EP4160898A1 - Inverter mit optimiertem elektromagnetischem verhalten - Google Patents

Inverter mit optimiertem elektromagnetischem verhalten Download PDF

Info

Publication number
EP4160898A1
EP4160898A1 EP22198223.4A EP22198223A EP4160898A1 EP 4160898 A1 EP4160898 A1 EP 4160898A1 EP 22198223 A EP22198223 A EP 22198223A EP 4160898 A1 EP4160898 A1 EP 4160898A1
Authority
EP
European Patent Office
Prior art keywords
inverter
busbar
bridges
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22198223.4A
Other languages
English (en)
French (fr)
Inventor
Ivonne TRENZ
Michael Kohr
Florian Pahn
Pengshuai Wang
Manuel Raimann
Philipp Rau
Jonas Zeller
Gerhard Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP4160898A1 publication Critical patent/EP4160898A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • H01R12/585Terminals having a press fit or a compliant portion and a shank passing through a hole in the printed circuit board

Definitions

  • the invention relates to an inverter for energizing an electric drive of an electric vehicle or a hybrid vehicle and a corresponding vehicle with such an inverter.
  • Purely electric vehicles and hybrid vehicles are known in the prior art, which are driven exclusively or in support of one or more electric machines as drive units.
  • the electric vehicles and hybrid vehicles include electric energy stores, in particular rechargeable electric batteries. These batteries are designed as DC voltage sources, but the electrical machines usually require an AC voltage. Therefore, power electronics with a so-called inverter are usually connected between a battery and an electric machine of an electric vehicle or a hybrid vehicle.
  • Such inverters typically include semiconductor switching elements typically formed of transistors. It is known to provide the semiconductor switching elements in different degrees of integration, namely either as discrete individual switches with a low degree of integration but high scalability, as power modules with a high degree of integration but low scalability, and as half-bridges, which in terms of degree of integration and scalability between individual switches and half-bridges or power electronics modules.
  • the inverters known from the prior art have a high leakage inductance due to their design.
  • the functionality of the known inverters is impaired because the leakage inductance is coupled to the switching speed of the semiconductor switching elements and thereby causes excessive voltage increases.
  • the heat that is generated during operation of the inverter can only be dissipated insufficiently, which impairs the functionality of the inverter.
  • the invention relates to an inverter for operating an electric axle drive in an electric vehicle and/or a hybrid vehicle.
  • the inverter includes a DC input for connecting a DC voltage source.
  • the DC voltage source is a battery, for example, in particular a high-voltage battery (HV battery), which provides a DC voltage of 400V or 800V. This DC voltage is applied between a positive pole and a negative pole of the DC input.
  • the inverter includes an intermediate circuit capacitor, which has a plurality of input contacts for injecting a DC current generated by the DC voltage source.
  • the input contacts are attached to a capacitor housing of the intermediate circuit capacitor.
  • the input contacts include both positive and negative input contacts.
  • the positive input contacts are connected to the positive pole of the DC input and thus to a positive electrode of the DC voltage source.
  • the negative input contacts are connected to the negative pole of the DC input and thus to a negative electrode of the DC voltage source.
  • the inverter also includes a plurality of half-bridges each having a plurality of semiconductor switching elements for converting the DC current to an AC current having a plurality of phase currents.
  • Each half-bridge is assigned to a phase or a phase current of the AC current.
  • the half ridges extend along a longitudinal direction from the DC input to the AC output.
  • the individual half-bridges are arranged in a row along a transverse direction perpendicular to the longitudinal direction.
  • Each half-bridge can preferably comprise a single half-bridge module or multiple half-bridge modules.
  • the half-bridge module in the sense of the present
  • the invention is a modular bridge circuit that includes a module high side and a module low side.
  • the module high side and the module low side each include one or more semiconductor switching elements connected in parallel.
  • the module highsides of these half-bridge modules are connected in parallel to one another and form a common highside of the entire half-bridge, with the module lowsides of these half-bridge modules also being connected in parallel to one another and form a common lowside of the entire half-bridge. This means that, depending on the desired vehicle performance, the amount of current that can be carried by the half-bridges can be scaled up or down as desired by a suitable choice of the number of half-bridge modules.
  • the inverter further includes a DC bus bar arrangement for feeding the DC current into the half-bridges.
  • the DC bus bar assembly has a positive DC bus bar and a negative DC bus bar.
  • the DC current flows from the input contacts of the intermediate circuit capacitor via the latter to the positive and negative DC power rails. There the DC current is fed into the respective half-bridges, preferably into the individual half-bridge modules.
  • the AC busbar arrangement comprises a plurality of AC busbars, each of which has a plurality of input contacts and one output contact.
  • the input contacts are connected to AC power terminals of the half-bridges, with the output contact being connected to the electric motor of the electric axle drive, in particular to its winding.
  • the output contacts of the multiple phases are part of the AC output of the inverter.
  • the inverter also includes a cooler for cooling the half-bridges.
  • the cooler is preferably on the underside the half-bridges, in particular connected to a metal layer of a substrate of the respective half-bridge modules.
  • the positive and/or negative DC busbar extends across the row of half-bridges. This means that the width of the positive and/or negative DC busbars comes close to the width of the row of half-bridges. This increases the area of the DC bus bars, so that the current density of the DC current to be carried by the DC bus bars is reduced. This reduces the heat generated by the current into the half-bridges. In addition, a current flow that is symmetrical with respect to the longitudinal direction is made possible, and the leakage inductance of the inverter is reduced and the electromagnetic behavior (EMC) of the inverter is improved. In addition, the large-area DC busbars allow the inverter to have a flat design, which means a more compact design for the inverter.
  • the positive DC busbar and the negative DC busbar have several busbar branches on the output side for connection to a DC power input of the half-bridge modules, each busbar branch being assigned to one of the half-bridge modules.
  • each busbar branch being assigned to one of the half-bridge modules.
  • two busbar branches are therefore assigned to this half-bridge, with the inverter having a total of six busbar branches in the case of a three-phase AC current. This measure facilitates distributed contacting between the DC busbar arrangement and the half bridges.
  • the inverter can also have more or fewer half-bridge modules or busbar branches.
  • the positive DC busbar and/or the negative DC busbar is encapsulated on the outside with a current-insulating injection molding material.
  • the encapsulation of the DC busbar arrangement serves both to increase the mechanical stability and to increase the clearance and creepage distances between the positive and negative DC busbars in order to ensure safe electrical isolation between them.
  • the encapsulation of the positive DC busbar and/or the negative DC busbar comprises a plurality of attachment points, each for a fastener for fixing the encapsulation to an inverter housing, wherein the number of attachment points can correspond to the number of half-bridges, with a relative position between the attachment point and the associated half-bridge is the same for all half-bridges.
  • the attachment points are designed, for example, as openings, in particular as through-openings, which preferably extend through the encapsulation, the positive and the negative DC busbar.
  • the fastener is preferably a metal fastener such as a screw.
  • the encapsulation of the positive DC busbar and/or the negative DC busbar has a plurality of openings for passing through signal connections of the half-bridges. This measure facilitates the contacting of the signal connections to a printed circuit board of the inverter, which is to be fitted on top of the encapsulation.
  • the signal connections can be positioned over the support frame.
  • all signal connections of the half-bridges are connected to the printed circuit board by means of soldering.
  • all signal connections can be connected to the printed circuit board during assembly using the same connection method, namely soldering. This eliminates additional connection steps that would be required due to the use of several different connection methods and thus reduces the assembly effort of the inverter.
  • press-fit pins can be used as signal connectors.
  • a support frame for accommodating the half-bridge modules is arranged between an inverter housing and a circuit board, with a plurality of signal connections of the half-bridges vertically through the Support frames are passed in the direction of a printed circuit board.
  • the carrier frame increases the mechanical stability of the signal connections and protects them from breakage when connecting to the printed circuit board.
  • the support frame serves to position the signal connections.
  • the carrier frame enables a form-fit or a force-fit connection between various components within the inverter, which increases the robustness of the inverter.
  • the support frame is used to maintain clearance and creepage distances.
  • a temperature sensor is arranged between a printed circuit board and the cooler in such a way that the temperature sensor is fixed on the underside by means of a thermally conductive layer on the cooler or the half-bridge modules, with at least one signal line of the temperature sensor extending through the carrier frame and into the printed circuit board.
  • the temperature sensor is thermally better coupled to the cooler.
  • the support frame stabilizes the position of the temperature sensor and increases the reliability of the temperature measurement.
  • a current-insulating heat-conducting foil is arranged between an inverter housing and the DC input, the DC busbar arrangement and/or the AC busbar arrangement.
  • the thermally conductive foil improves the thermal coupling between the inverter housing on the one hand and the DC input, the DC busbar arrangement and/or the AC busbar arrangement on the other hand. This achieves more efficient heat dissipation from the current-carrying components of the inverter.
