EP4077539A1 - Thermoplastische formmasse enthaltend polyalkylenterephthalat - Google Patents

Thermoplastische formmasse enthaltend polyalkylenterephthalat

Info

Publication number
EP4077539A1
EP4077539A1 EP20829880.2A EP20829880A EP4077539A1 EP 4077539 A1 EP4077539 A1 EP 4077539A1 EP 20829880 A EP20829880 A EP 20829880A EP 4077539 A1 EP4077539 A1 EP 4077539A1
Authority
EP
European Patent Office
Prior art keywords
thermoplastic molding
molding composition
composition according
polyimide
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20829880.2A
Other languages
English (en)
French (fr)
Inventor
Anna Maria Mueller-Cristadoro
Martin Weber
Peter Eibeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP4077539A1 publication Critical patent/EP4077539A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/346Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7607Compounds of C08G18/7614 and of C08G18/7657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a thermoplastic molding composition containing a polyalkylene terephthalate and a polyimide, the molding composition having a single glass transition temperature.
  • the present invention further relates to their use and also to fibers, films and moldings which are produced from the molding compound.
  • Polyalkylene terephthalates are polyesters and have thermoplastic properties. They are characterized by a wide range of possible applications. Polyethylene terephthalate (PET) in particular plays an important role here. PET is used, among other things, for the production of plastic bottles (PET bottles), foils and textile fibers. Polybutylene terephthalate (PBT) also has good properties. PBT is preferred over PET because of its better process behavior, which is particularly important in injection molding processes. However, the raw materials for PBT are more expensive.
  • the disadvantage of polyalkylene terephthalates is their comparatively low glass transition temperature (T g ).
  • T g glass transition temperature
  • the temperature range for the hard-elastic state in which polyalkylene terephthalates are frequently used is restricted and it is desirable to extend this temperature range or to increase the glass transition temperature.
  • One object of the present invention is therefore to provide such a molding compound.
  • thermoplastic molding composition containing a polyalkylene terephthalate and a polyimide, the molding composition having a single glass transition temperature in the DSC measurement.
  • molding compound In the context of the present invention, the term “molding compound” is used in accordance with the general understanding. Accordingly, molding compounds represent unshaped products that can be shaped by mechanical forces in a certain temperature range. Examples of suitable processes are extrusion, injection molding and compression molding.
  • the glass transition temperature (T g ) is known to the person skilled in the art and represents a characteristic physical quantity of a polymer or a mixture of several polymers Temperature changes a solid polymer or glass into a rubbery to viscous state. This can be determined, for example, by dynamic differential calorimetry (DSC).
  • DSC dynamic differential calorimetry
  • thermoplastic molding composition according to the invention has a single glass transition temperature.
  • a single glass transition temperature is to be understood in the context of the present invention, that the polymers polyimide and polyalkylene terephthalate necessarily contained in the molding compound form a mixed phase with a T g value between the T g values of the component having.
  • Further auxiliaries that can be contained in the thermoplastic molding composition according to the invention can themselves be polymeric, amorphous in nature and have a glass transition temperature, which, however, are not to be taken into account in the sense of having “a single glass transition temperature”.
  • Such a single glass transition temperature T g preferably has a value of at least 45 ° C.
  • a T g value of at least 50 ° C. is more preferred.
  • a T g value of at least 60 ° C. is also more preferred.
  • a T g value of at least 70 ° C. is also more preferred.
  • a T g value of at least 80 ° C. is also more preferred.
  • thermoplastic molding composition is in the range starting with the T g value of the polyalkylene terephthalate and ends at the T g value of the polyimide.
  • the difference between the T g value of the polyalkylene terephthalate and the T g value of the polyimide before they were introduced into the molding composition according to the invention is preferably at least 25 ° C., more preferably at least 50 ° C., more preferably at least 75 ° C., more preferably at least 100 ° C, more preferably at least 125 ° C, more preferably at least 130 ° C, more preferably at least 140 ° C.
  • the difference (increase) between the T g value of the polyalkylene terephthalate before this was introduced into the molding compound according to the invention and the T g value of the polyalkylene terephthalate in the molding compound according to the invention (mixed phase) is at least 5 ° C., further preferably at least 10 ° C, more preferably at least 15 ° C, more preferably at least 20 ° C, more preferably at least 25 ° C, more preferably at least 30 ° C, more preferably at least 40 ° C.
  • the thermoplastic molding composition according to the present invention contains a polyalkylene terephthalate.
  • a polyalkylene terephthalate This is preferably a polyethylene, a polytrimethylene or a polybutylene terephthalate or a mixture thereof. It is more preferably polybutylene terephthalate.
  • Polyalkylene terephthalates (A) are commercially available and can have at least partially amorphous forms. In the context of the present invention, a glass transition temperature can be assigned to the polyalkylene terephthalate.
  • Ultradur® B4500 is an example.
  • polyethylene terephthalates are sold, for example, as the Petra® series by BASF.
  • thermoplastic molding composition according to the present invention also contains a polyimide (B).
  • Polyimides (B) are thermally and mechanically very stable polymers. In order to be able to use these polymers as thermoplastics, irregularities are built into the polymer chain. Here, for example, branches can be provided in the polymer structure. Through these branches, the crystallinity can be avoided and the T g value can be adjusted.
  • Polyimides can be formed, for example, from: b1) at least one isocyanate, the isocyanate having at least two isocyanate groups (“polyisocyanate”), preferably with at least an average of more than two isocyanate groups per molecule, or b2) at least one amine, the amine having at least two Has amino groups (“poly amine”), preferably with at least an average of more than two amino groups per molecule and b3) at least one polycarboxylic acid with at least three, preferably at least four COOH groups, in particular exactly 4 per molecule or its anhydride, in particular the dianhydride .
  • the combination b1) and b3) is preferred.
  • the polyimide (B) is particularly preferably obtained by reacting at least one carboxylic acid dianhydride with at least one isocyanate, the isocyanate having at least two, preferably more than two, isocyanate groups.
  • Polyimide (B) can have a molecular weight Mw in the range from 1,000 to 200,000 g / mol, at least 2,000 g / mol being preferred.
  • Polyimide (B) can have at least two imide groups per monomer unit; preference is given to at least 3 imide groups per monomer unit.
  • polyimide (B) can have up to 1,000 imide groups per molecule, preferably up to 660 per molecule.
  • the specification of the isocyanate groups or the COOH groups per molecule in each case denotes the mean value (number average).
  • Polyimide (B) can be composed of structurally and molecularly uniform molecules. However, it is preferred if polyimide (B) is a mixture of molecularly and structurally different molecules, for example visible from the polydispersity Mw / Mn of at least 1.4; Mw / Mn is preferably from 1.4 to 50, more preferably from 1.5 to 10.
  • the polydispersity can be determined by known methods, in particular by gel permeation chromatography (GPC). A suitable standard is, for example, polymethyl methacrylate (PMMA).
  • the polyimide (B) can also have terminal or pendent functional groups at least three, preferably at least six, particularly preferably at least ten terminal or pendent functional groups. Functional groups in the polyimide (B) can be anhydride or acid groups, for example and / or act free or masked NCO groups.
  • Polyimides (B) preferably have no more than 500 terminal or pendent functional groups, preferably no more than 100.
  • Polyisocyanate (b1) can be selected from any polyisocyanates which on average have at least or preferably more than two isocyanate groups per molecule, which can be blocked or preferably free.
