EP4065889B1 - Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique - Google Patents

Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique Download PDF

Info

Publication number
EP4065889B1
EP4065889B1 EP20812007.1A EP20812007A EP4065889B1 EP 4065889 B1 EP4065889 B1 EP 4065889B1 EP 20812007 A EP20812007 A EP 20812007A EP 4065889 B1 EP4065889 B1 EP 4065889B1
Authority
EP
European Patent Office
Prior art keywords
gas
waste gas
afterburning
exhaust gas
volume flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20812007.1A
Other languages
German (de)
English (en)
Other versions
EP4065889A1 (fr
Inventor
Volker Wiegmann
Frank Dorstewitz
Andreas Kemminger
Helmut Biehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4065889A1 publication Critical patent/EP4065889A1/fr
Application granted granted Critical
Publication of EP4065889B1 publication Critical patent/EP4065889B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • F23G7/085Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/10Supplementary heating arrangements using auxiliary fuel
    • F23G2204/103Supplementary heating arrangements using auxiliary fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/40Supplementary heat supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes
    • F23G2209/141Explosive gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55003Sensing for exhaust gas properties, e.g. O2 content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55011Detecting the properties of waste to be incinerated, e.g. heating value, density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05004Mixing two or more fluid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific

Definitions

  • the invention relates to a method for the afterburning of exhaust gases containing carbon monoxide from metallurgical processes with discontinuous exhaust gas volumes, the composition and / or quantity of which changes during a period within which exhaust gas is produced.
  • Such metallurgical processes can be, for example, secondary metallurgical processes in which a molten metal is degassed or decarburized.
  • Flare gases In petrochemical and metallurgical processes it is generally known to burn exhaust gases with so-called flares. Flare gases often have different qualities. To ensure that the torch burns steadily, the gas must have a minimum combustible content. If this is not the case, natural gas may be added as fuel gas. Calorimeters are usually used to determine the calorific value of the flare gas. These include a measuring cell in which a measuring gas is burned. If the sample gas is successfully ignited, the amount of energy released during combustion or the calorific value of the gas is determined and, if necessary, natural gas is mixed into the flare gas.
  • carbon-containing material is fed to a melt pool of metal and slag in a direct melting vessel, with hot gas from furnaces being fed into a gas space is supplied above the melt bath for the purpose of afterburning the reaction gases of the melt bath.
  • the resulting exhaust gas is used with fuel gas and oxygen-containing combustion air to heat the ovens, whereby the temperature of the gas space in the ovens is regulated by supplying the exhaust gas with fuel gas and combustion air depending on the oxygen content in the exhaust gas of the ovens, if the exhaust gas has a certain calorific value falls below.
  • a method according to the preamble of claim 1 is, for example, from US 5,980,606 A known. Further state of the art is from the documents US 2019/242575 A1 and US 6,042,633 A known.
  • the invention is therefore based on the object of providing a method for the afterburning of carbon monoxide-containing exhaust gases from metallurgical processes with discontinuous exhaust gas volumes and exhaust gas compositions, which enables safe afterburning of the exhaust gas with a lower environmental impact.