  • the heat-conducting foil also serves to maintain the air and creepage distances and thus to isolate the potential between the components of the inverter to which current is applied.
  • the invention also relates to an electric axle drive with such an inverter and a vehicle with such an electric axle drive. This also results in the advantages already described in connection with the inverter according to the invention for the inverter according to the invention and the vehicle according to the invention.
  • the inverter 10 includes a DC input 12, an intermediate circuit capacitor 14, a plurality of half-bridges 16A-C, a DC busbar arrangement, an AC output 22, a cooler 24, a printed circuit board 28 and an inverter housing 30.
  • the inverter 10 has other components , which are detailed below.
  • the DC input 12 is here and also in 2 shown in more detail in a side sectional view.
  • the DC input 12 includes a positive input connection 121 and a negative input connection 123, the input connections 121, 123 being designed for connection to a DC voltage source, preferably a battery, in particular a high-voltage (HV) battery.
  • the DC input 12 also includes a plurality of positive input contacts 122 and a plurality of negative input contacts 124.
  • the positive input contacts 122 are embodied here as output-side current contacts of the positive input connection 121, with the negative input contacts 124 being embodied as output-side current contacts of the negative input connection 123.
  • the input contacts 122, 124 are encapsulated with an electrically insulating injection molding material.
  • the encapsulation 126 serves at the same time as a frame for the input contacts 122, 124 and is applied to the inverter housing 30 on the underside by means of a current-insulating thermally conductive film 32 .
  • the intermediate circuit capacitor 14 includes a capacitor housing 146, on whose first edge facing the DC input 12 a plurality of positive and negative capacitor input contacts 142, 144 are arranged.
  • the positive capacitor input contacts 142 are electrically connected to the positive input contacts 122 and the negative capacitor input contacts 144 are electrically connected to the negative input contacts 124 .
  • the input contacts 122, 124 and the capacitor input contacts 142, 144 are arranged on the capacitor housing 146 in such a way that the positive capacitor input contacts 142 and the negative capacitor input contacts 144 are lined up alternately, as in FIG 1 shown.
  • the capacitor case 146 is box-shaped and extends in a longitudinal direction between the DC input and the AC output and in a transverse direction perpendicular thereto.
  • the DC bus bar assembly is attached to a second edge opposite the capacitor input contacts 142,144.
  • the DC bus assembly connects the link capacitor 14 to the half-bridges 16A-C.
  • the DC busbar arrangement has a positive DC busbar 18 and a negative DC busbar 20 which extend across the width of the capacitor housing 146 .
  • the intermediate circuit capacitor 14 has a transverse contact 148 on the output side (see FIG 1 , 3 and 6 ) to which the positive DC bus bar 18 is electrically connected, as shown in side view in FIG 6 shown.
  • the negative DC busbar 20, on the other hand, is integrated in the intermediate circuit capacitor 14 and preferably extends, as shown in FIG 6 shown schematically, from the power electronics 16 to the intermediate circuit capacitor 14 inside.
  • the DC busbars 18, 20 have a plurality of positive or negative busbar branches 182A-C, 184A-C, 202A-C, 204A-C, which are each connected to a half-bridge module 162A-C, 164A-C of the half-bridges 16A-C are.
  • the half-bridge modules 162A-C, 164A-C each include a module high side and a module low side, the module high side and the module low side each including one or more semiconductor switching elements connected in parallel.
  • the module high-sides of the half-bridge modules 162A-C, 164A-C are connected in parallel with one another to form a high-side of the half-bridge 16A-C.
  • each half-bridge 16A-C the module lowsides of the half-bridge modules 162A-C, 164A-C are connected in parallel with one another to form a lowside of the half-bridge 16A-C.
  • each half-bridge 16A-C comprises a first half-bridge module 162A-C and a second half-bridge module 164A-C.
  • Each half-bridge module 162A-C, 164A-C has a positive DC power connection and a negative DC power connection.
  • a positive busbar junction 182A-C, 184A-C makes electrical contact with the positive DC power connection.
  • a negative busbar junction 202A-C, 204A-C is electrically connected to the negative DC power connection.
  • the electrical contact is made as in 6 shown schematically, on top of the respective half-bridge modules 162A-C, 164A-C, what is simpler than conventional methods of contacting and enables the inverter 10 to have a compact design.
  • the DC busbar arrangement can also be encapsulated using an electrically insulating injection molding material.
  • the encapsulation 186 of the positive DC busbar 18 takes place on both sides, ie on the top and bottom.
  • An insulating film is provided between the encapsulation 186 of the positive DC busbar 18 and the negative DC busbar 20 and preferably extends only partially over the negative DC busbar 18 .
  • the DC busbars 18, 20 each have an intermediate section that runs along the width, in which several fastening points 187A-C, 206A -C for attaching multiple fasteners 302A-C (see 4 ) for the purpose of fixing the DC bus bar assembly to the inverter housing 30 are formed.
  • the fastening points 187A-C, 206A-C are preferably designed as screw holes, with the fastening means 302A-C preferably being screws which pass through the positive DC busbar 18, the negative DC busbar 20 and the overmolding 186 bis on the top side of the DC busbar arrangement extends into the inverter housing 30. This enables the DC busbar arrangement to be attached in a particularly stable manner.
  • a plurality of openings 189, 208 are formed in the intermediate portion of the positive and negative DC bus bars 18, 20 through which a plurality of signal terminals 166 of the half-bridges 16A-C pass upwardly.
  • the signal connections 166 extend through the printed circuit board 28 in order to transmit control signals between it and the half-bridges 16A-C, in particular the control connections (gate electrodes) of the semiconductor switching elements.
  • a support frame 26 is, as in 1 and 6 shown, is arranged between the half-bridges 16A-C on the one hand and the inverter housing 30 on the other hand.
  • the signal terminals 166 extend upwardly from the semiconductor switching elements through a plurality of signal towers of the support frame 26 and the openings 189, 208 of the DC bus bars 18, 20 to be received in the circuit board 28 (see Fig 6 ).
  • the support frame 26 is on the underside the cooler 24, supported on the other hand on the inverter housing 30.
  • the cooler 24 can have a cooling structure for directly cooled liquid cooling with a plurality of fins (pin-fin structure) which extend downwards, starting from a cooling plate.
  • This cooling structure can be geometrically designed for various boundary conditions, so that an optimal ratio between the flow energy used and the heat output to be dissipated is established. This increases the cooling surface and increases the cooling capacity.
  • the half-bridge modules 162A-C, 164A-C are externally overmolded with an electrically insulating injection molding material to protect the semiconductor switching elements from the environment. Only the power connections (not shown), the signal connections 166 and a bottom surface connecting to the heatsink 24 are exposed from the injection molding material.
  • the half-bridge modules 162A-C, 164A-C are each connected to the cooling plate by means of sintering or soldering.
  • the support frame 26 is used to guide the signal connections 166, to accommodate a temperature sensor 34 (described in more detail below) and to maintain the air and creepage distances.
  • An insulating foil 242 is arranged between the half-bridge modules 182A-C, 184A-C and the cooler 24 in order to maintain the air and creepage distances between the power connections of the half-bridge modules 162AC, 164A-C on the one hand and the cooling plate on the other hand.
  • the AC outlet 22 (or AC bus bar assembly) includes a plurality of AC bus bars 222A-C, a plurality of AC output contacts 226A-C connected to the AC bus bars 222A-C, and an overmold 224 formed by overmolding the AC bus bars 222A-C with an electrically insulating injection molding material.
  • the overmold 224 is on top of the AC bus bars 222A-C.
  • a current-insulating heat-conducting foil 32 is arranged underneath the AC bus bars 222A-C for the purpose of increased thermal coupling to the inverter housing 30 .
  • the AC busbars 222A-C are partially encapsulated with the current-isolating heat-conducting foil 32 and partially with an electrically insulating material. This measure ensures a local thermal coupling there, which is limited to an area where underside cooling of the AC bus bars 222A-C is needed. This avoids that the cost-intensive current-insulating heat-conducting foil 32 is used unnecessarily.
  • the AC power rails 222A-C each extend horizontally between an AC power terminal of the half-bridge modules 162A-C, 164A-C and one of the AC output contacts 226A-C.
  • the half-bridge modules 162A-C, 164A-C each have a plurality (two in this example) AC power terminals that are each electrically connected to one of the AC power rails 222A-C.
  • the AC output contacts 226A-C are oriented vertically and project beyond an end portion 304 of the inverter housing 30 for connection to windings of an electric final drive electric machine.
  • a current sensor 36 is electrically connected to the printed circuit board 28 on the underside, preferably soldered.
  • a recess 228 is formed in the overmold 224 of the AC bus bars 222A-C.
  • the cutout 228 reduces the distance between the current sensor 36 and the AC bus bars 222A-C.
  • a bottom layer of the recess 228 serves for potential isolation between the current sensor 36 and the AC bus bars 222A-C.
  • the current sensor 36 is used to detect the respective AC phase currents.
  • the current sensor 36 typically includes a plurality of signal lines (not shown here) that are electrically connected or soldered to the circuit board 28 in order to transmit the sensed current levels to an internal or external processing unit, such as a vehicle ECU (not shown here).
  • a temperature sensor 34 is, as in figure 8 shown disposed in a space between the support frame 26 and the radiator 24.
  • the temperature sensor 34 comprises a sensor body 344 and two signal lines 342, which first extend horizontally and then vertically upwards from both ends of the sensor body 344.
  • the signal lines 342 are routed through the carrier frame 26 and the circuit board 28 .
  • a thermally conductive layer 346 is attached between the sensor body 344 and the cooler 24 .

Abstract

Die Erfindung betrifft einen Inverter (10) zum Betreiben eines elektrischen Antriebs in einem Elektrofahrzeug und/oder einem Hybridfahrzeug, umfassend einen DC-Eingang (12) zum Anschließen einer DC-Spannungsquelle, einen Zwischenkreiskondensator (14), der mehrere Eingangskontakte (142) zum Injizieren eines mittels der DC-Spannungsquelle erzeugten DC-Stroms aufweist, wobei die Eingangskontakte (142) an einem Kondensatorgehäuse (146) des Zwischenkreiskondensators (14) angebracht sind, mehrere Halbbrücken (16A-C), die jeweils mehrere Halbleiterschaltelemente zum Umwandeln des DC-Stroms in einen AC-Strom mit mehreren Phasenströmen aufweisen, wobei die Halbbrücken (16A-C) in einer Querrichtung des Inverters (10) in einer Reihe angeordnet sind, eine DC-Stromschienenanordnung zum Einspeisen des DC-Stroms in die Halbbrücken, die eine positive DC-Stromschiene (18) und eine negative DC-Stromschiene (20) aufweist, wobei sich die positive und/oder negative DC-Stromschiene (18, 20) in der Querrichtung des Inverters (10) über die Reihe der Halbbrücken (16A-C) erstreckt, sodass die Breite der positiven und/oder negativen DC-Stromschiene (18, 20) an die Breite der Reihe der Halbbrücken (16A-C) heranreicht, eine AC-Stromschienenanordnung (22) zum Abgeben des AC-Stroms in den elektrischen Antrieb, einen Kühler (24) zum Abkühlen der Halbbrücken (16A-C).