  • Trimeric or oligomeric diisocyanates for example oligomeric hexamethylene diisocyanate, oligomeric isophorone diisocyanate, oligomeric tolylene diisocyanate, oligomeric diphenylmethane diisocyanate - so-called polymer MDI - and mixtures of the aforementioned polyisocyanates are preferred.
  • trimeric hexamethylene diisocyanate is in many cases not present as a pure trimeric diisocyanate, but rather as a polyisocyanate with an average functionality of 3.6 to 4 NCO groups per molecule.
  • oligomeric tetramethylene diisocyanate and oligomeric isophorone diisocyanate are in many cases not present as a pure trimeric diisocyanate, but rather as a polyisocyanate with an average functionality of 3.6 to 4 NCO groups per molecule.
  • polystyrene resin examples include polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polystyrene resin, polyst M20 has an average isocyanate functionality of 2.7.
  • the polyisocyanate is a polyisocyanate with more than two isocyanate groups per molecule, a mixture of at least one diisocyanate and at least one triisocyanate or a polyisocyanate with at least 4 isocyanate groups per molecule.
  • polyisocyanate (b1) has on average at least 2.2, preferably at least 2.5, particularly preferably at least 3.0, isocyanate groups per molecule.
  • polyisocyanate (b1) is selected from oligomeric hexamethylene diisocyanate, oligomeric isophorone diisocyanate, oligomeric diphenylmetal diisocyanate and mixtures of the abovementioned polyisocyanates.
  • polyisocyanate (b1) can also have one or more other functional groups, for example urethane, urea, allophanate, biuret, carbodiimide, amide, ester, ether, uretonimine, uretdione, isocyanurate or oxazolidine groups .
  • other functional groups for example urethane, urea, allophanate, biuret, carbodiimide, amide, ester, ether, uretonimine, uretdione, isocyanurate or oxazolidine groups .
  • a polyamine (b2) and a polycarboxylic acid b3) and / or a polycarboxylic acid ester (b3) can be reacted with one another.
  • the polyamine (b2) can be selected from any polyamines which have on average more than two amine groups per molecule, which can be blocked or, preferably, free.
  • Amines such as 1,3,5-T ri (4- aminophenoxy) benzene, 1,3,5-T ri (3-methyl-1,4-aminophenoxy) benzene, 1,3,5-tri ( 3-methoxy-4-aminophenoxy) benzene, 1, 3,5-tri (2-methyl-4-aminophenoxy) benzene, 1, 3,5-tri (2-methoxy-4-aminophenoxy) benzene, 1, 3, 5-tri (3-ethyl-4-aminophenoxy) benzene.
  • aromatic triamines 1, 3,5-T ri (4-aminophenylamino) benzene, 1, 3,5-tri (3-methyl-4-aminophenylamino) benzene,
  • 1,3.5-tri (3-methoxy-4-aminophenylamino) benzene, 1,3,5-tri (2-methyl-4-aminophenylamino) benzene, 1,3,5-tri (2-methox-, 4-aminophenylamino ) benzene, 1, 3,5-T ri (3-ethyl-4-aminophenylamino) benzene and the like can be used.
  • aromatic triamines are 1,3,5-tri (4-aminophenyl) benzene, 1,3,5-tri (3-methyl-4-aminophenyl) benzene, 1,3,5-tri (3-methoxy-4 -aminophenyl) benzenes, 1,3,5- tri (2-methyl-4-aminophenyl) benzene, 1,3,5-tri (2-methoxy-4-aminophenyl) benzene, 1,3,5-tri ( 3-ethyl-4-aminophenyl) benzenes and similar compounds.
  • tris (4- (4-aminophenoxy) phenyl) methane, tris (4- (3-methyl-4-aminophenoxy) phenyl) methane, tris (4- (3-methoxy-4-aminophenoxy) phenyl) methane , Tris (4- (2-methyl-4-aminophenoxy) phenyl) methane, tris (4- (2-methoxy-4-aminophenoxy) phenyl) methane, tris (4- (3-ethyl, 4-aminophenoxy) phenyl ) methane and comparable compounds.
  • amines are tris (4- (4-aminophenoxy) phenyl) ethane, tris (4- (3-methyl-4'-aminophenoxy) phenyl) ethane, T ris (4- (3-methoxy-4-aminophenoxy) phenyl) ethane, Tris (4- (2- methyl-4-aminophenoxy) phenyl) ethane, Tris (4- (2-methoxy-4-aminophenoxy) phenyl) ethane, Tris (4- (3-ethyl- 4-aminophenoxy) phenyl) ethane and the like.
  • polyamines which are mentioned in US 2006/033225 A1.
  • TAB 4,4'-Biphenyltetraamin
  • 1, 2,4,5-Benzentetraamin 3,3', 4,4'-Tetraaminodiphenylether
  • 3,3 ', 4,4' -Tetraaminodiphenylmethane 3, 3 ', 4,4'-tetraaminobenzophenone
  • 3,3', 4-triaminobiphenyl 3,3 ', 4-triaminodiphenylmethane, 3, 3', 4- triaminobenzophenone, 1, 2,4-triaminobenzene, their mono-, di-, tri-, or tetra-acid salts
  • TAB 4,4'-Biphenyltetraamin
  • 1, 2,4,5-Benzentetraamin 3,3', 4,4'-Tetraaminodiphenylether
  • TAP 2.4.6-triaminopyrimidine
  • the polycarboxylic acids (b3) chosen are aliphatic or preferably aromatic polycarboxylic acids which have at least three COOH groups per molecule, or the anhydrides in question, preferably when they are in low molecular weight, ie non-polymeric, form. Also included are those polycarboxylic acids with three COOH groups in which two carboxylic acid groups are present as anhydride and the third as free carboxylic acid.
  • the polycarboxylic acid (b3) chosen is a poly lycarboxylic acid with at least four COOH groups per molecule or the anhydride in question, in particular the dianhydride.
  • polycarboxylic acids (b3) and their anhydrides are 1,2,3-benzenetricarboxylic acid and
  • 1.2.4-benzenetricarboxylic acid trimellitic acid
  • trimellitic anhydride and in particular 1,2,4,5-benzene tetracarboxylic acid (pyromellitic acid) and 1,2,4,5-benzene tetracarboxylic acid dianhydride (pyromellitic acid dianhydride), 3,3 ', 4,4 "- Benzophenonetetracarboxylic acid, 3,3 ', 4,4 "-benzophenonetetracarboxylic acid dianhydride, furthermore benzene hexacarboxylic acid (mellitic acid) and anhydrides of mellitic acid.
  • mellophanic acid and mellophanic anhydride 1,2,3,4-benzenetetracarboxylic acid and 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3,4,4-biphenyltetracarboxylic acid and 3,3,4,4-biphenyltetracarboxylic acid dianhydride, 2 , 2,3,3-biphenyltetracarboxylic acid and 2,2,3,3-biphenyltetracarboxylic acid dianhydride, 1, 4,5,8-naphthalenetetracarboxylic acid and
  • the at least one carboxylic acid dianhydride is preferably 1,2,4,5-benzene-tetracarboxylic acid anhydride.
  • anhydrides from US Pat. No. 2,155,687 A or US Pat. No. 3,277,117 A are used for the synthesis of polyimide (B).
  • the preparation of the polyimide (B) can follow the mechanism shown in the following formula.
  • a polyisocyanate (b1) and a polycarboxylic acid (b3) are reacted with each other, preferably in the presence of a catalyst, an imide group is formed with elimination of CO2 and H2O.
  • a polyisocyanate (b1) and a corresponding anhydride (b3) are reacted with one another, an imide group is formed with the elimination of CO2.
  • Polyimide B can be produced, for example, by the method described below.
  • Polyisocyanate (b1) and polycarboxylic acid (b3) are allowed to condense with one another - preferably in the presence of a catalyst - so that an imide group is formed with elimination of CO2 and FI2O. If the corresponding anhydride is used instead of polycarboxylic acid (b3), an imide group is formed with elimination of CO2.
  • catalysts are water and Bransted bases, for example alkali metal alcoholates, in particular alkanolates of sodium or potassium, for example sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide, potassium phenoxide, lithium methoxide, lithium ethoxide and lithium phenoxide.
  • the catalyst can be used in the range from 0.005 to 0.1% by weight of catalyst, based on the sum of polyisocyanate (b1) and polycarboxylic acid (b3) or polyisocyanate (b1) and anhydride (b3). 0.01 to 0.05% by weight of catalyst is preferred.
  • polyisocyanate (b1) has> 2 isocyanate groups
  • this can be used in a mixture with at least one diisocyanate, for example with tolylene diisocyanate, flexamethylene diisocyanate or with isophorone diisocyanate.
  • polyisocyanate (b1) is used in a mixture with the corresponding diisocyanate, for example trimeric Fl Dl with flexamethylene diisocyanate or trimeric isophorone diisocyanate with isophorone diisocyanate or oligomeric diphenylmethane diisocyanate (polymer MDI) with diphenylmethane diisocyanate.
  • the at least one isocyanate is 4,4‘-diphenylmethane diisocyanate, oligomeric 4,4‘-diphenylmethane diisocyanate, 2,4-toluene diisocyanate or 2,6-toluene diisocyanate or a mixture of these.
  • the molar ratio of 2,4-toluene diisocyanate to 2,6-toluene diisocyanate is in the range from 1: 1 to 10: 1, more preferably 1.5: 1 to 8: 1, more preferably 2: 1 to 6: 1 is more preferably 3: 1 to 5: 1 and in particular 4: 1.
  • the molar ratio of oligomeric 4,4'-diphenylmethane diisocyanate to the sum of 2,4-toluene diisocyanate and 2,6-toluene diisocyanate is preferably in the range from 1: 1 to 0.1: 1, further preferably from 0.8: 1 to 0.2: 1, more preferably from 0.7: 1 to 0.3, more preferably from 0.5: 1 to 0.4: 1.
  • the polycarboxylic acid (b3) can be used as a mixture with at least one dicarboxylic acid or with at least one dicarboxylic acid anhydride, for example with phthalic acid or phthalic anhydride.
  • a hyperbranched polyimide is used as the polyimide (B).
  • “hyperbranched” is understood to mean that the degree of branching (DB), that is to say the average number of dendritic links plus the average number of end groups per molecule, divided by the sum of the average number of dendritic linear ones and terminal links, multiplied by 100, is 10 to 99.9%, preferably 20 to 99%, particularly preferably 20 to 95%.
  • “dendrimer” means that the degree of branching is 99.9 - 100%.
  • the polyimide B) can be prepared by using polyisocyanate (b1) and polycarboxylic acid (b3) or anhydride (b3) in a quantitative ratio in which the molar proportion of NCO groups to COOH groups is in the range from 1: 3 to 3: 1, 1: 2 to 2: 1 are preferred.
  • One anhydride group of the formula CO-O-CO counts as two COOH groups.
  • the polyimide B) is typically produced at temperatures in the range from 50 to 200.degree. C., 50 to 140.degree. C. being preferred, 50 to 100.degree. C. being particularly preferred.
  • the compounds B) can be prepared in the presence of a solvent or solvent mixture.
  • suitable solvents are N-methylpyrrolidone (NMP), N-ethylpyrrolidone, dimethylformamide (DMF), dimethylacetamide, dimethyl sulfoxide, dimethyl sulfoxide, xylene, phenol, cresol, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (Ml BK), acetophenone, also mono- and dichlorobenzene, ethylene glycol monoethyl ether acetate, and mixtures of two or more of the aforementioned solvents.
  • the solvent or solvents can be present during the entire duration of the synthesis or only during part of the synthesis.
  • the polyimide B) can be produced under inert gas, for example under argon or under nitrogen.
  • inert gas for example under argon or under nitrogen.
  • polyimide B) can also be prepared under the same conditions by reacting b2) with b3).
  • Polyimide B) can also be prepared by reacting b2) with b3) as described in US 2006/033225 A1.
  • the NCO end groups of the polyimide (B) are blocked with a compound which is reactive toward NCO groups.
  • a secondary amine (b4) can be used here, for example.
  • R 'and R can be aliphatic and / or aromatic radicals.
  • the aliphatic radicals can be linear, cyclic and / or branched.
  • R 'and R can be identical. However, R' and R" are not hydrogen atoms.
  • dimethylamine, di-n-butylamine or diethylamine or mixtures thereof are suitable as the amine (b4).
  • Dihexylamine, di- (2-ethylhexyl) amine, dicyclohexylamine are also suitable. Diethylamine and dibutylamine are preferred.
  • Polyimide (B) can also be blocked with an alcohol (b5).
  • Primary alcohols or mixtures thereof are suitable here. From the group of primary alcohols, methanol, ethanol, isopropanol, n-propanol, n-butanol and isobutanol are particularly suitable. Methanol, isobutanol and tert-butanol are preferred. Tert-butanol is particularly preferred.
  • a reaction with an alcohol or an amine preferably an alcohol, in particular tert-butanol, has taken place in order to react off unreacted isocyanate groups.
  • the polyimide (B) has an isocyanate content of less than 1% by weight based on the total weight of the polyimide. It is particularly preferred that the polyimide is isocyanate-free.
  • the ratio of the proportions by weight of polyalkylene terephthalate to polyimide is preferably in the range from 1: 1 to 9.9: 1, preferably from 2: 1 to 9: 1, more preferably from 3: 1 to 4: 1.
  • the proportion of polyalkylene terephthalate in relation to the total weight of the molding composition is preferably at least 50% by weight, more preferably more than 50% by weight.
  • the proportion can also be in the range from 25% by weight to 70% by weight in relation to the total weight of the molding compound.
  • the proportion of polyimide in relation to the total weight of the molding compound is preferably at most 50% by weight, preferably less than 50% by weight.
  • the proportion can also be in the range from 5% by weight to 30% by weight in relation to the total weight of the molding compound.
  • thermoplastic molding composition according to the present invention can contain further components in addition to a polyalkylene terephthalate and a polyimide.
  • thermoplastic molding compositions according to the invention can contain customary processing aids such as stabilizers, oxidation retardants, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, colorants such as dyes and pigments, nucleating agents, plasticizers, etc.
  • flame retardants can be included.
  • oxidation retarders and heat stabilizers are sterically hindered phenols and / or phosphites and amines (e.g. TAD), hydroquinones, aromatic secondary amines such as diphenylamines, various substituted representatives of these groups and their mixtures in concentrations of up to 1% by weight, based on called the weight of the thermoplastic mold mass.
  • TAD sterically hindered phenols and / or phosphites and amines
  • hydroquinones such as diphenylamines
  • various substituted representatives of these groups and their mixtures in concentrations of up to 1% by weight, based on called the weight of the thermoplastic mold mass.
  • UV stabilizers which are generally used in amounts of up to 2% by weight, based on the thermoplastic molding composition.
  • Inorganic pigments such as carbon black, furthermore organic pigments such as phthalocyanines, quinacridones, perylenes and dyes such as anthraquinones can be added as colorants.
  • Sodium phenylphosphinate, aluminum oxide, silicon dioxide can be used as nucleating agents.
  • glass particles including glass fibers, can be used in various dimensions.
  • Glass fibers are used for reinforcement, so that reinforcing fibers, in particular glass fibers, are preferably contained in the thermoplastic molding composition according to the invention.
  • the proportion here is preferably 5% by weight to 70% by weight, more preferably 10% by weight to 60% by weight, more preferably 15% by weight to 50% by weight, more preferably 20% by weight %
  • component C when component C is present, it is preferred that the following proportions, based on the total weight of the thermoplastic molding composition according to the invention, are present: 25% by weight to 65% by weight polyalkylene terephthalate,
  • component C preferably in the form of reinforcing fibers, in particular glass fibers.
  • thermoplastic molding composition can be produced by simple mixing, for example in an extruder. After the molding process, a molding (thread) extending essentially in one dimension, a molding (film) extending essentially in two dimensions, or a molding (molding) extending essentially in three dimensions can be obtained from the molding compound.
  • thermoplastic molding composition be favorable to the use of the thermoplastic molding composition for the production of fibers, foils and / or moldings.
  • the thermoplastic composition is suitable for the production of special moldings in vehicles and equipment construction, for example for industrial or consumer purposes.
  • the thermoplastic molding compound can be used for the production of electronic parts, housings, housing parts, cover flaps, bumpers, spoilers, body parts, damping elements, springs, handles, charge air pipes, vehicle interiors such as instrument panels, parts of instrument panels, instrument panel supports, covers, air ducts, air intake grilles, sliding roofs, Roof frames, add-on parts, in particular the center console, can be used as part of the glove compartment or speedometer wood.
  • thermoplastic molding composition according to the invention can be used as a coating agent for fibers, films and / or moldings.
  • Shaped bodies are understood to be three-dimensional objects that lend themselves to being coated with a thermoplastic composition.
  • the thickness of such coatings is generally in the range from 0.1 to 3.0 cm, preferably from 0.1 to 2.0 cm, very particularly preferably from 0.5 to 2.0 cm.
  • Such coatings can be produced by methods known to the person skilled in the art, such as laminating, painting, dipping, spraying, applying.
  • thermoplastic molding compound according to the present invention is the use of a thermoplastic molding compound according to the present invention as a coating agent or for the production of fibers, films or moldings and a further aspect of the present invention are fibers, films or moldings produced from a thermoplastic molding composition according to the present invention Invention.
  • the polyimide solution was added dropwise to a water bath, and the polyimide precipitated as a yellow powder.
  • the components were mixed in a ZSK 18 extruder at a barrel temperature of 260 ° C, a screw speed of 300 rpm and a throughput of 6 kg / h, granulated and then dried at 100 ° C in a circulating air cabinet dried for 6 hours.
  • the tensile bars were manufactured by injection molding at a melt temperature of 260 ° C and a mold temperature of 60 ° C.
  • An E-glass fiber which was equipped with an epoxy size, was used as the glass fiber, and staple fibers were used.
  • the glass fiber-reinforced molding compounds surprisingly also have higher rigidity and strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft eine thermoplastische Formmasse enthaltend ein Polyalkylenterephthalat und ein Polyimid, wobei die Formmasse eine einzige Glasübergangstemperatur in der DSC-Messung aufweist. Die vorliegende Erfindung betrifft weiterhin deren Verwendung sowie Fasern, Folien und Formkörper, die aus der Formmasse hergestellt sind.

Description

Thermoplastische Formmasse enthaltend Polyalkylenterephthalat
Beschreibung
Die vorliegende Erfindung betrifft eine thermoplastische Formmasse enthaltend ein Polyalky lenterephthalat und ein Polyimid, wobei die Formmasse eine einzige Glasübergangstemperatur aufweist. Die vorliegende Erfindung betrifft weiterhin deren Verwendung sowie Fasern, Folien und Formkörper, die aus der Formmasse hergestellt sind.
Polyalkylenterephthalate stellen Polyester dar und weisen thermoplastische Eigenschaften auf. Sie zeichnen sich durch vielfältige Anwendungsmöglichkeiten aus. Hierbei spielt insbesondere Polyethylenterephthalat (PET) eine wichtige Rolle. PET wird unter anderem zur Fierstellung von Kunststoffflaschen (PET-Flaschen), Folien und Textilfasern verwendet. Auch Polybutylentereph- thalat (PBT) zeichnet sich durch gute Eigenschaften aus. Gegenüber PET ist PBT aufgrund des besseren Prozessverhaltens bevorzugt, was insbesondere bei Spritzgussverfahren eine Rolle spielt. Jedoch sind die Ausgangsmaterialien für PBT teurer.
Nachteilig an Polyalkylenterephthalaten ist deren vergleichsweise geringe Glasübergangs temperatur (Tg). Flierdurch ist der Temperaturbereich für den hartelastischen Zustand, in dem Polyalkylenterephthalate häufig eingesetzt werden, eingeschränkt und es ist wünschenswert diesen Temperaturbereich auszudehnen bzw. die Glasübergangstemperatur zu erhöhen. Hier bei ist es ebenfalls wünschenswert die Eigenschaften der Polyalkylenterephthalate, wie deren Kristallinität möglichst beizubehalten und die Erhöhung durch Zusatzstoffe in einer Formmasse zu erreichen.
Eine Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung einer solchen Formmasse.
Die Aufgabe wurde gelöst durch eine thermoplastische Formmasse enthaltend ein Polyalkylen terephthalat und ein Polyimid, wobei die Formmasse eine einzige Glasübergangstemperatur in der DSC-Messung aufweist.
Es hat sich überraschenderweise herausgestellt, dass Mischungen von Polyalkylenterephthalat und Polyimid nur eine amorphe Phase bilden, so dass beim Erhitzen der Mischungen nur eine einzige Glasübergangstemperatur gefunden wird und die Glasübergänge der Komponenten Polyalkylenterephthalat und Polyimid nicht mehr auftreten.
Im Rahmen der vorliegenden Erfindung wird der Begriff „Formmasse“ gemäß dem allgemeinen Verständnis verwendet. Demzufolge stellen Formmassen ungeformte Erzeugnisse dar, die durch mechanische Kräfte in einem bestimmten Temperaturbereich geformt werden können. Geeignete Verfahren stellen beispielsweise das Extrudieren, Spritzgießen und Verpressen dar.
Die Glasübergangstemperatur (Tg) ist dem Fachmann bekannt und stellt eine charakteristische physikalische Größe eines Polymers oder einer Mischung mehrerer Polymere dar. Bei dieser Temperatur geht ein festes Polymer oder Glas in einen gummiartigen bis zähflüssigen Zustand über. Diese kann beispielsweise durch dynamische Differenzkalorimetrie (DSC) bestimmt wer den.
Die erfindungsgemäße thermoplastische Formmasse weist eine einzige Glasübergangstempe ratur auf. Hierbei ist unter dem Ausdruck „eine einzige Glasübergangstemperatur“ vereinfa chend im Rahmen der vorliegenden Erfindung zu verstehen, dass die in der Formmasse zwin gend enthaltenen Polymere Polyimid und Polyalkylenterephthalat eine Mischphase bilden, die einen Tg-Wert zwischen den Tg-Werten der Komponente aufweist. Weitere Hilfsmittel, die in der erfindungsgemäßen thermoplastischen Formmasse enthalten sein können, können selbst po lymerer, amorpher Natur sein und eine Glasübergangstemperatur aufweisen, die jedoch nicht im Sinne des Aufweisens „einer einzigen Glasübergangstemperatur“ zu berücksichtigen sind.
Vorzugsweise weist eine solche einzige Glasübergangstemperatur Tg einen Wert von mindes tens 45°C auf. Mehr bevorzugt ist ein Tg-Wert von mindestens 50°C. Weiterhin mehr bevorzugt ist ein Tg-Wert von mindestens 60°C. Weiterhin mehr bevorzugt ist ein Tg-Wert von mindestens 70°C. Weiterhin mehr bevorzugt ist ein Tg-Wert von mindestens 80°C.
Durch die Verwendung von Polyimid, welches durch einen hohen Tg-Wert gekennzeichnet ist, soll erfindungsgemäß der Tg-Wert des Polyalkylenterephthalats, der üblicherweise niedrig ist, erhöht werden. Demzufolge liegt der Tg-Wert der thermoplastischen Formmasse im Bereich beginnend mit dem Tg-Wert des Polyalkylenterephtahalts und endet bei dem Tg-Wert des Po lyimids.
Vorzugsweise beträgt die Differenz aus Tg-Wert des Polyalkylenterephthalats und Tg-Wert des Polyimids, bevor diese in die erfindungsgemäße Formmasse eingebracht wurden, mindestens 25°C, weiter bevorzugt mindestens 50°C, weiter bevorzugt mindestens 75°C, weiter bevorzugt mindestens 100°C, weiter bevorzugt mindestens 125°C, weiter bevorzugt mindes-tens 130°C, weiter bevorzugt mindestens 140°C.
Vorzugsweise beträgt die Differenz (Erhöhung) aus Tg-Wert des Polyalkylenterephthalat, bevor dieses in die erfindungsgemäße Formmasse eingebracht wurde, und Tg-Wert des Polyalky- lenenterephthalats in der erfindungsgemäßen Formmasse (Mischphase) mindestens 5°C, wei ter bevorzugt mindestens 10°C, weiter bevorzugt mindestens 15°C, weiter bevorzugt mindes tens 20°C, weiter bevorzugt mindestens 25°C, weiter bevorzugt mindestens 30°C, weiter bevor zugt mindestens 40°C.
Die thermoplastische Formmasse gemäß der vorliegenden Erfindung enthält ein Polyalkylen terephthalat. Vorzugsweise ist dieses ein Polyethylen-, ein Polytrimethylen- oder ein Polybuty- lenterephthalat oder eine Mischung davon. Weiter bevorzugt handelt es sich um Polybutylen- terephthalat. Polyalkylenterephthalate (A) sind kommerziell erhältlich und können zumindest teilamorphe Formen aufweisen. Im Rahmen der vorliegenden Erfindung kann dem Polyalkylenterephthalat eine Glasübergangstemperatur zugeordnet werden.
Kommerziell erhältliche Polybutylenterephthalate (A) werden beispielsweise als Ultradur® Serie von der Firma BASF vertrieben. Beispielhaft sei Ultradur® B4500 genannt.
Kommerziell erhältliche Polyethylenterephthalate (A) werden beispielsweise als Petra® Serie von der Firma BASF vertrieben.
Weiterhin enthält die thermoplastische Formmasse gemäß der vorliegenden Erfindung ein Po lyimid (B).
Polyimide (B) sind thermisch und mechanisch sehr stabile Polymere. Um diese Polymere als Thermoplasten einsetzen zu können, werden Irregularitäten in die Polymerkette eingebaut. Hierbei können beispielsweise Verzweigungen im Polymergerüst vorgesehen werden. Durch diese Verzweigungen kann die Kristallinität vermieden und der Tg-Wert eingestellt werden.
Nachfolgend ist eine beispielhafte Synthese von Polyimiden gezeigt, wobei vereinfachend nur eine Polymereinheit auszugsweise dargestellt ist:
Die Anwesenheit geringer Mengen an Wasser kann bei der Reaktion katalytisch wirken, wobei die Eliminierung von Kohlendioxid zu beispielsweise in NMP löslichen Polyimiden führt.
Die katalytische Wirkung von Wasser wird in der nachfolgenden Reaktionssequenz dargestellt: Die Herstellung von Polyimiden ist beispielsweise aus WO 2012/163680 A1 bekannt und wird nachfolgend näher beschrieben. Polyimide können beispielsweise gebildet werden aus: b1) mindestens einem Isocyanat, wobei das Isocyanat mindestens zwei Isocyanatgruppen auf weist („Polyisocyanat“), vorzugsweise mit zumindest im Mittel mehr als zwei Isocyanatgruppen pro Molekül oder b2) mindestens einem Amin, wobei das Amin mindestens zwei Aminogruppen aufweist („Poly amin“), vorzugsweise mit zumindest im Mittel mehr als zwei Aminogruppen pro Molekül und b3) mindestens einer Polycarbonsäure mit mindestens drei, bevorzugt mindestens vier COOH- Gruppen, insbesondere genau 4 pro Molekül oder ihrem Anhydrid, insbesondere dem Dianhyd rid.
Bevorzugt ist die Kombination b1) und b3).
Das Polyimid (B) wird insbesondere vorzugsweise durch Umsetzung mindestens eines Carbon säuredianhydrids mit mindestens einem Isocyanat, wobei das Isocyanat mindestens zwei, vor zugsweise mehr als zwei, Isocyanatgruppen aufweist, erhalten.
Polyimid (B) kann ein Molekulargewicht Mw im Bereich von 1 .000 bis 200.000 g/mol aufweisen, bevorzugt sind mindestens 2.000 g/mol.
Polyimid (B) kann mindestens zwei Imidgruppen pro Monomereneinheit aufweisen, bevorzugt sind mindestens 3 Imidgruppen pro Monomereneinheit.
In einer Ausführungsform der vorliegenden Erfindung kann Polyimid (B) bis zu 1.000 Imidgrup pen pro Molekül aufweisen, bevorzugt bis zu 660 pro Molekül. In einer Ausführungsform der vorliegenden Erfindung bezeichnet die Angabe der Isocyanatgruppen bzw. der COOH-Gruppen pro Molekül jeweils den Mittelwert (Zahlenmittel).
Polyimid (B) kann aus strukturell und molekular einheitlichen Molekülen zusammengesetzt sein. Bevorzugt jedoch ist, wenn Polyimid (B) eine Mischung von molekular und strukturell unter schiedlichen Molekülen ist, beispielsweise sichtbar an der Polydispersität Mw/Mn von mindes tens 1 ,4; bevorzugt ist Mw/Mn von 1 ,4 bis 50, mehr bevorzugt von 1 ,5 bis 10. Die Polydispersi tät kann nach bekannten Methoden bestimmt werden, insbesondere durch Gelpermeations chromatographie (GPC). Geeigneter Standard ist beispielsweise Polymethylmethacrylat (PMMA). Das Polyimid (B) kann neben Imidgruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin mindestens drei, bevorzugt mindestens sechs, besonders bevorzugt mindestens zehn end- oder seitenständige funktionelle Gruppen aufweisen. Bei funktionellen Gruppen im Polyimid (B) kann es sich beispielsweise um Anhydrid- oder Säuregruppen und/oder freie oder verkappte NCO-Gruppen handeln. Polyimide (B) weisen vorzugsweise nicht mehr als 500 end- oder seitenständige funktionelle Gruppen auf, bevorzugt nicht mehr als 100.
Polyisocyanat (b1) kann man aus beliebigen Polyisocyanaten wählen, die im Mittel mindestens oder bevorzugt mehr als zwei Isocyanatgruppen pro Molekül aufweisen, die verkappt oder vor zugsweise frei vorliegen können. Bevorzugt sind trimere oder Oligomere Diisocyanate, bei spielsweise Oligomeres Hexamethylendiisocyanat, Oligomeres Isophorondiisocyanat, Oligome res Toluylendiisocyanat, Oligomeres Diphenylmethandiisocyanat - so genanntes Polymer-MDI - und Mischungen der vorstehend genannten Polyisocyanate. Beispielsweise liegt sogenanntes trimeres Hexamethylendiisocyanat in vielen Fällen nicht als reines trimeres Diisocyanat vor, sondern als Polyisocyanat mit einer mittleren Funktionalität von 3,6 bis 4 NCO-Gruppen pro Molekül. Analoges gilt für Oligomeres Tetramethylendiisocyanat und Oligomeres Isophorondiiso cyanat.
Die oben genannten Polyisocyanate sind kommerziell erhältlich oder durch bekannte Methoden herstellbar. Beispielsweise ist Polymer-MDI als Lupramat® erhältlich. Beispielsweise weist Lupramat M20 eine mittlere Isocyanatfunktionalität von 2,7 auf.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei dem Polyisocyanat um ein Polyisocyanat mit mehr als zwei Isocyanatgruppen pro Molekül, um eine Mischung aus min destens einem Diisocyanat und mindestens einem Triisocyanat oder einem Polyisocyanat mit mindestens 4 Isocyanatgruppen pro Molekül.
In einer Ausführungsform der vorliegenden Erfindung hat Polyisocyanat (b1) im Mittel mindes tens 2,2, bevorzugt mindestens 2,5, besonders bevorzugt mindestens 3,0 Isocyanatgruppen pro Molekül.
In einer Ausführungsform der vorliegenden Erfindung wählt man Polyisocyanat (b1) aus oligo- merem Hexamethylendiisocyanat, oligomerem Isophorondiisocyanat, oligomerem Diphenylmet handiisocyanat und Mischungen der vorstehend genannten Polyisocyanate.
Polyisocyanat (b1) kann neben Isocyanatgruppen auch eine oder mehrere andere funktionelle Gruppen aufweisen, beispielsweise Urethan-, Harnstoff-, Allophanat-, Biuret-, Carbodiimid-, Amid-, Ester, Ether-, Uretonimin-, Uretdion-, Isocyanurat oder Oxazolidingruppen aufweisen.
Bei einer zweiten Variante kann analog zu dem in der Schrift US 2010/009206 A1 beschriebe nen Verfahren ein Polyamin (b2) und eine Polycarbonsäure b3) und/oder ein Polycarbonsäu reester (b3) miteinander umgesetzt werden. Das Polyamin (b2) kann aus beliebigen Polyami nen gewählt werden, die im Mittel mehr als zwei Amingruppen pro Molekül aufweisen, die ver kappt oder vorzugsweise frei vorliegen können.
Als Polyaminamin (b2) eignen sich auch die in der Schrift US 2010/009206 A1 aufgeführten Verbindungen, wie zum Beispiel 3,5-Di(4-aminophenoxy)anilin, 3,5-Di(3-methyl-1 ,4-amino- phenoxy)anilin, 3,5-Di(3-methoxy-4-aminophenoxy)anilin, 3,5-Di(2-methyl-4-amino- phenoxy)anilin, 3,5-Di(2-methoxy-4-aminophenoxy)anilin, 3,5-Di(3-ethyl-4-aminophenoxy)anilin und vergleichbare Substanzen. Des Weiteren eignen sich Amine wie 1 ,3,5-T ri (4- aminophenoxy)benzol, 1 ,3,5-T ri(3- methyl-1 ,4-aminophenoxy)benzen, 1 ,3,5-Tri(3-methoxy-4- aminophenoxy)benzen, 1 ,3,5-Tri(2-methyl-4-aminophenoxy)benzen, 1 ,3,5-tri(2-methoxy-4- aminophenoxy)benzen, 1 ,3,5-tri(3-ethyl-4-aminophenoxy)benzen. Auch können als aromatische T riamine 1 ,3,5-T ri(4-aminophenylamino)benzol, 1 ,3,5-tri(3-methyl-4-aminophenylamino)benzen,
1 .3.5-tri(3-methoxy-4-aminophenylamino)benzen, 1 ,3,5-tri(2-methyl-4- aminophenylamino)benzen, 1 ,3,5-tri(2-methox-,4-aminophenylamino)benzen, 1 ,3,5-T ri(3-ethyl- 4-aminophenylamino)benzen und ähnliche eingesetzt werden.
Weitere aromatische Triamine sind 1 ,3,5-Tri(4-aminophenyl)benzen, 1 ,3,5-Tri(3-methyl-4- aminophenyl)benzen, 1 ,3,5-T ri(3-methoxy-4-aminophenyl)benzene, 1 ,3,5- Tri(2-methyl-4- aminophenyl)benzen, 1 ,3,5-T ri(2-methoxy-4-aminophenyl)benzen, 1 ,3,5 -Tri(3-ethyl-4- aminophenyl)benzene und ähnliche Verbindungen.
Auch geeignet sind 1 ,3,5-Tri(4-aminophenyl)amin, 1 ,3,5-T ri(3-methyl-4-aminophenyl)amin,
1 .3.5-T ri(3-methoxy-4-aminophenyl)amin, 1 ,3,5-T ri(2-methyl-4- aminophenyl)amin, 1 ,3,5-T ri(2- methoxy-4-aminophenyl)amin, 1 ,3,5-Tri(3-ethyl-4-aminophenyl)amin und ähnliche Verbindun gen.
Weitere Beispiele sind Tris(4-(4-aminophenoxy)phenyl)methan, Tris(4-(3-methyl-4- aminophenoxy)phenyl)methan, T ris(4-(3-methoxy-4-aminophenoxy)phenyl)methan, T ris(4-(2- methyl-4-aminophenoxy)phenyl)methan, Tris(4-(2-methoxy-4-aminophenoxy)phenyl)methan, Tris(4-(3-ethyl,4-aminophenoxy)phenyl)methan und vergleichbare Verbindungen.
Als Amin sind auch geeignet Tris(4-(4-aminophenoxy)phenyl)ethan, Tris(4-(3-methyl-4'- aminophenoxy)phenyl)ethan, T ris(4-(3-methoxy-4-aminophenoxy)phenyl)ethan, T ris(4-(2- methyl-4-aminophenoxy)phenyl)ethan, T ris(4-(2-methoxy-4-aminophenoxy)phenyl)ethan, T ris(4- (3-ethyl-4-aminophenoxy)phenyl)ethan und ähnliche.
Des Weiteren sind Polyamine einsetzbar, die in der Schrift US 2006/033225 A1 genannt sind. Zum Beispiel können auch 3,3',4,4'-Biphenyltetraamin (TAB), 1 ,2,4,5-Benzentetraamin, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-Tetraaminodiphenylmethan, 3, 3', 4,4'- Tetraaminobenzophenon, 3,3',4-Triaminobiphenyl, 3,3',4-Triaminodiphenylmethan, 3, 3', 4- Triaminobenzophenon, 1 ,2,4-Triaminobenzen, deren mono-, di-, tri-, oder tetra-Säuresalze wie
2.4.6-Triaminopyrimidin (TAP) eingesetzt werden.
Als Polycarbonsäuren (b3) werden aliphatische oder vorzugsweise aromatische Polycarbonsäu ren gewählt, die mindestens drei COOH-Gruppen pro Molekül aufweisen, oder die betreffenden Anhydride, vorzugsweise wenn sie in niedermolekularer, also nicht polymerer Form vorliegen. Auch solche Polycarbonsäuren mit drei COOH-Gruppen sind mit umfasst, bei denen zwei Car bonsäuregruppen als Anhydrid vorliegen und die dritte als freie Carbonsäure. In einer bevorzug ten Ausführungsform der vorliegenden Erfindung wählt man als Polycarbonsäure (b3) eine Po- lycarbonsäure mit mindestens vier COOH-Gruppen pro Molekül oder das betreffende Anhydrid, insbesondere das Dianhydrid.
Beispiele für Polycarbonsäuren (b3) und ihre Anhydride sind 1,2,3- Benzoltricarbonsäure und
1.2.3-Benzoltricarbonsäuredianhydrid, 1,3,5-Benzoltricarbonsäure (Trimesinsäure), bevorzugt
1.2.4-Benzoltricarbonsäure (Trimellitsäure), Trimellitsäureanhydrid und insbesondere 1 ,2,4,5- Benzoltetracarbonsäure (Pyromellitsäure) und 1 ,2,4,5-Benzoltetracarbonsäuredianhydrid (Py- romellitsäuredianhydrid), 3,3',4,4"-Benzophenontetracarbonsäure, 3,3',4,4"-Benzophenontetra- carbonsäuredianhydrid, weiterhin Benzolhexacarbonsäure (Mellitsäure) und Anhydride der Mel- litsäure.
Weiterhin geeignet sind Mellophansäure und Mellophansäureanhydrid, 1 , 2,3,4- Benzoltetracarbonsäure und 1 ,2,3,4-Benzoltetracarbonsäuredianhydrid, 3,3,4,4-Biphenyltetra- carbonsäure und 3,3,4,4-Biphenyltetracarbonsäuredianhydrid, 2,2,3,3-Biphenyltetracarbon- säure und 2,2,3,3-Biphenyltetracarbonsäuredianhydrid, 1 ,4,5,8-Naphthalintetracarbonsäure und
1.4.5.8-Naphthalintetracarbonsäuredianhydrid, 1 ,2,4,5-Naphthalintetracarbonsäure und 1 , 2,4,5- Naphthalintetracarbonsäuredianhydrid, 2,3,6,7-Naphthalintetracarbonsäure und 2, 3,6,7- Naphthalintetracarbonsäuredianhydrid, 1 ,4,5,8-Decahydronaphthalintetracarbonsäure und
1.4.5.8-Decahydronaphthalintetracarbonsäuredianhydrid, 4,8-Dimethyl-1 ,2,3,5,6,7-hexahydro- naphthalin-1 ,2,5,6-tetracarbonsäure und 4,8-Dimethyl-1 ,2,3,5,6,7-hexahydronaphthalin-1 ,2,5,6- tetracarbonsäuredianhydrid, 2,6-Dichloronaphthalin-1 ,4,5,8-tetracarbonsäure und 2,6-Dichloro- naphthalin-1 ,4,5,8-tetracarbonsäuredianhydrid, 2,7-Dichloronaphthalin-1 ,4,5,8-tetracarbonsäure und 2,7-Dichloronaphthalin-1 ,4,5,8-tetracarbonsäuredianhydrid, 2,3,6,7-Tetrachloronaphthalin-
1.4.5.8-tetracarbonsäure und 2,3,6,7-Tetrachloronaphthalin-1 ,4,5,8-tetracarbonsäuredianhydrid,
1.3.9.10-Phenanthrentetracarbonsäure und 1 ,3,9,10-Phenanthrentetracarbonsäuredianhydrid,
3.4.9.10-Perylentetracarbonsäure und 3,4,9, 10-Perylentetracarbonsäuredianhydrid, Bis(2,3- dicarboxyphenyl)methan und Bis(2,3-dicarboxyphenyl)methandianhydrid, Bis(3,4- dicarboxyphenyl)methan und Bis(3,4-dicarboxyphenyl)methandianhydrid, 1 , 1 -Bis(2,3- dicarboxyphenyl)ethan und 1,1-Bis(2,3-dicarboxyphenyl)ethandianhydrid, 1 , 1 -Bis(3,4- dicarboxyphenyl)ethan und 1,1-Bis(3,4-dicarboxyphenyl)ethandianhydrid, 2,2-Bis(2,3- dicarboxyphenyl)propan und 2,2-Bis(2,3-dicarboxyphenyl)propandianhydrid, 2,3-Bis(3,4- dicarboxyphenyl)propan und 2,3-Bis(3,4-dicarboxyphenyl)propandianhydrid, Bis-(3,4- carboxyphenyl)sulfon und Bis(3,4-carboxyphenyl)-sulfondianhydrid, Bis(3,4- carboxyphenyl)ether und Bis(3,4- carboxyphenyl)etherdianhydrid, Ethylentetracarbonsäure und Ethylentetracarbonsäuredianhydrid, 1 ,2,3,4-Butantetracarbonsäure und 1 , 2,3,4- Butantetracarbonsäuredianhydrid, 1 ,2,3,4-Cyclopentantetracarbonsäure und 1 , 2,3,4- Cyclopentantetracarbonsäuredianhydrid, 2,3,4,5-Pyrrolidintetracarbonsäure und 2, 3,4,5- Pyrrolidintetracarbonsäuredianhydrid, 2,3,5,6-Pyrazintetracarbonsäure und 2, 3,5,6- Pyrazintetracarbonsäuredianhydrid, 2,3,4,5-Thiophentetracarbonsäure und 2, 3,4,5- Thiophentetracarbonsäuredianhydrid.
Vorzugsweise handelt es sich bei dem mindestens einen Carbonsäuredianhydrid um 1 ,2,4,5- Benzentetracarbonsäureanhydrid. In einer Ausführungsform der vorliegenden Erfindung setzt man Anhydride aus US 2,155,687 A oder US 3,277,117 A zur Synthese von Polyimid (B) ein.
Die Herstellung des Polyimids (B) kann dem in folgender Formel gezeigten Mechanismus fol gen. Wenn ein Polyisocyanat (b1) und eine Polycarbonsäure (b3) vorzugsweise in Gegenwart eines Katalysators miteinander umgesetzt werden, wird eine Imidgruppe unter Abspaltung von CO2 und H2O geformt. Wenn ein Polyisocyanat (b1) und ein entsprechendes Anhydrid (b3) mit einander umgesetzt werden, wird eine Imidgruppe unter Abspaltung von CO2 gebildet.
In obiger Formel ist R** ein Polyisocyanat (b2) Radikal, das in der Formel nicht weiter spezifi- ziert ist, und n ist eine Zahl größer gleich 1. Ist n zum Beispiel 1 , so handelt es sich um eine Tricarbonsäure. Ist n=2 handelt es sich um eine Tetracarbonsäure. (HOOC)n kann ersetzt wer den durch C(=0)-0-C(=0) oder einen Esterrest.
Wenn ein Polyamin (b2) und die Polycarbonsäure (b3) beziehungsweise das entsprechende Anhydrid (b3) bevorzugt in der Gegenwart eines Katalysators umgesetzt werden, formt sich eine Imidbindung unter der Abspaltung von Wasser. In obiger Formel ist R* ein Polyamin (b2) Radikal, das in der Formel nicht weiter spezifiziert ist. n ist eine Zahl größer gleich 1. Im Fall einer Tricarbonsäure ist n=1. Im Fall einer Tetra carbonsäure ist n=2. (FlOOC)n kann ersetzt werden durch einen C(=0)-0-C(=0) Rest oder ei nen Ester.
Polyimid B) kann zum Beispiel durch das im Folgenden beschriebene Verfahren hergestellt werden.
Man lässt Polyisocyanat (b1) und Polycarbonsäure (b3) - vorzugsweise in Gegenwart eines Katalysators - miteinander kondensieren, so wird unter Abspaltung von CO2 und FI2O eine Imidgruppe gebildet. Setzt man statt Polycarbonsäure (b3) das entsprechende Anhydrid ein, so wird unter Abspaltung von CO2 eine Imidgruppe gebildet.
Als Katalysatoren sind insbesondere Wasser und Bransted-Basen geeignet, beispielsweise Alkalimetallalkoholate, insbesondere Alkanolate von Natrium oder Kalium, beispielsweise Natri- ummethanolat, Natriumethanolat, Natriumphenolat, Kaliummethanolat, Kaliumethanolat, Kali- umphenolat, Lithiummethanolat, Lithiumethanolat und Lithiumphenolat. Der Katalysator kann im Bereich von 0,005 bis 0,1 Gew.-% Katalysator bezogen auf die Summe aus Polyisocyanat (b1) und Polycarbonsäure (b3) bzw. Polyisocyanat (b1) und Anhydrid (b3) eingesetzt werden. Be vorzugt sind 0,01 bis 0,05 Gew.-% Katalysator.
Für den Fall, dass Polyisocyanat (b1) >2 Isocyanatgruppen aufweist, kann dieses in Mischung mit mindestens einem Diisocyanat eingesetzt werden, beispielsweise mit Toluylendiisocyanat, Flexamethylendiisocyanat oder mit Isophorondiisocyanat. In einer besonderen Variante setzt man Polyisocyanat (b1) im Gemisch mit dem korrespondierenden Diisocyanat ein, beispiels weise trimeres Fl Dl mit Flexamethylendiisocyanat oder trimeres Isophorondiisocyanat mit Iso phorondiisocyanat oder Oligomeres Diphenylmethandiisocyanat (Polymer MDI) mit Diphenylme- thandiisocyanat.
In einer besonders bevorzugten Ausführungsform handelt es sich bei dem mindestens einen Isocyanat um 4,4‘-Diphenylmethandiisocyanat, Oligomeres 4,4‘-Diphenylmethandiisocyanat, 2,4-Toluoldiisocyanat oder 2,6-Toluoldiisocyanat oder um ein Gemisch aus diesen. Insbeson dere bevorzugt werden dabei mindestens drei Isocyanate, insbesondere ein Gemisch aus oli- gomerem 4,4‘-Diphenylmethandiisocyanat, 2,4-Toluoldiisocyanat und 2,6-Toluoldiisocyanat eingesetzt. FH ierbei ist bevorzugt, dass das molare Verhältnis von 2,4-Toluoldiisocyanat zu 2,6- Toluoldiisocyanat im Bereich von 1 :1 bis 10:1 , weiter bevorzugt 1 ,5:1 bis 8:1 , weiter bevorzugt 2:1 bis 6:1 weiter bevorzugt 3:1 bis 5:1 und insbesondere bei 4:1 liegt.
Vorzugsweise liegt das molare Verhältnis von oligomerem 4,4‘-Diphenylmethandiisocyanat zur Summe aus 2,4-Toluoldiisocyanat und 2,6-Toluoldiisocyanat im Bereich von 1 :1 bis 0,1 :1 , wei ter bevorzugt von 0,8:1 bis 0,2:1 , weiter bevorzugt von 0,7:1 bis 0,3, weiter bevorzugt von 0,5:1 bis 0,4:1. Die Polycarbonsäure (b3) kann in Mischung mit mindestens einer Dicarbonsäure oder mit min destens einem Dicarbonsäureanhydrid eingesetzt werden, beispielsweise mit Phthalsäure oder Phthalsäureanhydrid.
In einer Ausführungsform der vorliegenden Erfindung wird als Polyimid (B) ein hyperverzweig tes Polyimid eingesetzt. Unter „hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), das heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Molekül, geteilt durch die Summe der mittleren Anzahl von dendritischen, linearen und terminalen Ver knüpfungen, multipliziert mit 100, 10 bis 99,9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 bis 95 % beträgt. Unter „Dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30 und siehe Sünder et al., Chem. Eur. J. 2000, 6 (14), 2499-2506. Der Verzweigungsgrad lässt sich mit Hilfe von „invers gated" 13NMR- Spektren berechnen.
Das Polyimid B) kann hergestellt werden, indem Polyisocyanat (b1) und Polycarbonsäure (b3) bzw. Anhydrid (b3) in einem Mengenverhältnis eingesetzt werden, bei dem der molare Anteil von NCO-Gruppen zu COOH-Gruppen im Bereich von 1 : 3 bis 3 : 1 liegt, bevorzugt sind 1 : 2 bis 2 : 1. Dabei zählt eine Anhydridgruppe der Formel CO-O-CO wie zwei COOH-Gruppen.
Typischer Weise wird das Polyimid B) bei Temperaturen im Bereich von 50 bis 200°C herge stellt, bevorzugt sind 50 bis 140°C, besonderes bevorzugt sind 50 bis 100°C.
Die Verbindungen B) können in Gegenwart eines Lösungsmittels oder Lösungsmittelgemisches hergestellt werden. Beispiele für geeignete Lösungsmittel sind N-Methylpyrrolidon (NMP), N- Ethylpyrrolidon, Dimethylformamid (DMF), Dimethylacetamid, Dimethylsulfoxid, Dimethylsul- phone, Xylol, Phenol, Kresol, Ketone wie beispielsweise Aceton, Methylethylketon (MEK), Me- thylisobutylketon (Ml BK), Acetophenon, weiterhin Mono- und Dichlorbenzol, Ethylenglykolmo- noethyletheracetat, und Mischungen von zwei oder mehr der vorstehend genannten Lösungs mitteln. Dabei können das oder die Lösungsmittel während der gesamten Dauer der Synthese oder nur während eines Teils der Synthese anwesend sein.
Darüber hinaus kann das Polyimid B) unter Inertgas, beispielsweise unter Argon oder unter Stickstoff hergestellt werden. Insbesondere wenn eine wasserempfindliche Bransted-Base als Katalysator verwendet wird, ist es bevorzugt, Inertgas und Lösungsmittel zu trocknen. Wenn man Wasser als Katalysator verwendet, so kann man auf die Trocknung von Lösungsmittel und Inertgas verzichten.
Polyimid B) kann analog zur Umsetzung von b1) mit b3) auch unter den gleichen Bedingungen durch Umsetzung von b2) mit b3) hergestellt werden. Polyimid B) kann auch durch Umsetzung von b2) mit b3) wie in der Schrift US 2006/033225 A1 beschrieben hergestellt werden.
Bei einer Variante des Polyimids (B) sind die NCO-Endgruppen des Polyimids (B) mit einer ge genüber NCO-Gruppen reaktiven Verbindung geblockt. Hierbei bietet sich zum Beispiel ein se kundäres Amin (b4) an.
Als sekundäres Amin (b4) bieten sich Verbindungen der Form NHR'R" an, wobei R' und R" aliphatische und/oder aromatische Reste sein können. Die aliphatischen Reste können linear, zyklisch und/oder verzweigt sein. R' und R" können identisch sein. Allerdings sind R' und R" keine Wasserstoffatome.
Es eigenen sich zum Beispiel Dimethylamin, Di-n-butylamin oder Diethylamin oder deren Mi schungen als Amin (b4). Auch eignen sich Dihexylamin, Di-(2-ethylhexyl)amin, Dicyclohexyla- min. Bevorzugt sind Diethylamin und Dibutylamin.
Auch kann Polyimid (B) mit einem Alkohol (b5) geblockt werden. Hierbei eigenen sich primäre Alkohole oder deren Mischungen. Aus der Gruppe der primären Alkohole eignen sich insbeson dere Methanol, Ethanol, iso-Propanol, n-Propanol, n-Butanol, iso-Butanol. Bevorzugt sind Me thanol, iso-Butanol und tert.-Butanol. Insbesondere bevorzugt ist tert.-Butanol.
Unter den Alternativen (b4) und (b5) ist (b5) bevorzugt.
Dementsprechend ist weiterhin ist bevorzugt, dass nach der Umsetzung des mindestens einen Carbonsäuredianhydrids mit dem mindestens einem Isocyanat eine Umsetzung mit einem Al kohol oder einem Amin, vorzugsweise einem Alkohol, insbesondere tert.-Butanol, erfolgt ist, um nicht umgesetzte Isocyanatgruppen abzureagieren.
Es ist bevorzugt, dass das Polyimid (B) einen Isocyanatgehalt von weniger als 1 Gew.-% bezo gen auf das Gesamtgewicht des Polyimids aufweist. Insbesondere ist bevorzugt, dass das Po lyimid isocyanatfrei ist.
Vorzugsweise liegt das Verhältnis der Gewichtsanteile von Polyalkylenterephthalat zu Polyimid im Bereich von 1 :1 bis 9,9:1 , vorzugsweise von 2:1 bis 9:1 , weiter bevorzugt von 3:1 bis 4:1 .
Vorzugsweise weist der Anteil an Polyalkylenterephthalat in Bezug auf das Gesamtgewicht der Formmasse mindestens 50 Gew.-% auf, mehr bevorzugt mehr als 50 Gew.-%. Beispielsweise kann jedoch der Anteil auch im Bereich von 25 Gew.-% bis 70 Gew.-% in Bezug auf das Ge samtgewicht der Formmasse liegen.
Vorzugsweise weist der Anteil an Polyimid in Bezug auf das Gesamtgewicht der Formmasse höchstens 50 Gew.-% auf, vorzugsweise weniger als 50 Gew.-%. Beispielsweise kann jedoch der Anteil auch im Bereich von 5 Gew.-% bis 30 Gew.-% in Bezug auf das Gesamtgewicht der Formmasse liegen.
Die thermoplastische Formmasse gemäß der vorliegenden Erfindung kann neben einem Poly- alkylenterephthalat und einem Polyimid weitere Komponenten enthalten.
Als Komponente C) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezerset zung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher, usw. enthalten. Insbesondere können Flammschutzmittel enthalten sein.
Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phe nole und/oder Phosphite und Amine (z.B. TAD), Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mischungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplas-tischen Form massen genannt.
Als UV-Stabilisatoren, die im Allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die ther moplastische Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Sa- licylate, Benzotriazole und Benzophenone genannt.
Es können anorganische Pigmente, wie Ruß, weiterhin organische Pigmente, wie Phthalocya- nine, Chinacridone, Perylene sowie Farbstoffe, wie Anthrachinone als Farbmittel zugesetzt werden.
Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid einge setzt werden.
Weiterhin können Glaspartikel einschließlich Glasfasern in verschiedenen Abmessungen einge setzt werden.
Glasfasern dienen der Verstärkung, so dass vorzugsweise Verstärkungsfasern, insbesondere Glasfasern in der erfindungsgemäßen thermoplastischen Formmasse enthalten sind. Hierbei beträgt der Anteil vorzugsweise 5 Gew.-% bis 70 Gew.-%, mehr bevorzugt 10 Gew.-% bis 60 Gew.-%, weiter mehr bevorzugt 15 Gew.-% bis 50 Gew.-%, weiter mehr bevorzugt 20 Gew.-% bis 40 Gew.-%, insbesondere 30 Gew.-%, bezogen auf das Gesamtgewicht der erfindungsgemäßen thermoplastischen Formmasse, enthalten.
Insbesondere ist bei Vorhandensein der Komponente C bevorzugt, dass folgende Anteile, be zogen auf das Gesamtgewicht der erfindungsgemäßen thermoplastischen Formmasse, vorlie gen: 25 Gew.-% bis 65 Gew.-% Polyalkylenterephthalat,
5 Gew.-% bis 30 Gew.-% Polyimid,
5 bis 70 Gew.-% Komponente C, bevorzugt in Form von Verstärkungsfasern, insbesondere Glasfasern.
Die thermoplastische Formmasse kann durch einfaches Mischen, beispielsweise in einem Extruder, hergestellt werden. Nach dem Formprozess kann aus der Formmasse ein im Wesent lichen in eine Dimension erstrecktes Formteil (Faden), ein im Wesentlichen in zwei Dimensio nen erstrecktes Formteil (Folie) oder ein im Wesentlichen in drei Dimensionen erstrecktes Formteil (Formkörper) erhalten werden.
Die mechanischen Eigenschaften der erfindungsgemäßen thermoplastischen Formmasse be günstigen die Verwendung der thermoplastischen Formmasse zur Herstellung von Fasern, Fo lien und/oder Formkörpern. Insbesondere eignet sich die thermoplastische Zusammensetzung für die Herstellung von speziellen Formkörpern im Fahrzeug und Gerätebau zum Beispiel für industrielle oder Verbraucher nahe Zwecke. So kann die thermoplastische Formmasse zur Pro duktion von Elektronikteilen, Gehäusen, Gehäuseteilen, Abdeckklappen, Stoßfängern, Spoilern, Karosserieteilen, Dämpfungselementen, Federn, Griffen, Ladeluftrohren, Kraftfahrzeuginnen anwendungen wie Instrumententafeln, Teile von Instrumententafeln, Instrumententafelträger, Abdeckungen, Luftkanäle, Lufteinlassgitter, Schiebedachtraversen, Dachrahmen, Anbauteile, insbesondere die Mittelkonsole als Teil des Handschuhfachs oder auch Tachoholzen verwendet werden.
Die erfindungsgemäße thermoplastische Formmasse kann als Überzugmittel für Fasern, Folien und/oder Formkörper verwendet werden. Als Formkörper werden dreidimensionale Gegenstän de verstanden, die sich anbieten, mit einer thermoplastischen Zusammensetzung überzogen zu werden. Die Dicke solcher Beschichtungen liegt in der Regel in Bereichen von 0,1 bis 3,0 cm, bevorzugt von 0,1 bis 2,0 cm, ganz besonders bevorzugt von 0,5 bis 2,0 cm. Derartige Be schichtungen können durch dem Fachmann bekannte Verfahren wie laminieren, lackieren, tau chen, sprühen, auftragen hergestellt werden.
Daher ist ein weiterer Aspekt der vorliegenden Erfindung die Verwendung einer thermoplasti schen Formmasse gemäß der vorliegenden Erfindung als Überzugsmittel oder zur Herstellung von Fasern, Folien oder Formkörpern und ein weiterer Aspekt der vorliegenden Erfindung sind Fasern, Folien oder Formkörper hergestellt aus einer thermoplastischen Formmasse gemäß der vorliegenden Erfindung.
Beispiele
1. Herstellung von Polyimiden
1.1. Herstellung von PMDI-MDI-PDA-tBuOH (PI-1) Reagenzien und Reaktanten:
42,00 g (0,192 mol) 1 ,2,4,5-Benzentetracarbonsäuredianhydrid (PDA)
18,43 g (0,0275 mol) Lupranat® M20 (Oligomeres MDI, PolyMDl, PMDI)
6,88 g (0,0275 mol) MDI 29,47 g (0,398 mol) tert.-Butanol 144,2 ml NMP
Reaktionsführung:
In einer Standard-Rührapparatur mit 500 ml-Vierhalskolben ausgestattet mit Tropftrichter, Tef lonrührer, Rückflusskühler und einem Thermometer wurde 1 ,2,4,5-Benzentetracarbon- säuredianhydridin NMP bei 80°C unter Rühren gelöst. Eine Mischung aus Lupranat® M20 und MDI wurde unter Stickstoffatmosphäre zur Lösung zugetropft und die Ölbadtemperatur bei 80 °C gehalten. Eine leicht exotherme Reaktion unter Gasentwicklung war zu beobachten. Die Mischung wurde unter Rühren bei 80 °C für 3 Stunden gehalten.
Nach Abkühlen der Reaktionsmischung auf 50 °C wurde tert.-Butanol langsam über den Tropf trichter zugegeben. Der Reaktionsverlauf wurde mittels IR-Messung kontrolliert. Nach vollstän digem Verschwinden der NCO-Bande wurde die Lösung bei 80 °C im Vakuum (20 mbar) destil liert, um überschüssiges tert.-Butanol zu entfernen.
Die Polyimidlösung wurde tropfenweise in ein Wasserbad gegeben und das Polyimid fiel hierbei als gelbes Pulver aus.
1.2. Herstellung weiterer Polyimide
In Analogie zum Herstellverfahren nach 1.1. wurden weitere Polyimide hergestellt. Die Zusam mensetzung sämtlicher Polyimide kann der folgenden Tabelle entnommen werden:
*TDI80=(20:80 Mischung aus 2,6- und 2,4-Toluenediisocyanat) ** keine Zugabe von tert.-Butanol 2. Herstellung der Formmassen
Zur Herstellung der Formmassen (FM-1 bis FM-5) wurden Mischungen der Polyimide mit Po- lybutylenterephthalat (Ultradur® B4500, PBT) in einen Xplore MC 15 Miniextruder in einer Men ge von 15 g gegeben und für 3 M inuten bei einer T emperatur von 260 bis 300°C bei 80 rpm gemischt. Die erhaltenen Formmassen zeigten in der DSC-Messung einen einzigen Tg-Wert. Die Mischungsverhältnisse und erhaltenen Tg-Werte sind in der nachfolgenden Tabelle zusam mengefasst:
Wie sich zeigte, konnte durch Zusatz von PI der Tg von Polybutylenterephthalat deutlich gestei gert werden.
Zur Herstellung der Formmassen FM6 bis FM9 wurden die Komponenten in einem Extruder des Typs ZSK 18 bei einer Gehäusetemperatur von 260°C, einer Schneckendrehzahl von 300 rpm und einem Durchsatz von 6 kg/h gemischt, granuliert und anschließend bei 100°C im Umluft trockenschrank für 6 Stunden getrocknet. Die Herstellung der Zugstäbe erfolgte mittels Spritz guss bei einer Massetemperatur von 260°C und einer Werkzeugtemperatur von 60°C.
Die erhaltenen Probekörper wurden nach der ISO 527 bei 23°C getestet. Die erhaltenen Ergeb nisse sind in der nachfolgenden Tabelle zusammengefasst.
Als Glasfaser wurde eine E-Glasfaser verwendet, welche mit einer Epoxy-Schlichte ausgerüstet war, es wurden Stapelfasern eingesetzt.
Die glasfaserverstärkten Formmassen weisen neben erhöhter Glastemperatur überra schenderweise auch höhere Steifigkeit und Festigkeit auf.