  • One aspect of the invention relates to a method for the afterburning of carbon monoxide-containing exhaust gases from metallurgical processes with discontinuously occurring exhaust gas volumes, the composition of which changes during a period within which exhaust gas is produced, the method comprising conditioning the exhaust gas before the afterburning, such that At least one fuel gas and / or another additional gas is added in a controlled manner to the exhaust gas upstream of the afterburning, the regulation taking place depending on the composition of the exhaust gas and / or depending on the exhaust gas volume flow.
  • the afterburning of the exhaust gas preferably takes place with an open flame in the area of the mouth of an exhaust gas duct into the atmosphere.
  • the afterburning of the exhaust gas can take place in a combustion chamber provided for this purpose.
  • the invention can be summarized in that, according to the invention, both the calorific value of the exhaust gas and the exhaust gas volume flow are regulated, so that on the one hand the most complete combustion possible is ensured and, on the other hand, it is ensured that the exhaust gas volume flow is adjusted in such a way that a flow velocity of the exhaust gas in the relevant Cross section sets that is smaller than a flame propagation speed of the exhaust gas, so that re-ignition of the exhaust gas into an exhaust gas duct is excluded.
  • the exhaust gas composition and the exhaust gas volume flow are interrelated, especially if an inert gas is added as additional gas.
  • Nitrogen is expediently added to the exhaust gas as additional gas in order to increase the exhaust gas volume flow. This reduces the calorific value of the exhaust gas, which means that the amount of fuel gas supplied, for example in the form of natural gas, may have to be increased.
  • a calorific value of the exhaust gas is determined indirectly via the carbon monoxide content of the exhaust gas using at least one device for gas analysis becomes. For this purpose, results from a gas analysis that is required anyway can be used in secondary metallurgical processes.
  • control takes place depending on the carbon monoxide content of the exhaust gas, with the control goal of the greatest possible conversion of carbon monoxide to carbon dioxide, so that essentially stoichiometric afterburning is guaranteed.
  • control is carried out in such a way that the calorific value of the exhaust gas does not fall below ⁇ 2kWh/Nm 3 ( ⁇ 200 BTU/scf). It has surprisingly been found that with such a calorific value, an afterburning of carbon monoxide of over 97% is possible.
  • the control can be carried out in such a way that the exhaust gas volume flow does not fall below a given minimum volume flow.
  • the minimum volume flow of the exhaust gas is expediently determined as a function of the flow velocity of the exhaust gas in a given flow cross section so that the flow velocity is smaller than a flame propagation velocity of the exhaust gas during combustion.
  • Typical flame propagation speeds are on the order of approximately 0.2 to 0.5 m/s.
  • the afterburning is preferably carried out using at least one supporting gas torch arranged in or on a chimney.
  • fuel gas and/or additional gas or inert gas is expediently carried out via separate feed lines with volume flow controllable valves, which are controlled, for example, by means of a software controller.
  • a software controller can be implemented, for example, using a programmable logic controller.
  • the invention further relates to a method for exhaust gas aftertreatment during vacuum treatment of liquid steel in a secondary metallurgy
  • Process comprising the afterburning of the exhaust gas from the vacuum treatment of a metal melt by means of at least one torch in or on an exhaust gas duct of a vacuum pump, the method comprising conditioning of the exhaust gas before the afterburning, such that the exhaust gas upstream of the afterburning at least one fuel gas and / or a Additional gas is added in a controlled manner, the regulation taking place depending on the composition of the exhaust gas and depending on the exhaust gas volume flow.
  • the vacuum treatment of liquid steel is usually a batch process in which the exhaust gas aftertreatment according to the invention is particularly useful and expedient.
  • the exhaust gas aftertreatment according to the invention preferably takes place in secondary metallurgical processes such as VD, VD-OB, RH, RH-TOP, RH-OB, VacAOD VODC or VOD processes.
  • the afterburning is carried out periodically only during the decarburization phase of the molten metal. If the CO proportion of the exhaust gas falls below a predetermined minimum value, which is significantly below the value that would justify an increase in the calorific value with fuel gas, afterburning preferably does not take place. This is due to the fact that during the degassing of a melt, which in itself already represents a discontinuous process, exhaust gas containing carbon monoxide is only produced for a certain period of time.
  • the invention further relates to an afterburning device for afterburning exhaust gas during a vacuum treatment of liquid steel in a secondary metallurgical process, comprising at least one torch on an exhaust of an exhaust duct of a vacuum pump of a secondary metallurgical system, means for supplying fuel gas to the torch, and means for feeding an inert gas in the exhaust duct of the vacuum pump upstream of the flare, means for determining the exhaust gas volume flow and/or for measuring the exhaust gas velocity within the exhaust duct, means for analyzing the exhaust gas composition, means for metering the fuel gas and the inert gas and means for Control of the dosage of the fuel gas and/or the inert gas depending on the exhaust gas composition.
  • Volume flow controllable valves can be provided as means for metering the fuel gas and the inert gas, which are each arranged in feed lines for fuel gas and for natural gas, which are connected to the exhaust gas duct.
  • At least one control device is provided as a means for metering fuel gas and/or inert gas, the input variables of which are the exhaust gas composition, the exhaust gas volume flow, the amount of fuel gas supplied and the amount of inert gas supplied.
  • control device comprises at least one programmable logic controller.
  • control device can control a support burner of the torch in such a way that the torch is only operated when exhaust gas containing CO is produced.
  • afterburning device 1 which comprises a torch 2 with a support burner 3, which is connected to the exhaust 4 of an exhaust duct 5 of a vacuum pump, not shown, of a metallurgical plant.
  • the metallurgical system can, for example, include a casting ladle and devices for degassing the molten metal contained in the casting ladle.
  • the degassing of the metal melt can be carried out, for example, using a partial degassing process, such as the Ruhrstahl-Heraeus process, in which a vacuum vessel is immersed in the melt for degassing, with vacuum pumps designed as steam jet pumps generating a negative pressure in the vacuum vessel for degassing the melt becomes.
  • Multi-stage vacuum pumps which are connected to an exhaust gas duct 5, are usually used for this purpose.
  • vacuum pump is predominantly used in the singular in the present application.
  • this also includes an arrangement of vacuum pumps or a pump with a large number of pump stages.
  • the support burner 3 of the torch 2 can be put into and out of operation or ignited and extinguished via a control device 6.
  • the exhaust gas duct 5 is connected upstream of the flare 2 to an extinguishing line 7, a feed line 8 for fuel gas and a feed line 9 for nitrogen.
  • Nitrogen can be supplied as an extinguishing agent from an extinguishing agent tank 10 to the exhaust gas duct 5 via the extinguishing line 7.
  • a flow measuring device 11 for determining the exhaust gas volume flow is arranged in the exhaust gas duct 5 upstream of the mouth of the feed line 8 for fuel gas into the exhaust gas duct 5 and downstream of the mouth of the feed line 9 for nitrogen. Upstream of the mouth of the feed lines 9 in the A gas analysis device 12 is also provided in the exhaust gas duct, with which the exhaust gas composition is preferably continuously determined.
  • the supply of fuel gas and nitrogen as inert gas into the exhaust gas duct 5 is controlled according to the invention by means of a control device 21, the control scheme of which is shown below based on the illustration in Figure 2 is explained.
  • the control device 21, which is in Figure 3 is shown in simplified form, controls valves 13, 14 provided in the feed lines 8, 9, each of which meter more or less fuel gas or inert gas or nitrogen into the exhaust gas duct 5.
  • the control scheme shown includes two interdependent control circuits 15, 16, with a first control circuit 15 as a reference variable that regulates the calorific value of the exhaust gas determined based on the gas composition, and the in Figure 2
  • the second control circuit 16 shown below regulates the exhaust gas volume flow as a reference variable.
  • the calorific value of the exhaust gas is determined based on the measured values from the gas analysis device 12 via the CO proportion.
  • the gas analysis device 12 supplies, among other things, the oxygen content and the carbon monoxide content of the exhaust gas.
  • the CO content or carbon monoxide content of the exhaust gas determines its calorific value.
  • the calorific value of the exhaust gas continues to depend on the nitrogen content of the exhaust gas.
  • the exhaust gas volume flow must not fall below a certain minimum value in order to ensure sufficient gas velocity and thus prevent possible re-ignition in the exhaust gas duct.
  • an appropriate amount of inert gas or nitrogen is supplied to the exhaust duct, which in turn has an impact on the calorific value of the exhaust gas.
  • the calorific value of the exhaust gas should not fall below a specified minimum value, for example in the order of ⁇ 2kWh/Nm 3 (200 BTU/scf). This value corresponds to a stoichiometrically complete combustion of the CO
  • the first control circuit 15 includes a first control device 17 for the fuel gas supply, which acts on the volume flow controllable valve 13 in the feed line 8 for fuel gas.
  • the reference variable for the calorific value is determined using a calorific value calculator 18 specified, which uses the actual calorific value, the exhaust gas volume flow, the exhaust gas composition and the actual nitrogen volume flow from the second control circuit 16 as input variables.
  • the second control circuit 16 includes a second control device 19 for nitrogen addition, which acts on the valve 14 that can control the volume flow.
  • the second control circuit 16 further includes a volume flow computer 20, which uses the actually supplied nitrogen volume flow and the fuel gas volume flow as input variables.
  • the volume flow calculator 20 specifies the reference variable for the minimum exhaust gas volume flow and, in parallel, supplies this value to the calorific value calculator 18.
  • Figure 4 illustrates the exhaust gas composition and the amount of exhaust gas during a typical degassing process of a secondary metallurgical treatment of a steel melt, with the pressure prevailing during decarburization, the amount of exhaust gas, the amount of inert gas, the amount of natural gas and the CO proportion of the exhaust gas being plotted over time.
  • the pressure drop (vacuum/thin solid line) at the beginning of the degassing process and the pressure increase at the end of the degassing process are easily recognizable. This is accompanied by an initially high and then decreasing CO formation.
  • the dotted line illustrates the calorific value of the exhaust gas supported by the addition of natural gas (CH 4 ), whereas the bold solid curve illustrates the addition of nitrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Claims (15)

  1. Procédé de postcombustion de gaz d'échappement contenant du monoxyde de carbone provenant de processus métallurgiques avec des volumes de gaz d'échappement produits de manière discontinue, dont la composition et/ou la quantité varient pendant une période au cours de laquelle des gaz d'échappement sont produits, le procédé comprenant un conditionnement du gaz d'échappement avant la postcombustion, caractérisé en ce qu'au moins un gaz combustible et un gaz supplémentaire sont ajoutés de manière régulée aux gaz d'échappement en amont de la post-combustion, la régulation s'effectuant en fonction de la composition des gaz d'échappement et en fonction du débit volumique des gaz d'échappement, un gaz inerte, de préférence de l'azote, étant ajouté comme gaz supplémentaire.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un pouvoir calorifique des gaz d'échappement est déterminé indirectement par la teneur en monoxyde de carbone des gaz d'échappement en utilisant un dispositif d'analyse de gaz (12).
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la régulation s'effectue en fonction de la teneur en monoxyde de carbone des gaz d'échappement, l'objectif de la régulation étant d'atteindre une conversion maximale du monoxyde de carbone en dioxyde de carbone.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la régulation est effectuée de telle manière que le pouvoir calorifique des gaz d'échappement ne descende pas en dessous de ≥ 2kWh/ Nm3 (≥ 200 BTU/scf).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la régulation est effectuée de telle manière que le débit volumique des gaz d'échappement ne soit pas inférieur à un débit volumique minimal donné.
  6. Procédé selon la revendication 5, caractérisé en ce que le débit volumique minimal des gaz d'échappement est déterminé en fonction de la vitesse d'écoulement des gaz d'échappement dans une section d'écoulement donnée de telle sorte que la vitesse d'écoulement soit supérieure à une vitesse de propagation de flamme des gaz d'échappement lors de la combustion.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la postcombustion est réalisée au moyen d'au moins une torche de gaz de soutien (2) disposée dans ou sur une cheminée.
  8. Procédé selon la revendication 7, caractérisé en ce que l'addition de gaz combustible et/ou de gaz inerte s'effectue par des conduites d'alimentation (8, 9) avec des vannes (13, 14) à débit réglable.
  9. Procédé de post-traitement de gaz d'échappement pendant un traitement sous vide d'acier liquide dans un processus métallurgique comprenant la postcombustion du gaz d'échappement provenant du traitement sous vide d'un métal en fusion au moyen d'au moins une torche (2) dans ou sur un canal d'échappement (5) d'une pompe à vide, le procédé comprenant un conditionnement de l'effluent gazeux avant la postcombustion, de telle sorte qu'au moins un gaz combustible et un gaz supplémentaire sont ajoutés de manière régulée à l'effluent gazeux en amont de la postcombustion, la régulation étant effectuée en fonction de la composition de l'effluent gazeux et en fonction du débit volumique de l'effluent gazeux.
  10. Procédé selon la revendication 9, caractérisé en ce que la postcombustion n'est effectuée périodiquement que pendant une phase de décarburation du métal en fusion.
  11. Dispositif de postcombustion pour la postcombustion de gaz d'échappement pendant un traitement sous vide d'acier liquide lors d'un processus métallurgique secondaire, comprenant au moins une torche (2) sur un échappement (4) d'un canal de gaz d'échappement (5) d'une pompe à vide d'une installation métallurgique secondaire, des moyens pour l'alimentation de la torche en gaz combustible, des moyens pour l'injection d'un gaz inerte dans le canal de gaz d'échappement de la pompe à vide en amont de la torche (2), des moyens pour déterminer le débit volumique des gaz d'échappement et/ou pour mesurer la vitesse des gaz d'échappement à l'intérieur du canal d'échappement (5), des moyens pour analyser la composition des gaz d'échappement, des moyens pour doser le gaz combustible et le gaz inerte, ainsi que des moyens pour régler le dosage du gaz combustible et/ou du gaz inerte en fonction de la composition des gaz d'échappement.
  12. Dispositif de postcombustion selon la revendication 11, caractérisé en ce que des vannes (13, 14) à débit réglable sont prévues comme moyens de dosage du gaz combustible et du débit volumique de gaz inerte, qui sont disposées respectivement dans des conduites d'alimentation (8, 9) pour le gaz combustible et pour le gaz inerte, qui sont raccordées au canal d'échappement (5).
  13. Dispositif de postcombustion selon l'une des revendications 11 ou 12, caractérisée en ce qu'il est prévu comme moyen de dosage du gaz combustible et/ou du gaz inerte au moins un dispositif de régulation (21) dont les grandeurs d'entrée sont la composition des gaz d'échappement, le débit volumique des gaz d'échappement, la quantité de gaz combustible fournie et la quantité de gaz inerte fournie.
  14. Dispositif de postcombustion selon la revendication 13, caractérisé en ce que le dispositif de régulation comprend au moins un automate programmable.
  15. Dispositif de postcombustion selon l'une des revendications 13 ou 14, caractérisé en ce que le dispositif de régulation commande un brûleur d'appui (3) de la torche (2).
EP20812007.1A 2019-11-27 2020-11-23 Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique Active EP4065889B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019132181 2019-11-27
PCT/EP2020/083023 WO2021105045A1 (fr) 2019-11-27 2020-11-23 Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique

Publications (2)

Publication Number Publication Date
EP4065889A1 EP4065889A1 (fr) 2022-10-05
EP4065889B1 true EP4065889B1 (fr) 2024-02-28

Family

ID=73554435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20812007.1A Active EP4065889B1 (fr) 2019-11-27 2020-11-23 Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique

Country Status (5)

Country Link
US (1) US20220412554A1 (fr)
EP (1) EP4065889B1 (fr)
DE (1) DE102020214667A1 (fr)
ES (1) ES2984528T3 (fr)
WO (1) WO2021105045A1 (fr)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2005415C (fr) * 1989-01-10 1994-03-01 Willie H. Best Bruleur a gaz a rendement eleve
DE19518900C1 (de) * 1995-05-26 1996-08-08 Technometal Ges Fuer Metalltec Verfahren zur Nachverbrennung von bei der Vakuumbehandlung von Stahl entstehenden Reaktionsgasen
US5980606A (en) * 1996-03-22 1999-11-09 Steel Technology Corporation Method for reducing sulfuric content in the offgas of an iron smelting process
US10041672B2 (en) * 2013-12-17 2018-08-07 Schlumberger Technology Corporation Real-time burner efficiency control and monitoring
WO2016123666A1 (fr) 2015-02-03 2016-08-11 Technological Resources Pty. Limited Traitement de dégagement gazeux à faible valeur calorifique
JP6965167B2 (ja) * 2018-01-12 2021-11-10 三菱パワー株式会社 ガスタービンコジェネレーションシステム及びその運転切換方法
US11047573B2 (en) * 2018-02-05 2021-06-29 Chevron Phillips Chemical Company Lp Flare monitoring and control method and apparatus

Also Published As

Publication number Publication date
ES2984528T3 (es) 2024-10-29
DE102020214667A1 (de) 2021-05-27
WO2021105045A1 (fr) 2021-06-03
EP4065889A1 (fr) 2022-10-05
US20220412554A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
DE60124691T2 (de) Verfahren zum betrieb eines heizofens mit regenerativen brennern
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
DE60031206T2 (de) Verfahren zum Anfahren eines Direktschmelzprozesses
DE69910126T2 (de) Verbrennunungsverfahren eines Brennstoffes mit einem sauerstoffreichen Oxidationsmittel
EP2067378A1 (fr) Procédé pour faire fonctionner un four de métallurgie et four
DE10297306T5 (de) U-förmiger Schmelzkammerverbrennungskessel und Verfahren zum Betrieb des Kessels
WO2019034283A1 (fr) Installation de four et procédé pour le fonctionnement d'un four
DE2428891B2 (de) Schachtofen zum Schmelzen von mineralischen Substanzen zur Herstellung von Mineralwolle
EP4065889B1 (fr) Combustion du co dans un gaz d'échappement métallurgique secondaire, avec régulation de la valeur calorifique et régulation du débit volumique
DE3315431C2 (de) Verfahren zur Erhöhung der Standzeit von wassergekühlten Winddüsen beim Betrieb eines Blashochofens
EP0553632B1 (fr) Commande d'un four industriel
WO2018104169A1 (fr) Procédé et dispositif de réduction de nox dans des flux de gaz brûlés de récipients et de fours métallurgiques
DE102013016192B3 (de) Vorrichtung und Verfahren zum Elektroschlacke-Umschmelzen
WO2009115601A2 (fr) Dispositif de distribution pour coulée continue et procédé
DE2548067A1 (de) Verbesserungen bei der abgasverwertung bei konverteranlagen bzw. bei anlagen zum frischen von metall
DE3324064C2 (fr)
EP0893414B1 (fr) Procédé et dispositif de détermination et de réglage de la teneur d'oxygène dans l'atmosphere au-dessus du verre dans un canal d'écoulement pour le transfert de verre en fusion
DE2611458B1 (de) Verfahren und vorrichtung zur herstellung von gusseisen
DE102007031782A1 (de) Verfahren und Vorrichtung zum thermischen Behandeln von flüssigen oder gasförmigen Stoffen
DE10325557A1 (de) Verfahren zur Verringerung von Schadstoffen in den Abgasen eines Schmelzofens
EP4455312A1 (fr) Procédé de fonctionnement d'une installation sidérurgique de production de fer ou d'acier
DE2552392A1 (de) Verfahren zum zufuehren von waermeenergie an eisenschmelzen
AT407435B (de) Verfahren zum entsorgen von gasen
DE102019220416A1 (de) Verfahren zum Betreiben einer Frischluftzuführung einer metallurgischen Anlage sowie metallurgische Anlage
EP0377597A1 (fr) Procede et dispositif de minimisation de la consommation des gaz de travail lors de l'application de procedes metallurgiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007196

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2984528

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20241029