Description

  • Die Erfindung betrifft einen Inverter zum Bestromen eines elektrischen Antriebs eines Elektrofahrzeugs oder eines Hybridfahrzeugs sowie ein entsprechendes Fahrzeug mit einem solchen Inverter.
  • Im Stand der Technik sind reine Elektrofahrzeuge sowie Hybridfahrzeuge bekannt, welche ausschließlich bzw. unterstützend von einer oder mehreren elektrischen Maschinen als Antriebsaggregate angetrieben werden. Um die elektrischen Maschinen solcher Elektrofahrzeuge bzw. Hybridfahrzeuge mit elektrischer Energie zu versorgen, umfassen die Elektrofahrzeuge und Hybridfahrzeuge elektrische Energiespeicher, insbesondere wiederaufladbare elektrische Batterien. Diese Batterien sind dabei als Gleichspannungsquellen ausgebildet, die elektrischen Maschinen benötigen in der Regel jedoch eine Wechselspannung. Daher wird zwischen einer Batterie und einer elektrischen Maschine eines Elektrofahrzeugs oder eines Hybridfahrzeugs üblicherweise eine Leistungselektronik mit einem sog. Inverter geschaltet.
  • Derartige Inverter umfassen üblicherweise Halbleiterschaltelemente, die typischerweise aus Transistoren gebildet sind. Dabei ist es bekannt, die Halbleiterschaltelemente in unterschiedlichen Integrationsgraden bereitzustellen, nämlich entweder als diskrete Einzelschalter mit einem geringen Integrationsgrad, jedoch hoher Skalierbarkeit, als Leistungsmodule mit einem hohen Integrationsgrad, jedoch geringer Skalierbarkeit, sowie als Halbbrücken, die hinsichtlich Integrationsgrad und Skalierbarkeit zwischen Einzelschaltern und Halbbrücken bzw. Leistungselektronikmodulen rangieren.
  • Die aus dem Stand der Technik bekannten Inverter weisen bauartbedingt eine hohe Streuinduktivität auf. Dadurch, dass die Streuinduktivität an die Schaltgeschwindigkeit der Halbleiterschaltelemente koppelt und hierdurch Spannungsüberhöhungen verursacht, ist die Funktionalität der bekannten Inverter beeinträchtigt. Außerdem ist die Wärme, die im Betrieb des Inverters erzeugt wird, nur unzureichend abführbar, was die Funktionalität des Inverters beeinträchtigt.
  • Es ist eine Aufgabe der Erfindung, einen Inverter bereitzustellen, um die vorstehend genannten Nachteile zumindest teilweise zu beheben.
  • Diese Aufgabe wird erfindungsgemäß durch den Inverter und das Fahrzeug gemäß den unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den abhängigen Patentansprüchen hervor.
  • Die Erfindung betrifft einen Inverter zum Betreiben eines elektrischen Achsantriebs in einem Elektrofahrzeug und/oder einem Hybridfahrzeug. Der Inverter umfasst einen DC-Eingang zum Anschließen einer DC-Spannungsquelle. Die DC-Spannungsquelle ist beispielsweise eine Batterie, insbesondere eine Hochvolt-Batterie (HV-Batterie), die eine DC-Spannung von 400V oder 800V bereitstellt. Diese DC-Spannung wird zwischen einem positiven Pol und einem negativen Pol des DC-Eingangs angelegt. Der Inverter umfasst einen Zwischenkreiskondensator, der mehrere Eingangskontakte zum Injizieren eines mittels der DC-Spannungsquelle erzeugten DC-Stroms aufweist. Die Eingangskontakte sind an einem Kondensatorgehäuse des Zwischenkreiskondensators angebracht. Die Eingangskontakte umfassen sowohl positive als auch negative Eingangskontakte. Die positiven Eingangskontakte sind an den positiven Pol des DC-Eingangs und somit an eine positive Elektrode der DC-Spannungsquelle angeschlossen. Die negativen Eingangskontakte sind an den negativen Pol des DC-Eingangs und somit an eine negative Elektrode der DC-Spannungsquelle angeschlossen.
  • Der Inverter umfasst außerdem mehrere Halbbrücken, die jeweils mehrere Halbleiterschaltelemente zum Umwandeln des DC-Stroms in einen AC-Strom mit mehreren Phasenströmen aufweisen. Jede Halbbrücke ist einer Phase bzw. einem Phasenstrom des AC-Stroms zugeordnet. Die Halbrücken erstrecken sich entlang einer Längsrichtung vom DC-Eingang zum AC-Ausgang. Gleichzeitig sind die einzelnen Halbbrücken entlang einer senkrecht zur Längsrichtung stehenden Querrichtung in einer Reihe angeordnet.
  • Jede Halbbrücke kann vorzugsweise ein einziges Halbbrückenmodul oder mehrere Halbbrückenmodule umfassen. Das Halbbrückenmodul im Sinne der vorliegenden Erfindung ist eine modular ausgelegte Brückenschaltung, die eine Modulhighside und eine Modullowside umfasst. Die Modulhighside und die Modullowside umfassen jeweils ein oder mehrere parallelgeschaltete Halbleiterschaltelemente. Im Fall, dass eine Halbbrücke mehrere Halbbrückenmodule umfasst, sind die Modulhighsides dieser Halbbrückenmodule zueinander parallelgeschaltet und bilden eine gemeinsame Highside der gesamten Halbbrücke, wobei die Modullowsides dieser Halbbrückenmodule ebenfalls zueinander parallelgeschaltet sind und eine gemeinsame Lowside der gesamten Halbbrücke bilden. Dies bedeutet, dass je nach gewünschter Fahrzeugleistung die durch die Halbbrücken jeweils tragbare Strommenge durch eine geeignete Wahl der Anzahl an Halbbrückenmodulen beliebig nach oben oder unten skalierbar ist.
  • Der Inverter umfasst ferner eine DC-Stromschienenanordnung zum Einspeisen des DC-Stroms in die Halbbrücken. Die DC-Stromschienenanordnung weist eine positive DC-Stromschiene und eine negative DC-Stromschiene auf. Der DC-Strom fließt von den Eingangskontakten des Zwischenkreiskondensators über Letzteren zur positiven und negativen DC-Stromschiene. Dort wird der DC-Strom in die jeweiligen Halbbrücken, vorzugsweise in die einzelnen Halbbrückenmodule, eingespeist.
  • Mittels Schaltens der Halbleiterschaltelemente der Halbbrücken werden die Phasenströme und somit der gesamte AC-Strom basierend auf dem eingespeisten DC-Strom erzeugt. Eine AC-Stromschienenanordnung ist im Inverter angeordnet, um den AC-Strom an den elektrischen Achsantrieb abzugeben. Die AC-Stromschienenanordnung umfasst hierzu mehrere AC-Stromschienen, die jeweils mehrere Eingangskontakte und einen Ausgangskontakt aufweisen. Die Eingangskontakte sind an AC-Leistungsanschlüsse der Halbbrücken angeschlossen, wobei der Ausgangskontakt mit der E-Maschine des elektrischen Achsantriebs, insbesondere mit deren Wicklung, verbunden ist. Die Ausgangskontakte der mehreren Phasen sind Teil des AC-Ausgangs des Inverters.
  • Der Inverter umfasst ferner einen Kühler zum Abkühlen der Halbbrücken. Im Betrieb des Inverters erzeugen aufgrund der hohen Ströme und Verluste eine große Menge an Wärme, die abgeführt werden muss. Der Kühler ist vorzugsweise unterseitig an die Halbbrücken, insbesondere an eine Metallschicht eines Substrats der jeweiligen Halbbrückenmodule, angebunden.
  • Erfindungsgemäß erstrecken sich die positive und/oder negative DC-Stromschiene über die Reihe der Halbbrücken. Dies bedeutet, dass die Breite der positiven und/oder negativen DC-Stromschiene an die Breite der Reihe der Halbbrücken heranreicht. Dies vergrößert die Fläche der DC-Stromschienen, sodass die Stromdichte des durch die DC-Stromschienen zu tragenden DC-Stroms reduziert ist. Dies verringert die Wärme, die durch den Strom in die Halbbrücken erzeugt wird. Außerdem ist ein bezüglich der Längsrichtung symmetrischer Stromfluss ermöglicht, sowie die Streuinduktivität des Inverters vermindert und das elektromagnetische Verhalten (EMV) des Inverters verbessert . Außerdem ist durch die großflächigen DC-Stromschienen ein flacher Aufbau des Inverters erzielbar, was eine kompaktere Bauform für den Inverter bedeutet.
  • Gemäß einer Ausführungsform weisen die positive DC-Stromschiene und die negative DC-Stromschiene ausgangsseitig mehrere Stromschienenabzweige zum Anschließen an einen DC-Leistungseingang der Halbbrückenmodule, wobei jeder Stromschienenabzweig einem der Halbbrückenmodule zugeordnet ist. Bei einer beispielhaften Halbbrücke bestehend aus zwei Halbbrückenmodulen sind daher zwei Stromschienenabzweige dieser Halbbrücke zugeordnet, wobei bei einem dreiphasigen AC-Strom der Inverter insgesamt sechs Stromschienenabzweige aufweist. Diese Maßnahme erleichtert eine verteilte Kontaktierung zwischen der DC-Stromschienenanordnung und den Halbbrücken. Im Allgemeinen kann der Inverter je nach Stromklasse auch mehr oder weniger Halbbrückenmodule bzw. Stromschienenabzweige haben.
  • Gemäß einer weiteren Ausführungsform ist die positive DC-Stromschiene und/oder die negative DC-Stromschiene außenseitig mit einem stromisolierenden Spritzgussmaterial umspritzt. Die Umspritzung der DC-Stromschienenanordnung dient sowohl zur Erhöhung der mechanischen Stabilität als auch zur Vergrößerung der Luft- und Kriechstrecken zwischen der positiven und der negativen DC-Stromschienen, um eine sichere Potentialtrennung zwischen ihnen zu gewährleisten.
  • Gemäß einer weiteren Ausführungsform umfasst die Umspritzung der positiven DC-Stromschiene und/oder der negativen DC-Stromschiene mehrere Befestigungsstellen für je ein Befestigungsmittel zum Fixieren der Umspritzung an einem Invertergehäuse, wobei die Anzahl der Befestigungsstellen der Anzahl der Halbbrücken entsprechen kann, wobei eine relative Position zwischen der Befestigungsstelle und der zugehörigen Halbbrücke für alle Halbbrücken gleich ist. Die Befestigungsstellen sind beispielsweise als Öffnungen ausgebildet, insbesondere als Durchgangsöffnungen, die sich vorzugsweise durch die Umspritzung, die positive und die negative DC-Stromschiene hindurcherstrecken. Das Befestigungsmittel ist vorzugsweise ein metallisches Befestigungsmittel wie Schraube. Dadurch, dass die relative Position zwischen der Befestigungsstelle und der zugehörigen Halbbrücke für alle Halbbrücken gleich ist, ist die Stromverteilung daher besonders gleichmäßig für alle (drei) Phasen. Dies erhöht die Symmetrie des Stromflusses bezüglich der Längsrichtung, was die Funktionalität des Inverters hinsichtlich EMV zusätzlich optimiert.
