EP4079470A1 - Tissu et revêtement de câble pour bras de robot - Google Patents
Tissu et revêtement de câble pour bras de robot Download PDFInfo
- Publication number
- EP4079470A1 EP4079470A1 EP20901092.5A EP20901092A EP4079470A1 EP 4079470 A1 EP4079470 A1 EP 4079470A1 EP 20901092 A EP20901092 A EP 20901092A EP 4079470 A1 EP4079470 A1 EP 4079470A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fibers
- fabric
- yarn
- fluororesin
- dtex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 182
- 239000000835 fiber Substances 0.000 claims abstract description 324
- 239000002131 composite material Substances 0.000 claims abstract description 89
- 229920000728 polyester Polymers 0.000 claims description 38
- 239000004973 liquid crystal related substance Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 26
- 239000011347 resin Substances 0.000 claims description 26
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 23
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 23
- -1 polytetrafluoroethylene Polymers 0.000 claims description 20
- 229920003235 aromatic polyamide Polymers 0.000 claims description 4
- 239000004760 aramid Substances 0.000 claims description 3
- 230000007774 longterm Effects 0.000 abstract description 8
- 238000005299 abrasion Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 25
- 239000002759 woven fabric Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 10
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 238000007670 refining Methods 0.000 description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000009941 weaving Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 239000004734 Polyphenylene sulfide Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 description 6
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 6
- 125000001153 fluoro group Chemical group F* 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- WRDNCFQZLUCIRH-UHFFFAOYSA-N 4-(7-azabicyclo[2.2.1]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=C1C=C2 WRDNCFQZLUCIRH-UHFFFAOYSA-N 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004761 kevlar Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 1
- 229920010741 Ultra High Molecular Weight Polyethylene (UHMWPE) Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- QZUPTXGVPYNUIT-UHFFFAOYSA-N isophthalamide Chemical compound NC(=O)C1=CC=CC(C(N)=O)=C1 QZUPTXGVPYNUIT-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/208—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
- D03D15/225—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based artificial, e.g. viscose
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/47—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/045—Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/004—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D13/00—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
- D03D13/008—Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/292—Conjugate, i.e. bi- or multicomponent, fibres or filaments
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/41—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/513—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/56—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/573—Tensile strength
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
- D03D15/58—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads characterised by the coefficients of friction
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/04—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
- D10B2321/042—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/14—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/061—Load-responsive characteristics elastic
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
Definitions
- the present invention relates to a fabric with wear resistance, and a robot arm cable cover.
- the fluororesins are formed into fibers and disposed as woven or knitted fabrics or nonwoven fabrics on the surfaces of sliding materials, thereby developing sliding fabrics with friction durability improved. Furthermore, because fluororesin fibers are typically low in strength, techniques are disclosed in which fibers with higher strength than fluororesin fibers are interweaved with fluororesin fibers to improve sliding durability.
- Patent Document 1 discloses a heat and abrasion resistant multi-layer woven fabric that is a multi-layer woven fabric including a fluororesin fibercontaining sliding woven fabric and a foundation woven fabric and that is made to have an optimal configuration on the foundation fabric to have high heat resistance and high wear resistance and be thus capable of exhibiting long-term tribological properties even when exposed to a hightemperature environment.
- PTFE abraded by sliding is received at entangled binding points (binding points obtained by entanglement) between the sliding woven fabric and the foundation woven fabric or on the side with the sliding surface of the foundation woven fabric, and the entangled binding points or the sliding woven fabric-side surface of the foundation woven fabric is coated with some of the PTFE, and the remaining PTFE is accumulated in dents of the foundation woven fabric, and even if the entire multi-layer woven fabric is abraded, the PTFE accumulated in the dents of the foundation woven fabric continues to coat the surface of the foundation woven fabric, thereby keeping the fabric surface continuously coated with the PTFE, and showing the effect of keeping tribological properties for a long period of time.
- entangled binding points binding points obtained by entanglement
- Patent Document 2 discloses a self-lubrication fabric including a composite yarn formed from fluororesin fibers and other fibers, in which a ratio of the surface area of the other fibers on one side of the fabric to the surface area of the entire composite yarn is 0 to 30%.
- Patent Document 1 The woven fabric described in Patent Document 1 has been a double woven fabric in which PTFE fibers and other fibers were separately arranged respectively in a sliding fabric layer and a foundation fabric layer.
- PTFE fibers and other fibers were separately arranged respectively in a sliding fabric layer and a foundation fabric layer.
- the fluororesin fibers are likely to be discharged when the fabric is exposed to high-speed sliding under a high load, thereby failing to achieve sufficient long-term sliding durability.
- the self-lubrication fabric described in Patent Document 2 has the composite yarn made from the fluororesin fibers and the other fibers, thereby making a fluorine abrasion powder likely to be transferred to the other fibers adjacent to the fluororesin fibers, and improving the sliding durability under a high load.
- the ratio of the fluororesin fibers in the composite yarn is, however, made excessively higher than that of the other fibers for achieving a low frictional property, and thus, when the fabric is exposed to high-speed sliding under a high load, discharge of an abrasion powder from the fluororesin yarn also fails to be sufficiently suppressed, and there is room for improvement in long-term sliding durability.
- an object of the present invention is to provide a fabric that has a low frictional property and can exhibit long-term tribological properties even when the fabric is subjected to a high-speed frictional force under a high load.
- the present invention has the following configurations.
- the fabric in which the area ratio X is 10% or more and 60% or less.
- the fabric in which the fibers B constituting the doubled and twisted yarn is a twisted yarn.
- the fabric in which the fluororesin fibers A are made from a polytetrafluoroethylene resin.
- the fabric in which the fibers B are fibers that are 7 cN/dtex or more in tensile strength.
- the fabric in which the fibers B are fibers that are 15 to 50 cN/dtex in tensile strength.
- the fabric in which the fibers B are fibers that have a heat resistance temperature of 280°C or higher.
- the fabric in which the fibers B are fibers that are 450 to 800 cN/dtex in tensile modulus of elasticity.
- the fabric in which the fibers B are fibers selected from liquid crystal polyester fibers, para-aramid fibers, and polyparaphenylene benzobisoxazole fibers.
- a robot arm cable cover including, in at least a part thereof, the fabric.
- a fabric that has a low frictional property and can exhibit long-term tribological properties even when the fabric is subjected to a high-speed frictional force under a high load.
- a fabric according to the present invention is a fabric in which a composite yarn of fluororesin fibers A and fibers B other than fluororesin fibers is used for at least one of a warp yarn and a weft yarn, and the fabric is characterized in that a mass ratio ⁇ of the fluororesin fibers A in the composite yarn is 5 to 70%, and a ratio of an area ratio X of the fluororesin fibers A in a fabric surface to a mass ratio Y of the fluororesin fibers A in the fabric is 1 or more and 5 or less.
- the fluororesin fibers is arranged in the fabric as a composite yarn with fibers other than the fluororesin fibers, thereby making the fluororesin fibers and the fibers B adjacent to each other in the fabric, and the fluorine abrasion powder generated by abrasion of the fluororesin fibers A due to sliding is then easily transferred to the fibers B to a self-lubrication film, thus allowing excellent abrasion durability under a high load to be achieved.
- the mass ratio of the fluororesin fibers in the composite yarn, the area ratio of the fluororesin fibers, and the mass ratio of the fluororesin fibers in the fabric are each optimized against high-speed sliding under a high load, thereby causing the fibers other than the fluororesin fibers to support the fabric as skeletal yarns, and even when the fabric is subjected to a high-speed frictional force under a high load, tribological properties can be exhibited for a long period of time.
- the composite yarn of the fluororesin fibers A and the fibers B other than fluororesin fibers is used for at least one of a warp yarn and a weft yarn. More preferably, the composite yarn is used for either the warp yarn or the weft yarn, and the fibers B are used as either the weft yarn or the warp yarn orthogonal to the composite yarn. Such a configuration allows a fabric in which X/Y to be described later has an appropriate value to be more easily obtained. Furthermore, an aspect is particularly preferred in which the composite yarn is used for the warp yarn, whereas the fibers B are used for the weft yarn.
- the crimp of the weaving yarn is large with the warp yarn and small with the weft yarn, such a configuration makes the composite yarn including the fluororesin fibers A likely to be exposed at the surface of the fabric, and has the fibers B linearly arranged in the fabric, thus improving the strength utilization efficiency of the fibers B.
- the fiber B for the warp yarn and the composite yarn for the weft yarn.
- the weft yarn or the warp yarn orthogonal to the composite yarn preferably has the same type of fiber as the fibers B.
- the same type of fiber as used herein means a fiber made of the same polymer, and need not have the same number of filaments or the same fineness. It is to be noted that "the same polymer” as used herein may be any polymer as long as the polymer constituting the fiber is substantially the same polymer, and may differ in the presence or absence of and types of additives added. In addition, “substantially the same” does not require strictly the same, and may be a polymer such as a combination of a homopolymer and a copolymer or a combination of a copolymer and another copolymer, as long as with a common main repeating unit, wrinkle generation and anisotropy of sliding durability described later are not significantly impaired in the fabric obtained.
- the same type of the fiber as the fibers B used for the composite yarn is used as the weft yarn or the warp orthogonal to the composite yarn, thereby allowing for suppressing the generation of wrinkles due to a difference in thermal shrinkage between the warp yarn and the weft yarn, and for reducing anisotropy of sliding durability due to a difference in yarn strength.
- the mass ratio ⁇ of the fluororesin fibers A in the composite yarn is 5 to 70%.
- the mass ratio ⁇ of the fluororesin fibers A in the composite yarn between the values mentioned above allows the low frictional property, and the transfer of the fluorine abrasion powder to the fibers B, and the strength of the fibers B as an aggregate to be each achieved in optimum balance.
- the mass ratio ⁇ is more preferably 25 to 60%, and particularly preferably 40 to 55% from the viewpoint of balance between strength and tribological properties.
- the mass ratio ⁇ of the fluororesin fibers A in the composite yarn is less than 5%, the low frictional property will be significantly impaired.
- the mass ratio ⁇ is more than 70%, the fluororesin fibers and the fluorine abrasion powder will be significantly fractured and discharged respectively, thereby failing to achieve desired durability.
- the means for obtaining the composite yarn from the fluororesin fibers A and the fibers B is not to be considered particularly limited, and can be selected from means such as doubling and twisting, combining filament yarn, and blending spun yarn.
- the use of doubling and twisting, and combining filament yarn is preferred, because of allowing filament yarns to be selected as the fluororesin fibers A and the fibers B, and thus increasing the strength of the composite yarn.
- the use of combining filament yarn allows the single yarns of the fluororesin fibers A and fibers B constituting the composite yarn to be more uniformly combined, thus allowing for obtaining a composite yarn that is uniform in the cross-sectional direction.
- the use of doubling and twisting allows a composite yarn to be obtained without being entangled, thus allowing for obtaining a composite yarn that is uniform in the longitudinal direction.
- the number of twists at the time of the doubling and twisting preferably has a twist coefficient k of 1000 or more and 25000 or less.
- the twist coefficient k is more preferably 1000 or more and 10,000 or less, particularly preferably 2000 or more and 7000 or less.
- the fibers B before doubling and twisting are preferably subjected to yarn twisting. Because the opening of the fibers B due to abrasion during weaving can be suppressed by the yarn twisting, a phenomenon can be thus prevented in which the fibers B opened cover the fluororesin fibers A in the composite yarn, thereby disturbing the low frictional property.
- the twist coefficient of the fibers B before the doubling and twisting is preferably 500 or more and 5000 or less.
- the yarn twisting improves the strength of the fibers B to make the fibers B more firmly present as skeletal yarns in the case of a fabric provided, thus improving the sliding durability.
- the twist coefficient is particularly preferably 900 or more and 3000 or less. If the twist coefficient of the fibers B is more than 5000, the strength may be lower than that before the yarn twisting.
- a step of simply applying twists to the original yarn with a desired fineness may be employed, or a step of twisting together yarns with a fineness smaller than a desired fineness may be employed.
- an original yarn for the fibers B with a fineness of 850 [dtex] may be subjected to yarn twisting for 33 [t/m], or two original yarns for the fibers B with a fineness of 425 [dtex] may be subjected to doubling and twisting for 33 [t/m].
- the ratio X/Y of the area ratio X of the fluororesin fibers A to the fabric surface to the mass ratio Y of the fluororesin fibers A in the fabric is 1 or more and 5 or less.
- the area ratio of the fluororesin fibers A to the fabric surface as used herein means the ratio of an area S A occupied by the fluororesin fibers A to an imaged area S tot obtained by imaging a surface of the fabric with a microscope, and the area ratio is obtained by the formula below.
- Area Ratio X of Fluororesin Fiber A S A / S tot ⁇ 100 %
- X/Y represents the degree of distribution at the fabric surface, of the fluororesin fibers A present in the fabric, which means that the fluororesin fibers are concentrated more at the fabric surface as X/Y is larger.
- X/Y is more preferably 1 to 2, still more preferably 1.2 to 1.65.
- particularly excellent sliding durability can be obtained while initial tribological properties are obtained, and the case can be mentioned as a particularly preferred condition.
- the fluororesin fibers A present at the fabric surface increase with respect to the mass ratio of the fluororesin fibers A in the fabric, the fluororesin fibers A present at the fabric surface excessively increase when X/Y is larger than 5, and thus when the fabric is exposed to high-speed sliding under a high load, the frictional resistance force can be reduced in an initial stage of sliding, but the fluorine abrasion powder generated by abrasion of the fluororesin fibers is discharged early, thereby depleting the fluororesin fibers remaining in the fabric, and the frictional resistance force with respect to the fabric strength is thus relatively increased in the middle to late stage of sliding, thereby failing to obtain sufficient abrasion durability.
- the area ratio X of the fluororesin fibers A to the fabric surface is preferably 10% or more and 60% or less.
- the area ratio X of the fluororesin fibers A to the fabric surface is 10% or more, the frictional resistance force in an initial stage of sliding can be reduced to a certain extent, and abrasion durability can be secured.
- the area ratio X of the fluororesin fibers A to the woven fabric surface is 60% or less, the fibers other than the fluororesin fibers can be present as skeletal yarns to a certain extent in the fabric, abrasion durability can be thus secured.
- the area ratio X is more preferably 20% or more and 55% or less, and can be 40% or more and 55% or less as a particularly preferred condition.
- the mass ratio Y of the fluororesin fibers in the fabric is preferably 5% or more and 55% or less. More preferably, the mass ratio Y is 15% or more and 55% or less, and can be 25% or more and 45% or less as a particularly preferred condition.
- more fluororesin fibers are preferably arranged at the fabric surface. More specifically, in order for X/Y to fall within the range mentioned above, many fluororesin fibers may be arranged in the vicinity of the surface layer of the composite yarn in providing the composite yarn, or the weave structure or the like may be controlled to expose many fluororesin fibers at the fabric surface.
- the means for obtaining the composite yarn is not to be considered particularly limited, but in order to arrange many fluororesin fibers in the vicinity of the surface layer of the composite yarn in providing the composite yarn, can be carried out in a relatively simple manner by particularly employing the processing of doubling and twisting and controlling the conditions for the doubling and twisting.
- methods can be employed, such as a method of covering the fibers B with the fluororesin fibers A, a method of doubling and twisting the fluororesin fiber A again into the doubled and twisted yarn of the fibers B and fluororesin fibers A, and a method of applying a high tension to the fibers B at the time of doubling and twisting to arrange the fluororesin fibers A on the sheath side in the composite yarn.
- a method of covering the fibers B with the fluororesin fibers A such as a method of covering the fibers B with the fluororesin fibers A, a method of doubling and twisting the fluororesin fiber A again into the doubled and twisted yarn of the fibers B and fluororesin fibers A, and a method of applying a high tension to the fibers B at the time of doubling and twisting to arrange the fluororesin fibers A on the sheath side in the composite yarn.
- the mass ratio Y of the fluororesin fibers A in the fabric is also increased, and thus, in order to control X/Y within the range of 1 or more and 5 or less, another means such as controlling the weave structure is typically used.
- the weave structure is not to be considered particularly limited, but examples of means for controlling the weave structure to expose many fluororesin fibers at the fabric surface include a method of employing a structure such as a 3/1 twill structure, a 2/1 twill structure, or a satin structure, and changing the ratios of the warp yarn and weft yarn exposed at the surface.
- X/Y can be controlled in the range of 1 or more and 5 or less by arranging yarns including more fluororesin fibers A for the warp yarn or weft yarn exposed more at the surface.
- the warp yarn and the weft yarn are exposed at the surface to the same extent, thus making it difficult to expose more fluororesin fibers at the fabric surface when a typical composite yarn is used.
- the fluororesin that is a component of the fluororesin fibers should be configured to include a monomer unit containing one or more fluorine atoms in a main chain or a side chain.
- the fluororesin configured to include a monomer unit having many fluorine atoms is preferable.
- the fluororesin includes preferably 70 mol% or more, more preferably 90 mol% or more, further preferably 95 mol% or more of the monomer unit containing one or more fluorine atoms in a repeating structural unit of the polymer.
- Examples of the monomer containing one or more fluorine atoms include fluorine atom-containing vinyl-based monomers such as tetrafluoroethylene, hexafluoropropylene, and chlorotrifluoroethylene, and particularly, use of at least tetrafluoroethylene is preferable.
- fluororesin there can be used singly or in a blend of two or more of, for example, polytetrafluoroethylene (PTFE), a tetrafluoroethylenehexafluoropropylene copolymer (FEP), a tetrafluoroethylenep-fluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene (PCTFE), and an ethylenetetrafluoroethylene copolymer (ETFE).
- PTFE polytetrafluoroethylene
- FEP tetrafluoroethylenehexafluoropropylene copolymer
- PFA tetrafluoroethylenep-fluoroalkyl vinyl ether copolymer
- PCTFE polychlorotrifluoroethylene
- ETFE ethylenetetrafluoroethylene copolymer
- the fluororesin including a tetrafluoroethylene unit preferably has a larger content of the tetrafluoroethylene unit in terms of sliding characteristics and is preferably a copolymer containing, of the total, 90 mol% or more, preferably 95 mol% or more of tetrafluoroethylene, and use of polytetrafluoroethylene fibers as a homopolymer of tetrafluoroethylene is most preferable.
- both a monofilament formed of one filament and a multifilament formed of a plurality of filaments can be used, but a multifilament is preferable from the viewpoint of the weaving performance and the roughness on the surface of the fabric into which the fibers are formed.
- the fluororesin fibers A used in the present invention preferably have a total fineness in the range of 50 to 6000 dtex.
- the total fineness more preferably falls within the range of 500 to 5500 dtex, still more preferably within the range of 400 to 1500 dtex.
- the strength of the fibers can be secured to a certain extent, breakages of yarns during weaving can be also reduced, and the process passing property can be thus improved.
- the total fineness is 6000 dtex or less, favorable processability during weaving is obtained.
- organic fibers such as cotton, polyester fibers, polyamide fibers, polyparaphenylene terephthalamide (para-aramid) fibers, polymethaphenylene isophthalamide (meta-aramid) fibers, polyphenylene sulfide (PPS) fibers, polyparaphenylene benzobisoxazole (PBO) fibers, ultra-high molecular weight polyethylene (UHMWPE) fibers, and liquid crystal polyester fibers
- inorganic fibers such as glass fibers, carbon fibers, and silicon carbide fibers can be used, and from the viewpoint of processability, organic fibers are preferred.
- the fibers B are preferably fibers that are 7 cN/dtex or more in tensile strength.
- the fibers B are more preferably 15 to 50 cN/dtex in tensile strength, further preferably 18 to 50 cN/dtex in tensile strength.
- the fibers B with such a tensile strength allows fiber fractures to be further suppressed even when the fabric is subjected to high-speed sliding under a high load, and allows for helping the formation of a self-lubrication film by abrasion of the fluororesin fibers.
- the fibers B are preferably fibers that have a heat resistance temperature of 280°C or higher.
- the heat resistance temperature as used herein means that the melting point, the softening point, or the decomposition point is equal to or higher than the temperature. It is to be noted that in the case where the fibers B have two or more of the melting point, softening point, and decomposition point, the point at a lower temperature is to be employed.
- the heat resistance temperature of the fibers is more preferably 300°C or higher, and furthermore, the fibers without any melting point allows softening due to frictional heat to be suppressed, and allows excellent abrasion durability to be obtained.
- the fibers B are preferably fibers that are 20 to 800 cN/dtex in tensile modulus of elasticity. Further, the fibers B with a tensile modulus of elasticity in the range of 450 to 800 cN/dtex enables the fabric to maintain the structure thereof even when the fabric is subjected to high-speed sliding under a high load, and thus to obtain especially excellent wear resistance.
- the fibers B having a tensile modulus of elasticity of 20 cN/dtex or more improve the dimensional stability of the fabric and give the fabric having excellent wear resistance.
- the fibers B having a tensile modulus of elasticity of 800 cN/dtex or less are preferable because they are not excessively high in stiffness and never impair the weaving performance even when interwoven with the fluororesin fibers having a low stiffness.
- the fibers B preferably have an elongation of 1 to 15%, further preferably in the range of 1 to 5%.
- the fibers B having an elongation of particularly 1 to 3% can reduce the dimensional change of the fabric subjected to the frictional force, and therefore such an elongation can be listed as an especially preferable condition.
- the fibers B having an elongation of 1% or more can reduce yarn breakage during weaving to improve the process passability.
- the fibers B having an elongation in the range of 1 to 15% allow the fabric to improve the dimensional stability and to be applicable to a part requiring dimensional accuracy as a sliding fabric.
- the fibers B are particularly preferably fibers selected from liquid crystal polyester fibers, para-aramid fibers, and polyparaphenylene benzobisoxazole fibers.
- the form of the fibers B is not especially limited, and either of a filament (long fiber) and a spun yarn may be employed, but the fibers B are preferably filaments from the viewpoint of tensile strength and tensile stiffness. Furthermore, both a monofilament formed of one filament and a multifilament formed of a plurality of filaments can be used, but the multifilament is particularly preferred because the multifilament has a large surface area, and thus facilitates the transfer, to the fibers B, of the fluorine abrasion powder generated by abrasion of the fluororesin fibers A.
- the fibers B preferably have a total fineness in the range of 200 to 4000 dtex.
- the total fineness is more preferably in the range of 4000 to 4000 dtex, and further in the range of 800 to 2000 dtex.
- the fibers constituting the fabric are strong, and can suppress fiber fractures at the time of abrasion and also reduce yarn breakage during weaving to improve the process passability.
- the fibers having a total fineness of 4000 dtex or less enables the fabric to have small roughness on the surface thereof and to reduce the influence on the low frictional property.
- thermosetting resin or thermoplastic resin can be used as the resin used for resin impregnation.
- the resin is not especially limited, and as the thermosetting resin, there can be preferably used, for example, phenolic resins, melamine resins, urea resins, unsaturated polyester resins, epoxy resins, polyurethane resins, diallyl phthalate resins, silicon resins, polyimide resins, vinyl ester resins, and modified resins thereof, and as the thermoplastic resin, there can be preferably used, for example, vinyl chloride resins, polystyrene resins, ABS resins, polyethylene resins, polypropylene resins, fluororesins, polyamide resins, polyacetal resins, polycarbonate resins, and polyester resins, and further there can be preferably used, for example, synthetic rubbers or elastomers such as thermoplastic polyurethane
- thermosetting resin and thermoplastic resin may contain various additive agents that are usually used for the industrial purpose or application, the productivity in the manufacturing process or processing, or the improvement of the characteristics.
- the resin can contain, for example, a modifier, a plasticizer, a filler, a mold lubricant, a colorant, a diluent, or the like.
- the main component as used herein means a component having the largest mass ratio among components except a solvent, and the resin containing phenolic resin and polyvinyl butyral resin as the main components means that these two types of resin have the first largest and second largest (no particular order) mass ratios.
- thermosetting resin when a thermosetting resin is used, a method is generally used in which the thermosetting resin is dissolved in a solvent to be adjusted into varnish and the varnish is impregnated into a fabric for coating by knife coating, roll coating, comma coating, gravure coating, or the like.
- thermoplastic resin melt extrusion lamination or the like is generally used.
- a lubricant or the like can also be added to the fabric according to the present invention as necessary.
- the type of the lubricant is not especially limited, but is preferably a silicon-based lubricant or a fluorine-based lubricant material.
- the thus obtained fabric according to the present invention is a doubled and twisted yarn fabric obtained by optimizing the configuration of the fluororesin fibers A and the fibers B other than fluororesin fibers, and thus, even when the fabric is subjected to high-speed sliding under a high load, the discharge of fluorine abrasion powder is suppressed, and the fibers B function as skeletal yarns that support the fluororesin fibers A, thereby providing long-term sliding durability.
- the fabric according to the present invention can exhibit high sliding durability in applications that conventionally have difficulty with use for a long period of time due to high-speed sliding under a high load, and can achieve the industrially extremely high practical use.
- the fabric exhibits high durability for applications such as sliding fabrics that require tribological properties.
- the fabric is preferably used for a robot arm cable covers.
- a robot arm cable cover including, in at least a part thereof, the fabric according to the present invention, has the low frictional property and the strength of the fabric, and thus exhibits a long-term product life even in such a use environment where the cable cover is rubbed against a part of the apparatus at a high speed under a high load.
- the fabric was disaggregated, and the fineness of the disaggregated yarn was measured in accordance with the 8.3.B method (simplified method) of JIS L1013: 2010 "Testing methods for man-made filament yarns". If the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of carrying out the test with the maximum length that can be secured and the number of trials is used as a substitute.
- the fabric was disaggregated, and the fracture strength of the disaggregated yarn was measured in accordance with 8.5 of JIS L1013: 2010 "Testing methods for man-made filament yarns". If the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of carrying out the test with the maximum length that can be secured and the number of trials is used as a substitute.
- the fabric was disaggregated, and the elongation (elongation percentage) of the disaggregated yarn was measured in accordance with 8.5 of JIS L1013: 2010 "Testing methods for man-made filament yarns". If the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of carrying out the test with the maximum length that can be secured and the number of trials is used as a substitute.
- the tensile modulus of elasticity was calculated from the elastic modulus at the elongation of 0.5% (average slope from the elongation of 0.45% to the elongation of 0.55%).
- the fabric was cut into a size of 200 mm ⁇ 200 mm, and the warp yarn and the weft yarn were then disaggregated to obtain disaggregated yarns.
- five composite yarns were randomly selected from the disaggregated yarns obtained, and disaggregated into fluororesin fibers A and the other fibers, and the mass of each was measured.
- the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of carrying out the test with the maximum length that can be secured and the number of trials is used as a substitute.
- the fabric was imaged at a magnification of 50 times with a microscope "VHX-2000" manufactured by KEYENCE CORPORATION, and the area ratio of the fluororesin fibers A was calculated from the calculation formula below, with the imaged area defined as S tot and the area occupied by the fluororesin fibers A in the imaged area as S A . If X differs between the front surface and the back surface, however, the larger value of X is employed as a representative value.
- Area Ratio X of Fluororesin Fiber A S A / S tot ⁇ 100 %
- the fabric was cut into a size of 200 mm ⁇ 200 mm, the warp yarn and the weft yarn were then disaggregated, the total mass W of the disaggregated yarns was measured. Subsequently, only composite yarns were selected from the disaggregated yarns, and the total mass W 1 of the composite yarns in the fabric was measured. Subsequently, fluororesin fibers present independently in the fabric, not as any composite yarn, were sorted out, and the total mass W 2 thereof was measured.
- the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of carrying out the test with the maximum length that can be secured and the number of trials is used as a substitute.
- the fabric was disaggregated, and the number of twists of the disaggregated yarn was measured in accordance with 8.13. 1 of JIS L 1013: 2010 "Testing methods for man-made filament yarns”.
- the disaggregated yarn fails to secure the amount of yarn required for the measurement method mentioned above, however, the result of the test carried out with the maximum length that can be secured and the number of trials can be used as a substitute.
- the kinetic friction coefficient was measured by the ring abrasion test indicated below.
- the mating material used is made of S45C, and has a hollow cylindrical ring shape of 25.6 mm in outer diameter, 20 mm in inner diameter and 15 mm in length.
- a roughness tester (SJ-201" from Mitutoyo Corporation) was used.
- the kinetic friction coefficient of smaller than 0.055 was regarded as A
- the kinetic friction coefficient of 0.055 or more and 0.060 or less was regarded as B
- the kinetic friction coefficient of larger than 0.060 and 0.065 or less was regarded as C
- the kinetic friction coefficient of larger than 0.065 was regarded as D.
- the sliding was continued until the fabric was fractured, and the fabric that was not fractured even after sliding of 60 m was regarded as A, the fabric fractured at 50 m or more and less than 60 m was regarded as B, the fabric fractured at 40 m or more and less than 50 m was regarded as C, the fabric fractured at 25 m or more and less than 40 m was regarded as D, and the fabric fractured at a sliding distance of less than 25 m was regarded as E.
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 880 dtex in total fineness, 120 filaments in number of single yarns, and 33 t/m in number of twists and a liquid crystal polyester fiber (“SIVERAS” (registered trademark) from Toray Industries, Inc.) of 850 dtex in total fineness, 144 filaments in number of single yarns, and 33 t/m in number of twists were doubled and twisted for 167 t/m in number of twists to obtain a composite yarn as a doubled and twisted yarn, and a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a liquid crystal polyester fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns (“SIVERAS” (registered trademark) from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank
- a fabric was obtained in accordance with the same procedure as in Example 1 except that the composite yarn used in Example 1 was used for the warp yarn and the weft yarn.
- a fabric was obtained in accordance with the same procedure as in Example 1 except that a PTFE fiber ("TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 1760 dtex in total fineness and 240 filaments in number of single yarns was used as the weft yarn.
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 1760 dtex in total fineness and 240 filaments in number of single yarns was used as the weft yarn.
- liquid crystal polyester fiber (SIVERAS) (registered trademark) from Toray Industries, Inc.) of 425 dtex in total fineness and 72 filaments in number of single yarns and a PTFE fiber ("TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 880 dtex in total fineness and 120 filaments in number of single yarns
- the liquid crystal polyester fiber of 425 dtex in total fineness and 72 filaments in number of single yarns was further doubled and twisted into the doubled and twisted yarn for 167 t/m in number of twists to obtain a doubled and twisted yarn.
- a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a liquid crystal polyester fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns ("SIVERAS" (registered trademark) from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and thermally set at 180°C.
- a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a liquid crystal polyester fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns ("SIVERAS" (registered trademark) from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and thermally set at 180°C.
- a fabric was obtained in accordance with the same procedure as in Example 1 except that the fiber B before doubling and twisting was 0 t/m in number of twists.
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 440 dtex in total fineness, 60 filaments in number of single yarns, and 33 t/m in number of twists and a liquid crystal polyester fiber (“SIVERAS” (registered trademark) from Toray Industries, Inc.) of 1275 dtex in total fineness, 216 filaments in number of single yarns, and 33 t/m in number of twists were doubled and twisted for 167 t/m in number of twists to obtain a doubled and twisted yarn, and a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a liquid crystal polyester fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns (“SIVERAS” (registered trademark) from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and
- a fabric was obtained in accordance with the same procedure as in Example 6 except that the composite yarn used in Example 6 was used for the warp yarn and the weft yarn.
- a fabric was obtained in accordance with the same procedure as in Example 6 except that the warp yarn used in Example 6 was used for the weft yarn, whereas the weft yarn used in Example 6 was used for the warp yarn.
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 880 dtex in total fineness, 120 filaments in number of single yarns, and 33 t/m in number of twists and a polyparaphenylene terephthalamide fiber of 850 dtex in total fineness, 144 filaments in number of single yarns, and 33 t/m in number of twists (“KEVLAR” (registered trademark) from DU PONT-TORAY CO., LTD.) were doubled and twisted for 167 t/m in number of twists to obtain a doubled and twisted yarn, and a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a polyparaphenylene terephthalamide fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns ("KEVLAR” (registered trademark) from DU PONT-TORAY CO., LTD.) as the
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 880 dtex in total fineness, 120 filaments in number of single yarns, and 33 t/m in number of twists and a polyester fiber ("TETORON", polyethylene terephthalate fiber from Toray Industries, Inc.) of 850 dtex in total fineness, 144 filaments in number of single yarns, and 33 t/m in number of twists were doubled and twisted for 167 t/m in number of twists to obtain a doubled and twisted yarn, and a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a polyester fiber of 1700 dtex in total fineness and 288 filaments in number of single yarns ("TETORON", polyethylene terephthalate fiber from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and thermally
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 880 dtex in total fineness, 120 filaments in number of single yarns, and 33 t/m in number of twists and a polyphenylene sulfide fiber("TORCON” (registered trademark) from Toray Industries, Inc.) of 850 dtex in total fineness, 144 filaments in number of single yarns, and 33 t/m in number of twists were doubled and twisted for 167 t/m in number of twists to obtain a doubled and twisted yarn, and a 3/1 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a polyphenylene sulfide fiber (“TORCON” (registered trademark) from Toray Industries, Inc.) of 1700 dtex in total fineness and 288 filaments in number of single yarns as the weft yarn. Thereafter, the fabric was refined in a
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 440 dtex in total fineness, 60 filaments in number of single yarns, and 33 t/m in number of twists and a polyester fiber (“TETORON” (registered trademark), polyethylene terephthalate fiber from Toray Industries, Inc.) of 44 dtex in total fineness and 18 filaments in number of single yarns were doubled and twisted for 210 t/m in number of twists to obtain a doubled and twisted yarn, and a five-harness satin fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn, and a polyester fiber of 26s/2 (454 dtex) in total fineness "TETORON” (registered trademark), polyethylene terephthalate fiber from Toray Industries, Inc.) as the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and thermally set at 180°C.
- a PTFE fiber (“TOYOFLON” (registered trademark) from Toray Industries, Inc.) of 2660 dtex in total fineness, 360 filaments in number of single yarns, and 33 t/m in number of twists and a carbon fiber of 1980 dtex in total fineness, 3000 filaments in number of single yarns, and 33 t/m in number of twists (“TORAYCA” (registered trademark) from Toray Industries, Inc.) were doubled and twisted for 167 t/m in number of twists to obtain a doubled and twisted yarn, and a 2/2 twill fabric was produced by a loom with the use of the doubled and twisted yarn as the warp yarn and the weft yarn. Thereafter, the fabric was refined in a refining tank at 80°C and thermally set at 180°C.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Woven Fabrics (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019230476 | 2019-12-20 | ||
PCT/JP2020/040195 WO2021124687A1 (fr) | 2019-12-20 | 2020-10-27 | Tissu et revêtement de câble pour bras de robot |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4079470A1 true EP4079470A1 (fr) | 2022-10-26 |
EP4079470A4 EP4079470A4 (fr) | 2023-12-27 |
Family
ID=76477193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20901092.5A Pending EP4079470A4 (fr) | 2019-12-20 | 2020-10-27 | Tissu et revêtement de câble pour bras de robot |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230027891A1 (fr) |
EP (1) | EP4079470A4 (fr) |
JP (1) | JPWO2021124687A1 (fr) |
CN (1) | CN114829689B (fr) |
MX (1) | MX2022007319A (fr) |
TW (1) | TW202124801A (fr) |
WO (1) | WO2021124687A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022209961A1 (fr) * | 2021-03-29 | 2022-10-06 | 東レ株式会社 | Tissu tissé et matériau coulissant |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4188449B2 (ja) * | 1998-04-24 | 2008-11-26 | 東レ株式会社 | 織物およびベルト |
JP2005220486A (ja) * | 2004-02-06 | 2005-08-18 | Toray Ind Inc | フッ素繊維交織織物および複合材料 |
JP2005220487A (ja) * | 2004-02-06 | 2005-08-18 | Toray Ind Inc | フッ素繊維布帛および複合材料 |
JP2007232208A (ja) * | 2006-01-31 | 2007-09-13 | Mitsuboshi Belting Ltd | 歯付ベルト及びそれに使用する歯布 |
JP5045043B2 (ja) * | 2006-09-20 | 2012-10-10 | 東レ株式会社 | 防護用布帛 |
CN103572454B (zh) * | 2012-08-07 | 2016-08-10 | 东丽纤维研究所(中国)有限公司 | 一种低摩擦系数织物及其用途 |
KR102197495B1 (ko) * | 2013-07-25 | 2020-12-31 | 도레이 카부시키가이샤 | 내마모성 다중 직물 |
JP6398189B2 (ja) * | 2013-12-26 | 2018-10-03 | 東レ株式会社 | 耐熱耐摩耗性多重織物 |
FR3023880B1 (fr) * | 2014-07-16 | 2017-05-26 | Hydromecanique & Frottement | Piece composite de frottement autolubrifiante |
US9988758B2 (en) * | 2015-06-15 | 2018-06-05 | W. L. Gore & Associates, Inc. | Fabrics containing expanded polytetrafluoroethylene fibers |
CN106435923A (zh) * | 2015-08-05 | 2017-02-22 | 东丽纤维研究所(中国)有限公司 | 一种自润滑织物及其生产方法和用途 |
EP3530785A4 (fr) * | 2016-10-20 | 2020-05-27 | Toray Industries, Inc. | Tissu glissant |
KR20210101234A (ko) * | 2018-12-26 | 2021-08-18 | 도레이 카부시키가이샤 | 접동 포백 |
JP6762413B1 (ja) * | 2019-12-20 | 2020-09-30 | 日鉄エンジニアリング株式会社 | 滑り免震装置 |
-
2020
- 2020-10-27 MX MX2022007319A patent/MX2022007319A/es unknown
- 2020-10-27 WO PCT/JP2020/040195 patent/WO2021124687A1/fr unknown
- 2020-10-27 JP JP2020571575A patent/JPWO2021124687A1/ja active Pending
- 2020-10-27 CN CN202080085191.XA patent/CN114829689B/zh active Active
- 2020-10-27 US US17/783,299 patent/US20230027891A1/en active Pending
- 2020-10-27 EP EP20901092.5A patent/EP4079470A4/fr active Pending
- 2020-11-06 TW TW109138890A patent/TW202124801A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN114829689A (zh) | 2022-07-29 |
WO2021124687A1 (fr) | 2021-06-24 |
US20230027891A1 (en) | 2023-01-26 |
CN114829689B (zh) | 2023-06-16 |
MX2022007319A (es) | 2022-07-13 |
TW202124801A (zh) | 2021-07-01 |
JPWO2021124687A1 (fr) | 2021-06-24 |
EP4079470A4 (fr) | 2023-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10358750B2 (en) | Wear-resistant multilayer fabrics | |
CN107849759B (zh) | 一种自润滑织物及其生产方法和用途 | |
EP3530785A1 (fr) | Tissu glissant | |
EP4079470A1 (fr) | Tissu et revêtement de câble pour bras de robot | |
EP3115398A1 (fr) | Élément coulissant composite et élément coulissant composite résistant à la chaleur pour équipement oa | |
EP3904575B1 (fr) | Tissu glissant | |
EP3091399B1 (fr) | Matériau de glissement à faible frottement et élément de mise en pression à faible frottement de dispositifs de fixation d'encre | |
EP4317557A1 (fr) | Tissu tissé et matériau coulissant | |
CN118805009A (zh) | 布帛 | |
KR20240154528A (ko) | 포백 | |
WO2020175304A1 (fr) | Tissu glissant | |
CN106400251A (zh) | 一种双层复合织物及其生产方法和用途 | |
CN112553746A (zh) | 软质金属承接用保护材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220601 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20231123 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D03D 15/513 20210101ALI20231117BHEP Ipc: D03D 15/58 20210101ALI20231117BHEP Ipc: D03D 15/527 20210101ALI20231117BHEP Ipc: D03D 15/47 20210101ALI20231117BHEP Ipc: D03D 1/00 20060101ALI20231117BHEP Ipc: D02G 3/04 20060101ALI20231117BHEP Ipc: B25J 19/00 20060101AFI20231117BHEP |