Claims

Patentansprüche
1. Thermoplastische Formmasse enthaltend ein Polyalkylenterephthalat und ein Polyimid, wobei die Formmasse eine einzige Glasübergangstemperatur in der DSC-Messung auf weist.
2. Thermoplastische Formmasse nach Anspruch 1, dadurch gekennzeichnet, dass die ein zige Glasübergangstemperatur einen Wert von mindestens 45°C, vorzugsweise einen Wert von mindestens 50°C aufweist.
3. Thermoplastische Formmasse nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polyalkylenterephthalat ein Polyethylen-, ein Polytrimethylen- oder ein Polybutylen- terephthalat oder eine Mischung davon ist, wobei es sich vorzugsweise bei dem Polyal- kyleneterephthalat um Polybutylenterephthalat handelt.
4. Thermoplastische Formmasse nach einem der Ansprüche 1 bis 3, dadurch gekenn zeichnet, dass das Polyimid durch Umsetzung mindestens eines Carbonsäuredianhyd rids mit mindestens einem Isocyanat, wobei das Isocyanat mindestens zwei Isocyanat- gruppen aufweist, erhalten wird.
5. Thermoplastische Formmasse nach Anspruch 4, dadurch gekennzeichnet, dass das mindestens eine Carbonsäuredianhydrid 1 ,2,4,5-Benzoltetracarbonsäureanhydrid ist.
6. Thermoplastische Formmasse nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das mindestens eine Isocyanat 4, 4‘-diphenylmethandiisocyanat, Oligomeres 4,4‘- Diphenylmethandiisocyanat, 2,4-Toluoldiisocyanat oder 2,6-Toluoldiisocyanat oder ein Gemisch aus diesen ist.
7. Thermoplastische Formmasse nach einem der Ansprüche 4 bis 6, dadurch gekenn zeichnet, dass mindestens drei Isocyanate, vorzugsweise ein Gemisch aus oligome-rem 4,4‘-Diphenylmethandiisocyanat, 2,4-Toluoldiisocyanat und 2,6-Toluoldiisocyanat einge setzt ist.
8. Thermoplastische Formmasse nach Anspruch 7, dadurch gekennzeichnet, dass das molare Verhältnis von 2,4-Toluoldiisocyanat zu 2,6-Toluoldiisocyanat im Bereich von 1 :1 bis 10:1 , vorzugsweise von 1,5:1 bis 8:1, weiter bevorzugt von 2:1 bis 6:1 weiter bevor zugt von 3:1 bis 5:1 und insbesondere bei 4:1 liegt.
9. Thermoplastische Formmasse nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das molare Verhältnis von oligomerem 4,4‘-Diphenylmethandiisocyanat zur Summe aus 2,4-Toluoldiisocyanat und 2,6-Toluoldiisocyanat im Bereich von 1 :1 bis 0,1 :1, vorzugs weise von 0,8:1 bis 0,2:1 , weiter bevorzugt 0,7:1 bis 0,3, weiter bevorzugt 0,5:1 bis 0,4:1, liegt.
10. Thermoplastische Formmasse nach einem der Ansprüche 4 bis 9, dadurch gekenn zeichnet, dass nach der Umsetzung des mindestens einen Carbonsäuredianhydrids mit dem mindestens einem Isocyanat eine Umsetzung mit einem Alkohol oder einem Amin, vorzugsweise einem Alkohol, insbesondere tert.-Butanol, erfolgt ist, um nicht umgesetz te Isocyanatgruppen abzureagieren.
11. Thermoplastische Formmasse nach einem der Ansprüche 1 bis 10, dadurch gekenn zeichnet, dass das Polyimid einen Isocyanatgehalt von weniger als 1 Gew.-% bezogen auf das Gesamtgewicht des Polyimids aufweist und bevorzugt isocyanatfrei ist.
12. Thermoplastische Formmasse nach einem der Ansprüche 1 bis 12, dadurch gekenn zeichnet, dass das Verhältnis der Gewichtsanteile von Polyalkylenterephthalat zu Po lyimid im Bereich von 1 :1 bis 9,9:1 , vorzugsweise von 2:1 bis 9:1 , weiter bevorzugt von 3:1 bis 4:1, liegt.
13. Thermoplastische Formmasse nach einem der Ansprüche 1 bis 12, dadurch gekenn zeichnet, dass der Anteil an Polyalkylenterephthalat in Bezug auf das Gesamtgewicht der Formmasse mindestens 50 Gew.-% aufweist.
14. Thermoplastische Formmasse nach einem der Ansprüche 1 bis 13, dadurch gekenn zeichnet, dass weiterhin Verstärkungsfasern, insbesondere Glasfasern, enthalten sind.
15. Verwendung einer thermoplastischen Formmasse nach einem der Ansprüche 1 bis 14 als Überzugsmittel oder zur Fierstellung von Fasern, Folien oder Formkörpern.
16. Fasern, Folien oder Formkörper hergestellt aus einer thermoplastischen Formmasse nach einem der Ansprüche 1 bis 14.
EP20829880.2A 2019-12-16 2020-12-16 Thermoplastische formmasse enthaltend polyalkylenterephthalat Withdrawn EP4077539A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19216713 2019-12-16
PCT/EP2020/086380 WO2021122715A1 (de) 2019-12-16 2020-12-16 Thermoplastische formmasse enthaltend polyalkylenterephthalat

Publications (1)

Publication Number Publication Date
EP4077539A1 true EP4077539A1 (de) 2022-10-26

Family

ID=68917717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20829880.2A Withdrawn EP4077539A1 (de) 2019-12-16 2020-12-16 Thermoplastische formmasse enthaltend polyalkylenterephthalat

Country Status (7)

Country Link
US (1) US20230027931A1 (de)
EP (1) EP4077539A1 (de)
JP (1) JP2023511493A (de)
KR (1) KR20220117281A (de)
CN (1) CN114846080A (de)
BR (1) BR112022011774A2 (de)
WO (1) WO2021122715A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2155687A (en) 1935-12-13 1939-04-25 Cincinnati Bickford Tool Co Safety manual and power spindle drive
US3277117A (en) 1963-12-18 1966-10-04 Standard Oil Co Method for preparation of anhydro derivatives of trimellitic anhydride
US4141927A (en) * 1975-05-22 1979-02-27 General Electric Company Novel polyetherimide-polyester blends
JP2644363B2 (ja) * 1990-06-08 1997-08-25 三井東圧化学株式会社 ポリイミド系樹脂組成物
WO1998023682A1 (fr) * 1996-11-25 1998-06-04 Teijin Limited Compositions de resines thermoplastiques contenant un polyimide non cristallin
JP2001131411A (ja) * 1999-11-08 2001-05-15 Teijin Ltd 樹脂組成物および成形体ならびにそれを用いた表面実装用電子部品
US7704422B2 (en) 2004-08-16 2010-04-27 Electromaterials, Inc. Process for producing monolithic porous carbon disks from aromatic organic precursors
JP5359273B2 (ja) 2006-07-25 2013-12-04 宇部興産株式会社 末端変性多分岐ポリイミド、金属メッキ被覆末端変性多分岐ポリイミド及びこれらの製造方法
EP2527402A1 (de) 2011-05-27 2012-11-28 Basf Se Thermoplastische Formmasse

Also Published As

Publication number Publication date
CN114846080A (zh) 2022-08-02
BR112022011774A2 (pt) 2022-08-30
WO2021122715A1 (de) 2021-06-24
JP2023511493A (ja) 2023-03-20
KR20220117281A (ko) 2022-08-23
US20230027931A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP0136528B1 (de) Verfahren zur Herstellung von Polyamidiminen und deren verwendung
DE2801701A1 (de) Verfahren zur katalyse der umsetzung zwischen einem organischen isocyanat und einer organischen carbonsaeure und/oder einem organischen carbonsaeureanhydrid
DE112015000662T5 (de) Polyesterharzzusammensetzung und die Polyesterharzzusammensetzung verwendender Formartikel
DE3889380T2 (de) Polyimidharz-Zusammensetzung.
DE1770146B2 (de) Verfahren zur Herstellung von PoIy-(arylen-triketoimidazolidinen)
DE3208697C2 (de) Verfahren zur Herstellung von Polyamidverbindungen
EP2714806B1 (de) Thermoplastische formmasse
WO2014023796A1 (de) Verfahren zur herstellung von imidgruppen enthaltenden polymerschäumen
DE2327116A1 (de) Flammverzoegerte polyurethan- und polyharnstoffmassen
DE2651762A1 (de) Verfahren zum aufbereiten oder aufwerten von polyestern
EP4077539A1 (de) Thermoplastische formmasse enthaltend polyalkylenterephthalat
WO2012150181A1 (de) Carbodiimide aus trisubstituierten aromatischen isocyanaten, ein verfahren zu deren herstellung und deren verwendung
DE4440409C2 (de) Verfahren zur Herstellung von Polyamidimid-Harzen mit hohem Molekulargewicht
EP0015479B1 (de) Temperaturbeständige vernetzte Polymere, ihre Verwendung, sie enthaltende Lösungen bzw. Mischungen und deren Verwendung
EP0136527B1 (de) Verfahren zur Herstellung von Polyamidimiden
EP0136526B1 (de) Verfahren zur herstellung von Polyamidimiden
DE2840960A1 (de) Triazinringe enthaltende dicarbonsaeuren und polyester aus diesen dicarbonsaeuren
DE3885796T2 (de) Polyimid Harzzubereitung.
EP0104417A2 (de) Verfahren zur Herstellung von Polyamidimiden
DE10025291A1 (de) Neue Phosphor-Stickstoff-Verbindungen als Flammschutzmittel in thermoplastischen Formmassen und ihre Herstellung
DE2264662C3 (de) Polyamidimidvorläufer enthaltende Zusammensetzung
EP0173212B1 (de) Aliphatisch-aromatische Polyamidimide, enthaltend Polyamide
EP0173207B1 (de) Polyamidimide mit modifizierten Endgruppen
EP0290910B1 (de) Spezielle Polyimide als Thermoplaste
DE19528647A1 (de) Thermoplastische Formmassen auf der Basis von Ethylenpolymerisaten und thermoplastischen Polyestern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20230213