  • Gemäß einer weiteren Ausführungsform weist die Umspritzung der positiven DC-Stromschiene und/oder der negativen DC-Stromschiene mehrere Öffnungen zum Durchführen von Signalanschlüssen der Halbbrücken auf. Diese Maßnahme erleichtert die Kontaktierung der Signalanschlüsse an eine Leiterplatte des Inverters, die oberseitig der Umspritzung anzubringen ist. Alternativ können die Signalanschlüsse über den Trägerrahmen positioniert werden.
  • Gemäß einer weiteren Ausführungsform sind alle Signalanschlüsse der Halbbrücken mit der Leiterplatte mittels Lötens verbunden. Auf diese Weise lassen sich alle Signalanschlüsse beim Montieren mittels des gleichen Verbindungsverfahrens, nämlich Löten, mit der Leiterplatte verbunden werden. Dies erübrigt zusätzliche Verbindungsschritte, die aufgrund des Einsatzes mehrerer verschiedener Verbindungsmethoden erforderlich wären, und reduziert somit den Montageaufwand des Inverters. Alternativ können Pressfit-Pins als Signalanschlüsse verwendet werden.
  • Gemäß einer weiteren Ausführungsform ist ein Trägerrahmen zum Aufnehmen der Halbbrückenmodule zwischen einem Invertergehäuse und einer Leiterplatte angeordnet, wobei mehrere Signalanschlüsse der Halbbrücken vertikal durch den Trägerrahmen in Richtung einer Leiterplatte hindurchgeführt sind. Der Trägerrahmen erhöht die mechanische Stabilität der Signalanschlüsse und schützt diese vor Brüchen beim Verbinden mit der Leiterplatte. Gleichzeitig dient der Trägerrahmen zur Positionierung der Signalanschlüsse. Außerdem ermöglicht der Trägerrahmen eine formschlüssige oder eine kraftschlüssige Verbindung zwischen verschiedenen Bauteilen innerhalb des Inverters, was die Robustheit des Inverters erhöht. Ferner wird der Trägerrahmen zur Einhaltung der Luft- und Kriechstrecken eingesetzt.
  • Gemäß einer weiteren Ausführungsform ist ein Temperatursensor zwischen einer Leiterplatte und dem Kühler angeordnet, derart, dass der Temperatursensor unterseitig mittels einer Wärmeleitschicht auf dem Kühler oder den Halbbrückenmodulen fixiert ist, wobei sich zumindest eine Signalleitung des Temperatursensors durch den Trägerrahmen hindurch bis in die Leiterplatte erstreckt. Zum einen ist der Temperatursensor an den Kühler thermisch besser gekoppelt. Zum anderen stabilisiert der Trägerrahmen die Position des Temperatursensors und erhöht die Zuverlässigkeit der Temperaturmessung.
  • Gemäß einer weiteren Ausführungsform ist eine stromisolierende Wärmeleitfolie zwischen einem Invertergehäuse und dem DC-Eingang, der DC-Stromschienenanordnung und/oder der AC-Stromschienenanordnung angeordnet. Die Wärmeleitfolie verbessert die thermische Kopplung zwischen dem Invertergehäuse einerseits und dem DC-Eingang, der DC-Stromschienenanordnung und/oder der AC-Stromschienenanordnung andererseits. Dies erzielt eine wirksamere Wärmeabfuhr von den stromtragenden Komponenten des Inverters. Auch dient die Wärmeleitfolie zur Einhaltung der Luft- und Kriechstrecken und somit zur Potentialtrennung zwischen den mit Strom beaufschlagten Bauteilen des Inverters.
  • Die Erfindung betrifft weiterhin einen elektrischen Achsantrieb mit einem solchen Inverter sowie ein Fahrzeug mit einem solchen elektrischen Achsantrieb. Daraus ergeben sich die bereits im Zusammenhang mit dem erfindungsgemäßen Inverter beschriebenen Vorteile auch für den erfindungsgemäßen Inverter und das erfindungsgemäße Fahrzeug.
  • Nachfolgend wird die Erfindung anhand von in den Figuren dargestellten Ausführungsformen beispielhaft erläutert.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines Inverters in Perspektivansicht;
    Fig. 2
    eine schematische Darstellung eines DC-Eingangs des Inverters aus Fig. 1 in seitliche Schnittansicht;
    Fig. 3
    eine schematische Darstellung eines Zwischenkondensators und einer DC-Stromschienenanordnung des Inverters aus Fig. 1 in einer Perspektivansicht;
    Fig. 4-5
    eine weitere schematische Darstellung der DC-Stromschienenanordnung des Inverters aus Fig. 1 in einer Perspektivansicht;
    Fig. 6
    eine weitere schematische Darstellung des Inverters aus Fig. 1 in einer Seitenansicht;
    Fig. 7
    eine schematische Darstellung einer AC-Stromschienenanordnung des Inverters aus Fig. 1 in einer Seitenansicht;
    Fig. 8
    eine schematische Darstellung eines an der AC-Stromschienenanordnung angebrachten Temperatursensors in einer Perspektivansicht.
  • Gleiche Gegenstände, Funktionseinheiten und vergleichbare Komponenten sind figurenübergreifend mit den gleichen Bezugszeichen bezeichnet. Diese Gegenstände, Funktionseinheiten und vergleichbaren Komponenten sind hinsichtlich ihrer technischen Merkmale identisch ausgeführt, sofern sich aus der Beschreibung nicht explizit oder implizit etwas anderes ergibt.
  • Fig. 1 zeigt eine schematische Darstellung eines Inverters 10 zum Bestromen eines elektrischen Achsantriebs in einem Elektrofahrzeug oder einem Hybridfahrzeug. Der Inverter 10 umfasst einen DC-Eingang 12, einen Zwischenkreiskondensator 14, mehrere Halbbrücken 16A-C, eine DC-Stromschienenanordnung, einen AC-Ausgang 22, einen Kühler 24, eine Leiterplatte 28 und ein Invertergehäuse 30. Zusätzlich weist der Inverter 10 weitere Komponenten, die unten ausführlich beschrieben sind.
  • Der DC-Eingang 12 ist hier und auch in Fig. 2 in einer seitlichen Schnittansicht näher gezeigt. Der DC-Eingang 12 umfasst einen positiven Eingangsanschluss 121 und einen negativen Eingangsanschluss 123, wobei die Eingangsanschlüsse 121, 123 zum Anschließen an eine DC-Spannungsquelle, vorzugsweise eine Batterie, insbesondere eine Hochvolt(HV)-Batterie, ausgebildet sind. Der DC-Eingang 12 umfasst ferner mehrere positive Eingangskontakte 122 und mehrere negative Eingangskontakte 124. Die positiven Eingangskontakte 122 sind hier als ausgangsseitige Stromkontakte des positiven Eingangsanschlusses 121 ausgebildet, wobei die negativen Eingangskontakte 124 als ausgangsseitige Stromkontakte des negativen Eingangsanschlusses 123 ausgebildet sind. Zwecks Potentialtrennung zwischen den positiven Eingangskontakten 122 und den negativen Eingangskontakten 124 sind die Eingangskontakte 122, 124 mit einem elektrisch isolierenden Spritzgussmaterial umspritzt. Die Umspritzung 126 dient gleichzeitig als Rahmen für die Eingangskontakte 122, 124 und ist unterseitig mittels einer stromisolierenden Wärmeleitfolie 32 auf dem Invertergehäuse 30 aufgebracht.
  • Der Zwischenkreiskondensator 14 umfasst ein Kondensatorgehäuse 146, auf dessen dem DC-Eingang 12 zugewandten ersten Rand mehrere positive und negative Kondensatoreingangskontakte 142, 144 angeordnet sind. Die positiven Kondensatoreingangskontakte 142 sind mit den positiven Eingangskontakten 122 elektrisch verbunden, wobei die negativen Kondensatoreingangskontakte 144 sind mit den negativen Eingangskontakten 124 elektrisch verbunden sind. Die Eingangskontakte 122, 124 und die Kondensatoreingangskontakte 142, 144 sind derart am Kondensatorgehäuse 146 angeordnet, dass die positiven Kondensatoreingangskontakte 142 und die negativen Kondensatoreingangskontakte 144 abwechselnd aneinandergereiht sind, wie in Fig. 1 gezeigt. Das Kondensatorgehäuse 146 ist kastenförmig ausgebildet und erstreckt sich in einer Längsrichtung zwischen dem DC-Eingang und dem AC-Ausgang sowie in einer dazu senkrechten Querrichtung.
  • Die DC-Stromschienenanordnung ist an einem den Kondensatoreingangskontakten 142, 144 gegenüberliegenden zweiten Rand angebracht. Die DC-Stromschienenanordnung verbindet den Zwischenkreiskondensator 14 mit den Halbbrücken 16A-C. Dazu weist die DC-Stromschienenanordnung eine positive DC-Stromschiene 18 und eine negative DC-Stromschiene 20 auf, die sich über die Breite des Kondensatorgehäuses 146 erstrecken. Der Zwischenkreiskondensator 14 weist ausgangsseitig einen Querkontakt 148 auf (siehe Fig. 1, 3 und 6), mit dem die positive DC-Stromschiene 18 elektrisch verbunden ist, wie in der Seitenansicht in Fig. 6 gezeigt. Die negative DC-Stromschiene 20 ist dagegen im Zwischenkreiskondensator 14 integriert und erstreckt sich vorzugsweise, wie in Fig. 6 schematisch gezeigt, von der Leistungselektronik 16 bis in den Zwischenkreiskondensator 14 hinein. Die DC-Stromschienen 18, 20 weisen ausgangsseitig mehrere positive bzw. negative Stromschienenabzweige 182A-C, 184A-C, 202A-C, 204A-C auf, die jeweils mit einem Halbbrückenmodul 162A-C, 164A-C der Halbbrücken 16A-C verbunden sind. Die Halbbrückenmodule 162A-C, 164A-C umfassen jeweils eine Modulhighside und eine Modullowside, wobei die Modulhighside und die Modullowside jeweils ein oder mehrere parallelgeschaltete Halbleiterschaltelemente umfassen. In jeder Halbbrücke 16A-C sind die Modulhighsides der Halbbrückenmodule 162A-C, 164A-C zueinander parallelgeschaltet, um eine Highside der Halbbrücke 16A-C zu bilden. In jeder Halbbrücke 16A-C sind die Modullowsides der Halbbrückenmodule 162A-C, 164A-C zueinander parallelgeschaltet, um eine Lowside der Halbbrücke 16A-C zu bilden. Im hier gezeigten Beispiel umfasst jede Halbbrücke 16A-C ein erstes Halbbrückenmodul 162A-C und ein zweites Halbbrückenmodul 164A-C. Jedes Halbbrückenmodul 162A-C, 164A-C weist einen positiven DC-Leistungsanschluss und einen negativen DC-Leistungsanschluss auf. Mit dem positiven DC-Leistungsanschluss ist ein positiver Stromschienenabzweig 182A-C, 184A-C elektrisch kontaktiert. Mit dem negativen DC-Leistungsanschluss ist ein negativer Stromschienenabzweig 202A-C, 204A-C elektrisch kontaktiert. Die elektrische Kontaktierung erfolgt, wie in Fig. 6 schematisch gezeigt, oberseitig der jeweiligen Halbbrückenmodule 162A-C, 164A-C, was gegenüber herkömmlichen Kontaktierungsweisen einfacher ist und eine kompakte Bauform des Inverters 10 ermöglicht.
