EP4116493A1 - Strassenfertiger mit heizeinrichtung sowie verfahren - Google Patents

Strassenfertiger mit heizeinrichtung sowie verfahren Download PDF

Info

Publication number
EP4116493A1
EP4116493A1 EP21184236.4A EP21184236A EP4116493A1 EP 4116493 A1 EP4116493 A1 EP 4116493A1 EP 21184236 A EP21184236 A EP 21184236A EP 4116493 A1 EP4116493 A1 EP 4116493A1
Authority
EP
European Patent Office
Prior art keywords
screed
control device
heating elements
road finisher
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21184236.4A
Other languages
English (en)
French (fr)
Inventor
Dipl.-Ing. Ralf WEISER
Michael Heindtel
M. Sc. Steffen KOST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP21184236.4A priority Critical patent/EP4116493A1/de
Priority to JP2022108301A priority patent/JP2023010644A/ja
Priority to US17/810,940 priority patent/US20230009241A1/en
Priority to CN202210853118.3A priority patent/CN115595854A/zh
Priority to BR102022013514-2A priority patent/BR102022013514A2/pt
Priority to CN202221855996.0U priority patent/CN218492219U/zh
Publication of EP4116493A1 publication Critical patent/EP4116493A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/42Machines for imparting a smooth finish to freshly-laid paving courses other than by rolling, tamping or vibrating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2301/00Machine characteristics, parts or accessories not otherwise provided for
    • E01C2301/10Heated screeds

Definitions

  • the present invention relates to a road finisher according to claim 1.
  • the present invention further relates to a method according to claim 16.
  • Pavers are configured to create a pavement from a hot bituminous paving material.
  • road finishers For (pre)compacting the paving material, road finishers have a paving screed that is pulled in the direction of paving travel and is kept at a desired working temperature by means of a heating device integrated therein.
  • the heating device comprises a plurality of heating elements, for example heating rods, which are installed in the respective screed sections in order to heat the compaction units installed therein and the compactor plates facing the subsoil.
  • the heating device is supplied with electrical power by a generator of the road finisher.
  • the paving result depends, among other things, on the functionality of the heating elements installed in the screed body. It is therefore desirable to monitor the functioning of the heating elements during the installation operation in order to detect a defective heating element as quickly as possible and to replace it with a functional heating element.
  • EP 3 527 721 A1 discloses a paver with power adjusters for electric screed heaters.
  • EP 1 295 990 A2 discloses a control device for heating elements installed on the screed of a road finisher.
  • WO 2014/124545 A1 discloses a method for heating a screed of a road finisher that is equipped with a heating device, the electric voltage applied to a heating element of the heating device being changed in order to change the heat output of the heating device.
  • the DE 10 2015 012 298 A1 discloses a road finisher with a generator that supplies electrical energy to an electric screed heater of a screed of the road finisher.
  • the screed heating comprises several groups of heating elements, which are assigned to various functional components of the screed, eg a base plate, a tamper, etc.
  • a current measuring device is provided, which is designed to measure an output current of the generator and which communicates with the machine controller via a data bus. Based on the current measurement, a fault diagnosis can be carried out for the screed heating.
  • this fault diagnosis coupled to the power supply, however, it is difficult to determine individual defective heating elements, in particular their installation location, so that repair work can be complex. This can lead to increased downtimes of the road finisher on the construction site.
  • the object of the invention is to provide a road finisher and a method with which the functioning of a screed heating device of the road finisher can be better monitored using simple, constructive technical features.
  • the road finisher according to the invention has a screed designed to produce a road surface, which includes a heating device with a plurality of heating elements. Furthermore, the road finisher according to the invention has at least one generator for supplying the heating device with electrical power and a control device designed for controlling the generator.
  • the heating elements each include at least one temperature sensor used to detect a malfunction present thereon. Based on the respective temperature measurements carried out directly on the heating elements, a malfunction can be detected individually, i.e. one or more specific heating elements of the heating elements used within the screed.
  • the heating elements used according to the invention are each designed to record a temperature directly applied to them during operation of the road finisher, so that the respective temperature states of these heating elements can be continuously precisely recorded and forwarded to the control device to detect a possible malfunction.
  • This allows the function of all heating elements that have a temperature sensor on the screed to be individually monitored. This has the advantage that defective heating elements are quickly identified and can be replaced, which can make a significant contribution to the production of quality road surfaces.
  • downtimes of the road finisher can be significantly reduced using the temperature-based diagnostic device according to the invention.
  • the temperature sensor is connected to the control device by a gateway configured for signal processing.
  • a gateway configured for signal processing.
  • This is ideally suited as a functional module for connecting the heating elements to the control device for the purpose of fault diagnosis and could also coordinate power distribution to the respective heating elements.
  • the temperature sensor it is possible for the temperature sensor to be connected to a screed distributor designed to receive and transmit actual temperature values detected by the temperature sensor. Although this can be used primarily for power distribution, the screed distributor can also, as a functional coupling unit, so to speak, as a transceiver, forward the respective actual temperature values of the heating elements that it has received to the control device.
  • the screed distributor is designed to pass on the actual temperature values received from the respective heating elements to a gateway that is configured for signal processing and is connected to the control device.
  • this gateway can receive all measurement signals recorded on the screed, in particular the actual temperatures of the respective heating elements from the screed distributor, and send these, if necessary in processed form, to the control device for the respective control and/or regulation sequences running therein, especially for the error diagnosis function , pass along.
  • the paving screed has a plurality of screed sections, each of which has a plurality of heating elements and a gateway that connects the temperature sensors provided thereon to the control device and is configured for signal processing.
  • the respective screed sections each have a plurality of heating elements and one screed distributor each.
  • the gateway and/or the screed distributor is designed in particular as a hardware and/or software component that establishes a connection between the respective heating elements and the control device manufactures.
  • the screed distributor is configured as a transceiver in order to receive the temperature states continuously measured on the respective heating elements during operation of the road finisher and to transmit them to the gateway.
  • the gateway can provide the respective temperature data received from the screed distributor to the control device in such a way that it checks the functionality of the respective heating elements based on this.
  • the gateway and/or the screed distributor is configured in particular to connect the heating elements installed within the screed to the control device, at least for a precise fault diagnosis function.
  • the individual temperature values measured on the individual heating elements and received at the gateway or at the screed distributor can be forwarded to the control device in data-processed form by means of the gateway and/or by means of the screed distributor in such a way that it can carry out an individual fault diagnosis for the individual heating elements based on this.
  • the gateway and/or the screed distributor is therefore used for the temperature-based error diagnosis function as a central interface designed for data processing between the temperature sensors installed in the screed body on the respective heating elements and the control device.
  • the gateway and/or the screed distributor preferably also offers the function of bringing the respective temperature measurement signals received therein into a processed data form intended for control and/or regulation processes of the operation of the screed and forwarding them to the control device, on the basis of which in particular compaction units of the screed are based can be controlled dynamically.
  • the screed preferably has a plurality of screed sections, each of which has a plurality of heating elements and a gateway configured for signal processing that connects the temperature sensors provided thereon to the control device, or each of which has a plurality of heating elements and a screed distributor that connects the temperature sensors connected to it to the gateway.
  • This screed distributor can be connected upstream of the gateway as a transceiver.
  • the paving screed has three or more screed sections, namely a central base screed and extension parts mounted laterally thereon, which can be extended transversely to the paving travel direction of the road paver to vary the paving width.
  • screed sections in the form of widening parts can be attached to the extension parts of the screed in order to pave large widths.
  • each of the aforementioned plank sections has its own gateway for the heating elements installed therein, or at least one has its own screed distributor, the respective heating elements installed in the screed sections can be monitored separately and/or controlled based on the respective heating states measured thereon.
  • the respective gateway or the respective screed distributor can be designed as an integral part of the screed, in particular of the respective screed sections.
  • Each screed section can be equipped with its own gateway or with its own screed distributor, which receives individual sensor readings, especially the temperature measurement signals from the respective heating elements, during operation of the road finisher as a central data receiver unit on the respective screed section and, if necessary, further processed for a specific one Function, in particular for the temperature-related error diagnosis function, passes on to the control device.
  • the respective gateways or screed distributors integrally installed in the screed thus form data receiver and data transmitter modules, which are connected upstream of the control device in order to pass on the measured temperature values received therein in possibly data-processed form for the aforementioned temperature-related error diagnosis function to the control device.
  • the temperature sensors are preferably designed to be integrated on the respective heating elements.
  • the respective heating element and the temperature sensor thus form a structural unit, as a result of which the heating element together with the temperature sensor can be easily installed and removed as a compact assembly. This offers considerable advantages, especially in the case of repair and/or service work.
  • the respective heating elements therefore have an input for the power supply and an output for the temperature measurement carried out thereon.
  • the respective heating elements can have a hot, cold and/or semiconductor temperature sensor, for example.
  • the respective heating elements can be designed as heating rods.
  • the temperature sensors can extend according to a geometry of the heating rods along heating coils provided therein.
  • all heating elements of the heating device have at least one temperature sensor formed integrally thereon. This makes it possible to carry out very precise temperature measurements on all heating elements installed within the screed. On the one hand, based on this, the function of the respective heating elements can be precisely diagnosed and, on the other hand, the respective heating elements can be controlled precisely.
  • the temperature sensors are each connected to the gateway or to the screed distributor by means of a plug connection.
  • this plug connection can be configured for tool-free assembly and disassembly, so that the respective heating elements can be individually connected and removed in a simple manner.
  • the respective temperature sensors are connected to the gateway via a common bus system or to the screed distributor.
  • This network could be connected to the gateway or to the screed distributor with a single plug connection. This would reduce the amount of cabling within the screed.
  • the gateway or the screed distributor of the respective screed sections is designed directly as a PLC gateway.
  • This offers improved application options for the screed, both in terms of design and function.
  • a structural design of the screed can be made more compact and/or the operating behavior of the screed can be better monitored and controlled.
  • the gateway or the screed distributor designed as a PLC gateway can modulate the temperature measurement signals received from the respective heating elements onto a connected power line, via which the modulated temperature measurement data can be transmitted to the control device.
  • the power line used for this purpose for data transport is formed at least from a section of a power supply line used for the power supply of the respective heating elements and/or the respective PLC gateway.
  • a variant of the invention provides that the respective PLC gateway is connected to the control device by means of a PLC line (supply line for power line communication).
  • a PLC line supply line for power line communication
  • a power supply line connected from the generator to the screed could be used as a PLC line, at least in sections.
  • a power supply line that supplies electric power to the respective heating elements can be used as the PLC line.
  • the PLC gateway can be connected directly to such a PLC line so that it functions as a current distributor in the direction of the heating elements and modulates temperature measurement data onto the PLC line in the direction of the control device as a PLC gateway.
  • the gateway can be connected to the control device by means of a separate data bus system.
  • the data bus system can be designed, for example, as a CAN bus or as an Ethernet connection.
  • the (PLC) gateway is configured as an Internet gateway, in addition to the transmission of temperature measurement data to the control device of the road finisher, at least temporarily during the paving operation of the road finisher, an additional temperature measurement data transfer to at least one external receiver connected via the Internet, for example a temperature measurement data transfer to a central construction site administration facility, a service center and/or to another construction site vehicle working together with the road finisher.
  • the (PLC) gateway prefferably be designed as a VPN gateway, so that the gateway designed in this way can be queried and/or controlled for malfunctions of the heating elements in a data-secure manner, in particular from outside the construction site, for example from a service center.
  • This can be a service center operated by the machine manufacturer, which can transmit service information for the respective screed section to the construction site operator on the basis of the VPN connection set up with the screed. This reduces machine downtimes on the construction site.
  • the (PLC) gateway is configured as a media gateway. Configured in this way, the gateway could further process the respective received temperature states of the heating elements, in particular critical temperature states measured thereon, into corresponding voice output signals, which are conveyed acoustically to an operator of the road finisher, in particular to an operator of an external control station of the screed, during the paving operation.
  • gateway and/or the screed distributor of the respective screed sections has a separate lamp for all the heating elements installed therein, designed to visually display the functionality of the respective heating elements.
  • control device is designed to identify a respective heating element type of the heating elements on the basis of respective temperature gradients detected by the temperature sensors formed on the heating elements, i.e. in view of a temperature profile detected therein within a predetermined time to determine a specific setpoint temperature value for the respective identified heating element types, based on which the temperature-based fault diagnosis function can be carried out.
  • the control device for carrying out the fault diagnosis function is designed to compare the respective target temperature values determined for the heating elements with the actual temperature values recorded thereon. If the recorded actual temperature of a heating element reaches or exceeds the setpoint temperature determined for this heating element, then the heating element is functioning properly. However, if the control device detects that the recorded actual temperature of the heating element falls below the target temperature determined for this purpose by a predetermined value, then the heating element may be defective. Such a malfunction can be indicated to an operator at the outside control station of the road finisher on a display provided there.
  • control device is designed to identify a screed part that has this type on the basis of at least one specific heating element type. For example, the type of extension part fitted for installation could be determined based on the identified heating element type.
  • control device is designed to determine a screed paving width on the basis of the specific heating element types, above all on the basis of the respective types of widening parts that are attached. The control device can use the screed paving width determined as described above for various control and/or regulation processes running on the road finisher.
  • a preferred embodiment provides that the gateway and/or the screed distributor is configured to supplement the actual temperature values of the heating elements detected by the respective temperature sensors with at least one piece of information regarding their measurement location and to send them as actual temperature location data forward control device. This makes it possible to clearly identify a defective heating element with regard to its installation location and to exchange it quickly, so that the paving operation of the road finisher can proceed without major interruptions.
  • Functionality of the respective heating elements is preferably displayed to an operator of the screed and/or a driver of the road finisher using a display device connected to the control device. In particular, this can be done visually and/or acoustically. It is conceivable that the functionality of the respective heating elements can be displayed on a portable display and/or computer unit, for example on a portable control unit of the external control station.
  • the screed has at least one smoothing plate, with the control device being configured to determine a target temperature value of the smoothing plate on the basis of a recorded actual temperature value supplied to it of the paving material used by the road finisher to produce a road surface and to compare this with a detected actual temperature of the smoothing plate in order to control a power supply of the one or more heating elements assigned to the smoothing plate based thereon.
  • the screed can have at least one temperature sensor that is directly connected to the screed distributor or to the gateway. It would be conceivable for the target temperature value of the smoothing plate to be set manually on the road finisher.
  • control device is configured to calculate, on the basis of a detected ambient temperature supplied to it, a heating-up time remaining to reach the set temperature value of the smoothing plate of the heating element or elements used to heat up the smoothing plate, possibly identified in advance via its temperature gradient to determine. Based on this, an optimal start time for the paving journey could be determined.
  • control device prefferably configured to check the functionality of the respective heating elements in that the actual temperature values recorded thereon reach the ambient temperature supplied to the control device within a predetermined period of time, for example within one minute, due to a predetermined power supply of the respective heating elements or exceed them by a predefined amount.
  • control device is designed to determine a type of heating element and/or a type of the associated screed section, for example the types of an enlargement part, based on a recorded time required to heat up a heating element to a specific temperature level.
  • a structural design of the screed, in particular a type of the respective screed sections used on it, can thus be determined indirectly via the individually detectable heating-up time of at least one heating element.
  • control device it is possible for the control device to be designed to determine a type of heating element and/or a type of the associated screed section, for example the types of an enlargement part, based on a detected operating temperature of a heating element that occurs after a predetermined heating-up time.
  • the control device is preferably designed to determine a screed paving width that can be set for the paving operation on the basis of an aforementioned determination of the type of the heating element and/or a determination of the type of the screed section.
  • the screed paving width determined by the control device on the basis of the temperature measurement carried out on the heating element is available as an input variable for at least one open-loop and/or closed-loop function of the paving screed of the road finisher.
  • a control variable and/or a control parameter for controlling the operation of a transverse material distribution device of the screed can be set dynamically.
  • the screed structure derived from the temperature measurement can thus be used to parameterize the control device, for example to control the material distribution in front of the screed.
  • control device is designed to determine a minimum temperature of the paving material stored within a bunker of the road finisher based on the typification of the heating elements and/or the screed sections derived from the heating-up period.
  • the minimum temperature could be displayed directly to the driver of the road finisher and/or transmitted from the control device of the road finisher to a mixing plant for producing the paving material made available to the road finisher.
  • information regarding the operation of the respective heating elements can be displayed by means of a display device arranged on the road finisher.
  • the display device can be designed as part of the control device, for example as a display on the driver's control panel and/or as a display on the outside control panel of the screed.
  • a display of the operating temperatures and/or the heating element diagnosis result on a smart device would also be conceivable. In the event that a defective heating element is detected, assembly and disassembly instructions that match this could be displayed by means of such display devices.
  • the invention also relates to a method for detecting a malfunction of at least one heating element installed inside a screed of a road finisher.
  • the malfunction is detected on the basis of an actual temperature value recorded directly on the heating element.
  • the actual temperature value of the heating element can be detected using a temperature sensor integrated therein and fed to a control device which, based on this, can very precisely determine a malfunction of the heating element, if present.
  • a variant provides that, depending on a temperature gradient detected on the heating element, i.e. a heating rate of the heating element, a heating element type of the heating element is identified and, with regard to the identified heating element type, a suitable target temperature value for the purpose of the malfunction diagnosis is determined for the heating element, with the detection of the Malfunction occurs based on a comparison of the target temperature value with the actual temperature value recorded directly on the heating element. If the recorded actual temperature of a heating element reaches or exceeds the setpoint temperature determined for this heating element, then the heating element is functioning correctly. However, if the control device detects that the recorded actual temperature of the heating element falls below the target temperature determined for this purpose by a predetermined value, then the heating element may be defective. Such a malfunction can be indicated to an operator at the outside control station of the road finisher on a display provided there.
  • the actual temperature value of the heating element or elements is preferably transmitted to a control device of the road finisher by means of a screed distributor and/or gateway connected to the temperature sensor.
  • the screed distributor and/or the gateway thus receives the respective heating states of the heating elements and forwards them to the control device, primarily for diagnostic purposes, possibly in data-processed form. Based on these temperature measurements, which are carried out directly in the heating elements, their function can be diagnosed more precisely.
  • the screed distributor and/or the gateway can supplement the actual temperature value of the heating element detected by the temperature sensor with information regarding its measurement location and forward it to the control device as the actual temperature location value. This makes it possible to clearly identify a possibly defective heating element with regard to its installation location within the screed.
  • the heating elements can each heat up to a sustained actual (end) temperature that is greater than a temperature of the installation material.
  • the control device expediently continuously compares the actual temperature values of the respective heating elements with the target temperature values determined for them. As long as the actual temperature of the respective heating elements is greater than or equal to the respective target temperature, the heating elements are working properly. However, as soon as the actual temperature of a heating element falls below the associated desired temperature value by a defined temperature value after a predetermined warm-up phase has elapsed, this heating element may be defective. This defect can be indicated to the operator by means of a display device. As an alternative or in addition to displaying a defective heating element using the display device, it is expedient for the control device to be configured to switch off the heating element detected as defective, ie to interrupt a power supply to this heating element, in order to avoid damaging the heating device.
  • the location of the heating element detected as defective is also displayed. This can be done by the screed distributor and/or the gateway forwarding the actual temperature value present for the malfunction, supplemented by its sender address, to the control device. From this, the control device can precisely identify the defective heating element.
  • a variant provides that a defective heating element is displayed by means of a status LED formed on the screed distributor and/or on the gateway.
  • control device could carry out a type determination of the heating element based on a heating rate of the heating element measured on the heating element and, if necessary, a type determination of the screed section based on this, depending on which the control device determines the paving width of the screed that is adjustable and/or currently set during paving operation definitely. Based on the ascertained paving width of the screed, further processes on the road finisher, in particular a lateral distribution of material in front of the paving screed, can be controlled and/or regulated.
  • figure 1 shows a road finisher 1, which produces a road surface 3 from a paving material 4 by means of a paving screed 5 on a substrate 2 in the paving travel direction R.
  • the road surface 3 has a screed installation width B transverse to the installation travel direction R that is produced according to the screed configuration.
  • the screed 5 is designed to compact the paving material 4 spread out in front of it.
  • the screed 5 has a screed plate 6 and a tamper 7 arranged in front of the screed plate 6 in the direction R of paving travel.
  • the road finisher 1 off figure 1 has a driver's control panel F for one driver.
  • a control device 8 is provided on the driver's control panel F.
  • the control device 8 is configured to control and/or monitor processes running on the road finisher 1 .
  • the control device 8 can be used to control the operation of the screed 5 and to monitor its functioning.
  • FIG. 1 shows figure 1 that on the screed 5 an external operator's station A is formed with a control device 8' formed thereon.
  • a screed operator at the outside control station A can use the control device 8 ′ to control and/or monitor the operation of the screed 5 .
  • the control device 8 installed on the driver's control station F and/or the control device 8' installed on the screed 5 at the external control station A can be designed as a display device D, D' in order to display the respective process states of the road finisher 1 to the driver and/or the screed operator.
  • figure 2 shows a schematic representation of a heating device 100 for the figure 1 road finisher 1 shown.
  • the heating device 100 is designed to heat the screed 5 .
  • figure 2 shows that the heating device 100 has a plurality of screed sections 10, 20, 30.
  • the plank section 10 may be a basic plank section.
  • the two screed sections 20, 30 can be extending screed parts fastened laterally to the screed section 10.
  • the structure of the heating device 100 shown could be further, in figure 2 screed sections not shown, for example screed widening parts, possibly in different widths and/or numbers, which are fastened laterally to the extending screed parts.
  • the screed section 10 has a plurality of heating elements 11, 12, 1n, each of which has a temperature sensor T built integrally thereon.
  • the temperature states of the respective heating elements 11, 12, 1n detected by means of the temperature sensors T can be forwarded to a gateway 15 in the screed section 10 using a signal line 14.
  • the gateway 15 is configured to convert the respective temperature states of the heating elements 11, 12, 1n into one for diagnostic purposes to bring edited data form. This data is passed on from the gateway 15 by means of a data line 16, for example a CAN bus system, to the control device 8, 8' for diagnostic purposes and possibly other control functions.
  • the control device 8 , 8 ′ is functionally connected to a generator 17 and can control its operation based on the data received from the gateway 15 .
  • the generator 17 is connected to the gateway 15 of the screed section 10 via a power supply line 18 .
  • the electrical power generated by the generator 17 can be distributed via the gateway 15 to the respective heating elements 11, 12, 1n of the screed section 10 in order to heat them individually.
  • the screed section 10 also has a temperature sensor 19 for detecting an actual temperature of the screed plate 6 of the screed 5 .
  • the temperature sensor 19 is connected to the gateway 15 .
  • the control device 8, 8' Based on a comparison of the recorded actual temperature of the screed plate 6 with a setpoint temperature value of the screed plate, which is determined, for example, based on the paving material temperature or which is set manually by the screed operator, the control device 8, 8' can control the power supply of the respective heating elements installed in the screed section 10 11, 12, 1n dynamically control.
  • the data line 16 and the power supply line 18 are shown as separate lines.
  • the data line 16 can be in the form of a CAN bus system.
  • the power supply line 18 is designed as a PLC line, with the gateway 15 being configured to modulate the respective actual temperature values of the heating elements 11, 12, 1n received from the screed section 10 from the temperature sensors T onto the power supply line 18 and to the control device 8, 8'.
  • plank sections 20, 30 of the heating device 100 have a structure comparable to that of the plank section 10.
  • the screed section 20 comprises at least three heating elements 21, 22, 2n, temperature sensors T installed on them and a gateway 25, which receives the respective temperature states of the heating elements 21, 22, 2n and forwards them to the control device 8, 8' for their functional diagnosis.
  • the screed section 30 comprises three heating elements 31, 32, 3n, temperature sensors T installed on them and a gateway 35, which receives the respective temperature states of the heating elements 31, 32, 3n and forwards them to the control device 8, 8' for their functional diagnosis.
  • each screed section 10, 20, 30, in particular each heating element 11, 12, 1n, 21, 22, 2n, 31, 32, 3n installed therein can be checked individually for its function, since all heating elements 11, 12, 1n, 21 , 22, 2n, 31, 32, 3n temperature states are recorded and passed on to the control device 8, 8′ for function control by means of the respective gateways 15, 25, 35, possibly in edited form.
  • a defective heating element 11, 12, 1n, 21, 22, 2n, 31, 32, 3n, including its installation location, can be indicated by means of the display device D, D'.
  • FIG. 1 also shows an ambient temperature sensor 40, which is designed to detect an ambient temperature in the area of the screed 5.
  • the ambient temperature sensor 40 is connected to the control device 8, 8'. Based on the ambient temperature detected by the ambient temperature sensor 40, the required heating-up time until the set temperature of the smoothing plate 6 is reached can be determined using the control device 8, 8' and, if necessary, displayed to the operator.
  • FIG. 2 Furthermore shows figure 2 a target temperature value S, which the control device 8, 8' determines for all heating elements 11, 12, 1n, 21, 22, 2n, 31, 32, 3n based on the heating rates measured thereon and in the functional diagnosis of the heating elements 11, 12, 1n , 21, 22, 2n, 31, 32, 3n.
  • figure 3 shows compared to figure 2 a slightly modified version.
  • figure 3 shows that the screed section 10 has a screed distributor 15', the screed section 20 has a screed distributor 25' and the screed section 30 has a screed distributor 35', the respective screed distributors 15', 25', 35' being connected by a gateway 50 shared by them with the Control device 8, 8 'are connected.

Abstract

Die Erfindung betrifft einen Straßenfertiger (1), der eine zur Herstellung eines Straßenbelags (3) ausgebildete Einbaubohle (5) aufweist, die eine Heizeinrichtung (100) mit mehreren Heizelementen (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) umfasst. Ferner weist der Straßenfertiger (1) mindestens einen Generator (17) zum Versorgen der Heizeinrichtung (100) mit elektrischer Leistung auf. Der Straßenfertiger (1) verfügt weiter über eine zur Ansteuerung des Generators (17) ausgebildete Steuereinrichtung (8, 8'). Kennzeichnend für den Straßenfertiger (1) ist, dass die Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) jeweils mindestens einen zum Detektieren einer daran vorliegenden Fehlfunktion ausgebildeten Temperatursensor (T) aufweisen. Ferner bezieht sich die Erfindung auf ein Verfahren zum Detektieren einer Fehlfunktion eines innerhalb einer Einbaubohle eines Straßenfertigers (1) eingebauten Heizelements (11, 12, 1n, 21, 22, 2n, 31, 32, 3n).

Description

  • Die vorliegende Erfindung bezieht sich auf einen Straßenfertiger gemäß dem Anspruch 1. Weiter betrifft die vorliegende Erfindung ein Verfahren gemäß Anspruch 16.
  • Straßenfertiger sind dazu konfiguriert, aus einem heißen bituminösen Einbaumaterial einen Straßenbelag herzustellen. Zum (Vor-)Verdichten des Einbaumaterials weisen Straßenfertiger eine daran in Einbaufahrtrichtung gezogene Einbaubohle auf, die mittels einer darin integrierten Heizeinrichtung auf einer gewünschten Arbeitstemperatur gehalten wird. Die Heizeinrichtung umfasst mehrere Heizelemente, beispielsweise Heizstäbe, die in den jeweiligen Bohlenabschnitten verbaut sind, um darin installierte Verdichtungsaggregate sowie dem Untergrund zugewandte Verdichterplatten zu erhitzen. Die Heizeinrichtung wird von einem Generator des Straßenfertigers mit elektrischer Leistung versorgt.
  • Das Einbauergebnis ist u.a. von der Funktionsfähigkeit der im Bohlenkörper verbauten Heizelemente abhängig. Daher ist es wünschenswert, während des Einbaubetriebs die Funktionsweise der Heizelemente zu überwachen, um ggf. ein defektes Heizelement möglichst schnell zu erfassen und dieses durch ein funktionsfähiges Heizelement zu ersetzen.
  • EP 3 527 721 A1 offenbart einen Straßenfertiger mit Leistungsanpassern für elektrische Einbaubohlenheizeinrichtungen.
  • EP 1 295 990 A2 offenbart eine Regeleinrichtung für an der Einbaubohle eines Straßenfertigers verbaute Heizelemente.
  • WO 2014/124545 A1 offenbart ein Verfahren zum Beheizen einer mit einer Heizeinrichtung ausgestatteten Einbaubohle eines Straßenfertigers, wobei zur Veränderung der Heizleistung der Heizeinrichtung die elektrische Spannung, mit welcher ein Heizelement der Heizeinrichtung beaufschlagt wird, verändert wird.
  • Die DE 10 2015 012 298 A1 offenbart einen Straßenfertiger mit einem Generator, der eine elektrische Bohlenheizung einer Einbaubohle des Straßenfertigers mit elektrischer Energie versorgt. Die Bohlenheizung umfasst mehrere Gruppen von Heizelementen, die verschiedenen Funktionskomponenten der Einbaubohle, z.B. einer Bodenplatte, einem Stampfer, usw. zugeordnet sind. Ferner ist eine Strommessvorrichtung vorgesehen, die zur Messung eines Ausgangsstroms des Generators ausgebildet ist und die über einen Datenbus mit der Maschinensteuerung kommuniziert. Basierend auf der Strommessung kann für die Bohlenheizung eine Fehlerdiagnose durchgeführt werden. Anhand dieser, an die Stromversorgung gekoppelten Fehlerdiagnose ist es allerdings schwierig, einzelne defekte Heizelemente, insbesondere deren Montageort, zu bestimmen, sodass Instandsetzungsarbeiten aufwändig sein können. Dies kann auf der Baustelle zu erhöhten Stillstandzeiten des Straßenfertigers führen.
  • DE 20 2015 104 723 U1 offenbart eine elektrische Heizpatrone mit einer integrierten Temperaturüberwachung.
  • Aufgabe der Erfindung ist es, einen Straßenfertiger sowie ein Verfahren zur Verfügung zu stellen, womit sich anhand einfacher, konstruktiver technischer Merkmale die Funktionsweise einer Bohlenheizeinrichtung des Straßenfertigers besser überwachen lässt.
  • Diese Aufgabe wird gelöst mittels eines Straßenfertigers gemäß Anspruch 1 sowie anhand eines Verfahrens gemäß Anspruch 16.
  • Vorteilhafte Weiterbildungen der Erfindung sind anhand der Unteransprüche gegeben.
  • Der erfindungsgemäße Straßenfertiger weist eine zur Herstellung eines Straßenbelags ausgebildete Einbaubohle auf, die eine Heizeinrichtung mit mehreren Heizelementen umfasst. Ferner weist der erfindungsgemäße Straßenfertiger mindestens einen Generator zum Versorgen der Heizeinrichtung mit elektrischer Leistung sowie eine zur Ansteuerung des Generators ausgebildete Steuereinrichtung auf.
  • Erfindungsgemäß umfassen die Heizelemente jeweils mindestens einen zum Detektieren einer daran vorliegenden Fehlfunktion eingesetzten Temperatursensor. Basierend auf den jeweiligen unmittelbar an den Heizelementen durchgeführten Temperaturmessungen lässt sich eine Fehlfunktion individuell, d.h. eines oder mehrerer bestimmter Heizelemente der innerhalb der Einbaubohle eingesetzten Heizelemente, detektieren.
  • Die erfindungsgemäß eingesetzten Heizelemente sind jeweils zum Erfassen einer direkt an ihnen während des Betriebs des Straßenfertigers anliegenden Temperatur ausgebildet, sodass die jeweiligen Temperaturzustände dieser Heizelemente kontinuierlich genau erfasst und zum Detektieren einer möglichen Fehlfunktion an die Steuereinrichtung weitergeleitet werden können. Damit kann die Funktion aller Heizelemente, die an der Einbaubohle einen Temperatursensor aufweisen, individuell überwacht werden. Dies bringt den Vorteil, dass defekte Heizelemente zügig erkannt und ersetzt werden können, was einen erheblichen Beitrag zur Herstellung qualitativer Straßenbeläge leisten kann. Außerdem können anhand der erfindungsgemäß temperaturbasierten Diagnoseeinrichtung Stillstandzeiten des Straßenfertigers bedeutsam reduziert werden.
  • Insbesondere ist es anhand der Erfindung möglich, unabhängig von einer ggf. interwallweise durchgeführten Leistungsversorgung der jeweiligen Heizelemente basierend auf den direkt daran durchgeführten Temperaturmessungen eine kontinuierliche Fehlfunktionsermittlung durchzuführen.
  • Eine vorteilhafte Variante sieht vor, dass der Temperatursensor mit der Steuereinrichtung durch ein zur Signalbearbeitung konfiguriertes Gateway verbunden ist. Dieses eignet sich hervorragend als funktionales Modul zum Verbinden der Heizelemente mit der Steuereinrichtung für den Zweck der Fehlerdiagnose und könnte ebenfalls eine Leistungsverteilung an die jeweiligen Heizelemente koordinieren. Möglich ist es, dass der Temperatursensor an einen zum Empfang und zur Weitergabe von mittels des Temperatursensors erfassten Ist-Temperaturwerten ausgebildeten Bohlenverteiler angeschlossen ist. Obwohl dieser primär zur Leistungsverteilung einsetzbar ist, kann der Bohlenverteiler darüber hinaus als funktionale Koppeleinheit, sozusagen als Sende-Empfänger, die jeweiligen an ihm eingegangenen Ist-Temperaturwerte der Heizelemente an die Steuereinrichtung weitergeben.
  • Zweckmäßig wäre es, wenn der Bohlenverteiler zur Weitergabe der daran empfangenden Ist-Temperaturwerte der jeweiligen Heizelemente an ein zur Signalbearbeitung konfiguriertes, mit der Steuereinrichtung verbundenes Gateway ausgebildet ist. Dieses Gateway kann als zentrales Gateway sämtliche an der Einbaubohle erfassten Messsignale, insbesondere die Ist-Temperaturen der jeweiligen Heizelemente vom Bohlenverteiler, empfangen und diese ggf. in bearbeiteter Form der Steuereinrichtung für jeweilige darin ablaufende Steuer- und/oder Regelabläufe, vor allem für die Fehlerdiagnosefunktion, weitergeben.
  • Gemäß einer Ausführungsform ist vorgesehen, dass die Einbaubohle mehrere Bohlenabschnitte aufweist, die jeweils mehrere Heizelemente sowie jeweils ein die daran vorgesehenen Temperatursensoren mit der Steuereinrichtung verbindendes, zur Signalbearbeitung konfiguriertes Gateway aufweisen. Alternativ weisen die jeweiligen Bohlenabschnitte jeweils mehrere Heizelemente sowie jeweils einen Bohlenverteiler auf.
  • Das Gateway und/oder der Bohlenverteiler ist insbesondere als Hard- und/oder Softwarekomponente ausbildet, die zwischen den jeweiligen Heizelementen und der Steuereinrichtung eine Verbindung herstellt. Vor allem ist der Bohlenverteiler als Sendeempfänger konfiguriert, um die während des Betriebs des Straßenfertigers an den jeweiligen Heizelementen kontinuierlich gemessenen Temperaturzustände zu empfangen und an das Gateway zu senden. Das Gateway kann die jeweiligen vom Bohlenverteiler empfangenen Temperatur-Daten derart der Steuereinrichtung vorhalten, dass sie darauf basierend die Funktionsfähigkeit der jeweiligen Heizelemente überprüft.
  • Das Gateway und/oder der Bohlenverteiler ist insbesondere dazu konfiguriert, die innerhalb der Einbaubohle installierten Heizelemente zumindest für eine präzise Fehlerdiagnosefunktion mit der Steuereinrichtung zu verbinden. Die an den einzelnen Heizelementen gemessenen, am Gateway oder am Bohlenverteiler empfangenen individuellen Temperaturwerte können mittels des Gateways und/oder mittels des Bohlenverteilers derart in datenbearbeiteter Form an die Steuereinrichtung weitergeleitet werden, dass diese darauf basierend eine individuelle Fehlerdiagnose für die einzelnen Heizelemente durchführen kann. Das Gateway und/oder der Bohlenverteiler dient demzufolge für die temperaturbasierte Fehlerdiagnosefunktion als zentrale, zur Datenbearbeitung ausgebildete Schnittstelle zwischen den im Bohlenköper an den jeweiligen Heizelementen installierten Temperatursensoren und der Steuereinrichtung.
  • Das Gateway und/oder der Bohlenverteiler bietet vorzugsweise darüber hinaus die Funktion, die daran empfangenen jeweiligen Temperaturmesssignale in eine für Steuer- und/oder Regelungsprozesse des Betriebs der Einbaubohle bestimmte, bearbeitete Datenform zu bringen und an die Steuereinrichtung weiterzugeben, worauf basierend insbesondere Verdichtungsaggregate der Einbaubohle dynamisch ansteuerbar sind.
  • Vorzugsweise weist die Einbaubohle mehrere Bohlenabschnitte auf, die jeweils mehrere Heizelemente sowie jeweils ein die daran vorgesehenen Temperatursensoren mit der Steuereinrichtung verbindendes, zur Signalbearbeitung konfiguriertes Gateway aufweisen oder die jeweils mehrere Heizelemente sowie jeweils einen die an ihm angeschlossenen Temperatursensoren mit dem Gateway verbindenden Bohlenverteiler aufweisen. Dieser Bohlenverteiler kann als Sendeempfänger dem Gateway vorgeschaltet sein.
  • Vorstellbar ist es, dass die Einbaubohle drei oder mehr Bohlenabschnitte aufweist, nämlich eine mittige Grundbohle sowie daran seitlich gelagerte Ausziehteile, die zum Variieren der Einbaubreite quer zur Einbaufahrtrichtung des Straßenfertigers ausfahrbar sind. Eine Variante sieht vor, dass zum Herstellen großer Einbaubreiten weitere Bohlenabschnitte in Form von Verbreiterungsteilen an den Ausziehteilen der Einbaubohle anbaubar sind. Dadurch, dass jeder der vorgenannten Bohlenabschnitte für die darin installierten Heizelemente ein eigenes Gateway oder zumindest einen eigenen Bohlenverteiler aufweist, können die jeweiligen in den Bohlenabschnitten verbauten Heizelemente gesondert überwacht und/oder basierend auf den jeweiligen daran gemessenen Heizzuständen angesteuert werden.
  • Vor allem kann das jeweilige Gateway oder der jeweilige Bohlenverteiler als integraler Bestandteil der Einbaubohle, insbesondere der jeweiligen Bohlenabschnitte, ausgebildet sein. Jeder Bohlenabschnitt kann mit einem eigenen Gateway oder mit einem eigenen Bohlenverteiler ausgestattet sein, das oder der während des Betriebs des Straßenfertigers als zentrale Datenempfängereinheit am jeweiligen Bohlenabschnitt individuelle Sensormesswerte, vor allem die Temperaturmesssignale der jeweiligen Heizelemente, empfängt und in ggf. weiterbearbeiteter Form für eine bestimmte Funktion, insbesondere für die temperaturbedingte Fehlerdiagnosefunktion, an die Steuereinrichtung weitergibt. Die jeweiligen in der Einbaubohle integral verbauten Gateways oder Bohlenverteiler bilden damit Datenempfänger- und Datensendermodule aus, die der Steuereinrichtung vorgeschaltet sind, um die daran empfangenen Temperaturmesswerte in ggf. datenbearbeiteter Form für die vorgenannte temperaturbedingte Fehlerdiagnosefunktion an die Steuereinrichtung weiter zu geben.
  • Vorzugsweise sind die Temperatursensoren an den jeweiligen Heizelementen integriert ausgebildet. Damit bildet das jeweilige Heizelement und der Temperatursensor baulich eine Einheit aus, wodurch das Heizelement zusammen mit dem Temperatursensor als kompakte Baugruppe problemlos ein- und ausbaubar sind. Dies bietet vor allem bei Instandsetzungs- und/oder Servicearbeiten erhebliche Vorteile. Die jeweiligen Heizelemente weisen daher einen Eingang für die Stromversorgung und einen Ausgang für die daran durchgeführte Temperaturerfassung auf.
  • Die jeweiligen Heizelemente können beispielsweise einen Heiß-, Kalt- und/oder Halbleiter-Temperatursensor aufweisen. Die jeweiligen Heizelemente können als Heizstäbe ausgebildet sein. Die Temperatursensoren können sich entsprechend einer Geometrie der Heizstäbe entlang darin vorgesehener Heizspulen erstrecken.
  • Insbesondere weisen sämtliche Heizelemente der Heizeinrichtung mindestens einen integral daran ausgebildeten Temperatursensor auf. Damit ist es möglich, an allen innerhalb der Einbaubohle verbauten Heizelementen sehr präzise Temperaturmessungen durchzuführen. Darauf basierend kann einerseits die Funktion der jeweiligen Heizelemente genau diagnostiziert und andererseits können die jeweiligen Heizelemente präzise angesteuert werden.
  • Vorteilhaft ist es, wenn die Temperatursensoren jeweils mittels einer Steckerverbindung an das Gateway oder an den Bohlenverteiler angeschlossen sind. Insbesondere kann diese Steckerverbindung für eine werkzeuglose Montage und Demontage konfiguriert sein, damit sich die jeweiligen Heizelemente auf einfache Weise einzeln anschließen und ausbauen lassen.
  • Vorstellbar ist es, dass die jeweiligen Temperatursensoren über ein gemeinsames Bussystem mit dem Gateway verbunden oder an den Bohlenverteiler angeschlossen sind. Dieses Netzwerk könnte anhand einer einzigen Steckerverbindung an das Gateway oder an den Bohlenverteiler angeschlossen sein. Hierdurch ließe sich der Verkabelungsaufwand innerhalb der Einbaubohle reduzieren.
  • Gemäß einer Ausführungsform der Erfindung ist das Gateway oder der Bohlenverteiler der jeweiligen Bohlenabschnitte direkt als PLC-Gateway ausgebildet. Für die Einbaubohle bieten sich dadurch sowohl in konstruktiver als auch in funktionaler Hinsicht verbesserte Einsatzmöglichkeiten. Insbesondere kann damit trotz zunehmender Sensorik ein konstruktiver Aufbau der Einbaubohle kompakter gestaltet und/oder ein Betriebsverhalten der Einbaubohle besser überwacht sowie gesteuert werden.
  • Als PLC-Gateway kann das Gateway oder der als PLC-Gateway ausgebildete Bohlenverteiler die von den jeweiligen Heizelementen empfangenen Temperaturmesssignale auf eine damit verbundene Stromleitung modulieren, über welche die modulierten Temperaturmessdaten an die Steuereinrichtung übermittelt werden können. Vorstellbar ist es, dass die hierzu zum Datentransport eingesetzte Stromleitung zumindest aus einem Abschnitt einer zur Leistungsversorgung der jeweiligen Heizelemente und/oder des jeweiligen PLC-Gateways eingesetzten Leistungsversorgungsleitung gebildet ist.
  • Eine Variante der Erfindung sieht vor, dass das jeweilige PLC-Gateway mittels einer PLC-Leitung (Versorgungsleitung für Powerline Communication) mit der Steuereinrichtung verbunden ist. Als PLC-Leitung käme beispielsweise zumindest abschnittsweise eine vom Generator mit der Einbaubohle verbundene Leistungsversorgungsleitung in Frage. Vor allem eine Leistungsversorgungsleitung, welche die jeweiligen Heizelemente mit elektrischer Leistung speist, kann als PLC-Leitung eingesetzt werden. Das PLC-Gateway kann direkt an eine solche PLC-Leitung angeschlossen sein, sodass es in Richtung der Heizelemente als Stromverteiler funktioniert und in Richtung der Steuereinrichtung als PLC-Gateway Temperaturmessdaten auf die PLC-Leitung moduliert.
  • Alternativ zur PLC-Leitung oder ergänzend dazu kann das Gateway mittels eines separaten Datenbussystems mit der Steuereinrichtung verbunden sein. Das Datenbussystem kann beispielsweise als CAN-Bus oder als Ethernetverbindung ausgebildet sein.
  • Vorstellbar ist es, dass das (PLC-)Gateway als Internetgateway konfiguriert ist, um außer der Temperaturmessdatenübermittlung an die Steuereinrichtung des Straßenfertigers einen zumindest temporär während des Einbaubetriebs des Straßenfertigers stattfindenden, ergänzenden Temperaturmessdatentransfer an mindestens einen über das Internet verbundenen externen Empfänger, beispielsweise einen Temperaturmessdatentransfer an eine zentrale Baustellenverwaltungseinrichtung, eine Servicezentrale und/oder an ein mit dem Straßenfertiger zusammenarbeitendes anderes Baustellenfahrzeug, durchzuführen.
  • Möglich wäre es, dass das (PLC-)Gateway als VPN-Gateway ausgebildet ist, damit das derart ausgebildete Gateway auf datengesichertem Wege insbesondere von außerhalb der Baustelle, beispielsweise von einer Servicezentrale aus, auf Fehlfunktionen der Heizelemente abgefragt und/oder angesteuert werden kann. Dabei kann es sich um eine vom Maschinenhersteller betriebene Servicezentrale handeln, die auf Basis der mit der Einbaubohle eingerichteten VPN-Verbindung Serviceinformationen für den jeweiligen Bohlenabschnitt an den Baustellenbetreiber übermitteln kann. Somit lassen sich auf der Baustelle Maschinenstillstandzeiten reduzieren.
  • Vorstellbar ist es, dass das (PLC-)Gateway als Media-Gateway konfiguriert ist. Derart konfiguriert könnte das Gateway die jeweiligen daran empfangenen Temperaturzustände der Heizelemente, insbesondere daran gemessene kritische Temperaturzustände, in dementsprechende Sprachausgabesignale weiterverarbeiten, die einem Bediener des Straßenfertigers, insbesondere einem Bediener eines Außenbedienstands der Einbaubohle, während des Einbaubautriebs akustisch vermittelt werden.
  • Eine einfache, allerdings sehr praxistaugliche Variante sieht vor, dass das Gateway und/oder der Bohlenverteiler der jeweiligen Bohlenabschnitte für sämtliche darin verbauten Heizelemente ein gesondertes, zur optischen Anzeige einer Funktionsfähigkeit der jeweiligen Heizelemente ausgebildetes Leuchtmittel aufweist.
  • Eine vorteilhafte Ausführungsform sieht vor, dass die Steuereinrichtung dazu ausgebildet ist, auf Basis jeweiliger anhand der an den Heizelementen ausgebildeten Temperatursensoren erfassten Temperaturgradienten, sprich angesichts eines daran erfassten Temperaturverlaufs innerhalb einer vorbestimmten Zeit, einen jeweiligen Heizelementtypen der Heizelemente zu identifizieren und für die jeweiligen identifizierten Heizelementtypen jeweils einen bestimmten Soll-Temperaturwert zu bestimmen, worauf basierend die temperaturbasierte Fehlerdiagnosefunktion durchführbar ist.
  • Beispielsweise ist die Steuereinrichtung zum Durchführen der Fehlerdiagnosefunktion dazu ausgebildet, die jeweiligen für die Heizelemente bestimmten Soll-Temperaturwerte mit daran erfassten Ist-Temperaturwerten zu vergleichen. Erreicht oder überschreitet dabei die erfasste Ist-Temperatur eines Heizelements die für dieses Heizelement bestimmte Soll-Temperatur, dann ist die Funktion des Heizelements in Ordnung. Wird jedoch mittels der Steuereinrichtung detektiert, dass die erfasste Ist-Temperatur des Heizelements die dafür bestimmte Soll-Temperatur um einen vorbestimmten Wert unterschreitet, dann kann das Heizelement defekt sein. Eine solche Fehlfunktion kann einem Bediener am Außenbedienstand des Straßenfertigers an einem daran vorgesehenen Display angezeigt werden.
  • Zweckmäßig ist es, wenn die Steuereinrichtung dazu ausgebildet ist, auf Basis mindestens eines bestimmten Heizelementtypen einen diesen aufweisenden Bohlenteil zu identifizieren. Beispielsweise könnte anhand des identifizierten Heizelementtypen der Typ eines für den Einbau angebauten Verbreiterungsteils bestimmt werden. Insbesondere ist die Steuereinrichtung dazu ausgebildet, auf Basis der bestimmten Heizelementtypen, vor allem auf Basis der damit bestimmten jeweiligen Typen der angebauten Verbreiterungsteile, eine Bohleneinbaubreite zu ermitteln. Die Steuereinrichtung kann die, wie vorangehend beschrieben, bestimmte Bohleneinbaubreite für verschiedene am Straßenfertiger ablaufende Steuer- und/oder Regelungsprozesse einsetzen.
  • Eine bevorzugte Ausführungsform sieht vor, dass das Gateway und/oder der Bohlenverteiler dazu konfiguriert ist, mittels der jeweiligen Temperatursensoren erfasste Ist-Temperaturwerte der Heizelemente jeweils um mindestens eine Information bzgl. deren Messungsort zu ergänzen und als Ist-Temperatur-Orts-Daten an die Steuereinrichtung weiterzuleiten. Damit ist es möglich, ein defektes Heizelement bzgl. dessen Montageorts eindeutig zu identifizieren und zügig auszutauschen, sodass der Einbaubetrieb des Straßenfertigers ohne große Unterbrechungen ablaufen kann.
  • Vorzugsweise wird einem Bediener der Einbaubohle und/oder einem Fahrer des Straßenfertigers anhand einer mit der Steuereinrichtung verbundenen Anzeigeeinrichtung eine Funktionsfähigkeit der jeweiligen Heizelemente angezeigt. Dies kann insbesondere visuell und/oder akustisch geschehen. Vorstellbar ist es, dass die Funktionsfähigkeit der jeweiligen Heizelemente auf einer tragbaren Display- und/oder Computereinheit, beispielsweise auf einer tragbaren Bedieneinheit des Außenbedienstands, anzeigbar ist.
  • Eine vorteilhafte Ausführungsform sieht vor, dass die Einbaubohle mindestens ein Glättblech aufweist, wobei die Steuereinrichtung dazu konfiguriert ist, auf Basis eines ihr zugeführten, erfassten Ist-Temperaturwerts des mittels des Straßenfertigers zur Herstellung eines Straßenbelags verwendeten Einbaumaterials einen Soll-Temperaturwert des Glättblechs zu bestimmen und diesen mit einer erfassten Ist-Temperatur des Glättblechs zu vergleichen, um darauf basierend eine Leistungsversorgung des oder der dem Glättblech zugeordneten Heizelemente anzusteuern. Zum Erfassen der Ist-Temperatur des Glättblechs kann das Glättblech mindestens einen Temperatursensor aufweisen, der mit dem Bohlenverteiler oder mit dem Gateway direkt verbunden ist. Vorstellbar wäre es, dass der Soll-Temperaturwert des Glättblechs manuell am Straßenfertiger einstellbar ist.
  • Eine vorteilhafte Ausführungsform sieht vor, dass die Steuereinrichtung dazu konfiguriert ist, auf Basis einer ihr zugeführten, erfassten Umgebungstemperatur eine zum Erreichen des Soll-Temperaturwerts des Glättblechs verbleibende Aufheizdauer des oder der zum Aufheizen des Glättblechs eingesetzten, ggf. vorab über dessen Temperaturgradienten identifizierten, Heizelements zu bestimmen. Darauf basierend ließe sich ein optimaler Startzeitpunkt für die Einbaufahrt bestimmen.
  • Möglich wäre es, dass die Steuereinrichtung dazu konfiguriert ist, die Funktionsfähigkeit der jeweiligen Heizelemente dadurch zu überprüfen, dass durch eine vorbestimmte Leistungsversorgung der jeweiligen Heizelemente die daran erfassten Ist-Temperaturwerte innerhalb einer vorbestimmten Zeitspanne, beispielsweise innerhalb einer Minute, die der Steuereinrichtung zugeführte Umgebungstemperatur erreichen oder diese um einen vordefinierten Betrag überschreiten.
  • Vorteilhaft ist es, wenn die Steuereinrichtung dazu ausgebildet ist, basierend auf einer erfassten, zum Aufheizen eines Heizelements auf ein bestimmtes Temperaturniveau benötigten Dauer einen Typen des Heizelements und/oder einen Typen des dazugehörigen Bohlenabschnitts, beispielsweise den Typen eines Verbreiterungsteils, zu bestimmen. Damit lässt sich indirekt über die individuell erfassbare Aufheizdauer mindestens eines Heizelements ein konstruktiver Aufbau der Einbaubohle, insbesondere ein Typ der jeweiligen daran eingesetzten Bohlenabschnitte, ermitteln.
  • Gemäß einer Ausführungsform ist es möglich, dass die Steuereinrichtung dazu ausgebildet ist, basierend auf einer erfassten, sich nach einer vorbestimmten Aufheizzeit einstellenden Betriebstemperatur eines Heizelements einen Typen des Heizelements und/oder einen Typen des dazugehörigen Bohlenabschnitts, beispielsweise den Typen eines Verbreiterungsteils, zu bestimmen. Vorzugsweise ist die Steuereinrichtung dazu ausgebildet, auf Basis einer vorgenannten Typenbestimmung des Heizelements und/oder einer Typenbestimmung des Bohlenabschnitts eine für den Einbaubetrieb einstellbare Bohleneinbaubreite zu ermitteln. Gemäß einer Ausführungsform der Erfindung ist die mittels der Steuereinrichtung auf Basis der am Heizelement durchgeführten Temperaturmessung ermittelte Bohleneinbaubreite mindestens einer Steuer- und/oder Regelkreisfunktion der Einbaubohle des Straßenfertigers als Eingangsgröße vorhaltbar. Beispielsweise lässt sich darauf basierend eine Steuergröße und/oder ein Regelparameter zum Ansteuern des Betriebs einer Materialquerverteilereinrichtung der Einbaubohle dynamisch einstellen. Der über die Temperaturmessung hergeleitete Bohlenaufbau kann damit zur Parametrisierung der Steuereinrichtung, z.B. zum Steuern der Materialverteilung vor der Einbaubohle, dienen.
  • Eine Variante sieht vor, dass die Steuereinrichtung dazu ausgelegt ist, basierend auf der über die Aufheizdauer hergeleitete Typisierung der Heizelemente und/oder der Bohlenabschnitte eine Mindesttemperatur des innerhalb eines Gutbunkers des Straßenfertigers bevorrateten Einbaumaterials zu bestimmen. Die Mindesttemperatur könnte gemäß einer bevorzugten Ausführungsform direkt dem Fahrer des Straßenfertigers angezeigt und/oder von der Steuereinrichtung des Straßenfertigers an ein Mischwerk zur Herstellung des dem Straßenfertiger bereitgestellten Einbaumaterials übermittelt werden.
  • Gemäß einer vorteilhaften Variante sind Informationen hinsichtlich eines Betriebs der jeweiligen Heizelemente, beispielsweise deren jeweilige Betriebstemperaturen und/oder deren Montageorte, mittels einer am Straßenfertiger angeordneten Anzeigeeinrichtung darstellbar. Die Anzeigeeinrichtung kann als Teil der Steuereinrichtung ausgebildet sein, beispielsweise als Display am Fahrerbedienstand und/oder als Display am Außenbedienstand der Einbaubohle vorliegen. Eine Darstellung der Betriebstemperaturen und/oder des Heizelementdiagnoseergebnisses auf einem Smart Device wäre ebenfalls denkbar. Mittels solcher Anzeigeeinrichtungen könnten im Fall eines detektierten defekten Heizelements zu diesem passende Montage- und Demontageanleitungen darstellbar sein.
  • Die Erfindung betrifft des Weiteren ein Verfahren zum Detektieren einer Fehlfunktion mindestens eines innerhalb einer Einbaubohle eines Straßenfertigers verbauten Heizelements. Erfindungsgemäß wird das Detektieren der Fehlfunktion auf Basis eines unmittelbar am Heizelement erfassten Ist-Temperaturwerts durchgeführt. Für diese Diagnosefunktion kann der Ist-Temperaturwert des Heizelements anhand eines darin integrierten Temperatursensors erfasst und einer Steuereinrichtung zugeführt werden, die darauf basierend, sofern vorhanden, eine Fehlfunktion des Heizelements sehr präzise bestimmen kann.
  • Vorstellbar ist es, dass während des Betriebs des Straßenfertigers sämtliche innerhalb einer Einbaubohle verbauten Heizelemente auf Basis jeweiliger daran erfasster Ist-Temperaturwerte kontinuierlich oder zumindest temporär auf eine Fehlfunktion hin überprüft werden. Dafür werden die jeweiligen Ist-Temperaturwerte sämtlicher Heizelemente anhand darin integrierter Temperatursensoren erfasst.
  • Eine Variante sieht vor, dass in Abhängigkeit eines am Heizelement erfassten Temperaturgradienten, d.h. einer Aufheizgeschwindigkeit des Heizelements, ein Heizelementtyp des Heizelements identifiziert und hinsichtlich des identifizierten Heizelementtyps für das Heizelement ein für den Zweck der Fehlfunktionsdiagnose geeigneter Soll-Temperaturwert bestimmt wird, wobei das Detektieren der Fehlfunktion anhand eines Vergleichs des Soll-Temperaturwerts mit dem unmittelbar am Heizelement erfassten Ist-Temperaturwert geschieht. Erreicht oder überschreitet dabei die erfasste Ist-Temperatur eines Heizelements die für dieses Heizelement bestimmte Soll-Temperatur, dann ist die Funktion des Heizelements in Ordnung. Wird jedoch mittels der Steuereinrichtung detektiert, dass die erfasste Ist-Temperatur des Heizelements die dafür bestimmte Soll-Temperatur um einen vorbestimmten Wert unterschreitet, dann kann das Heizelement defekt sein. Eine solche Fehlfunktion kann einem Bediener am Außenbedienstand des Straßenfertigers an einem daran vorgesehenen Display angezeigt werden.
  • Vorzugsweise wird der Ist-Temperaturwert des oder der Heizelemente mittels eines mit dem Temperatursensor verbundenen Bohlenverteilers und/oder Gateways an eine Steuereinrichtung des Straßenfertigers übertragen. Der Bohlenverteiler und/oder das Gateway empfängt somit die jeweiligen Heizzustände der Heizelemente und gibt diese vor allem für Diagnosezwecke ggf. in datenbearbeiteter Form an die Steuereinrichtung weiter. Anhand dieser direkt in den Heizelementen durchgeführten Temperaturmessungen lässt sich deren Funktion genauer diagnostizieren.
  • Es ist möglich, dass der Bohlenverteiler und/oder das Gateway den mittels des Temperatursensors erfassten Ist-Temperaturwert des Heizelements um eine Information bzgl. dessen Messungsorts ergänzt und als Ist-Temperatur-Orts-Wert an die Steuereinrichtung weiterleitet. Dadurch ist es möglich, ein ggf. defektes Heizelement bezüglich dessen Montageorts innerhalb der Einbaubohle eindeutig zu identifizieren.
  • Durch Einschalten der Heizeinrichtung können sich die Heizelemente jeweils auf eine sich haltende Ist-(End-)Temperatur erwärmen, die größer ist als eine Temperatur des Einbaumaterials. Die Steuereinrichtung vergleicht zweckmäßigerweise während des Betriebs der Einbaubohle kontinuierlich die Ist-Temperaturwerte der jeweiligen Heizelemente mit den dafür bestimmten Soll-Temperaturwerten. Solange die Ist-Temperatur der jeweiligen Heizelemente größer oder gleich der jeweiligen Soll-Temperatur ist, funktionieren die Heizelemente ordnungsgemäß. Sobald aber nach Ablauf einer vorbestimmten Aufwärmphase die Ist-Temperatur eines Heizelements den dazugehörigen Soll-Temperaturwert um einen definierten Temperaturwert unterschreitet, kann dieses Heizelement defekt sein. Dieser Defekt kann mittels einer Anzeigeeinrichtung dem Bediener angezeigt werden. Alternativ oder ergänzend zur Anzeige eines defekten Heizelements mittels der Anzeigeeinrichtung ist es zweckmäßig, dass die Steuereinrichtung dazu konfiguriert ist, das als defekt detektierte Heizelement abzuschalten, d.h. eine Leistungszufuhr zu diesem Heizelement zu unterbrechen, um eine Beschädigung der Heizeinrichtung zu vermeiden.
  • Vorstellbar ist es, dass zusätzlich der Ort des als defekt detektierten Heizelements angezeigt wird. Dies kann dadurch geschehen, dass der Bohlenverteiler und/oder das Gateway den für die Fehlfunktion vorliegenden Ist-Temperaturwert um dessen Absenderadresse ergänzt an die Steuereinrichtung weiterleitet. Daraus kann die Steuereinrichtung präzise das defekte Heizelement identifizieren. Eine Variante sieht vor, dass ein defektes Heizelement mittels einer am Bohlenverteiler und/oder am Gateway ausgebildeten Status-LED angezeigt wird.
  • Möglich wäre es, dass die Steuereinrichtung basierend auf einer am Heizelement gemessenen Aufheizgeschwindigkeit des Heizelements eine Typenbestimmung des Heizelements und ggf. darauf basierend eine Typenbestimmung des Bohlenabschnitts durchgeführt werden, in dessen Abhängigkeit die Steuereinrichtung die einstellbare und/oder während des Einbaubetriebs aktuell eingestellte Bohleneinbaubreite der Einbaubohle bestimmt. Anhand der ermittelten Bohleneinbaubreite können weitere Prozesse am Straßenfertiger, insbesondere eine Materialquerverteilung vor der Einbaubohle, gesteuert und/oder geregelt werden.
  • Die Erfindung wird anhand der folgenden Figuren genauer erläutert. Es zeigen:
  • Fig. 1
    einen erfindungsgemäßen Straßenfertiger,
    Fig. 2
    eine schematische Darstellung einer ausführungsgemäßen Heizeinrichtung für den erfindungsgemäßen Straßenfertiger und
    Fig. 3
    eine schematische Darstellung einer ausführungsgemäßen Heizeinrichtung für den erfindungsgemäßen Straßenfertiger.
  • Gleiche Komponenten sind in den Figuren durchgängig mit den gleichen Bezugszeichen versehen.
  • Figur 1 zeigt einen Straßenfertiger 1, der in Einbaufahrtrichtung R auf einem Untergrund 2 einen Straßenbelag 3 aus einem Einbaumaterial 4 mittels einer Einbaubohle 5 herstellt. Der Straßenbelag 3 weist eine entsprechend der Bohlenkonfiguration hergestellte Bohleneinbaubreite B quer zur Einbaufahrtrichtung R auf. Die Einbaubohle 5 ist zum Verdichten des vor ihr ausgebreiteten Einbaumaterials 4 ausgebildet. Die Einbaubohle 5 weist ein Glättblech 6 sowie einen dem Glättblech 6 in Einbaufahrtrichtung R vorgeordneten Stampfer 7 auf.
  • Der Straßenfertiger 1 aus Figur 1 verfügt über einen Fahrerbedienstand F für einen Fahrer. Auf dem Fahrerbedienstand F ist eine Steuereinrichtung 8 vorgesehen. Die Steuereinrichtung 8 ist dazu konfiguriert, am Straßenfertiger 1 ablaufende Prozesse zu steuern und/oder zu überwachen. Insbesondere lässt sich anhand der Steuereinrichtung 8 der Betrieb der Einbaubohle 5 steuern und dessen Funktionsweise überwachen.
  • Weiter zeigt Figur 1, dass an der Einbaubohle 5 ein Außenbedienstand A mit einer daran ausgebildeten Steuereinrichtung 8' ausgebildet ist. Mittels der Steuereinrichtung 8' kann ein Bohlenbediener am Außenbedienstand A den Betrieb der Einbaubohle 5 steuern und/oder überwachen. Die auf dem Fahrerbedienstand F installierte Steuereinrichtung 8 und/oder die an der Einbaubohle 5 am Außenbedienstand A installierte Steuereinrichtung 8' können als Anzeigeeinrichtung D, D' ausgebildet sein, um jeweilige Prozesszustände des Straßenfertigers 1 dem Fahrer und/oder dem Bohlenbediener anzuzeigen.
  • Figur 2 zeigt in schematischer Darstellung eine Heizeinrichtung 100 für den in Figur 1 gezeigten Straßenfertiger 1. Die Heizeinrichtung 100 ist zum Erwärmen der Einbaubohle 5 ausgebildet. Figur 2 zeigt, dass die Heizeinrichtung 100 mehrere Bohlenabschnitte 10, 20, 30 aufweist. Der Bohlenabschnitt 10 kann ein Grundbohlenabschnitt sein. Die beiden Bohlenabschnitte 20, 30 können seitlich am Bohlenabschnitt 10 befestigte Ausziehbohlenteile sein. Der Aufbau der gezeigten Heizeinrichtung 100 könnte weitere, in Figur 2 nicht gezeigte Bohlenabschnitte, beispielsweise Bohlenverbreiterungsteile, ggf. in unterschiedlicher Breite und/oder Anzahl, die seitlich an den Ausziehbohlenteilen befestigt sind, aufweisen.
  • Der Bohlenabschnitt 10 verfügt über mehrere Heizelemente 11, 12, 1n, die jeweils einen integral daran verbauten Temperatursensor T aufweisen. Die mittels der Temperatursensoren T erfassten Temperaturzustände der jeweiligen Heizelemente 11, 12, 1n lassen sich im Bohlenabschnitt 10 anhand einer Signalleitung 14 an ein Gateway 15 weiterleiten. Das Gateway 15 ist dazu konfiguriert, die jeweiligen Temperaturzustände der Heizelemente 11, 12, 1n in eine für Diagnosezwecke bearbeitete Datenform zu bringen. Diese Daten werden vom Gateway 15 aus mittels einer Datenleitung 16, beispielsweise einem CAN-Bussystem, an die Steuereinrichtung 8, 8' für Diagnosezwecke und ggf. andere Steuerfunktionen weitergegeben.
  • Die Steuereinrichtung 8, 8' ist mit einem Generator 17 funktional verbunden und kann einen Betrieb desselben basierend auf den vom Gateway 15 erhaltenden Daten ansteuern. Der Generator 17 ist über eine Leistungsversorgungsleitung 18 mit dem Gateway 15 des Bohlenabschnitts 10 verbunden. Die durch den Generator 17 erzeugte elektrische Leistung kann über das Gateway 15 an die jeweiligen Heizelemente 11, 12, 1n des Bohlenabschnitts 10 verteilt werden, um diese individuell aufzuheizen.
  • Gemäß Figur 2 verfügt der Bohlenabschnitt 10 ferner über einen Temperatursensor 19 zum Erfassen einer Ist-Temperatur des Glättblechs 6 der Einbaubohle 5. Der Temperatursensor 19 ist an das Gateway 15 angeschlossen. Basierend auf einem Vergleich der erfassten Ist-Temperatur des Glättblechs 6 mit einem Soll-Temperaturwert des Glättblechs, welcher beispielsweise anhand der Einbaumaterialtemperatur bestimmt oder der vom Bohlenbediener manuell eingestellt wird, kann die Steuereinrichtung 8, 8' die Leistungsversorgung der jeweiligen im Bohlenabschnitt 10 verbauten Heizelemente 11, 12, 1n dynamisch steuern.
  • In Figur 2 sind die Datenleitung 16 und die Leistungsversorgungsleitung 18 als separate Leitungen dargestellt. Die Datenleitung 16 kann als CAN-Bussystem vorliegen. Alternativ dazu ist die Leistungsversorgungsleitung 18 als PLC-Leitung ausgebildet, wobei das Gateway 15 dazu konfiguriert ist, die jeweiligen aus dem Bohlenabschnitt 10 von den Temperatursensoren T empfangenen Temperatur-Ist-Werte der Heizelemente 11, 12, 1n auf die Leistungsversorgungsleitung 18 zu modulieren und an die Steuereinrichtung 8, 8' zu übermitteln.
  • Die anderen Bohlenabschnitte 20, 30 der Heizungseinrichtung 100 weisen einen vergleichbaren Aufbau wie der Bohlenabschnitt 10 auf.
  • Der Bohlenabschnitt 20 umfasst mindestens drei Heizelemente 21, 22, 2n, an diesen installierte Temperatursensoren T sowie ein Gateway 25, das die jeweiligen Temperaturzustände der Heizelemente 21, 22, 2n empfängt und für deren Funktionsdiagnose an die Steuereinrichtung 8, 8' weitergibt.
  • Der Bohlenabschnitt 30 umfasst drei Heizelemente 31, 32, 3n, an diesen installierte Temperatursensoren T sowie ein Gateway 35, das die jeweiligen Temperaturzustände der Heizelemente 31, 32, 3n empfängt und für deren Funktionsdiagnose an die Steuereinrichtung 8, 8' weitergibt. Gemäß Figur 2 kann jeder Bohlenabschnitt 10, 20, 30, insbesondere jedes darin installierte Heizelement 11, 12, 1n, 21, 22, 2n, 31, 32, 3n, einzeln auf dessen Funktion überprüft werden, da an allen Heizelementen 11, 12, 1n, 21, 22, 2n, 31, 32, 3n Temperaturzustände erfasst und zur Funktionskontrolle mittels der jeweiligen Gateways 15, 25, 35, ggf. in bearbeiteter Form, an die Steuereinrichtung 8, 8' weitergegeben werden. Ein defektes Heizelement 11, 12, 1n, 21, 22, 2n, 31, 32, 3n einschließlich dessen Montageort kann mittels der Anzeigeeinrichtung D, D' angezeigt werden.
  • Figur 2 zeigt ferner einen Umgebungstemperatursensor 40, der zum Erfassen einer Umgebungstemperatur im Bereich der Einbaubohle 5 ausgebildet ist. Der Umgebungstemperatursensor 40 ist mit der Steuereinrichtung 8, 8' verbunden. Basierend auf der mittels des Umgebungstemperatursensors 40 erfassten Umgebungstemperatur kann anhand der Steuereinrichtung 8, 8' die benötigte Aufheizdauer bis zum Erreichen der Soll-Temperatur des Glättblechs 6 bestimmt und ggf. dem Bediener angezeigt werden.
  • Ferner zeigt Figur 2 einen Soll-Temperaturwert S, welchen die Steuereinrichtung 8, 8' für sämtliche Heizelemente 11, 12, 1n, 21, 22, 2n, 31, 32, 3n basierend auf daran gemessener Aufheizgeschwindigkeiten bestimmt und bei der Funktionsdiagnose der Heizelemente 11, 12, 1n, 21, 22, 2n, 31, 32, 3n einsetzt.
  • Figur 3 zeigt im Vergleich zur Figur 2 eine leicht abgewandelte Ausführungsform. Figur 3 zeigt, dass der Bohlenabschnitt 10 einen Bohlenverteiler 15', der Bohlenabschnitt 20 einen Bohlenverteiler 25' und der Bohlenabschnitt 30 einen Bohlenverteiler 35' aufweisen, wobei die jeweiligen Bohlenverteiler 15', 25', 35' durch ein gemeinsam von ihnen genutztes Gateway 50 mit der Steuereinrichtung 8, 8' verbunden sind.

Claims (17)

  1. Straßenfertiger (1), umfassend eine zur Herstellung eines Straßenbelags (3) ausgebildete Einbaubohle (5), die eine Heizeinrichtung (100) mit mehreren Heizelementen (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) aufweist, mindestens einen Generator (17) zum Versorgen der Heizeinrichtung (100) mit elektrischer Leistung, sowie eine zur Ansteuerung des Generators (17) ausgebildete Steuereinrichtung (8, 8'), dadurch gekennzeichnet, dass die Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) jeweils mindestens einen zum Detektieren einer daran vorliegenden Fehlfunktion eingesetzten Temperatursensor (T) aufweisen.
  2. Straßenfertiger nach Anspruch 1, dadurch gekennzeichnet, dass der Temperatursensor (1) mit der Steuereinrichtung (8, 8') durch ein zur Signalbearbeitung konfiguriertes Gateway (15, 25, 35) verbunden ist oder das der Temperatursensor (T) an einen zum Empfang und zur Weitergabe von mittels des Temperatursensors (T) erfassten Ist-Temperaturwerten ausgebildeten Bohlenverteiler (15', 25', 35') angeschlossen ist.
  3. Straßenfertiger nach Anspruch 2, dadurch gekennzeichnet, dass der Bohlenverteiler (15', 25', 35') zur Weitergabe der daran empfangenden Ist-Temperaturwerte der jeweiligen Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) an ein zur Signalbearbeitung konfiguriertes, mit der Steuereinrichtung (8, 8') verbundenes Gateway (50) ausgebildet ist.
  4. Straßenfertiger nach Anspruch 3, dadurch gekennzeichnet, dass die Einbaubohle (5) mehrere Bohlenabschnitte (10, 20, 30) aufweist, die jeweils mehrere Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) sowie jeweils ein die daran vorgesehenen Temperatursensoren (T) mit der Steuereinrichtung (8, 8') verbindendes, zur Signalbearbeitung konfiguriertes Gateway (15, 25, 35) oder die jeweils mehrere Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) sowie jeweils einen Bohlenverteiler (15', 25', 35') aufweisen.
  5. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sämtliche Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) der Heizeinrichtung (100) mindestens einen integral daran ausgebildeten Temperatursensor (T) aufweisen.
  6. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatursensoren (T) jeweils anhand einer Steckerverbindung an das Gateway (15, 25, 35) oder an den Bohlenverteiler (15', 25', 35') angeschlossen sind.
  7. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Gateway (15, 25, 35) oder der Bohlenverteiler (15', 25', 35') als PLC-Gateway ausgebildet ist.
  8. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das jeweilige Gateway (15, 25, 35) oder der Bohlenverteiler (15', 25', 35') mittels einer PLC-Leitung (18) oder mittels eines separaten Datenbussystems (16) mit der Steuereinrichtung (8, 8') verbunden ist.
  9. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (8, 8') dazu ausgebildet ist, auf Basis jeweiliger anhand der an den Heizelementen (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) ausgebildeten Temperatursensoren (T) erfassten Temperaturgradienten einen jeweiligen Heizelementtypen der Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) zu identifizieren und darauf basierend für die Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) jeweilige zur Fehlerdiagnose verwendete Soll-Temperaturwerte (S) zu bestimmen.
  10. Straßenfertiger nach Anspruch 9, dadurch gekennzeichnet, dass die Steuereinrichtung zum Durchführen einer Fehlerdiagnose der jeweiligen Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) dazu ausgebildet ist, die jeweiligen für die Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) bestimmten Soll-Temperaturwerte (S) mit daran erfassten Ist-Temperaturwerten zu vergleichen.
  11. Straßenfertiger nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Steuereinrichtung (8, 8') dazu ausgebildet ist, auf Basis mindestens eines bestimmten Heizelementtypen einen diesen aufweisenden Bohlenteil zu identifizieren.
  12. Straßenfertiger nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Steuereinrichtung (8, 8') dazu ausgebildet ist, auf Basis mindestens eines bestimmten Heizelementtypen eine Bohleneinbaubreite (B) zu ermitteln.
  13. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Gateway (15, 25, 35) oder der Bohlenverteiler (15', 25', 35') dazu konfiguriert ist, mittels der jeweiligen Temperatursensoren (T) erfasste Ist-Temperaturwerte der Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) jeweils um eine Information bezüglich deren Messungsorts zu ergänzen und als Ist-Temperatur-Orts-Daten für Diagnosezwecke an die Steuereinrichtung (8, 8') weiterzuleiten.
  14. Straßenfertiger nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Einbaubohle (5) mindestens ein Glättblech (6) aufweist, wobei die Steuereinrichtung (8, 8') dazu konfiguriert ist, auf Basis eines ihr zugeführten, erfassten Ist-Temperaturwerts des mittels des Straßenfertigers (1) verwendeten Einbaumaterials (4) einen Soll-Temperaturwert des Glättblechs (6) zu bestimmen und diesen mit einer erfassten Ist-Temperatur des Glättblechs (6) zu vergleichen, um darauf basierend eine Leistungsversorgung des oder der dem Glättblech (6) zugeordneten Heizelemente (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) anzusteuern.
  15. Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass die Steuereinrichtung (8, 8') dazu konfiguriert ist, auf Basis einer ihr zugeführten, erfassten Umgebungstemperatur eine zum Erreichen des Soll-Temperaturwerts des Glättblechs (6) verbleibende Aufheizdauer des oder der zum Aufheizen des Glättblechs (6) eingesetzten Heizelements (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) zu bestimmen.
  16. Verfahren zum Detektieren einer Fehlfunktion mindestens eines innerhalb einer Einbaubohle (5) eines Straßenfertigers (1) verbauten Heizelements (11, 12, 1n, 21, 22, 2n, 31, 32, 3n), dadurch gekennzeichnet, dass das Detektieren der Fehlfunktion auf Basis eines unmittelbar am Heizelement (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) erfassten Ist-Temperaturwerts geschieht.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass anhand eines am Heizelement (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) erfassten Temperaturgradienten ein Heizelementtyp des Heizelements (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) identifiziert und hinsichtlich des Heizelementtypen für das Heizelement (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) ein Soll-Temperaturwert (S) bestimmt wird, wobei das Detektieren der Fehlfunktion anhand eines Vergleichs des Soll-Temperaturwerts (S) mit dem unmittelbar am Heizelement (11, 12, 1n, 21, 22, 2n, 31, 32, 3n) erfassten Ist-Temperaturwert durchgeführt wird.
EP21184236.4A 2021-07-07 2021-07-07 Strassenfertiger mit heizeinrichtung sowie verfahren Pending EP4116493A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21184236.4A EP4116493A1 (de) 2021-07-07 2021-07-07 Strassenfertiger mit heizeinrichtung sowie verfahren
JP2022108301A JP2023010644A (ja) 2021-07-07 2022-07-05 加熱装置および加熱方法を含む道路仕上げ機
US17/810,940 US20230009241A1 (en) 2021-07-07 2022-07-06 Road finishing machine with a heating device and method
CN202210853118.3A CN115595854A (zh) 2021-07-07 2022-07-07 具有加热设备的道路整修机及方法
BR102022013514-2A BR102022013514A2 (pt) 2021-07-07 2022-07-07 Máquina de acabamento de rodovia com um dispositivo de aquecimento e método para detecção de mau funcionamento de elemento de aquecimento
CN202221855996.0U CN218492219U (zh) 2021-07-07 2022-07-07 具有加热设备的道路整修机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21184236.4A EP4116493A1 (de) 2021-07-07 2021-07-07 Strassenfertiger mit heizeinrichtung sowie verfahren

Publications (1)

Publication Number Publication Date
EP4116493A1 true EP4116493A1 (de) 2023-01-11

Family

ID=76829435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21184236.4A Pending EP4116493A1 (de) 2021-07-07 2021-07-07 Strassenfertiger mit heizeinrichtung sowie verfahren

Country Status (5)

Country Link
US (1) US20230009241A1 (de)
EP (1) EP4116493A1 (de)
JP (1) JP2023010644A (de)
CN (2) CN218492219U (de)
BR (1) BR102022013514A2 (de)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295990A2 (de) 2001-09-24 2003-03-26 Caterpillar Paving Products Inc. Heizregelung für eine Einbaubohle
DE20305577U1 (de) * 2003-04-07 2004-08-19 Joseph Vögele AG Straßenfertiger
WO2014124545A1 (de) 2013-02-14 2014-08-21 Ammann Schweiz Ag Verfahren zum beheizen einer einbaubohle eines strassenfertigers
DE202015104723U1 (de) 2015-09-04 2015-09-18 Türk & Hillinger GmbH Elektrische Heizpatrone mit Temperaturüberwachung und elektrische Heizung mit Temperaturüberwachung
EP3051024A1 (de) * 2015-01-28 2016-08-03 Dynapac GmbH Verfahren zur überwachung einer bohlenheizung eines strassenfertigers
EP3075909A1 (de) * 2015-03-30 2016-10-05 Joseph Vögele AG Strassenbaumaschine mit netzwerk zur datenübertragung und verwendung eines teils einer stromleitung
DE102015012298A1 (de) 2015-09-23 2017-03-23 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Verfahren zum Betrieb eines selbstfahrenden Straßenfertigers und Straßenfertiger hierfür
US20170287236A1 (en) * 2016-03-31 2017-10-05 Caterpillar Paving Products Inc. System and method for monitoring a condition of a paving machine
US20190136466A1 (en) * 2017-11-07 2019-05-09 Caterpillar Paving Products Inc. System for Heating a Paving Screed
EP3527721A1 (de) 2018-02-19 2019-08-21 Joseph Vögele AG Strassenfertiger mit leistungsanpassern für elektrische einbaubohlen- heizeinrichtungen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1295990A2 (de) 2001-09-24 2003-03-26 Caterpillar Paving Products Inc. Heizregelung für eine Einbaubohle
DE20305577U1 (de) * 2003-04-07 2004-08-19 Joseph Vögele AG Straßenfertiger
WO2014124545A1 (de) 2013-02-14 2014-08-21 Ammann Schweiz Ag Verfahren zum beheizen einer einbaubohle eines strassenfertigers
EP3051024A1 (de) * 2015-01-28 2016-08-03 Dynapac GmbH Verfahren zur überwachung einer bohlenheizung eines strassenfertigers
EP3075909A1 (de) * 2015-03-30 2016-10-05 Joseph Vögele AG Strassenbaumaschine mit netzwerk zur datenübertragung und verwendung eines teils einer stromleitung
DE202015104723U1 (de) 2015-09-04 2015-09-18 Türk & Hillinger GmbH Elektrische Heizpatrone mit Temperaturüberwachung und elektrische Heizung mit Temperaturüberwachung
DE102015012298A1 (de) 2015-09-23 2017-03-23 Abg Allgemeine Baumaschinen-Gesellschaft Mbh Verfahren zum Betrieb eines selbstfahrenden Straßenfertigers und Straßenfertiger hierfür
US20170287236A1 (en) * 2016-03-31 2017-10-05 Caterpillar Paving Products Inc. System and method for monitoring a condition of a paving machine
US20190136466A1 (en) * 2017-11-07 2019-05-09 Caterpillar Paving Products Inc. System for Heating a Paving Screed
EP3527721A1 (de) 2018-02-19 2019-08-21 Joseph Vögele AG Strassenfertiger mit leistungsanpassern für elektrische einbaubohlen- heizeinrichtungen

Also Published As

Publication number Publication date
CN218492219U (zh) 2023-02-17
BR102022013514A2 (pt) 2023-03-07
JP2023010644A (ja) 2023-01-20
CN115595854A (zh) 2023-01-13
US20230009241A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
EP3075909B1 (de) Strassenbaumaschine mit netzwerk zur datenübertragung und verwendung eines teils einer stromleitung
EP0960239A1 (de) Vorrichtung zum bearbeiten von fahrbahnen, sowie vorrichtung zum erzeugen von schaumbitumen
EP3382099B1 (de) Strassenfertiger mit heizelement für eine einbaubohle
EP3309402B1 (de) Verfahren zum auffinden einer soll-förderleistung eines pumpensystems
EP3527721B1 (de) Strassenfertiger mit leistungsanpassern für elektrische einbaubohlen- heizeinrichtungen
WO2011110649A1 (de) Verfahren zum ersetzen einer bestehenden leiteinrichtung in einem automatisierungssystem durch eine neue leiteinrichtung und dazu ausgebildetes automatisierungssystem
WO2011038800A1 (de) Vorrichtung und verfahren zur geregelten sekundärkühlung einer stranggiessanlage
EP2696173A1 (de) Baumaschine mit Sensoreinheit
EP1455976B1 (de) Maulweitenregelung an segmenten für stranggie anlagen
EP4116493A1 (de) Strassenfertiger mit heizeinrichtung sowie verfahren
EP3051024B1 (de) Verfahren zur überwachung einer bohlenheizung eines strassenfertigers
EP1612043A1 (de) Verfahren zum Antreiben von Walzen eines Druckwerkes einer Druckmaschine
EP1987951B1 (de) Druckmaschine und Verfahren zum Betreiben einer Druckmaschine
EP2693280A1 (de) Messsystem und Messverfahren für eine Straßenbaumaschine
WO2018184766A1 (de) Power over ethernet-basiertes feldgerät der automatisierungstechnik
EP2283400B1 (de) Verfahren zum betreiben eines modularen automatisierungsgerätes
DE102016216777A1 (de) Messvorrichtung und Messverfahren für die Impedanzermittlung von N in Serie zu einem Strang zusammengeschalteten Modulen
DE102007023644B4 (de) Heizung, insbesondere für Fahrzeuge, mit zwei Heizgeräten nach dem Prinzip der Master-Slave-Steuerung
DE20305577U1 (de) Straßenfertiger
DE102013218138A1 (de) Schweissvorrichtung und Schweissverfahren für Produktionsanlage
DE102016015674A1 (de) Straßenfertiger. Steuereinheit und Verfahren zum Betrieb eines Straßenfertigers
DE102018004598A1 (de) Straßenbaumaschine und Verfahren zum Betreiben einer Straßenbaumaschine
DE10204064A1 (de) Maulweitenregelung an Segmenten für Stranggießanlagen
DE102020105222A1 (de) Induktionsanlage; Verfahren zum Betreiben einer Induktionsanlage
DE19615741C2 (de) Vorrichtung zum Regeln und/oder Steuern von mehreren Funktionsblöcken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230704

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR