EP4157972A1 - Utilisation d'une composition de carburant comprenant 3 additifs pour nettoyer les parties internes des moteurs essence - Google Patents
Utilisation d'une composition de carburant comprenant 3 additifs pour nettoyer les parties internes des moteurs essenceInfo
- Publication number
- EP4157972A1 EP4157972A1 EP21734411.8A EP21734411A EP4157972A1 EP 4157972 A1 EP4157972 A1 EP 4157972A1 EP 21734411 A EP21734411 A EP 21734411A EP 4157972 A1 EP4157972 A1 EP 4157972A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- group
- additive
- additives
- use according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 139
- 239000000654 additive Substances 0.000 title claims abstract description 128
- 239000000203 mixture Substances 0.000 title claims abstract description 94
- 238000004140 cleaning Methods 0.000 title claims description 4
- 230000000996 additive effect Effects 0.000 claims abstract description 67
- 229920002367 Polyisobutene Polymers 0.000 claims abstract description 45
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims abstract description 22
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims abstract description 16
- 229960002317 succinimide Drugs 0.000 claims abstract description 10
- -1 benzyl halides Chemical class 0.000 claims description 83
- 150000001875 compounds Chemical class 0.000 claims description 50
- 239000003795 chemical substances by application Substances 0.000 claims description 48
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 41
- 238000002347 injection Methods 0.000 claims description 41
- 239000007924 injection Substances 0.000 claims description 41
- 239000003502 gasoline Substances 0.000 claims description 39
- 125000004432 carbon atom Chemical group C* 0.000 claims description 38
- 229930195733 hydrocarbon Natural products 0.000 claims description 34
- 239000004215 Carbon black (E152) Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 29
- 150000002430 hydrocarbons Chemical class 0.000 claims description 27
- 238000002485 combustion reaction Methods 0.000 claims description 23
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 22
- 150000002148 esters Chemical class 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 150000001412 amines Chemical class 0.000 claims description 17
- 229920000768 polyamine Polymers 0.000 claims description 17
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 15
- 239000003599 detergent Substances 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 12
- 230000003749 cleanliness Effects 0.000 claims description 10
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 9
- 239000012141 concentrate Substances 0.000 claims description 9
- 150000001733 carboxylic acid esters Chemical class 0.000 claims description 8
- 238000005956 quaternization reaction Methods 0.000 claims description 8
- 229940126062 Compound A Drugs 0.000 claims description 7
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 7
- 150000001298 alcohols Chemical class 0.000 claims description 7
- 150000008064 anhydrides Chemical class 0.000 claims description 7
- 238000009833 condensation Methods 0.000 claims description 7
- 230000005494 condensation Effects 0.000 claims description 7
- 150000003335 secondary amines Chemical class 0.000 claims description 7
- 229940014800 succinic anhydride Drugs 0.000 claims description 7
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 239000003921 oil Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 5
- 150000003141 primary amines Chemical class 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001350 alkyl halides Chemical class 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 239000003344 environmental pollutant Substances 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 239000011707 mineral Substances 0.000 claims description 4
- 239000003607 modifier Substances 0.000 claims description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 claims description 4
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 4
- 150000002989 phenols Chemical group 0.000 claims description 4
- 231100000719 pollutant Toxicity 0.000 claims description 4
- 239000000344 soap Substances 0.000 claims description 4
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- 150000001299 aldehydes Chemical class 0.000 claims description 3
- 239000003963 antioxidant agent Substances 0.000 claims description 3
- 239000000571 coke Substances 0.000 claims description 3
- 238000007084 catalytic combustion reaction Methods 0.000 claims description 2
- 150000001991 dicarboxylic acids Chemical group 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 150000003022 phthalic acids Chemical class 0.000 claims description 2
- 150000004672 propanoic acids Chemical class 0.000 claims description 2
- 235000019260 propionic acid Nutrition 0.000 claims description 2
- 239000004071 soot Substances 0.000 claims description 2
- 150000003444 succinic acids Chemical class 0.000 claims description 2
- 125000001302 tertiary amino group Chemical group 0.000 claims 3
- 239000000969 carrier Substances 0.000 claims 1
- 150000008050 dialkyl sulfates Chemical class 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 150000003512 tertiary amines Chemical group 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 12
- 150000001336 alkenes Chemical class 0.000 description 11
- 125000003118 aryl group Chemical group 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 150000004665 fatty acids Chemical class 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000006683 Mannich reaction Methods 0.000 description 6
- 239000002199 base oil Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 6
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Natural products OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 5
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 5
- 238000004939 coking Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000002816 fuel additive Substances 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 150000003443 succinic acid derivatives Chemical group 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- IZKZIDXHCDIZKY-UHFFFAOYSA-N heptane-1,1-diamine Chemical class CCCCCCC(N)N IZKZIDXHCDIZKY-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000002877 alkyl aryl group Chemical group 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000003586 protic polar solvent Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical class OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229960001047 methyl salicylate Drugs 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- JPJMSWSYYHNPLD-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]-n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCNCCN(C)C JPJMSWSYYHNPLD-UHFFFAOYSA-N 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 150000003738 xylenes Chemical class 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- AZZDBAMLOMKUQR-UHFFFAOYSA-N 1-(diethylamino)butan-1-ol Chemical compound CCCC(O)N(CC)CC AZZDBAMLOMKUQR-UHFFFAOYSA-N 0.000 description 1
- VKKTUDKKYOOLGG-UHFFFAOYSA-N 1-(diethylamino)propan-1-ol Chemical compound CCC(O)N(CC)CC VKKTUDKKYOOLGG-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- BRRSNXCXLSVPFC-UHFFFAOYSA-N 2,3,4-Trihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C(O)=C1O BRRSNXCXLSVPFC-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 1
- YSAANLSYLSUVHB-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]ethanol Chemical compound CN(C)CCOCCO YSAANLSYLSUVHB-UHFFFAOYSA-N 0.000 description 1
- LSYBWANTZYUTGJ-UHFFFAOYSA-N 2-[2-(dimethylamino)ethyl-methylamino]ethanol Chemical compound CN(C)CCN(C)CCO LSYBWANTZYUTGJ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- MBIQENSCDNJOIY-UHFFFAOYSA-N 2-hydroxy-2-methylbutyric acid Chemical compound CCC(C)(O)C(O)=O MBIQENSCDNJOIY-UHFFFAOYSA-N 0.000 description 1
- SLAMLWHELXOEJZ-UHFFFAOYSA-N 2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- PLYTVAFAKDFFKM-UHFFFAOYSA-N 3,4-dimethylmorpholine Chemical compound CC1COCCN1C PLYTVAFAKDFFKM-UHFFFAOYSA-N 0.000 description 1
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical compound CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 1
- RKFASUNWWPNGOU-UHFFFAOYSA-N 3-N,3-N,3-triethylhexane-3,4-diamine Chemical compound CCC(N)C(CC)(CC)N(CC)CC RKFASUNWWPNGOU-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 102000006835 Lamins Human genes 0.000 description 1
- 108010047294 Lamins Proteins 0.000 description 1
- XYVQFUJDGOBPQI-UHFFFAOYSA-N Methyl-2-hydoxyisobutyric acid Chemical compound COC(=O)C(C)(C)O XYVQFUJDGOBPQI-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 101100160255 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) YLR154C-H gene Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ITBPIKUGMIZTJR-UHFFFAOYSA-N [bis(hydroxymethyl)amino]methanol Chemical compound OCN(CO)CO ITBPIKUGMIZTJR-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001266 acyl halides Chemical class 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical group 0.000 description 1