  • Die DC-Stromschienenanordnung kann ebenfalls mittels eines elektrisch isolierenden Spritzgussmaterial umspritzt werden. Im hier gezeigten Beispiel erfolgt die Umspritzung 186 der positiven DC-Stromschiene 18 beidseitig, d.h. oberseitig und unterseitig. Zwischen der Umspritzung 186 der positiven DC-Stromschiene 18 und der negativen DC-Stromschiene 20 ist eine Isolationsfolie vorgesehen, die sich vorzugsweise nur teilweise über der negativen DC-Stromschiene 18 erstreckt. Im Bereich zwischen dem Querkontakt 148 und den Stromschienenabzweigen 182A-C, 184A-C, 202A-C, 204A-C weisen die DC-Stromschienen 18, 20 jeweils einen entlang der Breite durchgehenden Zwischenabschnitt auf, in dem mehrere Befestigungsstellen 187A-C, 206A-C zum Anbringen mehrerer Befestigungsmittel 302A-C (siehe Fig. 4) zwecks Fixieren der DC-Stromschienenanordnung am Invertergehäuse 30 ausgebildet sind. Die Befestigungsstellen 187A-C, 206A-C sind vorzugsweise als Schraubenlöcher ausgebildet, wobei die Befestigungsmittel 302A-C vorzugsweise Schrauben sind, die oberseitig der DC-Stromschienenanordnung durch die positive DC-Stromschiene 18, die negative DC-Stromschiene 20 sowie die Umspritzung 186 bis ins Invertergehäuse 30 hineinreicht. Dies ermöglicht eine besonders stabile Befestigung der DC-Stromschienenanordnung. Zusätzlich sind mehrere Öffnungen 189, 208 im Zwischenabschnitt der positiven und negativen DC-Stromschienen 18, 20 ausgebildet, durch die mehrere Signalanschlüsse 166 der Halbbrücken 16A-C nach oben hindurchgeführt sind. Die Signalanschlüsse 166 erstrecken sich bis durch die Leiterplatte 28 hindurch, um Steuersignale zwischen dieser und den Halbbrücken 16A-C, insbesondere den Steueranschlüssen (Gate-Elektroden) der Halbleiterschaltelemente, zu übertragen.
  • Ein Trägerrahmen 26 ist, wie in Fig. 1 und 6 gezeigt, zwischen den Halbbrücken 16A-C einerseits und dem Invertergehäuse 30 andererseits angeordnet. Die Signalanschlüsse 166 erstrecken sich von den Halbleiterschaltelementen nach oben durch mehrere turmförmige Signalführungen des Trägerrahmens 26 sowie die Öffnungen 189, 208 der DC-Stromschienen 18, 20 hindurch, um in der Leiterplatte 28 aufgenommen zu werden (siehe Fig. 6). Unterseitig ist der Trägerrahmen 26 zum einen auf dem Kühler 24, zum anderen auf dem Invertergehäuse 30 gestützt. Der Kühler 24 kann, wie hier beispielhaft gezeigt, eine Kühlstruktur für eine direkt gekühlte Flüssigkeitskühlung mit mehreren Finnen (Pin-Fin-Struktur) aufweisen, die sich von einer Kühlplatte ausgehend nach unten erstrecken. Diese Kühlstruktur kann geometrisch auf verschiedene Randbedingungen ausgelegt werden, sodass ein optimales Verhältnis zwischen eingesetzter Strömungsenergie und abzuführender Wärmeleistung hergestellt wird. Dies vergrößert die Kühlfläche und erhöht die Kühlleistung.
  • Die Halbbrückenmodule 162A-C, 164A-C sind außen mit einer Umspritzung aus einem elektrischen isolierenden Spritzgussmaterial versehen, um die Halbleiterschaltelemente vor Umgebungseinflüssen zu schützen. Nur die Leistungsanschlüsse (nicht gezeigt), die Signalanschlüsse 166 und eine an den Kühlkörper 24 anbindende Unterfläche sind vom Spritzgussmaterial freigelegt. Die Halbbrückenmodule 162A-C, 164A-C sind jeweils mittels Sinterns oder Lötens mit der Kühlplatte verbunden. Der Trägerrahmen 26 dient zur Führung der Signalanschlüsse 166, Aufnahme eine (unten näher beschriebenen) Temperatursensors 34 und zur Einhaltung der Luft- und Kriechstrecken. Eine Isolierfolie 242 ist zwischen den Halbbrückenmodulen 182A-C, 184A-C und dem Kühler 24 angeordnet, um die Luft- und Kriechstrecken zwischen den Leistungsanschlüssen der Halbbrückenmodule 162AC, 164A-C einerseits und der Kühlplatte andererseits einzuhalten.
  • Der AC-Ausgang 22 (bzw. die AC-Stromschienenanordnung) umfasst mehrere AC-Stromschienen 222A-C, mehrere mit den AC-Stromscheinen 222A-C verbundene AC-Ausgangskontakte 226A-C sowie eine Umspritzung 224, die durch Aufspritzen der AC-Stromschienen 222A-C mit einem elektrisch isolierenden Spritzgussmaterial entsteht. In diesem Beispiel erfolgt die Umspritzung 224 oberseitig der AC-Stromschienen 222A-C. Unterseitig der AC-Stromschienen 222A-C ist eine stromisolierende Wärmeleitfolie 32 zwecks erhöhter thermischer Kopplung zum Invertergehäuse 30 angeordnet. Auf der Unterseite sind die AC-Stromschienen 222A-C teils mit der stromisolierenden Wärmeleitfolie 32 und teils mit einem elektrisch isolierenden Material umspritzt. Diese Maßnahme gewährleistet eine lokale thermische Kopplung dort, die auf einen Bereich eingeschränkt wird, in dem eine unterseitige Kühlung der AC-Stromschienen 222A-C benötigt wird. Hierdurch wird vermieden, dass die kostenintensive stromisolierende Wärmeleitfolie 32 unnötigerweise eingesetzt wird. Die AC-Stromscheinen 222A-C erstrecken sich jeweils horizontal zwischen einem AC-Leistungsanschluss der Halbbrückenmodule 162A-C, 164A-C und einem der AC-Ausgangskontakte 226A-C. Die Halbbrückenmodule 162A-C, 164A-C weisen jeweils mehrere (in diesem Beispiel zwei) AC-Leistungsanschlüsse auf, die jeweils mit einer der AC-Stromschienen 222A-C elektrisch verbunden sind. Die AC-Ausgangskontakte 226A-C sind vertikal ausgerichtet und schauen über einen Endabschnitt 304 des Invertergehäuses 30 hinaus, um an Wicklungen einer E-Maschine des elektrischen Achsantriebs angebunden zu werden.
  • Wie in Fig. 7 gezeigt, ist ein Stromsensor 36 unterseitig der Leiterplatte 28 mit dieser elektrisch verbunden, vorzugsweise verlötet. Unterhalb des Stromsensors 36 ist eine Aussparung 228 in der Umspritzung 224 der AC-Stromschienen 222A-C ausgebildet. Die Aussparung 228 verkleinert den Abstand zwischen dem Stromsensor 36 und den AC-Stromschienen 222A-C. Zugleich dient eine Bodenschicht der Aussparung 228 zur Potentialtrennung zwischen dem Stromsensor 36 und den AC-Stromschienen 222A-C. Der Stromsensor 36 wird verwendet, um die jeweiligen AC-Phasenströme zu erfassen. Der Stromsensor 36 umfasst typischerweise mehrere Signalleitungen (hier nicht gezeigt), die elektrisch mit der Leiterplatte 28 verbunden bzw. verlötet sind, um die erfassten Stromstärken an eine interne oder externe Prozessiereinheit, etwa eine ECU des Fahrzeugs (hier nicht gezeigt), zu übertragen.
  • Ein Temperatursensor 34 ist, wie in Fig 8 gezeigt, in einem Zwischenraum zwischen dem Trägerrahmen 26 und dem Kühler 24 angeordnet. Der Temperatursensor 34 umfasst einen Sensorkörper 344 und zwei Signalleitungen 342, die sich von beiden Enden des Sensorkörpers 344 heraus zunächst horizontal, anschließend vertikal nach oben erstrecken. Hierbei sind die Signalleitungen 342 durch den Trägerrahmen 26 und die Leiterplatte 28 hindurchgeführt. Eine Wärmeleitschicht 346 ist zwischen dem Sensorkörper 344 und dem Kühler 24 angebracht.
  • Bezugszeichen
    • 10 Inverter
    • 12 DC-Eingang
    • 121 negativer Eingangsanschluss
    • 122 negative Eingangskontakte
    • 123 positiver Eingangsanschluss
    • 124 positive Eingangskontakte
    • 126 Umspritzung
    • 14 Zwischenkreiskondensator
    • 142 positive Kondensatoreingangskontakte
    • 144 negative Kondensatoreingangskontakte
    • 146 Kondensatorgehäuse
    • 148 Kondensatorausgang
    • 16A-C Halbbrücken
    • 162A-C, 164A-C Halbbrückenmodule
    • 166 Signalanschlüsse
    • 18 positive DC-Stromschiene
    • 182A-C, 184A-C positive Stromschienenabzweige
    • 1822, 1842 Laserschweißung
    • 186 Umspritzung
    • 187A-C Befestigungsstellen
    • 188 Querkontakt
    • 189 Öffnungen
    • 20 negative DC-Stromschiene
    • 202A-C, 204A-C negative Stromschienenabzweige
    • 206A-C Befestigungsstellen
    • 208 Öffnungen
    • 22 AC-Ausgang
    • 222A-C AC-Stromschienen
    • 224 Umspritzung
    • 226A-C Ausgangsanschlüsse
    • 228 Aussparung
    • 24 Kühler
    • 242 Isolationsfolie
    • 26 Trägerrahmen
    • 262 Barriere
    • 28 Leiterplatte
    • 282 Schraube
    • 284 Kontaktierung
    • 30 Invertergehäuse
    • 302A-C Schrauben
    • 304 Endabschnitt
    • 32 Wärmeleitfolie
    • 34 Temperatursensor
    • 342 Signalleitung
    • 344 Sensorkörper
    • 346 Wärmeleitschicht
    • 36 Stromsensor

Claims (12)

  1. Inverter (10) zum Betreiben eines elektrischen Antriebs in einem Elektrofahrzeug und/oder einem Hybridfahrzeug, umfassend:
    - einen DC-Eingang (12) zum Anschließen einer DC-Spannungsquelle,
    - einen Zwischenkreiskondensator (14), der mehrere Eingangskontakte (142) zum Injizieren eines mittels der DC-Spannungsquelle erzeugten DC-Stroms aufweist, wobei die Eingangskontakte (142) an einem Kondensatorgehäuse (146) des Zwischenkreiskondensators (14) angebracht sind,
    - mehrere Halbbrücken (16A-C), die jeweils mehrere Halbleiterschaltelemente zum Umwandeln des DC-Stroms in einen AC-Strom mit mehreren Phasenströmen aufweisen, wobei die Halbbrücken (16A-C) in einer Querrichtung des Inverters (10) in einer Reihe angeordnet sind,
    - eine DC-Stromschienenanordnung zum Einspeisen des DC-Stroms in die Halbbrücken, die eine positive DC-Stromschiene (18) und eine negative DC-Stromschiene (20) aufweist, wobei sich die positive und/oder negative DC-Stromschiene (18, 20) in der Querrichtung des Inverters (10) über die Reihe der Halbbrücken (16A-C) erstreckt, sodass die Breite der positiven und/oder negativen DC-Stromschiene (18, 20) an die Breite der Reihe der Halbbrücken (16A-C) heranreicht,
    - eine AC-Stromschienenanordnung (22) zum Abgeben des AC-Stroms in den elektrischen Antrieb,
    - einen Kühler (24) zum Abkühlen der Halbbrücken (16A-C).
  2. Inverter (10) nach Anspruch 1, wobei die Halbbrücken (16A-C) jeweils mehrere Halbbrückenmodule (162A-C, 164A-C) umfassen, die jeweils eine Modulhighside und eine Modullowside aufweisen, wobei die Modulhighside und die Modullowside jeweils ein oder mehrere parallelgeschaltete Halbleiterschaltelemente umfassen, wobei in jeder Halbbrücke die Modulhighsides der Halbbrückenmodule (162A-C, 164A-C) zueinander parallelgeschaltet sind, um eine Highside der Halbbrücke zu bilden, wobei in jeder Halbbrücke (16A-C) die Modullowsides der Halbbrückenmodule (162A-C, 164A-C) zueinander parallelgeschaltet sind, um eine Lowside der Halbbrücke (16A-C) zu bilden.
  3. Inverter (10) nach Anspruch 2, wobei die positive DC-Stromschiene (18) und die negative DC-Stromschiene (20) ausgangsseitig mehrere Stromschienenabzweige (182A-C, 184A-C) zum Anschließen an einen DC-Leistungseingang der Halbbrückenmodule (162A-C, 164A-C) aufweisen, wobei jeder Stromschienenabzweig (182A-C, 184A-C) einem der Halbbrückenmodule (162A-C, 164A-C) zugeordnet ist.
  4. Inverter (10) nach Anspruch 2 oder 3, wobei die positive DC-Stromschiene (18) und/oder die negative DC-Stromschiene (20) außenseitig mit einem stromisolierenden Spritzgussmaterial umspritzt ist.
  5. Inverter (10) nach Anspruch 4, wobei die Umspritzung (186) der positiven DC-Stromschiene (18) und/oder der negativen DC-Stromschiene (20) mehrere Befestigungsstellen (187A-C) für je ein Befestigungsmittel zum Fixieren der Umspritzung (186) an einem Invertergehäuse (30) umfasst, wobei eine relative Position zwischen der Befestigungsstelle (187A-C) und der zugehörigen Halbbrücke (16A-C) für alle Halbbrücken (16A-C) gleich ist.
  6. Inverter (10) nach Anspruch 5, wobei die Umspritzung (186) der positiven DC-Stromschiene (18) und/oder der negativen DC-Stromschiene (20) mehrere Öffnungen (189) zum Durchführen von Signalanschlüssen (166) der Halbbrücken (16A-C) aufweist.
  7. Inverter (10) nach einem der Ansprüche 1 bis 6, wobei alle Signalanschlüsse (166) der Halbbrücken (16A-C) mit einer Leiterplatte (28) mittels Lötens verbunden oder als Pressfit-Pins ausgebildet sind.
  8. Inverter (10) nach einem der Ansprüche 1 bis 7, wobei ein Trägerrahmen (26) zwischen einem Invertergehäuse (30) und einer Leiterplatte (28) angeordnet ist, wobei mehrere Signalanschlüsse (166) der Halbbrücken (16A-C) vertikal durch den Trägerrahmen (26) in Richtung einer Leiterplatte (28) hindurchgeführt sind.
  9. Inverter (10) nach Anspruch 8, wobei ein Temperatursensor (34) zwischen einer Leiterplatte (28) und dem Kühler (24) angeordnet ist, derart, dass der Temperatursensor (34) unterseitig mittels einer Wärmeleitschicht (346) auf dem Kühler (24) fixiert ist, wobei sich zumindest eine Signalleitung (342) des Temperatursensors (34) durch den Trägerrahmen (26) hindurch bis in die Leiterplatte (28) erstreckt.
  10. Inverter (10) nach einem der Ansprüche 1 bis 9, wobei eine Isolationsfolie (32) zwischen einem Invertergehäuse (30) und dem DC-Eingang (12), der DC-Stromschienenanordnung und/oder der AC-Stromschienenanordnung (22) angeordnet ist.
  11. Elektrischer Achsantrieb für ein Fahrzeug, insbesondere ein Elektrofahrzeug oder Hybridfahrzeug, umfassend eine E-Maschine, eine Getriebeeinrichtung und einen Inverter (10) nach einem der Ansprüche 1 bis 10.
  12. Fahrzeug, insbesondere Elektrofahrzeug oder Hybridfahrzeug, umfassend einen elektrischen Achsantrieb nach Anspruch 11.
EP22198223.4A 2021-09-30 2022-09-28 Inverter mit optimiertem elektromagnetischem verhalten Pending EP4160898A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021210938.1A DE102021210938A1 (de) 2021-09-30 2021-09-30 Inverter mit optimiertem elektromagnetischem Verhalten

Publications (1)

Publication Number Publication Date
EP4160898A1 true EP4160898A1 (de) 2023-04-05

Family

ID=83506705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22198223.4A Pending EP4160898A1 (de) 2021-09-30 2022-09-28 Inverter mit optimiertem elektromagnetischem verhalten

Country Status (4)

Country Link
US (1) US20230098335A1 (de)
EP (1) EP4160898A1 (de)
CN (1) CN115912972A (de)
DE (1) DE102021210938A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047126A1 (de) * 2000-09-22 2002-05-08 Eupec Gmbh & Co Kg Befestigungseinrichtung
US20030067748A1 (en) * 2001-10-09 2003-04-10 Hitachi Ltd. Water cooled inverter
US20050035434A1 (en) * 2003-08-14 2005-02-17 Sergio Fissore Module for EPAS/EHPAS applications
US20090085219A1 (en) * 2007-09-27 2009-04-02 Infineon Technologies Ag Power semiconductor arrangement
WO2011076534A1 (de) * 2009-12-22 2011-06-30 Robert Bosch Gmbh Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges
US20120071010A1 (en) * 2010-09-22 2012-03-22 Hitachi Automotive Systems, Ltd. Electronic Control Device
US20160372392A1 (en) * 2015-06-18 2016-12-22 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
US20180145604A1 (en) * 2016-11-24 2018-05-24 Fuji Electric Co., Ltd. Power conversion device
EP3624325A1 (de) * 2018-09-14 2020-03-18 Hamilton Sundstrand Corporation Leistungswandler mit beabstandeten schaltern und treibermodulen
JP6682027B1 (ja) * 2019-04-22 2020-04-15 三菱電機株式会社 バスバーモジュール
DE102018128097A1 (de) * 2018-11-09 2020-05-14 Infineon Technologies Ag Halbleiterleistungsmodul und verfahren zum herstellen eines halbleiterleistungsmoduls

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250442B2 (ja) 2009-02-06 2013-07-31 日立オートモティブシステムズ株式会社 電力変換装置
DE102012201754A1 (de) 2012-02-07 2013-08-08 Zf Friedrichshafen Ag Kondensator, Energieversorgungseinrichtung und Verfahren zum Herstellen eines Kondensators
DE102012201752A1 (de) 2012-02-07 2013-08-08 Zf Friedrichshafen Ag Kondensator und Verfahren zum Herstellen eines Kondensators
DE102014208594A1 (de) 2014-05-08 2015-11-12 Zf Friedrichshafen Ag Leistungselektronikanordnung
WO2017187781A1 (ja) 2016-04-28 2017-11-02 日立オートモティブシステムズ株式会社 電力変換装置
DE102017215729A1 (de) 2017-09-07 2019-03-07 Zf Friedrichshafen Ag Verbindungsvorrichtung und Verfahren zum elektrischen Verbinden eines Elektromotors mit einer elektronischen Schalteinheit, elektronische Schalteinheit, Verbindungseinheit und Vorrichtungssystem mit zumindest einer Verbindungsvorrichtung
DE102019213857A1 (de) 2019-09-11 2021-03-11 Zf Friedrichshafen Ag Stromrichter für ein Fahrzeug, das zumindest teilweise elektrisch angetrieben ist
DE102019220010A1 (de) 2019-12-18 2021-06-24 Zf Friedrichshafen Ag Halbbrückenmodul eines Traktionsinverters einer Leistungselektronik eines Elektrofahrzeugs oder Hybridfahrzeugs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047126A1 (de) * 2000-09-22 2002-05-08 Eupec Gmbh & Co Kg Befestigungseinrichtung
US20030067748A1 (en) * 2001-10-09 2003-04-10 Hitachi Ltd. Water cooled inverter
US20050035434A1 (en) * 2003-08-14 2005-02-17 Sergio Fissore Module for EPAS/EHPAS applications
US20090085219A1 (en) * 2007-09-27 2009-04-02 Infineon Technologies Ag Power semiconductor arrangement
WO2011076534A1 (de) * 2009-12-22 2011-06-30 Robert Bosch Gmbh Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges
US20120071010A1 (en) * 2010-09-22 2012-03-22 Hitachi Automotive Systems, Ltd. Electronic Control Device
US20160372392A1 (en) * 2015-06-18 2016-12-22 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
US20180145604A1 (en) * 2016-11-24 2018-05-24 Fuji Electric Co., Ltd. Power conversion device
EP3624325A1 (de) * 2018-09-14 2020-03-18 Hamilton Sundstrand Corporation Leistungswandler mit beabstandeten schaltern und treibermodulen
DE102018128097A1 (de) * 2018-11-09 2020-05-14 Infineon Technologies Ag Halbleiterleistungsmodul und verfahren zum herstellen eines halbleiterleistungsmoduls
JP6682027B1 (ja) * 2019-04-22 2020-04-15 三菱電機株式会社 バスバーモジュール

Also Published As

Publication number Publication date
DE102021210938A1 (de) 2023-03-30
US20230098335A1 (en) 2023-03-30
CN115912972A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
DE4110339A1 (de) Wechselrichtereinheit mit verbesserter stromleiterplattenkonfiguration
WO2017060092A1 (de) Elektromotor-wechselrichter
EP1083599B1 (de) Leistungshalbleitermodul
DE102016108562A1 (de) Halbleiter-bauelement mit gestapelten anschlüssen
WO2014173801A1 (de) Leistungsmodul, stromrichter und antriebsanordnung mit einem leistungsmodul
DE69907350T2 (de) Anschlussflächenstruktur eines Halbleitermoduls
EP1632117B1 (de) Elektronische baugruppe zum schalten elektrischer leistung
DE10054489A1 (de) Leistungs-Umrichtermodul
EP4160898A1 (de) Inverter mit optimiertem elektromagnetischem verhalten
DE102021203704A1 (de) Halbbrücke, Leistungsmodul und Inverter für einen elektrischen Antrieb eines Elektrofahrzeugs oder eines Hybridfahrzeugs
DE102021203144A1 (de) Leistungsmodul für einen elektrischen Antrieb eines Elektrofahrzeugs oder eines Hybridfahrzeugs, Inverter mit einem solchen Leistungsmodul
DE102008035232A1 (de) Kompakte Anschlussanordnung für Leistungswandler
EP1244340B1 (de) Aus mehreren Leistungsmodulen bestehende elektronische Leistungsschaltung
DE102022206606B4 (de) Einzelphasenmodul eines Inverters, Inverter und Leistungselektronik
DE102022201178B3 (de) Produktionsoptimierter Stromrichter, insbesondere Wechselrichter
DE102022201015A1 (de) AC-Stromschienenanordnung für Inverter zum Betreiben eines elektrischen Antriebs eines Elektrofahrzeugs oder eines Hybridfahrzeugs mit einem T-förmigen Leiter; Inverter
DE102022201326A1 (de) Leistungsmodul für einen Stromrichter mit optimierten Stromschienen
DE102022201035A1 (de) Wechselrichter mit optimierter Skalierbarkeit
DE102022201333A1 (de) Zwischenkreiskondensator mit einer optimierten Wärmeabfuhr, Stromrichter mit einem solchen Zwischenkreiskondensator
DE102021205280A1 (de) Halbbrücke, Leistungsmodul und Inverter für einen elektrischen Antrieb eines Elektrofahrzeugs oder eines Hybridfahrzeugs
DE102021208347A1 (de) DC-Stromschiene für Inverter zum Betreiben eines elektrischen Antriebs eines Elektrofahrzeugs oder eines Hybridfahrzeugs, Inverter
DE102022208130A1 (de) Halbbrückenmodul für einen Stromrichter mit einer kompakten Bauweise und gleich-zeitig effizienter Kühlung von Halbleiterschaltelementen
DE102022206602A1 (de) Einzelphasenmodul eines Inverters, Inverter und Leistungselektronik
DE102022206601A1 (de) Einzelphasenmodul eines Inverters, Inverter und Leistungselektronik
WO2022223448A1 (de) Inverteraufbau eines elektronikmoduls für einen elektroantrieb eines fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20231005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR