren, da das zu dem Bauteil additiv aufgebaute Material langsamer abkühlt und so einerseits mehr Zeit hat, durch plastisches Fließen bei erhöhter Temperatur Spannungen abzubauen, und sich andererseits durch die langsamere Abkühlung Phasenfelder durchlaufen werden können, die eine höhere Zähigkeit und ein höheres plastisches Verformungsvermögen aufweisen.
Die Vorwärmung hat allerdings gerade beim L-PBF-Verfahren eine verstärkte Oxidation des nicht umgeschmolzenen Pulverbetts zur Folge, was dessen Rezyklierfähigkeit limitiert. Zusätzlich kann die Vorwärmung zur Vergröberung des Gefüges führen mit der Folge, dass die grundsätzlich erzielbare feinzellulare Gefügeausbildung des Bauteils und der damit verbundene Festigkeitsanstieg nicht erreicht werden. Aus Gründen der Ressourceneffizienz (Pulverwiederverwendung) und mit Blick auf den Erhalt der guten mechanischen Eigenschaften wird daher grundsätzlich angestrebt, Werkstoffe der hier diskutierten Art ohne zusätzliche Erwärmung zu verarbeiten.
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik hat sich daher die Aufgabe ergeben, ein für die Verwendung in einem additiven Fertigungsverfahren geeignetes Stahlmaterial zur Verfügung zu stellen, das ein fehlstellen-, eigenspannungs- und verzugsarmes Formen von Bauteilen durch additive Fertigung erlaubt, ohne dass dazu eine Vor- oder Nachwärmung erforderlich ist.
Die Erfindung hat diese Aufgabe durch das in Anspruch 1 angegebene Stahlmaterial gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
Ein erfindungsgemäßes Stahlmaterial zum Formen von Bauteilen durch additive Fertigung, besteht demnach aus einem Stahl mit folgender Zusammensetzung:
C: 0,28 - 0,65 Masse-%,
Co: < 10,0 Masse-%,
Cr: 3,5 - 12,5 Masse-%, optional Mo: 0,5 - 12,5 Masse-%
- wobei die Summe der Gehalte an Cr und Mo 4 - 16 Masse-% beträgt,
- wobei das gemäß der Formel
Ni_eq [Masse-%] = 30 %C + %Ni + 0,5 %Mn mit %C: jeweiliger C-Gehalt in Masse-%,
%Ni: jeweiliger Ni-Gehalt in Masse-%,
%Mn: jeweiliger Mn-Gehalt in Masse-%, berechnete Ni-Äquivalent Ni_eq folgende Bedingung (1) erfüllt:
(1) 10 Masse-% < Ni eq < 20 Masse-%, und im Stahl zur Erfüllung von Bedingung (1) erforderlichenfalls neben C jeweils optional bis zu 9 Masse-% Mn und/oder bis zu 4,5 Masse-%
Ni vorhanden sind, - wobei das gemäß der Formel
Cr_eq [Masse-] = %Cr + %Mo + 1 ,5 %Si + 0,5 %Nb + 2 %XX mit %Cr: jeweiliger Cr-Gehalt in Masse-%,
%Mo: jeweiliger Mo-Gehalt in Masse-%,
%Si: jeweiliger Si-Gehalt in Masse-%,
%Nb: jeweiliger Nb-Gehalt in Masse-%,
%XX: die jeweilige Summe der Gehalte an mindestens einem Element der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“, in Masse-%, berechnete Cr-Äquivalent Cr_eq folgende Bedingung (2) erfüllt:
(2) 4 Masse-% Cr_eq ^ 16 Masse-% und im Stahl zur Erfüllung von Bedingung (2) neben Cr und dem optional vorhandenen Gehalt an Mo erforderlichenfalls jeweils optional zusätzlich bis zu 2 Masse-% Si, bis zu 2 Masse-% Nb und/oder mindestens ein mono-karbidbildendes Element der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ vorhanden sind, wobei der Massenanteil der Elemente dieser Gruppe in Summe höchstens gleich dem maximalen Massenanteil von 2 % ist, den Ti maximal einnehmen darf, wenn Ti von den Elementen der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ Ti alleine vorhanden ist,
- und wobei der nicht durch die Gehalte an den voranstehend aufgezählten Elementen eingenommene Rest des Stahls aus Eisen und technisch unvermeidbaren Verunreinigungen besteht, deren Gesamtgehalt i 0,5 % ist und zu denen < 0,025 % P und < 0,025% S gehören.
Die Erfindung stellt somit einen kohlenstoffmartensitisch härtbaren Ausgangswerkstoff auf Fe-Basis zur Verfügung, der mit Molybdän („Mo“) und Chrom („Cr“) legiert ist und mit dem Bauteile durch schichtweise Kompaktierung oder in Form eines Grünlings aufgebaut und mit einer Energiequelle (bspw. Laser, Elektronenstrahl, Lichtbogen, Flamme, Induktion, Wärmestrahlung) kompaktiert werden können.
Bei den nachfolgenden Erläuterungen wird auf die beigefügten Figuren Bezug genommen, von denen
Fig. 1 ein Diagramm darstellt, in dem über die Temperatur T die Entwicklung der Eigenspannung se aufgetragen ist, die sich bei der Verarbeitung von martensitisch härtenden Stählen im L-PBF-Verfahren einstellt;
Fig.2 ein Diagramm darstellt, in dem der Restaustenitgehalt RA über die Martensitstarttemperatur Ms aufgetragen ist;
Fig. 3 ein Diagramm darstellt, in dem für verschiedene Stahlmaterialproben die sich bei einer Verarbeitung im L-PBF-Verfahren einstellenden Eigenspannungen sE über den Restaustenit-Gehalt aufgetragen sind;
Fig. 4 ein Diagramm darstellt, in dem für erfindungsgemäß erzeugte und beschaffene Proben die Kernporosität (ohne Berücksichtigung von Konturanbindungsfehlern) der mittels L-PBF verarbeiteten Modelllegierung als Funktion der Belichtungszeit aufgetragen ist;
Fig. 5 ein Diagramm darstellt, in dem für ein mittels L-PBF verarbeitetes erfindungsgemäßes Stahlmaterial ermittelte Härte-Anlasskurven wiedergegeben sind.
Die Legierung des Stahls eines erfindungsgemäßen Stahlmaterials ist so eingestellt, dass die Martensitstarttemperatur "Ms" eines erfindungsgemäßen Stahlmaterials und damit verbunden die sogenannte "Umwandlungsplastizität" in Richtung niedriger Temperaturen verschoben ist. So sollte das Minimum der in Fig. 1 gezeigten Kurve (1) im besten Fall bei Raumtemperatur "RT" vorliegen, wie in Fig. 1 durch die gestrichelt dargestellte Variante der Kurve (1) angedeutet. Mit abfallender Ms-Temperatur fällt auch die Temperatur, bei der die Martensitbildung abgeschlossen ist ("Martensit-Finish") unterhalb RT, so dass vermehrt umgewandelter Austenit, sogenannter Restaustenit ("RA"), im Gefüge verbleibt. Die Ms-Temperatur kann nach dem Ansatz von Andrews, veröffentlicht in K. W. Andrews: Empirical Formulae for the Calculation of Some T ransformation Temperatu res. In: JISI. Vol 302, 1965, S. 721-727, wie folgt berechnet werden:
Ms [°C] = Ms,0 - Ifleg(Ma-%)leg mit MS,0 = 539 °C fleg(C) = 423 fleg(Mn) = 30,4 fleg(Cr) = 12,1 fleg(Mo) = 7,5 fleg(Ni) = 17,7
(Ma-%)ieg: jeweiliger Gehalt an C, Mn, Cr, Mo, Ni
Die Beziehung zwischen RA und Ms kann über die Gleichung von Koistinen und Marburger, veröffentlicht in D. P. Koistinen, R. E. Marburger: A General Equation Prescribing the Extent of the Austenite-Martensite-Transformation in Pure Iran Carbon-Alloys and Plain Carbon Steels. In: Acta Metallurgica. 7,
1959, S. 59-60, wie folgt berechnet werden:
RA= exp[-B(Ms-TU)]; mit B(20°C) = 1,1 x 102 x 1/°C;
TU: unterhalb der Martensitstarttemperatur Ms liegende Temperatur, auf die die jeweils betrachtete Stahlprobe abgekühlt ist („Unterkühlungstemperatur“) Die Erfindung hat hier durch legierungstechnische Maßnahmen die Ms-
Temperatur derart reduziert, dass durch die Umwandlungsplastizität eine Spannungsneutralität im durch L-PBF geformten Bauteil erreicht wird.
Anhand der Figuren 2 und 3 lässt sich die Korrelation zwischen der Martensitstarttemperatur Ms, dem Gehalt an Restaustenit RA und der Eigenspannung se nachvollziehen.
In Fig. 2 ist der Zusammenhang von RA-Gehalt und Ms-Temperatur aufgezeigt. Es ergibt sich eine lineare Näherungskurve ("Fit"), bei der mit zunehmender Ms- Temperatur der RA-Gehait abfällt. Aus Fig. 3 ergibt sich dabei, dass mit zunehmendem RA-Gehalt die Eigenspannungen se abfallen, so dass bei Erreichen von einem RA-Grenzgehalt von 14 Vol.-% im Mittel Spannungsneutralität vorliegt. Dabei ist in Fig. 3 auch der RA-Gehalt und das Niveau der Eigenspannungen eingezeichnet, die sich bei Verarbeitung eines Pulvers einstellen, dessen Partikel aus dem unter der Bezeichnung 316L bekannten austenitischen Stahl bestehen (Cr: 17,00 - 19,00 %, Ni:
13,00 - 15,00 %, Mo: 2,25 - 3,0 %, C: < 0,030 %, Mn: < 2,00 %, Cu < 0,50 %,
P: ^ 0,025 %, Si: < 0,75 %, S: < 0,010 %, N: < 0,10 %, Rest Fe, Angaben in Masse-%, s. Material Datenblatt EOS StainlessSteel 316L, veröffentlicht von der EOS GmbH, Krallingen, DE, 5.2014, https://www.eos.info/de/additive- fertigung/3d-druck-metall/eos-metall-werkstoffe-dmls/edelstahl).
Die Legierung eines erfindungsgemäßen Stahlmaterials ist somit so gestaltet, dass sich, wenn aus ihm durch ein additives Fertigungsverfahren ein Bauteil geformt wird, im erhaltenen Bauteil ein Restaustenitanteil RA von mindestens 10 Vol.-%, insbesondere mindestens 15 Vol.-%, einstellt. Fig. 2 zeigt dazu, dass sich derartige RA-Gehalte bei einer Martensitstarttemperatur Ms von kleiner 260 °C ergeben.
Die Martensitstarttemperatur Ms und somit der RA-Gehalt lassen sich über die chemische Zusammensetzung gezielt einstellen. Zusätzlich lassen sich die Einflüsse der einzelnen Legierungselemente auf den Restaustenitgehalt RA durch das Ni-Äquivalent und das Cr-Äquivalent abschätzen.
Die Festlegung der Legierung des erfindungsgemäßen Stahlmaterials erfolgte demgemäß unter Berücksichtigung der Wirkung, die die einzelnen Legierungselemente auf die im Gefüge eines aus erfindungsgemäßem Stahlmaterial erzeugten Stahls durch additive Fertigung enthaltenen Phasen Austenit (RA) und Ferrit haben. Die Elemente Ni, Co, C, Mn und N stabilisieren die Phase Austenit, wogegen die Karbidbildner der 3. bis 6. Nebengruppenelemente und zusätzlich Si die Phase Ferrit stabilisieren. Die stabilisierende Wirkung, die von jedem Legierungselement ausgeht, lässt sich über das Cr-Äquivalent "Cr_eq" und das Ni-Äquivalent "Ni_eq" beschreiben, die gemäß Schaeffler, veröffentlicht in P. Guiraldenq, O. H. Duparc: The genesis of the Schaeffler diagram in the history of stainless Steel, In: Metal. Res. Technol. 114, 613, 2017, S. 1-9, berechnet werden können.
Ausgehend von den voranstehend erläuterten Erkenntnissen hat die Erfindung folgende für Ni_eq und Cr_eq Randbedingungen abgeleitet:
- Das Ni-Äquivalent Ni_eq soll mindestens 10 Masse-% und höchstens 20 Masse-% betragen (10 Masse-% < Ni_eq < 20 Masse-%).
- Das Cr-Äquivalent Cr eq soll mindestens 4 Masse-% und höchstens 16 Masse-% betragen (4 Masse-% < Cr_eq < 16 Masse-%).
Durch die erfindungsgemäße Abstimmung des Ni- und des Cr- Äquivalents eines erfindungsgemäßen Stahlmaterials ist sicher gewährleistet, dass Bauteile, die aus erfindungsgemäßem Stahlmaterial erzeugt werden, rissfrei sind und nur minimierte thermisch bedingte Eigenspannungen aufweisen, ohne dazu zusätzliche technische Maßnahmen, wie Vorwärmung oder Wärmenachbehandlung, durchgeführt werden müssen. Das Ni-Äquivalent erfindungsgemäßer Werkstoffe liegt im Bereich von 10 -20 Masse-%. Dabei haben sich erfindungsgemäß legierte Werkstoffe, deren Ni- Äquivalente 12 - 20 Masse-%, insbesondere mindestens 12,00 Masse-% oder mehr als 12 Masse-%, betragen, mit Blick auf das erfindungsgemäß angestrebte Eigenschaftsprofil als besonders geeignet erwiesen, wobei hier der Ni-Äquivalent vorzugsweise auf höchstens 20,00 Masse-%, insbesondere < 20 Masse-% beschränkt ist.
Das Cr-Äquivalent erfindungsgemäßer Werkstoffe beträgt 4 - 16 Masse-%, wobei sich Cr-Äquivalente von mindestens 5,50 Masse-%, insbesondere mehr als 5,5 Masse-% oder mindestens 5,70 Masse-%, als besonders vorteilhaft erwiesen haben.
Optimierte Eigenschaften eines erfindungsgemäßen Stahlmaterials können dabei dadurch erreicht werden, dass die Summe der Cr- und Ni-Äquivalente
22.5 - 30 Masse-%, insbesondere mindestens 23,00 Masse-%, beträgt. Dabei lassen sich die durch die Erfindung angestrebten Effekte insbesondere dann erreichen, wenn die Summe der Cr- und Ni-Äquivalente mindestens
23.5 Masse-% oder mindestens 24,00 Masse-%, wie beispielsweise 25 Masse- %, oder mehr als 25 Masse-% beträgt.
Die Gehalte an den einzelnen Legierungselementen sind dabei wie folgt festgelegt:
Kohlenstoff ("C") ist im erfindungsgemäßen Stahlmaterial in Gehalten von 0,28 Masse-% bis 0,65 Masse-% enthalten, um die kohlenstoffmartensitische Umwandlung während der Werkstoffprozessierung zu erzielen. Hierzu sind mindestens 0,28 Masse-% C erforderlich, wobei sich dieser Effekt bei C- Gehalten von mindestens 0,45 Masse-% besonders sicher erzielen lässt. C- Gehalte von mehr als 0,65 Masse-% würden zur Bildung eines zu hohen Restaustenit-Gehaltes führen, mit denen sich die anvisierten tribo- mechanischen Eigenschaften nicht realisieren lassen würden. Zudem würde bei zu hohen C-Gehalten die Martensitstarttemperatur Ms derart abgesenkt, dass die eigenspannungsreduzierende Wirkung durch die Umwandlungsplastizität erst bei unterhalb der Raumtemperatur liegenden Temperaturen eintritt und die durch die Erfindung genutzten Effekte nicht wirksam würden. Solche ungünstigen Auswirkungen zu hoher C-Gehalte können im erfindungsgemäßen Werkstoff erforderlichenfalls dadurch besonders sicher vermieden werden, dass der C-Gehalt auf höchstens 0,60 Masse-% begrenzt wird. Eine für die Praxis besonders vorteilhafte Ausgestaltung der Erfindung sieht daher vor, dass der C- Gehalt eines erfindungsgemäßen Stahlmaterials 0,40 - 0,60 Masse-% beträgt.
Chrom ("Cr") ist in einem erfindungsgemäßen Stahlmaterial in Gehalten von 3,5 Masse-% bis 12 Masse-% vorhanden.
Molybdän ("Mo") kann im erfindungsgemäßen Stahlmaterial optional in Gehalten von 0,5 Masse-% bis 12,5 Masse-% vorhanden sein.
Bei Cr-Gehalten von mindestens 3,5 Masse-% kann Molybdän Chrom im Verhältnis 1:1 substituieren. Im Fall, dass Cr in einem Gehalt von mindestens 3,5 % und Mo in einem Gehalt von mindestens 0,5 Masse-% gleichzeitig vorhanden sind, leisten Mo und Cr somit denselben Beitrag zur Einstellung des Cr-Äquivalents Cr eq.
Der Cr-Gehalt und der optionale Mo-Gehalt des Stahls eines erfindungsgemäßen Stahlmaterials sind so eingestellt, dass das Cr-Äquivalent im erfindungsgemäß vorgegebenen Bereich stabilisiert wird und auf diese Weise unter gleichzeitiger Berücksichtigung der erfindungsgemäß für das Ni- Äquivalent vorgeschriebenen Maßgaben die Martensitstarttemperatur Ms des Stahls in einen von 125 °C bis 260 °C, insbesondere bis 200 °C, reichenden Temperaturbereich verschoben ist, ein Restaustenitanteil von mindestens 10 Vol.-%, insbesondere mindestens 15 Vol.-%, im Gefüge des jeweils erzeugten Bauteils stabilisiert ist und der Effekt der Umwandlungsplastizität bei Raumtemperatur maximal zur Geltung kommt. Wie voranstehend erläutert, kann dabei erfindungsgemäß die Maßgabe, dass die Summe der Gehalte an Cr und Mo 4 Masse-% bis 16 Masse-% betragen soll, dadurch erfüllt werden, dass 4,0 Masse-% bis 12,5 Masse-% Cr im Stahl des erfindungsgemäßen Stahlmaterials vorhanden sind, wenn Mo darin fehlt, oder dadurch, dass mindestens 3,5 Masse-% Cr vorhanden sind und gleichzeitig mindestens 0,5 Masse-% Mo im Stahl enthalten sind, wobei die jeweils vorhandenen Cr- und Mo-Gehalte in diesem Fall so aneinander angepasst werden, dass ihre Summe 16 Masse-% nicht überschreitet.
Die vorteilhaften Einflüsse der Anwesenheit von Cr im Stahl des erfindungsgemäßen Stahlmaterials können besonders sicher dann genutzt werden, wenn die Gehalte an Cr mindestens 4,5 Masse-% betragen, wobei sich bei Cr-Gehalten von mindestens 5,0 Masse-%, insbesondere mindestens
5.5 Masse-%, die durch die Anwesenheit von Cr erzielten Effekte besonders betriebssicher nutzen lassen. Bei Cr-Gehalten von mehr als 12,5 Masse-% könnte es dagegen zu einer zu starken Segregation von Cr in der Restschmelze kommen, was mit vermehrter Karbidbildung einhergeht. Der in Karbiden abgebundene Cr-Gehalt trägt nicht zur Einstellung der Umwandlungstemperaturen der Metallmatrix bei. Besonders zuverlässig lässt sich die positive Wirkung der Anwesenheit von Cr im erfindungsgemäßen Stahlmaterial bei Gehalten von mindestens 6 Masse-% Cr nutzen. Cr-Gehalte von bis zu 10 Masse-%, insbesondere bis zu 10,00 Masse-% oder weniger als 10 Masse-%, im erfindungsgemäßen Stahlmaterial haben sich dabei als besonders praxisgerecht erwiesen.
Gehalte von mindestens 0,75 Masse-% Mo tragen ebenso zu den vorteilhaften Eigenschaften erfindungsgemäßen Stahlmaterials bei. Gehalte von mehr als
12.5 Masse-% Mo würden dazu führen, dass bei einem Mindestgehalt von
3.5 Masse-% Cr die Summe der Gehalte an Cr und Mo die Obergrenze von 16,0 Masse-% überschreiten würde. Mit derart hohen Gesamtgehalten an Cr und Mo würden keine weiteren Steigerungen der Wirkung dieser Elemente erzielt. Besonders effektiv lassen sich die durch die Anwesenheit von Mo im erfindungsgemäßen Stahlmaterial erzielten Effekte bei Mo-Gehalten von bis zu 8 Masse-%, insbesondere bis zu 4 Masse-%, nutzen.
Die weiteren Legierungsbestandteile Mangan („Mn“), Nickel („Ni“), Silizium („Si“), Niob („Nb“), sowie Titan („Ti“), Scandium („Sc“), Yttrium („Y“), Zirkon („Zr“), Hafnium (,,Hf), Vanadium („V“) oder Tantal („Ta“) können in dem Stahl eines erfindungsgemäßen Stahlmaterials jeweils wahlweise vorhanden sein, um das Nickel-Äquivalent Ni_eq und das Cr-Äquivalent Cr_eq den Maßgaben der Erfindung entsprechend einzustellen. Mn und Ni werden dem Stahl dabei erforderlichenfalls zur Einstellung des Ni-Äquivalents Ni_eq dienen. Si, Nb, Ti, Sc, Y, Zr, Hf, V, Ta können dagegen im Stahl des erfindungsgemäßen Stahlmaterials vorgesehen sein, um das Cr-Äquivalent in den erfindungsgemäßen Bereich zu bringen.
Da der C-Gehalt in die Berechnung des Ni-Äquivalents Ni_eq mit Faktor 30 eingeht, ergibt sich bei C-Gehalten von mehr als 0,33 Masse-% bereits ein Ni- Äquivalent Ni_eq von mindestens 10,0 Masse-%. Die erfindungsgemäß an den Wert des Nickel-Äquivalents Ni_eq gestellte Anforderung lässt sich also schon erfüllen, wenn C alleine in ausreichend hohen Gehalten vorhanden ist. Jedoch kann auch die Anwesenheit von Ni im Stahl unabhängig von der Einstellung des Ni-Äquivalents Ni_eq positive Einflüsse auf die Eigenschaften eines erfindungsgemäßen Stahlmaterials, wie eine Steigerung der Zähigkeit, haben. Soll dieser Effekt genutzt werden, so können hierzu mindestens 0,25 Masse-% Ni, insbesondere mindestens 0,5 Masse-% Ni, vorgesehen sein. Jedoch soll der Ni-Gehalt 4,5 Masse-%, insbesondere 3,0 Masse-%, nicht überschreiten, um einen zu starken Anstieg des Ni-Äquivalents zu vermeiden. Als besonders praxisgerecht erweisen sich Ni-Gehalte im erfindungsgemäßen Stahlmaterial von 0,75 - 1 ,25 Masse-%.
Wegen seiner vergleichbaren Wirkung können Gehalte an Mn im erfindungsgemäß legierten Stahl Gehalte an Ni im Verhältnis 2:1 substituieren, soweit erforderlich. So können beispielsweise 1 Masse-% Ni durch 2 Masse-% Mn ersetzt werden. Der Mn-Gehalt soll jedoch auf höchstens 9 Masse-%, insbesondere höchstens 7 Masse-%, beschränkt bleiben, um einen zu großen Anstieg des Ni-Äquivalents zu vermeiden. Die Wirkung von Mn lässt sich bereits bei Gehalten von mindestens 0,25 Masse-% Mn nutzen, wobei sich Mn- Gehalte von mindestens 0,5 Masse-% oder mindestens 1,0 Masse-%, insbesondere mindestens 2 Masse:% als vorteilhaft herausgestellt haben. Gemäß einer besonders praxisgerechten Ausgestaltung enthält ein erfindungsgemäßes Stahlmaterial dementsprechend 2 - 3 Masse-% Mn.
Silicium "Si" hat eine vergleichbar starke Wirkung auf den Wert des Cr- Äquivalents und kann dem Stahl eines erfindungsgemäßen Stahlmaterials zugegeben werden, wenn es zur Desoxidation bei der Stahlerzeugung benötigt wird. Im Fall, dass das erfindungsgemäße Stahlmaterial in Pulverform bereitgestellt werden soll, können Si-Gehalte von mindestens 0,15 Masse-%, insbesondere 0,75 Masse-%, zur Einstellung einer für das Verdüsen der Schmelze zu Pulverpartikeln günstigen Schmelzenviskosität genutzt werden. Jedoch können zu hohe Gehalte an Si unter anderem die mechanischen Eigenschaften eines aus erfindungsgemäßen Stahl erzeugten Bauteils beeinträchtigen. Daher ist der Si-Gehalt auf höchstens 2 Masse-% beschränkt. Besonders effektiv nutzen lassen sich die positiven Einflüsse von Si bei Gehalten von höchstens 1 ,25 Masse-%.
Zur Einstellung des Cr-Äquivalents nach Maßgabe der Erfindung können wahlweise auch ein mono-karbidbildendes Element oder mehrere mono karbidbildende Elemente der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ genutzt werden. Von diesen Elementen besonders geeignet für die erfindungsgemäßen Zwecke ist Ti, das bevorzugt als einziges der mono-karbidbildenden Elemente dieser Gruppe im erfindungsgemäßen Stahl eingesetzt wird und dann in Gehalten von bis zu 2 Masse-% vorhanden sein kann.
Die anderen Elemente der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ können in Kombination oder als Ersatz für Ti dem Stahl zugegeben werden. Jedoch wird der Gehalt an den betreffenden Elementen jeweils so eingestellt, dass der Gesamtgehalt an den Elementen der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ die für Ti alleine geltende Obergrenze des Gehalts nicht überschreitet. Dies bedeutet, dass der Massenanteil der Gehalte der jeweils im Stahl vorhandenen Elemente der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ erfindungsgemäß in Summe nicht größer sein soll als der Massenanteil von 2 %, der maximal für Ti zugelassen ist, wenn von den Elementen der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ nur Ti im Stahl vorhanden ist. Dementsprechend berechnet sich im Fall, dass das jeweilige Element alleine zugegeben werden soll, der maximal zulässige Sc-Gehalt zu 47,867/44,956 x 2 Masse-% = 2,13 Masse-%, der maximal zulässige Gehalt an Y zu 47,867/ 88,906 x 2 Masse-% = 1 ,08 Masse-%, der maximal zulässige Gehalt an Zr zu 47,867/91 ,224 x 2 Masse-% = 1 ,05 Masse-%, der maximal zulässige Gehalt an Hf zu 47,867/178,49 x 2 Masse-% = 0,54 Masse-% , der maximal zulässige Gehalt an V zu 47,867/50,942 x 2 Masse-% - 1 ,88 Masse-% und der maximal zulässige Gehalt an Ta zu 47,867/ 180,95 x 2 Masse-% = 0,53 Masse-%. Im Fall, dass zwei oder mehr Elemente der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ der mono-karbidbildenden Elemente dem Stahl eines erfindungsgemäßen Stahlmaterials zugegeben werden sollen, so sind deren Gehalte dementsprechend so einzustellen, dass ihr Massenanteil in Summe höchstens gleich dem Massenanteil ist, den 2 Masse-% Ti einnehmen, wenn Ti alleine zugegeben würde. So könnten beispielsweise an Stelle von 2 % Ti dem Stahl auch bis zu 0,94 Masse-% V in Kombination mit bis zu 0,5 Masse-% Zr zugegeben werden.
Kobalt („Co“) kann dem Stahl eines erfindungsgemäßen Stahlmaterials optional zugegeben werden, um die Ausbildung des Sekundärhärtemaximums in Richtung höherer Anlasstemperaturen sowie die Erhöhung der Solidustemperatur und damit einhergehend die Erhöhung des Lösungszustands durch höhere Härtetemperaturen zu fördern.
Der Rest des Stahls eines erfindungsgemäßen Stahlmaterials, der jeweils nicht durch die Gehalte der erfindungsgemäß in der voranstehend erläuterten Weise zu legierten Legierungselemente eingenommen wird, ist durch Eisen und technisch unvermeidbare Verunreinigungen aufgefüllt, deren Gehalt in Summe maximal 0, 5 Masse-% betragen darf und zu denen bis zu 0,025 Masse-% Phosphor („P“) sowie bis zu 0,025 Masse-% Schwefel („S“) zählen. Zu den Verunreinigungen gehören dabei insbesondere alle hier nicht aufgezählten Elemente des Periodensystems, die nicht gezielt dem Stahl zugegeben werden, jedoch aufgrund der Verarbeitung von Recyclingmaterial oder aufgrund der jeweils bei der Stahlerzeugung und -Verarbeitung eingesetzten Verfahren unvermeidbar in den Stahl gelangen können. Die Gehalte an diesen Elementen sind im Stahl eines erfindungsgemäßen Stahlmaterials in jedem Fall so gering eingestellt, dass sie im technischen Sinne als nicht anwesend angesehen werden, weil sie keinen Einfluss auf die Eigenschaften des erfindungsgemäßen Stahlmaterials haben. Typischerweise zählen dazu hier beispielsweise auch N- Gehalte von weniger als 0,1 % N. Bevorzugt sind dabei die Gehalte an Verunreinigungen so zu begrenzen, dass ihre Summe < 0,3 Masse-%, insbesondere < 0,15 Masse-%, ist, wobei sich Verunreinigungen, deren Gehalte in Summe höchstens 0,05 Masse-% betragen, als hinsichtlich des angestrebten Arbeitsergebnisses besonders vorteilhaft erwiesen haben.
Gemäß einer für die Praxis besonders wichtigen Variante der Erfindung wird das erfindungsgemäße Stahlmaterial als Stahlpulver bereitgestellt, das in konventioneller Weise, beispielsweise durch Verdüsen einer erfindungsgemäß legierten Schmelze, erzeugt wird. Die Korngrößen der Stahlpartikel eines erfindungsgemäß legierten Pulvers betragen dabei typischerweise 15 - 180 pm.
Erfindungsgemäß legiertes Stahlpulver eignet sich aufgrund seiner besonderen Eigenschaften insbesondere für die Verarbeitung mittels der additiven Fertigungsverfahren "L-PBF" oder "LMD". Für das L-PBF-Verfahren eignen sich dabei insbesondere Stahlpulver mit einer Partikel-Korngröße von 15 - 63 pm, während für das LMD-Verfahren Pulverpartikel mit einer Korngröße von 63 - 180 pm geeignet sind. Erforderlichenfalls werden die Partikel der entsprechenden Korngröße aus den handelsüblich erzeugten Pulverpartikeln in konventioneller Weise durch Sieben und/oder Sichten selektiert. Stahlpulver mit einer nach DIN EN ISO 3923-1 bestimmten Schüttdichte von 3,75 g/cm3 bis 5,75 g/cm3, einer nach DIN EN ISO 3953 bestimmten Klopfdichte von 4,25 g/cm3 bis 6,25 g/cm3 und einem gemäß DIN EN ISO 4490 bestimmten Fließverhalten von wpniger als 30 sec/50 g erweisen sich dabei für die Verarbeitung in derartigen Verfahren als besonders geeignet.
Alternativ zu einer Verarbeitung als Pulver kann das erfindungsgemäße Stahlmaterial auch in Drahtform bereitgestellt werden. In dieser Form eignet sich das erfindungsgemäße Stahlmaterial in besonderer Weise zur Verarbeitung im WAAM-Verfahren oder vergleichbaren, auf dem Prinzip des Auftragsschweißens beruhenden additiven Fertigungsverfahren.
Ebenso ist es möglich, das Stahlmaterial in Form eines Hohlkörpers, der mit einem gemäß einem erfindungsgemäß ausgebildeten Stahlpülver gefüllt ist, bereitzustellen. Bei einem solchen Hohlkörper kann es sich typischerweise um einen Fülldraht oder desgleichen handeln. Denkbar ist es dabei, den jeweiligen Hohlkörper, wie einen Fülldraht oder ein Rohr mit den einzelnen Elementen der Legierung eines erfindungsgemäßen Stahlmaterials in Reinform zu füllen, wobei die Massenanteile der betreffenden Elemente an der Füllung unter Berücksichtigung der Legierung und der Masse des Materials, aus dem der Hohlkörper besteht, ihren Gehalten an der Legierung eines erfindungsgemäßen Stahlmaterials entsprechen. Aus dem so gefüllten Hohlkörper bildet sich bei der im Zuge des jeweiligen additiven Fertigungsverfahrens erfolgenden Erschmelzung im Wirkbereich der jeweils eingesetzten Wärmequelle in situ die Legierung des erfindungsgemäßen Stahlmaterials.
Unabhängig davon, in welcher der voranstehend erläuterten Darreichungsformen (Pulver, Draht, Hohlkörper mit Füllung) das erfindungsgemäße Stahlmaterial zur Anwendung kommt, steht mit ihm ein Ausgangsmaterial zur Verfügung, das sich optimal für die Erzeugung von Bauteilen durch additive Fertigung eignet. In der Praxis lässt sich die Erfindung somit durch die Verwendung eines Stahlmaterials, das aus erfindungsgemäß legiertem Stahl besteht, für die additive Fertigung von Bauteilen verwenden. Besonders geeignet ist das erfindungsgemäße Stahlmaterial dabei zur Verwendung in einem L-PBF- oder LMD- oder WAAM-Verfahren.
Dabei lassen sich mit erfindungsgemäßem Stahlmaterial aufgrund seiner Eigenschaftskombination insbesondere durch pulver- oder drahtbasierte additive Fertigung im Einsatz mechanisch oder tribologisch hoch belastete Bauteile oder Werkzeuge erzeugen, die eine optimale Beschaffenheit aufweisen, ohne dass es dazu des Einsatzes von Vorwärmstrategien und desgleichen bedarf.
Die aus erfindungsgemäßem Stahlmaterial erzeugten Bauteile zeichnen sich dabei durch Restaustenitgehalte von typischerweise mindestens 10 Vol.-%, insbesondere mindestens 15 Vol.-%, aus.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
Zur Erprobung der Erfindung wird eine Schmelze erschmolzen, deren Zusammensetzung sowie deren gemäß den oben erläuterten Formeln berechneten Cr-Äquivalent Cr_eq und Ni-Äquivalent Ni eq in Tabelle 1 angegeben sind.
Die Schmelze ist in konventioneller Weise mittels Gasverdüsung zu einem Stahlpulver verdüst worden, aus dem anschließend durch Sieben und Sichten die Partikel selektiert worden sind, die eine für die Verarbeitung im L-PBF- Verfahren geeignete Korngröße von 10 - 63 pm aufwiesen.
Das so erhaltene Stahlpulver ist mit einer unter der Bezeichnung „SLM 100“ von der Firma Realizer angebotenen L-PBF-Anlage unter Verwendung der in Tabelle 2 aufgeführten Prozessparameter zu Probestücken verarbeitet worden. Bei der Verarbeitung des Pulvers wurde keine Bauplattenvorwärmung eingesetzt, wie sie üblicherweise bei der Verarbeitung von martensitisch härtbaren Werkzeugstählen verwendet wird, um der Kaltrissbildung entgegenzuwirken. Auf diese Weise konnte geprüft werden, ob sich die Legierung ohne die Nutzung einer Vorwärmung der Substratplatte defektarm verarbeiten lässt.
Zur Beurteilung der generellen Verarbeitbarkeit der Legierung mittels L-PBF wurden metallographische Schliffe der gefertigten Proben hergestellt und hinsichtlich der Porosität und Rissdichte untersucht.
Fig. 4 zeigt die mittels quantitativer Bildanalyse ermittelten Kernporositätswerte der L-PBF-gefertigten Proben (Porosität im Hatch bereich ohne Berücksichtigung des Konturbereichs). Es ist zu erkennen, dass mit allen gewählten Prozessparametern hohe Probendichten im Hatchbereich erzielt werden können. Dies deutet auf ein vergleichsweise breites Prozessfenster hin, mit dem die Legierung porenarm verarbeitet werden kann. Darüber hinaus konnte nur eine sehr geringe Anzahl von Kaltrissen im Gefüge der L-PBF- gefertigten Legierung nachgewiesen werden. Die Proben waren als weitestgehend rissfrei zu bewerten. Als optimale Parameter wurde eine Belichtungszeit von 110 ps bei einem Punktabstand von 30 pm evaluiert. Insgesamt ist festzuhalten, dass die aus Voruntersuchungen abgeleitete Modelllegierung ohne die Vorwärmung der Substratplatte defektarm mittels L- PBF verarbeitet werden kann.
Zur Bewertung der grundsätzlichen Eignung der Legierung als Werkstoff für Werkzeuganwendungen oder anderweitig verschleißbeanspruchte Bauteile wurde das Härte-Anlassverhalten der mittels L-PBF verarbeiteten Legierung untersucht. Die untersuchten Proben wurden mit dem als gut geeignet identifizierten Parametersatz (Belichtungszeit 110 ps, Punktabstand 30 pm) gefertigt. Im Rahmen der Untersuchungen wurden rasterelektronenmikroskopische
Aufnahmen des geätzten Gefüges der Proben in den jeweiligen Wärmebehandlungszuständen angefertigt sowie die Vickers-Härte bestimmt. Die Untersuchungen erfolgten an Proben in den in Tabelle 3 wiedergegebenen Wärmebehandlungszuständen.
Die Ergebnisse der Härte-Anlassversuche sind in Fig. 5 dargestellt. Es ist ein für sekundärhärtbare, martensitische Werkzeugstähle übliches Härte- Anlassverhalten erkennbar. Eine hohe Ansprunghärte sowie ein ausgeprägtes Sekundärhärtemaximum sind durch geeignete Wärmebehandlung einstellbar und belegen, dass erfindungsgemäße Stahlmaterialien insbesondere für die Herstellung von Werkzeugen durch additive Fertigung geeignet sind.
Tabelle 1 Angaben in Masse-%, Rest Eisen und unvermeidbare Verunreinigungen
Tabelle 2 Übersicht über die verwendeten Prozessparameter zur Verdichtung der Modelllegierung. Effektive Laserleistung = 77,4 W; Schichtdicke = 30 pm; keine Bauplattenvorwärmung.
Tabelle 3

Claims

P A T E N T A N S P R Ü C H E
1 . Stahlmaterial zum Formen von Bauteilen durch additive Fertigung, bestehend aus einem Stahl mit folgender Zusammensetzung:
C: 0,28 - 0,65 Masse-%,
Co: < 10,0 Masse-%,
Cr: 3,5 - 12,5 Masse-%, optional Mo: 0,5 - 12,5 Masse-%
- wobei die Summe der Gehalte an Cr und Mo 4 - 16 Masse-% beträgt,
- wobei das gemäß der Formel
Ni_eq [Masse-%] = 30 %C + %Ni + 0,5 %Mn mit %C: jeweiliger C-Gehalt in Masse-%,
%Ni: jeweiliger Ni-Gehalt in Masse-%,
%Mn: jeweiliger Mn-Gehalt in Masse-%, berechnete Ni-Äquivalent Ni_eq folgende Bedingung (1) erfüllt:
(1) 10 Masse-% < Ni_eq 20 Masse-%, und im Stahl zur Erfüllung von Bedingung (1) erforderlichenfalls neben C jeweils optional bis zu 9 Masse-% Mn und/oder bis zu 4,5 Masse-% Ni vorhanden sind,
- wobei das gemäß der Formel
Cr_eq [Masse-] = %Cr + %Mo + 1 ,5 %Si + 0,5 %Nb + 2 %XX mit %Cr: jeweiliger Cr-Gehalt in Masse-%,
%Mo: jeweiliger Mo-Gehalt in Masse-%,
%Si: jeweiliger Si-Gehalt in Masse-%,
%Nb: jeweiliger Nb-Gehalt in Masse-%, %XX: die jeweilige Summe der Gehalte an mindestens einem Element der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“, in Masse-%, berechnete Cr-Äquivalent Cr_eq folgende Bedingung (2) erfüllt:
(2) 4 Masse-% < Cr_eq < 16 Masse-% und im Stahl zur Erfüllung von Bedingung (2) neben Cr und dem optional vorhandenen Gehalt an Mo erforderlichenfalls jeweils optional zusätzlich bis zu 2 Masse-% Si, bis zu 2 Masse-% Nb und/oder mindestens ein mono-karbidbildendes Element der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ vorhanden sind, wobei der Massenanteil der Elemente dieser Gruppe in Summe höchstens gleich dem maximalen Massenanteil von 2 % ist, den Ti maximal einnehmen darf, wenn Ti von den Elementen der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“ Ti alleine vorhanden ist,
- und wobei der nicht durch die Gehalte an den voranstehend aufgezählten Elementen eingenommene Rest des Stahls aus Eisen und technisch unvermeidbaren Verunreinigungen besteht, deren Gesamtgehalt s 0,5 % ist und zu denen s 0,025 % P und < 0,025% S gehören.
2. Stahlmaterial nach Anspruch 1, dadurch gekennzeichnet, d a s s für die aus dem Cr-Äquivalent und Ni-Äquivalent gebildete Summe Cr_eq + Ni eq gilt
22,5 Masse-% < Cr_eq + Ni_eq < 30 Masse-%.
3. Stahlmaterial nach Anspruch 1, dadurch gekennzeichnet, dass sein C-Gehalt 0,40 - 0,60 Masse-% beträgt.
4. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Cr-Gehalt 5,50 - 10 Masse-% beträgt.
5. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Mo-Gehalt 0,75 - 4 Masse-% beträgt.
6. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Ni-Gehalt 0,75 - 1,25 Masse-% beträgt.
7. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Mn-Gehalt 2-3 Masse-% beträgt.
8. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sein Si-Gehalt 0,75 - 1 ,25 Masse-% beträgt.
9. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass von den Elementen der Gruppe „Sc, Y, Ti, Zr, Hf, V, Ta“, sofern erforderlich, alleine Ti mit einem Gehalt von bis zu 2 Masse-% im Stahl des Stahlmaterials vorhanden ist.
10. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass seine Martensitstarttemperatur Ms 125- 260 °C beträgt.
11. Stahlmaterial nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass es ein Stahlpulver ist.
12. Stahlmaterial nach Anspruch 11, dadurch gekennzeichnet, dass die Partikel des Stahlpulvers eine mittlere Korngröße von 15-180 pm aufweisen.
13. Stahlmaterial nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass das Stahlpulver eine Schüttdichte von 3,75 g/cm3 bis 5,75 g/cm3 (bestimmt nach DIN EN ISO 3923-1) aufweist.
14. Stahlmaterial nach einem der Ansprüche 11 - 13, d a d u r c h gekennzeichnet, dass das Stahlpulver eine Klopfdichte von 4,25 g/cm3 bis 6,25 g/cm3 (bestimmt nach DIN EN ISO 3953) aufweist.
15. Stahlmaterial nach einem der Ansprüche 11 - 14, d a d u r c h gekennzeichnet, dass das Stahlpulver ein gemäß DIN EN ISO 4490 bestimmtes Fließverhalten von weniger als 30 sec/50 g aufweist.
16. Stahlmaterial nach einem der Ansprüche 1-10, dadurch gekennzeichnet, dass es ein Stahldraht ist.
17. Stahlmaterial nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass es ein Hohlkörper ist, der mit einem gemäß einem der Ansprüche 11 bis 15 ausgebildeten Stahlpulver gefüllt ist.
18. Verwendung eines gemäß einem der voranstehenden Ansprüche ausgebildeten Stahlmaterials für die Herstellung von Bauteilen durch ein additives Fertigungsverfahren.
19. Verwendung nach Anspruch 18, d a d u r c h gekennzeichnet, dass das additive Fertigungsverfahren ein Laser-Powder-Bed-Fusion- Verfahren, ein Laser-Metal-Deposition-Verfahren oder ein Wire-Arc- Additive-Manufacturing-Verfahren ist.
20. Verwendung nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, dass der Restaustenitgehalt im Gefüge des Bauteils, das aus dem gemäß einem der Ansprüche 1 - 17 beschaffenen Stahlmaterial erzeugt ist, mindestens 10 Vol.-% beträgt.
EP21729569.0A 2020-06-05 2021-06-02 Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials Withdrawn EP4161720A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020115049.0A DE102020115049A1 (de) 2020-06-05 2020-06-05 Stahlmaterial zum Formen von Bauteilen durch additive Fertigung und Verwendung eines solchen Stahlmaterials
PCT/EP2021/064837 WO2021245158A1 (de) 2020-06-05 2021-06-02 Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials

Publications (1)

Publication Number Publication Date
EP4161720A1 true EP4161720A1 (de) 2023-04-12

Family

ID=76250361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21729569.0A Withdrawn EP4161720A1 (de) 2020-06-05 2021-06-02 Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials

Country Status (4)

Country Link
US (1) US20230220526A1 (de)
EP (1) EP4161720A1 (de)
DE (1) DE102020115049A1 (de)
WO (1) WO2021245158A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023150896A (ja) * 2022-03-31 2023-10-16 本田技研工業株式会社 積層造形用鉄鋼材料、及び鉄合金の製造方法
CN114959494A (zh) * 2022-06-22 2022-08-30 钢铁研究总院有限公司 1400MPa级增材制造超低温不锈钢及制备方法
CN117403145B (zh) * 2023-10-07 2024-06-11 清华大学 增材制造的超高强度钢及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039143C1 (de) 2000-08-07 2002-01-10 Fraunhofer Ges Forschung Verfahren zur Herstellung präziser Bauteile mittels Lasersintern und deren Nachbehandlung
JP2005336553A (ja) * 2004-05-27 2005-12-08 Daido Steel Co Ltd 熱間工具鋼
JP5076683B2 (ja) * 2007-06-29 2012-11-21 大同特殊鋼株式会社 高靭性高速度工具鋼
KR20170088439A (ko) * 2012-10-24 2017-08-01 씨알에스 홀딩즈 인코포레이티드 내부식성 조질강 합금
SE541151C2 (en) * 2017-10-05 2019-04-16 Uddeholms Ab Stainless steel
DE102018201854A1 (de) 2018-02-07 2019-08-08 Robert Bosch Gmbh Werkstoff, geeignet für additive Fertigung
JP6974607B2 (ja) * 2018-05-14 2021-12-01 日立金属株式会社 積層造形熱間工具およびその製造方法、ならびに、積層造形熱間工具用金属粉末
DE102018113600A1 (de) * 2018-06-07 2019-12-12 Voestalpine Böhler Edelstahl Gmbh & Co Kg Verfahren zum Herstellen eines Gegenstandes aus einem Warmarbeitsstahl

Also Published As

Publication number Publication date
US20230220526A1 (en) 2023-07-13
DE102020115049A1 (de) 2021-12-09
WO2021245158A1 (de) 2021-12-09

Similar Documents

Publication Publication Date Title
EP3228724B1 (de) Werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
WO2021245158A1 (de) Stahlmaterial zum formen von bauteilen durch additive fertigung und verwendung eines solchen stahlmaterials
EP3591078B1 (de) Verwendung eines stahls für ein additives fertigungsverfahren, verfahren zur herstellung eines stahlbauteils und stahlbauteil
EP3733326A1 (de) Verfahren zur herstellung eines stahlbauteils mit einem additiven fertigungsverfahren
EP4093895A1 (de) Metallpulver für ein additives fertigungsverfahren, verwendungen des metallpulvers, verfahren zur herstellung eines bauteils und bauteil
EP3409801B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender verbundwerkstoff, verwendung eines verbundwerkstoffs und verfahren zur herstellung eines bauteils aus einem verbundwerkstoff
DE102021106606A1 (de) Pulver aus einer Kobalt-Chromlegierung
EP3963113A1 (de) Stahlmaterial in pulverform und verfahren zu dessen herstellung
EP3323902B1 (de) Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil
WO2021084025A1 (de) Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil
EP4081362A1 (de) Verfahren zum herstellen eines warmarbeitsstahlgegenstandes
WO2015039986A2 (de) Metallpulver für pulverbasierte fertigungsprozesse und verfahren zur herstellung eines metallischen bauteils aus metallpulver
EP3719158B1 (de) Verwendung eines stahlpulvers, verfahren zur herstellung eines stahlbauteils durch ein additives fertigungsverfahren
EP4000762B1 (de) Verwendung eines stahlpulvers für eine additive fertigung eines stahlbauteils
WO2020109018A1 (de) Verfahren zur herstellung eines werkstoffverbundes, werkstoffverbund und seine verwendung
WO2022090054A1 (de) Pulver für die verwendung in einem pulvermetallurgischen oder additiven verfahren, stahlwerkstoff und verfahren zur herstellung eines bauteils
DE102013213752B4 (de) Verfahren zur Herstellung eines Werkzeugs für die Bearbeitung von Blechen sowie Werkzeug
AT413544B (de) Hochharte nickelbasislegierung für verschleissfeste hochtemperaturwerkzeuge
EP0719349B1 (de) Verfahren zur herstellung von sinterteilen
EP4119267A1 (de) Stahlpulver, verwendung eines stahls zur erzeugung eines stahlpulvers und verfahren zur herstellung eines bauteils aus einem stahlpulver
EP4279205A1 (de) Stahlpulver, stahl für die erzeugung eines stahlpulvers, verwendung eines stahls zur erzeugung eines stahlpulvers und verfahren zur herstellung eines bauteils aus einem stahlpulver
DE102022105514A1 (de) Verfahren zur Herstellung hochfester, kohlenstoffhaltiger Bauteile aus Stahl
DE102011079955A1 (de) Stahl, Bauteil und Verfahren zum Herstellen von Stahl

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231110