- 125000005910 alkyl carbonate group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005332 alkyl sulfoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical group ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 229940073608 benzyl chloride Drugs 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical compound NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical group 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- LXVSANCQXSSLPA-UHFFFAOYSA-N diethylglycolic acid Natural products CCC(O)(CC)C(O)=O LXVSANCQXSSLPA-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000003254 gasoline additive Substances 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002391 heterocyclic compounds Chemical group 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical class CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000005027 hydroxyaryl group Chemical group 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 210000005053 lamin Anatomy 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N linoleic acid group Chemical group C(CCCCCCC\C=C/C\C=C/CCCCC)(=O)O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- AOXPHVNMBPFOFS-UHFFFAOYSA-N methyl 2-nitrobenzoate Chemical compound COC(=O)C1=CC=CC=C1[N+]([O-])=O AOXPHVNMBPFOFS-UHFFFAOYSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 125000001802 myricyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KYCGURZGBKFEQB-UHFFFAOYSA-N n',n'-dibutylpropane-1,3-diamine Chemical compound CCCCN(CCCC)CCCN KYCGURZGBKFEQB-UHFFFAOYSA-N 0.000 description 1
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 1
- DWAVKBTVEKQVDL-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine;ethane-1,2-diamine Chemical compound NCCN.CN(C)CCN DWAVKBTVEKQVDL-UHFFFAOYSA-N 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- NYIODHFKZFKMSU-UHFFFAOYSA-N n,n-bis(methylamino)ethanamine Chemical compound CCN(NC)NC NYIODHFKZFKMSU-UHFFFAOYSA-N 0.000 description 1
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N n,n-dimethylpropan-1-amine Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 1
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 1
- SEGJNMCIMOLEDM-UHFFFAOYSA-N n-methyloctan-1-amine Chemical compound CCCCCCCCNC SEGJNMCIMOLEDM-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- WOFPPJOZXUTRAU-UHFFFAOYSA-N octan-4-ol Chemical compound CCCCC(O)CCC WOFPPJOZXUTRAU-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- MHYFEEDKONKGEB-UHFFFAOYSA-N oxathiane 2,2-dioxide Chemical compound O=S1(=O)CCCCO1 MHYFEEDKONKGEB-UHFFFAOYSA-N 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- KJOMYNHMBRNCNY-UHFFFAOYSA-N pentane-1,1-diamine Chemical class CCCCC(N)N KJOMYNHMBRNCNY-UHFFFAOYSA-N 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920002552 poly(isobornyl acrylate) polymer Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical class NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- ZZYXNRREDYWPLN-UHFFFAOYSA-N pyridine-2,3-diamine Chemical class NC1=CC=CN=C1N ZZYXNRREDYWPLN-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ARCJQKUWGAZPFX-UHFFFAOYSA-N stilbene oxide Chemical compound O1C(C=2C=CC=CC=2)C1C1=CC=CC=C1 ARCJQKUWGAZPFX-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 1
- YQPZJBVEKZISEF-UHFFFAOYSA-N tetracont-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC=C YQPZJBVEKZISEF-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- GINSRDSEEGBTJO-UHFFFAOYSA-N thietane 1-oxide Chemical compound O=S1CCC1 GINSRDSEEGBTJO-UHFFFAOYSA-N 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 150000004901 trioxanes Chemical class 0.000 description 1
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/236—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/23—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/06—Use of additives to fuels or fires for particular purposes for facilitating soot removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
- C10L1/2387—Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0415—Light distillates, e.g. LPG, naphtha
- C10L2200/0423—Gasoline
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/22—Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2250/00—Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
- C10L2250/04—Additive or component is a polymer
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/023—Specifically adapted fuels for internal combustion engines for gasoline engines
Definitions
- TITLE USE OF A FUEL COMPOSITION CONTAINING 3 ADDITIVES TO CLEAN THE INTERNAL PARTS OF ENGINES
- the present invention relates to the use, for reducing and / or preventing deposits present in the internal parts of a spark ignition engine, of a fuel composition which comprises at least three additives: a quaternary ammonium salt, a non-quaternary polyisobutylene succinimide, and a Mannich base, different from the other two additives.
- the composition is such that the mass ratio of the amount of the first additive to the amount of the second additive is in the range from 0.2: 1 to 2.5: 1.
- the invention also relates to the use, for improving the detergency properties of gasoline fuel, of a fuel concentrate comprising at least said three additives, in admixture with an organic liquid inert to said additives.
- the composition is also used to maintain cleanliness (keep-clean effect) and / or to clean (clean-up effect) deposits in the engine, as well as to reduce the fuel consumption of the engine (“Fuel Eco” action) and / or minimize the loss of power of said engine, and / or reduce the emissions of pollutants, in particular, the emissions of particles from the combustion engine, and / or to reduce the clogging of the pistons of the engine, preferably in direct gasoline injection ( or IDE).
- IDE direct gasoline injection
- Liquid internal combustion engine fuels contain components that can be degraded during engine operation.
- the problem of deposits in the internal parts of combustion engines is well known to engine manufacturers. It has been shown that the formation of these deposits has consequences on engine performance and in particular has a negative impact on fuel consumption and particle emissions (Gueit, J. et al., "Injector Fouling in Direct Injection Spark Ignition Engines - A New Test Procedure for the Evaluation of Gasoline Additives, "SAE Technical Paper 2017-01-2294). Advances in fuel additive technology have made it possible to tackle this problem. So-called detergent additives used in fuels have already been proposed to keep the engine clean by limiting deposits (“keep-clean” effect) or by reducing deposits already present. in the internal parts of the combustion engine (“clean-up” effect in English). Mention may be made, by way of example, of document US Pat. No. 4,171959 which describes a detergent additive for gasoline fuel containing a quaternary ammonium function.
- the new gasoline direct injection systems expose the injectors to more severe pressure and temperature conditions, which favors the formation of deposits.
- these new injection systems have more complex geometries to optimize spraying, in particular, more holes having smaller diameters but which, on the other hand, induce a greater sensitivity to deposits.
- the presence of deposits can alter combustion performance, in particular increase pollutant emissions and particulate emissions.
- a first type of deposit consists of those which form at high temperature on the intake valves of spark-ignition engines with indirect injection when using a fuel which does not contain any carbonate additive. detergency. These deposits consist in particular of carbonaceous residues associated with the phenomenon of coking (“coking” in English) and can also include deposits of the soap and / or varnish type (in English “lacquering”). These deposits are generally treated by the use of a detergent additive added to the fuel (additive fuel).
- a second type of deposit consists of the viscous deposits, mentioned previously, which form at low temperature and appear on the intake valves of spark ignition engines with indirect injection when using additive fuels, thus causing the valve sticking phenomenon described above.
- WO2006135881 describes a detergent additive containing a quaternary ammonium salt used to reduce or clean deposits in particular on the intake valves.
- a fuel composition comprising at least three additives, as described below, has remarkable and unexpected detergency properties for internal combustion engines, preferably gasoline, known under the name spark ignition engines.
- This combination of additives guarantees and improves the detergent power of fuels intended for internal combustion engines. It also produces an unexpected synergistic effect.
- a subject of the present invention is thus the use, for reducing and / or preventing deposits in the internal parts of a spark-ignition engine, of a fuel composition
- a fuel composition comprising:
- additive (3) at least a third additive, different from additives (1) and (2), consisting of a Mannich base, and in which the mass ratio of the amount of the first additive to the amount of the second additive is included in the range from 0.2: 1 to 2.5: 1.
- the mass ratio of the amount of the first additive to the amount of the second additive in the composition is in the range ranging from 1: 1 to 2: 1, and preferably ranging from 1.25: 1 to 1.5. : 1.
- a subject of the invention is also the use of the composition, to maintain cleanliness (keep-clean effect) and / or clean (clean-up effect) the deposits in the internal parts of a spark-ignition engine, chosen from among the following: the combustion chamber and the fuel injection system, and preferably the fuel injection system.
- a further subject of the invention is the use, to improve the detergency properties of a gasoline fuel, of a fuel concentrate comprising at least the above three additives, mixed with an organic liquid, said organic liquid. being inert with respect to the first, second and third additives, and miscible with said fuel.
- the invention also relates to a method of maintaining the cleanliness and / or cleaning of at least one of the internal parts of a spark ignition engine (or internal combustion gasoline engine), comprising at least the following steps:
- CN compound or group denotes a compound or a group containing in its chemical structure N carbon atoms.
- the first additive quaternary ammonium
- the composition according to the invention comprises a first additive consisting of a quaternary ammonium salt, obtained, in a first embodiment, by reaction with a quaternization agent of a nitrogen compound comprising a tertiary amine function, this nitrogen compound. being the reaction product of an acylating agent substituted with a hydrocarbon group and of a compound comprising at least one tertiary amine group and at least one group chosen from primary amines, secondary amines and alcohols.
- the quaternary ammonium salt is chosen from quaternized PIBA (polyisobutylene-amine) compounds, or from quaternized polyether-amines.
- said nitrogenous compound is the product of the reaction of an acylating agent substituted with a hydrocarbon group and of a compound comprising both an oxygen atom or a d atom.
- nitrogen capable of condensing with said acylating agent that is to say that this compound comprises at least one group chosen from primary amines, secondary amines and alcohols) and a tertiary amine group.
- the acylating agent is advantageously chosen from mono-or poly-carboxylic acids and their derivatives, in particular their ester, amide or anhydride derivatives.
- the acylating agent is preferably chosen from succinic, phthalic and propionic acids and the corresponding anhydrides.
- the acylating agent is substituted by a hydrocarbon group.
- hydrocarbon group is understood to mean any group having a carbon atom directly attached to the rest of the molecule (ie to the acylating agent) and having mainly an aliphatic hydrocarbon character.
- Hydrocarbon groups according to the invention can also contain non-hydrocarbon groups. For example, they can contain up to one non-hydrocarbon group per ten carbon atoms provided that the non-hydrocarbon group does not significantly modify the predominantly hydrocarbon character of the group.
- the hydrocarbon substituents do not contain such non-hydrocarbon groups and are purely aliphatic hydrocarbons.
- the hydrocarbon substituent of the acylating agent preferably comprises at least 8, preferably at least 12 carbon atoms. Said hydrocarbon substituent may comprise up to about 200 carbon atoms.
- the hydrocarbon substituent of the acylating agent preferably has a number average molecular weight (Mn) of between 160 to 2800, for example between 250 to 2000, more preferably between 500 to 1500 and, even more preferably between de 500 to 1300.
- Mn number average molecular weight
- a range of value of M n between 700 and 1300 is particularly preferred, for example from 700 to 1200.
- hydrocarbon groups substituting the acylating agent mention may be made of n-octyl, n-decyl, n-dodecyl, tetrapropenyl, n-octadecyl, oleyl, octadecyl or triacontyl groups.
- the hydrocarbon substituent of the acylating agent can also be obtained from homo- or inter-polymers (for example copolymers, terpolymers) of mono- and di-olefins having from 2 to 10 carbon atoms, for example from ethylene, propylene, 1 -butene, isobutene, butadiene, isoprene, 1-hexene or 1-octene.
- these olefins are 1-mono-olefins.
- the hydrocarbon substituent of the acylating agent can also be chosen from derivatives of halogenated analogues (for example chlorinated or brominated) of these homopolymers or inter-polymers.
- the hydrocarbon substituent of the acylating agent can be obtained from other sources, for example from high molecular weight alkenes monomers (eg, 1 -tetracontene) and their chlorinated analogues or hydrochlorinated, aliphatic petroleum fractions, for example paraffin waxes, their cracked, chlorinated and / or analogues thereof hydrochlorides, white oils, synthetic alkenes, for example produced by the Ziegler-Natta process (for example polyethylene fats) and other sources known to those skilled in the art.
- high molecular weight alkenes monomers eg, 1 -tetracontene
- aliphatic petroleum fractions for example paraffin waxes, their cracked, chlorinated and / or analogues thereof hydrochlorides
- white oils for example synthetic alkenes, for example produced by the Ziegler-Natta process (for example polyethylene fats) and other sources known to those skilled in the art.
- Any unsaturation present in the hydrocarbon group of the acylating agent can optionally be reduced or eliminated by hydrogenation according to any known process.
- the hydrocarbon substituent of the acylating agent is preferably substantially saturated, i.e., it does not contain more than one carbon-to-carbon unsaturated bond for each slice of ten carbon-to-carbon single bonds. present.
- the hydrocarbon substituent of the acylating agent advantageously contains no more than one non-aromatic carbon-to-carbon unsaturated bond per every 50 carbon-to-carbon bonds present.
- the hydrocarbon substituent of the acylating agent is a polyisobutene group also called polyisobutylene (PIB).
- PIB polyisobutylene
- PIB polyisobutylene
- Highly reactive polyisobutenes (PIB) are understood to mean polyisobutenes (PIB) in which at least 50 mol%, preferably at least 70 mol% or more, of the terminal olefinic double bonds are of the vinylidene type as described in document EP0565285.
- preferred PIBs are those having more than 80 mole% and up to 100 mole% of vinylidene end groups as described in EP 1344785.
- the acylating agent substituted with a hydrocarbon group is a polyisobutenyl succinic anhydride (PIB SA).
- polyisobutenyl succinic anhydride can be prepared by mixing a polyolefin with maleic anhydride and then passing chlorine through the mixture (GB949981).
- hydrocarbon groups comprising an internal olefin, for example such as those described in application WO2007 / 015080, can also be used as a substituent for the acylating agent.
- internal olefin any olefin containing predominantly one non-alpha double bond, which is a beta or higher position olefin.
- these materials are essentially beta-olefins or higher position olefins, for example containing less than 10% by mass of alpha-olefin, advantageously less than 5% by mass or less than 2% by mass.
- Internal olefins can be prepared by isomerization of alpha-olefins according to any known process.
- the compound comprising both an oxygen atom or a nitrogen atom capable of condensing with the acylating agent and a tertiary amine group can, for example, be chosen from the group consisting of: dimethylaminopropylamine, N, N-diethylaminopropylamine, N, N- dimethylamino-ethylamine, N, N-dimethyl-amino ethylamine ethylenediamine, 1,2-propylenediamine, 1, 3-propylene diamine, butylenediamines (isomers), diethylenetriamine, dipropylenetriamine, dibutylenetriamine, triethylenetetraamine, teraethylenepentaamine, pentaethylenehexaamine, hexamethylenetetramine, bis (hexametliylene) triamine, diaminobenzenes, and the pentanediamines, hexanediamines, Nyopamine, and preferably heptanediamine
- Said compound can also be chosen from heterocyclic compounds substituted by alkylamines such as l - (3- aminopropyl) -imidazole, 4- (3-aminopropyl) morpholine, l- (2-aminoethyl) piperidine, 3 , 3-diamino-N-methyldipropylamine, diaminopyridines, and 3'3-bisamino (N, N-dimethylpropylamine).
- alkylamines such as l - (3- aminopropyl) -imidazole, 4- (3-aminopropyl) morpholine, l- (2-aminoethyl) piperidine, 3 , 3-diamino-N-methyldipropylamine, diaminopyridines, and 3'3-bisamino (N, N-dimethylpropylamine).
- the compound comprising both an oxygen atom or a nitrogen atom capable of condensing with the acylating agent and a tertiary amine group can also be selected from alkanolamines, including, but not limited to. , triethanolamine, trimethanolamine, N, N-dimethylaminopropanol, N, N-dimethylaminoethanol, N, N- diethylaminopropanol, N, N-diethylaminoethanol, N, N- diethylaminobutanol, N, N, N-tris (hydroxyethyl ) amine, N, N, N- tris (hydroxymethyl) amine, laN, N, N tris (aminoethyl) amine, N, N- dibutylaminopropylamine and N, N, N'-trimethyl-N'-hydroxyethyl- bisaminoethyl ether , N, N-bis (3-dimethylamino-propyl
- R6 and R7 are the same or different and represent, independently of each other, an alkyl group having 1 to 22 carbon atoms, preferably having 1 to 5 carbon atoms;
- X is an alkylene group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms; m is an integer between 1 and 5; n is an integer between 0 and 20; and
- R8 is a hydrogen atom or a C1 to C22 alkyl group.
- Said compound is preferably chosen from amines of formula
- R8 is preferably a hydrogen atom or an alkyl C l -C 16, preferably an alkyl group of Cl to CIO, more preferably an alkyl group C l to C6.
- R8 can, for example, be selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl and their isomers.
- R8 is a hydrogen atom.
- n is preferably an integer between 0 to 15, more preferably between 0 to 10, even more preferably between 0 to 5.
- n is 0.
- said nitrogenous compound is the product of the reaction of the acylating agent substituted with a hydrocarbon group and of a diamine of formula (I).
- R6 and R7 represent, independently of one another, a group C1 to C16 alkyl , preferably a C1 to C10 alkyl group;
- R6 and R7 represent, independently of one another, a methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl group or their isomers.
- R6 and R7 represent, independently of one another, a C1 to C4 group, preferably a methyl group;
- - X represents an alkylene group having 1 to 16 carbon atoms, preferably from 1 to 12 carbon atoms, more preferably from 1 to 8 carbon atoms, for example from 2 to 6 carbon atoms or from 2 to 5 carbon atoms. carbon.
- X particularly preferably represents an ethylene, propylene or butylene group, in particular a propylene group.
- the nitrogenous compound is the reaction product of a succinic acid derivative substituted with a hydrocarbon group, preferably a polyisobutenyl succinic anhydride, and of an alcohol or of an amine also comprising a tertiary amine group, in particular a compound of formula (I) or (II) as described above and more preferably a compound of formula (I).
- a succinic acid derivative substituted with a hydrocarbon group preferably a polyisobutenyl succinic anhydride
- an alcohol or of an amine also comprising a tertiary amine group, in particular a compound of formula (I) or (II) as described above and more preferably a compound of formula (I).
- the succinic acid derivative substituted with a hydrocarbon group reacts with the amine also comprising a tertiary amine group under certain conditions to form a succinimide (closed form).
- the reaction of the succinic acid derivative and the amine can also result under certain conditions in a succinamide, that is to say, a compound comprising an amide group and a carboxylic acid group (open form).
- an alcohol also comprising a tertiary amine group reacts with the succinic acid derivative to form an ester also comprising a free carboxyl group —CO2H (open form).
- the nitrogenous compound may be the reaction product of a succinic acid derivative and an amine or an alcohol which is an ester or an amide and which further also comprises a carboxyl group -CO 2 H unreacted (open form).
- the quaternary ammonium salt forming the first additive according to the present invention is obtained directly by reaction between the nitrogenous compound described above comprising a tertiary amine function and a quaternization agent.
- the quaternization agent is chosen from the group constituting dialkyl sulphates, carboxylic acid esters, alkyl halides, benzyl halides, hydrocarbon carbonates, and hydrocarbon epoxides. optionally as a mixture with an acid, alone or as a mixture, preferably the carboxylic acid esters.
- quaternizing agent containing such an element it may be advantageous to perform a subsequent reaction to exchange the counterion.
- a quaternary ammonium salt formed by reaction with an alkyl halide can then be reacted with sodium hydroxide and the sodium halide salt removed by filtration.
- the quaternizing agent can include halides such as chloride, iodide or bromide; hydroxides; sulfonates; bisulfites; alkyl sulphates such as dimethyl sulphate; sulfones; phosphates; C1-C12 alkylphosphates ; C1-C12 dialkylphosphates; borates; C 1-C12 alkylborates; nitrites; nitrates; carbonates; bicarbonates; alkanoates; C 1 -C 12 0,0-dialkyldithiophosphates , alone or as a mixture.
- the quaternization agent can be chosen from derivatives of dialkylsulphates such as dimethyl sulphate, of N-oxides, of sulphones such as propane- and butanesulfone, of alkyl halides. , acyl or aralkyl such as methyl and ethyl chloride, benzyl bromide, iodide or chloride, and hydrocarbon carbonates (or alkylcarbonates).
- the aromatic ring is optionally substituted by one or more alkyl or alkenyl groups.
- the hydrocarbon (alkyl) groups of the hydrocarbon carbonates can contain from 1 to 50, from 1 to 20, from 1 to 10 or from 1 to 5 carbon atoms per group. According to one embodiment, the hydrocarbon carbonates contain two hydrocarbon groups which may be identical or different. By way of example of hydrocarbon carbonates, mention may be made of dimethyl or diethyl carbonate.
- the quaternization agent is chosen from the hydrocarbon epoxides represented by the following formula (III): in which R9, R10, R11 and R12 may be the same or different and represent, independently of each other, a hydrogen atom or a C 1 -C 50 hydrocarbon group .
- R9, R10, R11 and R12 may be the same or different and represent, independently of each other, a hydrogen atom or a C 1 -C 50 hydrocarbon group .
- R9, R10, R11 and R12 may be the same or different and represent, independently of each other, a hydrogen atom or a C 1 -C 50 hydrocarbon group .
- R9, R10, R11 and R12 may be the same or different and represent, independently of each other, a hydrogen atom or a C 1 -C 50 hydrocarbon group .
- styrene oxide ethylene oxide
- propylene oxide propylene oxide
- butylene oxide stilbene oxide
- hydrocarbon epoxides can be used as a quaternizing agent in combination with an acid, for example with acetic acid.
- the hydrocarbon epoxides can also be used alone as a quaternization agent, in particular without additional acid.
- a protic solvent is used for the preparation of the quaternary ammonium salt.
- protic solvents such as water, alcohols (including polyhydric alcohols) can be used alone or as a mixture.
- Preferred protic solvents have a dielectric constant greater than 9.
- the quaternization agent is chosen from the compounds of formula (IV): wherein R13 is an optionally substituted alkyl, alkenyl, aryl and aralkyl group, and R14 is a C1 to C22 alkyl, aryl or alkylaryl group.
- the compound of formula (IV) is a carboxylic acid ester capable of reacting with a tertiary amine to form a quaternary ammonium salt.
- Compounds of formula (IV) are selected, for example, from esters of carboxylic acids having a pKa of 3.5 or less.
- the compound of formula (IV) is preferably chosen from esters of substituted aromatic carboxylic acid, of alpha-hydroxycarboxylic acid and of polycarboxylic acid.
- the ester is a substituted aromatic carboxylic acid ester of formula (IV) in which R13 is a substituted aryl group.
- R13 is a substituted aryl group having 6 to 10 carbon atoms, preferably a phenyl or naphthyl group, more preferably a phenyl group.
- R13 is advantageously substituted with one or more groups chosen from the carboalkoxy, nitro, cyano, hydroxy, SR15 and NR15R16 radicals.
- Each of the groups R15 and Rm can be a hydrogen atom or an optionally substituted alkyl, alkenyl, aryl or carboalkoxy group.
- Each of the groups R15 and Ri 6 represents, advantageously, the hydrogen atom or an optionally substituted C 1 to C22 alkyl group, preferably the hydrogen atom or a C 1 to C16 alkyl group , more preferably 1 hydrogen atom or a C1 to C4 alkyl group, even more preferably the hydrogen atom or a C1 to C4 alkyl group.
- R15 is preferably a hydrogen atom and R 1 6 a hydrogen atom or a C1 to C4 group.
- R15 and Ri 6 are both hydrogen.
- R13 is an aryl group substituted by one or more groups chosen from hydroxyl, carboalkoxy, nitro, cyano and NH2 radicals.
- R13 can be a polysubstituted aryl group, for example trihydroxyphenyl.
- R13 is a monosubstituted aryl group, preferably ortho substituted.
- R13 is, for example, substituted by a group chosen from the OH, NH2, NO2 or COOMe radicals, preferably OH or NH2.
- R13 is preferably a hydroxy-aryl group, in particular 2-hydroxyphenyl.
- R14 is an alkyl or alkylaryl group.
- R14 can be a C 1 to C16 , preferably C 1 to C10, advantageously C 1 to C8 alkyl group.
- R14 may be a C 1 to C16, preferably C 1 to Cio , advantageously C 1 to C8 alkylaryl group.
- R14 can for example be chosen from methyl, ethyl, propyl, butyl, pentyl, benzyl or their isomers.
- R14 is a benzyl or methyl group, more preferably methyl.
- a particularly preferred compound is methyl salicylate.
- the compound of formula (IV) is an ester of an alpha-hydroxycarboxylic acid corresponding to the formula (V) following: wherein R17 and R18 are the same or different and are independently selected from the group consisting of the hydrogen atom, alkyl, alkenyl, aryl or aralkyl groups.
- R17 and R18 are the same or different and are independently selected from the group consisting of the hydrogen atom, alkyl, alkenyl, aryl or aralkyl groups.
- Examples of compounds of formula (IV) in which R13COO is the residue of an alpha-hydroxycarboxylic acid include methyl-, ethyl-, propyl-, butyl-, pentyl-, hexyl-, phenyl-, benzyl- or allyl- 2-hydroxy-isobutyric acid esters; methyl-, ethyl-, propyl-, butyl-, pentyl-, hexyl-, benzyl-, phenyl- or allyl-esters of 2-hydroxy-2-methylbutyric acid; 2-hydroxy-2-ethylbutyric acid methyl-, ethyl-, propyl-, butyl-, pentyl-, hexyl-, benzyl-, phenyl- or allyl-esters; methyl-, ethyl-, propyl-, butyl-, pentyl-, hexyl-,
- the compound of formula (IV) is an ester of a polycarboxylic acid chosen from dicarboxylic acids and carboxylic acids having more than two acid functions.
- the carboxylic functions are preferably all in esterified form.
- Preferred esters are C 1-4 alkyl esters.
- the compound of formula (IV) can be chosen from oxalic acid diesters, phthalic acid diesters, maleic acid diesters, malonic acid diesters or citric acid diesters.
- the compound of formula (IV) is dimethyl oxalate.
- the compound of formula (IV) is a carboxylic acid ester having a pKa of less than 3.5.
- the compound comprises more than one acidic group, reference will be made to the first dissociation constant.
- the compound of formula (IV) can be chosen from one or more carboxylic acid esters chosen from oxalic acid, phthalic acid, salicylic acid, maleic acid, malonic acid, citric acid. , nitrobenzoic acid, aminobenzoic acid and 2,4,6-acid trihydroxybenzoic acid.
- Preferred compounds of formula (IV) are dimethyl oxalate, methyl 2-nitrobenzoate and methyl salicylate.
- the quaternary ammonium salt used in the invention is formed by reaction of a hydrocarbon epoxide, preferably chosen from those of formula (III) above and more preferably propylene oxide. , with the reaction product of a polyisobutenyl succinic anhydride in which the polyisobutylene group (PIB) has a number-average molecular mass (Mn) of between 700 and 1000 and dimethyl-aminoprop y lamin.
- PIB polyisobutenyl succinic anhydride in which the polyisobutylene group (PIB) has a number-average molecular mass (Mn) of between 700 and 1000 and dimethyl-aminoprop y lamin.
- the additive (1) is chosen from polyisobutylene succinimides functionalized with a quaternary ammonium group.
- the composition according to the invention comprises the first additive (s) as described above in a preferential content ranging from 5 to 10,000 ppm by weight, preferably from 5 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight , more preferably from 15 to 200 ppm by weight, and better still from 20 to 150 ppm by weight, relative to the total weight of the fuel composition.
- the second additive polyisobutylene succinimide
- composition according to the invention comprises a second additive (2) consisting of a non-quaternary polyisobutylene succinimide, that is to say that it does not contain a quaternary ammonium group.
- said second additive results from the condensation: of a compound A consisting of a dicarboxylic acid substituted with a polyisobutylene group or of an anhydride of such a diacid, with a compound B consisting of a primary polyamine of general formula (VI) below:
- RI and R2 identical or different, represent hydrogen or a hydrocarbon group comprising from 1 to 4 carbon atoms, n is an integer varying from 1 to 3, m is an integer varying from 1 to 10, preferably from 1 to 4; and p is an integer equal to 0 or 1.
- said additive (2) is obtained by condensation of compound A with compound B, used in amounts such that the molar ratio A / B is in the range going from 1: 1 to 1: 3 .
- the molar ratio A / B is included in the range going from 1: 1, 1 to 1: 2, even more preferably the molar ratio A / B is included in the range going from 1: 1, 1 to 1: 1, 5.
- Said additive (2) can in particular be obtained by condensation of 60 to 90% by weight of compound A, and from 10 to 30% by weight of compound B.
- the average molar mass of the compounds A according to the present invention varies from 200 to 3000, preferably from 200 to 2000 g / mol, preferably from 200 to 1500 g / mol, even more preferably from 900 to 1300 g / mol. These compounds are well known from the prior art.
- the polyamines of the group consisting of diethylene triamine, dipropylene triamine, triethylene tetramine, tetraethylene pentamine and their substituted derivatives, or mixtures thereof, are preferred.
- the compound B that is to say the primary polyamine of formula (VI) is added to the compound A, that is to say the acid (s) carboxylic hydrocarbon (s) ( s) or anhydride (s).
- Polyamine B is gradually added in an organic solvent, then to the solution of the mixture of carboxylic hydrocarbons at room temperature, the mixture is then heated between 65 and 250 ° C, and preferably between 80 and 220 ° C, for from 5 to 30 hours.
- the organic solvent necessary for the solubilization of the primary polyamine is chosen with a boiling point of between 65 and 250 ° C, and preferably between 80 and 220 ° C, and its capacity to eliminate the water formed by condensation of the polyamine on compound A by azeotropic distillation of the water / solvent mixture.
- the solvent is chosen from the group consisting of benzene, toluene, xylenes, ethylbenzene and commercial cuts of hydrocarbons, for example those distilling at 190 to 209 ° C. and containing 99% by weight of aromatic compounds.
- a mixture of solvents can be used and in particular a mixture of xylenes, or else a xylene / alcohol mixture, preferably the alcohol is ethyl-2-hexanol for a on the one hand, to facilitate the homogeneity of the medium and, on the other hand, to promote the kinetics of the reaction.
- the composition according to the invention comprises the second additive (s) as described above in a preferential content ranging from 5 to 10,000 ppm by weight, preferably from 5 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight, more preferably from 15 to 200 ppm by weight, and better still from 20 to 150 ppm by weight, relative to the total weight of the fuel composition.
- the fuel composition according to the invention comprises a third additive (3), different from additives (1) and (2), consisting of a Mannich base.
- a third additive (3) different from additives (1) and (2), consisting of a Mannich base.
- the preparation of Mannich bases is known per se, and for example described in documents US2008 / 0052985, or US8016898.
- the third additive is advantageously prepared by reacting a phenol substituted with a hydrocarbon group, an aldehyde and an amine.
- the hydrocarbon substituent of said phenol may contain from 6 to 400 carbon atoms, advantageously from 30 to 180 carbon atoms, preferably from 10 to 110, better still from 40 to 110 carbon atoms.
- the hydrocarbon substituent of said phenol can be derived from an olefin or a polyolefin.
- alpha-olefins such as n-1-decene.
- the hydrocarbon substituent of said phenol is a polyisobutylene group.
- the polyolefins forming the hydrocarbon substituent of the phenol can be prepared by polymerization of olefin monomers according to any known polymerization process.
- the polyolefins are chosen from polyisobutylenes having a number-average molar mass (Mn) of between 400 to 3000, preferably between 400 to 2500, more preferably between 400 and 1500, between 500 to 1500 or between 500 and 1000.
- Mn number-average molar mass
- Polyisobutylene is preferably very reactive, which differs from poorly reactive polyisobutylenes by their small amount of terminal ethylene double bonds.
- the reactive polyisobutylenes according to the invention are composed of at least 85% by weight, preferably at least 90% by weight, preferably at least 95% by weight of isobutene units.
- the polyisobutylenes preferably very reactive, have a polydispersity of less than 1.9, preferably less than 1.7 and even more preferably less than 1.5, the polydispersity being the quotient the mass-average molar mass Mw and the number-average molar mass Mn.
- the phenol substituted with a hydrocarbon group can be prepared by alkylation of phenol with an olefin or polyolefin described above, such as polyisobutylene or polypropylene, preferably polyisobutylene, using conventional alkylation methods.
- an olefin or polyolefin described above such as polyisobutylene or polypropylene, preferably polyisobutylene, using conventional alkylation methods.
- the phenol can be substituted by one or more low molecular weight alkyl groups, for example a phenol carrying one or more alkyl chains of less than 28 carbon atoms, preferably of less than 24 carbon atoms, more preferably of less than 20 carbon atoms, even more preferably less than 18 carbon atoms, even more preferably 16 carbon atoms and even more preferably 14 carbon atoms.
- a monoalkylic phenol having from 4 to 20 carbon atoms, preferably from 6 to 18, more preferably from 8 to 16, even more preferably from 10 to 14 carbon atoms, for example a phenol substituted by an alkyl group in C 12.
- the aldehyde used to form the product of the Mannich reaction can consist of 1 to 10 carbon atoms, and is generally formaldehyde or its reactive equivalents such as formalin (methyl alcohol and formaldehyde), trioxanes, or para. formaldehyde, and preferably para-formaldehyde.
- the amine used to form the Mannich reaction product can be a monoamine or a polyamine.
- ethylamine dimethylamine, diethylamine, di-n-propylamine, di-isopropylamine, n-butylamine, dibutylamine, allylamine, isobutylamine.
- the polyamines are chosen from compounds comprising two or more amino groups.
- polyamines of polyalkylene polyamines in which the alkylene group has, for example, from 1 to 6, preferably from 1 to 4, more preferably from 2 to 3 carbon atoms.
- the preferred polyamines are polyethylene- polyamines.
- the polyamine can comprise 2 to 15 nitrogen atoms, preferably 2 to 10 nitrogen atoms, preferably 2 to 8 nitrogen atoms.
- polyamines examples include: 3- (dimethylamino) -n-propylamine, di [3- (dimethylamino) -n-propyl] amine, di [3- (diethylamino) -n-propyl] amine, di [ 2- (dimethylamino) ethyl] amine, N-methylpiperazine,
- the amine used to form the Mannich reaction product comprises a diamine, preferably which comprises a primary or secondary amine function taking part in the Mannich reaction and a tertiary amine function.
- the additive (3) can be obtained by a Mannich reaction and then subjected to a reaction making it possible to obtain a tertiary amine function; for example, a process using an intermediate compound comprising a secondary amine and obtained by Mannich reaction, which is then modified, for example by alkylation to produce a tertiary amine.
- the content of the additive (3) ranges from 5 to 10,000 ppm by weight, preferably from 5 to 1000 ppm by weight, more preferably from 50 to 500 ppm by weight, more preferably from 100 to. 500 ppm by weight, and more preferably 150 to 450 ppm by weight, relative to the total weight of the fuel composition.
- the present invention also relates to the use, to improve the detergency properties of a gasoline fuel, of a fuel concentrate comprising at least the additives (1), (2) and (3), as defined herein. above, mixed with an organic liquid, said organic liquid being inert with respect to the first, second and third additives, and miscible with said fuel.
- the organic liquid is advantageously miscible with liquid fuels, in particular those obtained from one or more sources chosen from the group consisting of mineral, preferably petroleum, animal, vegetable and synthetic sources.
- miscible is understood to mean the fact that the additives and the organic liquid form a solution or a dispersion so as to facilitate the mixing of the additives according to the invention into liquid fuels according to conventional fuel additivation processes.
- the organic liquid is preferably chosen from aromatic hydrocarbon solvents such as the solvent sold under the name “SOLVESSO”, alcohols, ethers and other oxygenated compounds, and paraffinic solvents such as hexane, pentane or isoparaffins, alone or as a mixture.
- aromatic hydrocarbon solvents such as the solvent sold under the name “SOLVESSO”
- alcohols, ethers and other oxygenated compounds such as hexane, pentane or isoparaffins, alone or as a mixture.
- paraffinic solvents such as hexane, pentane or isoparaffins
- the fuel according to the present invention contains a base resulting from one or more sources chosen from the group consisting of mineral, animal, vegetable and synthetic sources, and is preferably chosen from hydrocarbon fuels, non-essentially hydrocarbon fuels and theirs. mixtures
- Oil will preferably be chosen as the mineral source.
- the fuel is advantageously chosen from hydrocarbon-based fuels and non-essentially hydrocarbon-based fuels, alone or as a mixture.
- hydrocarbon fuel is understood to mean a fuel consisting of one or more compounds consisting solely of carbon and hydrogen.
- Gasolines are hydrocarbon fuels.
- non-essentially hydrocarbon-based fuel is understood to mean a fuel consisting of one or more compounds consisting not essentially of carbon and of hydrogen, that is to say which also contain other atoms, in particular oxygen atoms.
- Hydrocarbon fuels include in particular light distillates having a boiling point in the gasoline range, preferably between 30 and 210 ° C.
- These light distillates can, for example, be chosen from distillates obtained by direct distillation of crude hydrocarbons, vacuum distillates, hydrotreated distillates, distillates resulting from catalytic cracking and / or hydrocracking of vacuum distillates, distillates resulting from ARDS-type conversion processes (by desulphurization of atmospheric residue).
- the hydrocarbon fuel is chosen from gasolines.
- Gasolines include, in particular, any commercially available spark ignition engine fuel compositions.
- the gasolines generally have sufficiently high octane numbers to avoid the knocking phenomenon.
- gasoline-type fuels marketed in Europe which comply with standard NF EN 228, have an engine octane number (MON in English "Motor Octane Number") greater than 85 and a research octane number (RON in English "Research Octane Number”) of a minimum of 95.
- Gasoline type fuels have, generally, a RON ranging from 90 to 100 and a MON ranging from 80 to 90, the RON and MON being measured according to the standard ASTM D 2699-86 or D 2700-86.
- Non-essentially hydrocarbon-based fuels include in particular oxygenates, for example distillates resulting from the BTL (in English “biomass to liquid”) conversion of plant and / or animal biomass, taken alone or in combination; biofuels, for example oils and / or esters of vegetable and / or animal oils; and bioethanols.
- oxygenates for example distillates resulting from the BTL (in English “biomass to liquid”) conversion of plant and / or animal biomass, taken alone or in combination
- biofuels for example oils and / or esters of vegetable and / or animal oils
- bioethanols for example oils and / or esters of vegetable and / or animal oils
- Mixtures of hydrocarbon fuel and non-essentially hydrocarbon fuel are typically gasolines of the Ex type.
- gasoline of type Ex for a spark ignition engine is meant a gasoline fuel which contains x% (v / v) of oxygenates, generally ethanol, bioethanol and / or ethyl-tertio-butyl-ether ( ETBE).
- x% (v / v) of oxygenates generally ethanol, bioethanol and / or ethyl-tertio-butyl-ether ( ETBE).
- the fuel composition may comprise only new sources of distillates or be composed of a mixture with conventional petroleum lighter distillates as the gasoline-type fuel base.
- the content of each additive (1) and (2) in the fuel composition according to the invention ranges from 5 to 10,000 ppm by weight, preferably from 5 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight, more preferably from 15 to 200 ppm by weight, and better still from 20 to 150 ppm by weight, relative to the total weight of the fuel composition.
- the content of additive (3) in the fuel composition according to the invention ranges from 5 to 10,000 ppm by weight, preferably from 5 to 1000 ppm by weight, more preferably from 50 to 500 ppm by weight. , more preferably from 100 to 500 ppm by weight, and better still from 150 to 450 ppm by weight, relative to the total weight of the fuel composition.
- the sulfur content in the fuel composition is less than or equal to 1500 ppm by weight, preferably less than or equal to 1000 ppm by weight, preferably less than or equal to 500 ppm by weight and preferably less than or equal to 50 ppm by weight, even more preferably less than or equal to 10 ppm by weight, relative to the total weight of the composition, and advantageously without sulfur.
- the fuel composition can also comprise one or more additional additive (s), different from said additives according to the invention.
- additional additives can for example be chosen, in a nonlimiting manner, from: detergent additives, anti-corrosion agents, anti-oxidants, carrier oils, dispersants, demulsifiers, tracers or markers, reodorants, friction modifiers, lubricity additives or lubricity additives, combustion aids (catalytic combustion and soot promoters), anti-sedimentation agents, antiwear agents and agents modifying the conductivity.
- This or these additional additives are more preferably chosen from: a) lubricating additives or anti-wear agents, in particular (but not limited to) chosen from the group consisting of fatty acids and their ester or amide derivatives, in particular glycerol monooleate, and derivatives of mono- and polycyclic carboxylic acids. Examples of such additives are given in the following documents: EP680506, EP860494,
- Another object of the invention is the use of the fuel composition to maintain cleanliness (keep-clean effect) and / or clean (clean-up effect) the deposits in the internal parts of an engine chosen from the following : the combustion chamber and the fuel injection system, and preferably the fuel injection system.
- composition according to the invention is effective in conventional engines; or more modern engines such as, IDE, BMW B48, Renault H5FT and HR13DDT, PSA EB2DTS, Volkswagen EA1 11 ...; and in IIE the Mercedes M102E and Ml 11E, PSA EW 10A and EB2 engines ...
- Another object of the invention is the use of the fuel composition comprising at least a first additive, at least a second additive and at least a third additive defined above to prevent and / or reduce coking (i.e. i.e. coke deposits), particularly in direct petrol injection (IDE), and / or lacquering (i.e. soap and / or varnish deposits), particularly in indirect petrol injection (IIE), and in particular on the valves.
- coking i.e. i.e. coke deposits
- IDE direct petrol injection
- lacquering i.e. soap and / or varnish deposits
- IIE indirect petrol injection
- the invention thus makes it possible to prevent and / or reduce deposits of coke and / or soap on the fuel inlet valves in a spark-ignition engine with indirect injection
- Another object of the invention is the use of the fuel composition comprising at least a first additive, at least a second additive and at least a third additive defined above to prevent and / or reduce sticking (or valve- sticking) of the fuel inlet valves in an engine, in particular a spark ignition engine with indirect gasoline injection (IIE).
- said composition advantageously further comprises a fourth additive which is a carrier oil.
- the composition preferably further comprises a carrier oil.
- the carrier oil can be chosen from oils of poly (oxyalkylene) type, for example poly-butene oxide or poly-propene oxide.
- the weight ratio of the amount of carrier oil to the amount of detergent additives is in the range of 0.1 to 2.5, preferably 0.3 to 1.5, even more preferably from 0.5 to 1.
- Another object of the invention is the use of said fuel composition for reducing the fuel consumption of the engine (“Fuel Eco” action) and / or minimizing the loss of power from said engine, and / or reducing pollutant emissions. , in particular, particulate emissions from the combustion engine.
- Another object of the invention is the use of said composition of additives to reduce the fouling of the area of the pistons, segments, and liners of the engine, preferably of a gasoline direct injection engine (or IDE ).
- the quaternary ammonium additive (1) as defined in the present invention, is particularly effective in combating piston fouling, especially in IDE.
- additives (1) and (2) are also very effective in combating piston fouling, especially in IDE.
- the fuel composition can be used in indirect gasoline injection (IIE) or in direct gasoline injection (IDE), preferably in IDE.
- IIE indirect gasoline injection
- IDE direct gasoline injection
- the IDE is central, and in another embodiment, the IDE is lateral.
- the present invention is therefore effective and used in central and / or lateral IDE.
- the fuel composition can also be used to combat corrosion in the engine.
- the polyisobutylene succinimide additive (2), as defined in the present invention, is particularly effective in combating corrosion.
- the use according to the invention is applicable to engines used in light vehicles (light vehicles), heavy goods vehicles (PL), stationary vehicles, agricultural machinery, thermal vehicles or hybrid vehicles (rechargeable or not), engines dual-fuel gasoline / gas, for example gasoline / NGV (natural gas) or gasoline / LPG; gasoline / CNG or gasoline / LPG concomitant injection engines ...
- the additive, fuel or concentrate composition can be used in "harsh” or "easier to process” gasolines.
- "Harsh” gasolines are distinguished from easy-to-process gasolines in that a harsh gasoline requires a higher additive compound processing rate to be effective than "easy-to-process” gasoline.
- "severe” species the species similar to the reference species CEC RL12-09 and CEC RL-83.
- the fuel composition according to the invention can be prepared according to any known process, by adding a liquid hydrocarbon cut as described above with at least the three additives as described above, and optionally one or more other additives other than those described above. additives according to the invention, as described above.
- the invention also relates to a method of maintaining the cleanliness and / or cleaning of at least one of the internal parts of a spark-ignition engine, comprising at least the following steps:
- the above step of preparing a fuel composition is preceded by a preliminary step of determining the content of each of the three additives to be incorporated into said fuel composition in order to achieve a given specification relating to the properties. detergency of the fuel composition.
- This preliminary step is common practice in the field of fuel additives and involves defining at least one characteristic representative of the detergency properties of the fuel composition as well as a target value.
- Fuel compositions were prepared by adding the following additives Al, A2 and A3 to gasoline E:
- Al quaternary ammonium salt, formed by reaction of propylene oxide with the condensation product of a polyisobutenyl succinic anhydride, the polyisobutylene group (PIB) of which has a number average molecular mass (Mn) of 1000 g / mol and dimethyl-aminopropylamine;
- PIB polyisobutylene group
- A2 polyisobutylene succinimide, obtained by condensation of a polyisobutenyl-succinic anhydride, the polyisobutylene group (PIB) of which has a number-average molecular mass (Mn) of 1000 g / mol and tetraethylenepentamine;
- A3 Mannich base, obtained by reacting a phenol substituted with a polyisobutylene group (PIB) having a number average molecular mass (Mn) of 1000 g / mol, with formaldehyde and dimethyl-aminopropylamine.
- PIB polyisobutylene group
- composition El is in accordance with the invention.
- the compositions E2, E3 and E4 are comparative.
- the additivation rate is identical between the three compositions El, E2 and E3 (433 ppm).
- the engine used is a motor EB2DTS PSA, which is a gas cylinder 3 1199 cm 3 turbocharged direct injection engine, with the injectors in a central position.
- the flow rate of the injectors is determined by means of a bench for measuring the flow rates of the EFS IFR 600 type injectors, which makes it possible in a manner known per se to measure the mass fuel flow rate of the injectors.
- the principle of the test consists in making the engine run for 5 hours at 4300 revolutions / minute and 11 bars of mean effective pressure (hereinafter referred to as PME), by supplying it with the gasoline tested at a pressure of injection of 70 bars, after a heating period of 20 minutes, and a stabilization period of 10 minutes.
- PME mean effective pressure
- the test determines the average flow loss, defined as corresponding to the average restriction of the flow of gasoline emitted by the engine injectors at the end of the test.
- test steps are as follows:
- test conditions are as follows:
- the engine is subjected to a gradual increase in speed, for a period of 20 minutes, until reaching a speed of 4000 revolutions / minute and an PME of 8 bar.
- the engine is maintained under the operating conditions of the test, at a speed of 4300 revolutions / minute, at a PME of 11 bar and a fuel injection pressure of 70 bar, for a period of 10 minutes.
- the engine then runs for 5 hours at 4300 rpm and 11 bar PME with a fuel injection pressure of 70 bar.
- the injectors are removed in order to be evaluated by means of the EFS IFR 600 injector flow rate measuring bench, which makes it possible to measure the mass fuel flow rate of the injectors at the end of the test. . By comparison with the value of the mass fuel flow of the injectors measured before the test, the average loss of flow of the injectors is calculated.
- composition E1 according to the invention containing the combination of the three additives A1, A2 and A3 leads to very good results in terms of reducing the fouling of the injectors (“keep clean” effect).
- these results are significantly better than those obtained with the comparative compositions E2 and E3 containing only two of the three additives.
- the results obtained with composition E4 containing only one of the three additives, and with the reference fuel E, are even worse.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Liquid Carbonaceous Fuels (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2005699A FR3110914B1 (fr) | 2020-05-29 | 2020-05-29 | Utilisation d’une composition de carburant pour nettoyer les parties internes des moteurs essence |
PCT/FR2021/050971 WO2021240117A1 (fr) | 2020-05-29 | 2021-05-28 | Utilisation d'une composition de carburant comprenant 3 additifs pour nettoyer les parties internes des moteurs essence |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4157972A1 true EP4157972A1 (fr) | 2023-04-05 |
Family
ID=72709484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21734411.8A Pending EP4157972A1 (fr) | 2020-05-29 | 2021-05-28 | Utilisation d'une composition de carburant comprenant 3 additifs pour nettoyer les parties internes des moteurs essence |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230212473A1 (zh) |
EP (1) | EP4157972A1 (zh) |
CN (1) | CN115667467A (zh) |
FR (1) | FR3110914B1 (zh) |
WO (1) | WO2021240117A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024126998A1 (en) * | 2022-12-12 | 2024-06-20 | Innospec Limited | Composition, method and use |
US11884890B1 (en) * | 2023-02-07 | 2024-01-30 | Afton Chemical Corporation | Gasoline additive composition for improved engine performance |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1248643B (de) | 1959-03-30 | 1967-08-31 | The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) | Verfahren zur Herstellung von öllöslichen aeylierten Aminen |
NL255194A (zh) | 1959-08-24 | |||
NL124842C (zh) | 1959-08-24 | |||
US3231587A (en) | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US4171959A (en) | 1977-12-14 | 1979-10-23 | Texaco Inc. | Fuel composition containing quaternary ammonium salts of succinimides |
GB9208034D0 (en) | 1992-04-10 | 1992-05-27 | Bp Chem Int Ltd | Fuel composition |
GB9301119D0 (en) | 1993-01-21 | 1993-03-10 | Exxon Chemical Patents Inc | Fuel composition |
FR2751982B1 (fr) | 1996-07-31 | 2000-03-03 | Elf Antar France | Additif d'onctuosite pour carburant moteurs et composition de carburants |
US5730029A (en) | 1997-02-26 | 1998-03-24 | The Lubrizol Corporation | Esters derived from vegetable oils used as additives for fuels |
FR2772784B1 (fr) | 1997-12-24 | 2004-09-10 | Elf Antar France | Additif d'onctuosite pour carburant |
FR2772783A1 (fr) | 1997-12-24 | 1999-06-25 | Elf Antar France | Additif d'onctuosite pour carburant |
DE19948114A1 (de) | 1999-10-06 | 2001-04-12 | Basf Ag | Verfahren zur Herstellung Polyisobutenphenol-haltiger Mannichaddukte |
US6784317B2 (en) | 2001-05-02 | 2004-08-31 | Mitsubishi Gas Chemical Company, Inc | Production of quaternary ammonium salt of hydroxycarboxylic acid and quarternary ammonium salt of inorganic acid |
DE10211418A1 (de) | 2002-03-15 | 2003-09-25 | Bayer Ag | Verfahren zur Herstellung hochreaktiver Polyisobutene |
EP3406692A1 (en) | 2005-06-16 | 2018-11-28 | The Lubrizol Corporation | Fuel composition comprising a quaternary ammonium salt detergent |
GB0515998D0 (en) | 2005-08-03 | 2005-09-07 | Ass Octel | Fuel additives |
US7906470B2 (en) | 2006-09-01 | 2011-03-15 | The Lubrizol Corporation | Quaternary ammonium salt of a Mannich compound |
KR101895614B1 (ko) | 2009-05-15 | 2018-09-05 | 더루우브리졸코오포레이션 | 4차 암모늄 아미드 및/또는 에스테르 염 |
WO2011059626A1 (en) * | 2009-11-10 | 2011-05-19 | The Lubrizol Corporation | Lubricant system clean-up compositions and methods thereof |
GB201003973D0 (en) * | 2010-03-10 | 2010-04-21 | Innospec Ltd | Fuel compositions |
GB201007756D0 (en) | 2010-05-10 | 2010-06-23 | Innospec Ltd | Composition, method and use |
CN103249757A (zh) * | 2010-11-23 | 2013-08-14 | 卢布里佐尔公司 | 官能化共聚物及其润滑组合物 |
FR3017876B1 (fr) * | 2014-02-24 | 2016-03-11 | Total Marketing Services | Composition d'additifs et carburant de performance comprenant une telle composition |
CN106536687B (zh) * | 2014-05-30 | 2021-09-21 | 路博润公司 | 低分子量含酰亚胺季铵盐 |
US20170121628A1 (en) * | 2014-05-30 | 2017-05-04 | The Lubrizol Corporation | Low molecular weight amide/ester containing quaternary ammonium salts |
US20200024536A1 (en) | 2018-07-20 | 2020-01-23 | Afton Chemical Corporation | Fuel-Soluble Synergistic Cleaning Mixture for High Pressure Gasoline Engines |
WO2020109568A1 (en) | 2018-11-30 | 2020-06-04 | Total Marketing Services | Quaternary fatty amidoamine compound for use as an additive for fuel |
-
2020
- 2020-05-29 FR FR2005699A patent/FR3110914B1/fr active Active
-
2021
- 2021-05-28 US US17/928,141 patent/US20230212473A1/en active Pending
- 2021-05-28 EP EP21734411.8A patent/EP4157972A1/fr active Pending
- 2021-05-28 CN CN202180038622.1A patent/CN115667467A/zh active Pending
- 2021-05-28 WO PCT/FR2021/050971 patent/WO2021240117A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
FR3110914B1 (fr) | 2023-12-29 |
CN115667467A (zh) | 2023-01-31 |
WO2021240117A1 (fr) | 2021-12-02 |
FR3110914A1 (fr) | 2021-12-03 |
US20230212473A1 (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1021480B1 (fr) | Additif pour carburant diesel | |
EP3110928B1 (fr) | Composition d'additifs et carburant de performance comprenant une telle composition | |
EP3110927B1 (fr) | Composition d'additifs et carburant de performance comprenant une telle composition | |
CA2799385A1 (en) | Methods and compositions that provide detergency | |
EP3487894A1 (fr) | Copolymere utilisable comme additif detergent pour carburant | |
EP4157972A1 (fr) | Utilisation d'une composition de carburant comprenant 3 additifs pour nettoyer les parties internes des moteurs essence | |
FR3071850A1 (fr) | Composition d’additifs pour carburant | |
FR3054224A1 (fr) | Copolymere et son utilisation comme additif detergent pour carburant | |
EP4157971B1 (fr) | Composition d'additifs pour carburant moteur | |
WO2017109370A1 (fr) | Utilisation d'un additif detergent pour carburant | |
CA2077148A1 (fr) | Formulation d'additifs pour carburants comprenant des produits a fonction ester et un detergent-dispersant | |
EP3720932A1 (fr) | Composition d'additifs pour carburant | |
EP3918040B1 (fr) | Utilisation d'une composition de carburant à base d'hydrocarbures paraffiniques pour nettoyer les parties internes des moteurs diesels | |
WO2019110937A1 (fr) | Utilisation d'un copolymere particulier pour prevenir les depôts sur les soupapes des moteurs a injection indirecte essence | |
WO2017109368A1 (fr) | Additif détergent pour carburant | |
FR2705969A1 (fr) | Formulation d'additifs pour carburants comprenant au moins un composé imidazo-oxazole alkoxyle. | |
FR3103815A1 (fr) | Utilisation de diols comme additifs de détergence | |
FR3103812A1 (fr) | Utilisation de composés alkyl phénol comme additifs de détergence | |
FR2697533A1 (fr) | Formulation d'additifs pour carburants comprenant des produits azotés comportant deux cycles imides. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240620 |