EP4062496A1 - Anschlussanordnung, anschlussklemme und elektronisches gerät - Google Patents
Anschlussanordnung, anschlussklemme und elektronisches gerätInfo
- Publication number
- EP4062496A1 EP4062496A1 EP20807676.0A EP20807676A EP4062496A1 EP 4062496 A1 EP4062496 A1 EP 4062496A1 EP 20807676 A EP20807676 A EP 20807676A EP 4062496 A1 EP4062496 A1 EP 4062496A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- clamping
- guide element
- leg
- conductor
- spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004020 conductor Substances 0.000 claims abstract description 105
- 238000003780 insertion Methods 0.000 claims description 22
- 230000037431 insertion Effects 0.000 claims description 22
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 230000000717 retained effect Effects 0.000 claims 1
- 230000000284 resting effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/28—Clamped connections, spring connections
- H01R4/48—Clamped connections, spring connections utilising a spring, clip, or other resilient member
- H01R4/4809—Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
- H01R4/4828—Spring-activating arrangements mounted on or integrally formed with the spring housing
- H01R4/4833—Sliding arrangements, e.g. sliding button
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/28—Clamped connections, spring connections
- H01R4/48—Clamped connections, spring connections utilising a spring, clip, or other resilient member
- H01R4/4809—Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
- H01R4/4828—Spring-activating arrangements mounted on or integrally formed with the spring housing
- H01R4/4835—Mechanically bistable arrangements, e.g. locked by the housing when the spring is biased
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/28—Clamped connections, spring connections
- H01R4/48—Clamped connections, spring connections utilising a spring, clip, or other resilient member
- H01R4/4809—Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar
- H01R4/48185—Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar adapted for axial insertion of a wire end
- H01R4/4819—Clamped connections, spring connections utilising a spring, clip, or other resilient member using a leaf spring to bias the conductor toward the busbar adapted for axial insertion of a wire end the spring shape allowing insertion of the conductor end when the spring is unbiased
- H01R4/4821—Single-blade spring
Definitions
- Terminal arrangement terminal arrangement, connector terminal and electronic device
- the invention relates to a connection arrangement for connecting an electrical conductor.
- the invention also relates to a connection terminal and an electronic device.
- connection arrangements usually have a clamping spring designed as a leg spring which has a holding leg and a clamping leg, wherein a conductor inserted into the connection arrangement can be clamped against the current bar by means of the clamping leg of the clamping spring. If, in particular, flexible conductors are clamped, the clamping spring must be moved into a release position by means of an actuating element before the conductor is inserted and thus actuated in order to pivot the clamping spring or the clamping leg away from the current bar so that the conductor enters the space between the current bar and the clamping spring can be inserted.
- the invention is based on the object of providing a connection arrangement as well as a connection terminal and an electronic device in which the handling can be simplified for a user when connecting conductors.
- the connection arrangement according to the invention has a current bar, a clamping spring which has a retaining leg and a clamping leg, wherein the clamping leg can be moved into a clamping position and a release position, a conductor connection space formed between a section of the current bar and the clamping leg of the clamping spring, a displaceably arranged guide element which is in operative connection with the clamping leg of the clamping spring, the clamping leg in the release position by means of the guide element is durable, and an actuating element by means of which the guide element for transferring the clamping leg of the clamping spring from the clamping position into the release position can be displaced.
- the clamping spring is arranged between the section of the current bar and the actuating element.
- the clamping spring is preferably designed as a leg spring which has a retaining leg and a clamping leg which is pivotable relative to the retaining leg. By pivoting the clamping leg, it can be moved into a release position in which the clamping leg is arranged at a distance from the current bar and a conductor to be connected can be introduced into or out of a conductor connection space thus formed between the current bar and the clamping leg, and into a clamping position in which the clamping leg can rest on the current bar or on the connected conductor in order to clamp the conductor against the current bar, can be transferred.
- connection arrangement has a particularly horizontally displaceably mounted guide element which is preferably in operative connection with the clamping spring both in the release position and in the clamping position of the clamping leg of the clamping spring, which means that the clamping leg is in operative connection with the guide element of the sliding movement and thus the Position of the guide element follows.
- the guide element holds the clamping leg in the release position against its spring force in that the guide element presses against the clamping leg.
- the guide element can be designed as a slide element.
- the connection arrangement also has an actuating element, by means of which the guide element can be displaced for transferring the clamping leg of the clamping spring from the clamping position into the release position.
- the actuating element can preferably be designed in such a way that it applies a compressive force to the guide element in order to move it against the spring force of the clamping leg of the clamping spring until the clamping leg reaches the release position. In this release position, the clamping leg can be removed from the actuating element indirectly via the guide element being held. As a result of the sliding movement of the guide element, it can apply a tensile force to the clamping leg of the clamping spring in order to transfer the clamping leg from the clamping position into the release position.
- the actuating element is preferably movable in a direction which is oriented transversely to the direction of the sliding movement of the guide element. The actuating element can preferably be moved in a purely translatory manner.
- the direction of movement of the actuating element is preferably oriented parallel to the direction of insertion of the conductor into the conductor connection space.
- the actuating element is arranged in such a way that it does not just dip into the conductor connection space, so that an interaction of the actuating element with the connected conductor can be prevented.
- the clamping spring, current bar and actuating element are arranged in such a way that the clamping spring is arranged between the section of the current bar against which a conductor to be connected is clamped and the actuating element. This can significantly simplify the handling of the connection arrangement for a user when connecting an electrical conductor, since the actuating element is positioned away from the conductor connection space and thus the insertion of a conductor is not hindered by actuating the actuating element.
- the guide element can have a sliding surface along which the actuating element can be guided.
- the actuating element can lie flat against the guide element on the sliding surface.
- the actuating element can slide along the guide element via the sliding surface and thereby transmit a compressive force to the guide element in order to move the guide element.
- the guide element can have two longitudinal side walls and two end walls arranged at right angles to the two longitudinal side walls, wherein the sliding surface can be arranged on one of the two end walls of the guide element. Due to the two longitudinal side walls and the two end walls arranged at right angles thereto, the guide element can have a rectangular configuration.
- the guide element can form a frame which, in particular, can enclose or encompass the section of the current bar, against which the conductor can be clamped, and the clamping spring.
- the sliding surface is preferably oriented in such a way that the sliding surface extends transversely to the two longitudinal side walls.
- the sliding surface can form an extension of the end wall on which the sliding surface is arranged.
- the sliding surface can form an inclined surface which can interact with an inclined surface formed on the actuating element. If the sliding surface is designed as an inclined surface, it preferably has an incline. The surface of the actuating element resting on the sliding surface is then preferably designed as an inclined surface which is inclined relative to the longitudinal extension of the actuating element, which extends in the direction of movement of the actuating element. The inclination of the sliding surface and the inclination of the surface of the actuating element can be formed at an angle between 30 ° and 50 ° to the actuating direction of the actuating element.
- both the sliding surface and the surface of the actuating element, which slides along the sliding surface are designed as inclined surfaces, the vertical direction of movement of the actuating element can be converted into a horizontal displacement movement of the guide element when the actuating element slides along the sliding surface.
- the sliding surface can extend in the direction of the actuating element.
- the sliding surface can thus form an extension of one of the two end walls in the direction of the actuating element.
- the guide element is preferably displaceable in such a way that a displacement movement of the guide element can take place transversely to an insertion direction of the conductor to be connected into the conductor connection space.
- the guide element has at least one spring contact edge against which the clamping leg can rest.
- the spring contact edge can be designed in such a way that the clamping limb or at least a part of the clamping limb can bear against the spring contact edge both in the release position and in the clamping position.
- the spring contact edge can be formed, for example, on a shoulder of the guide element.
- two such spring contact edges can be formed on the guide element so that the clamping leg can be guided over two such spring contact edges on the guide element.
- the two spring contact edges preferably extend parallel to one another on the guide element.
- the clamping leg has two sliding sections arranged laterally of a main section having a clamping edge and that the guide element has two spring contact edges arranged at a distance from one another, a first sliding section being able to rest against a first spring contact edge and a second sliding section against a second Spring contact edge can rest.
- the two sliding sections preferably each have a shorter length than the main section of the clamping leg.
- the main section and the two sliding sections preferably extend parallel to one another.
- the two sliding sections are preferably each designed to be curved, so that they can each form a skid that can slide along a respective spring contact edge.
- the main section is preferably straight.
- the two longitudinal side walls of the guide element can be designed to be so long in the direction of insertion of the conductor that the two longitudinal side walls can delimit the conductor connection space on a first side and a second side opposite the first side.
- the guide element can thus also form a guide for the conductor to be connected when it is introduced into the conductor connection space.
- the two long side walls can prevent incorrect insertion of the conductor.
- the conductor connection space can thus be delimited on two of its sides by the guide element and on its other two sides by the current bar and by the clamping leg of the clamping spring.
- One of the two spring contact edges can be formed on each of the two longitudinal side walls.
- the clamping spring can be supported on the current bar via its retaining leg.
- the clamping spring can rest flat against part of the current bar, for example with a section of the retaining leg.
- the holding limb can also have an opening through which the part of the current bar can penetrate, so that the holding limb can be suspended from the current bar.
- the part of the current bar against which the retaining leg of the clamping spring is supported is preferably arranged opposite the section of the current bar against which a conductor can be clamped. This part of the current bar can form an end section of the current bar.
- the connection arrangement can furthermore have a release element which, in the release position of the clamping spring, can be in engagement with the guide element.
- the trigger element can be actuated by the latter in such a way that the trigger element disengages from the guide element and the guide element can be displaced by a spring force of the clamping limb in such a way that the terminal limb in the clamping position can be transferred.
- a trigger element in particular a flexible conductor can be connected without actuating the actuating element and clamped against the current bar.
- the guide element can be in engagement with the release element in the release position of the clamping leg of the clamping spring.
- the release element is in engagement with the guide element, a displacement movement of the guide element is not possible or stopped.
- the clamping leg Via an operative connection or coupling of the trigger element with the guide element and the guide element with the clamping leg of the clamping spring in the release position of the clamping leg, the clamping leg can be held in this release position without the aid of the actuating element, so that in particular a flexible conductor can be inserted into the conductor connection space between the Current bar and the clamping spring can be introduced.
- the trigger element can have a pressure surface pointing in the direction of the conductor connection space, which can be arranged in alignment with an insertion area of the conductor into the connection arrangement or in alignment with the conductor connection space, so that the conductor hits the pressure surface of the release element when it is inserted into the connection arrangement, whereby a Pressure force can be applied from the conductor to the trigger element.
- the triggering element can, for example, be set in a pivoting movement or tilting movement in the direction of the insertion direction of the conductor, so that the release element is pivoted or tilted away from the guide element in the insertion direction of the conductor can be.
- the release element Due to the pivoting movement of the release element, the release element can be brought out of engagement with the guide element, so that the guide element is freely displaceable again and thus the guide element can be displaced solely by the spring force of the clamping leg without manual help in such a way that the clamping leg from the release position into the Clamped position can be transferred.
- a flexible conductor can be connected particularly easily just by the insertion movement of the conductor, without a user having to actuate additional elements, such as an actuating element, in order to release the clamping spring and transfer it from the release position to the clamping position. This facilitates the handling of the connection arrangement and saves time when connecting a conductor.
- the trigger element preferably extends over the area between the section of the current bar, against which a conductor can be clamped, and the clamping spring, so that the trigger element can delimit the conductor connection space on one side.
- the release element In order to release the release element from the guide element by means of the conductor inserted into the conductor connection space and thus to be able to bring it out of engagement with the guide element, the release element can be mounted tiltably relative to the guide element.
- the trigger element can thus be designed like a rocker. If the conductor to be connected is pressed against the release element, the release element can tilt in the direction of insertion of the conductor in order to disengage from the guide element and thus release the guide element so that it can be freely displaced again.
- the release element can have at least one undercut which, in the release position of the clamping leg of the clamping spring, has at least one locking lug the guide element can be locked.
- a latching connection can be formed between the guide element and the release element when the clamping leg of the clamping spring is in the release position.
- the trigger element preferably has two undercuts and the guide element preferably has two latching lugs, so that a double-acting latching can be formed between the guide element and the trigger element. If two undercuts are provided, these are preferably formed on two side surfaces of the release element that run parallel to one another.
- the trigger element can be connected to the retaining leg of the clamping spring.
- the trigger element is preferably connected to the holding leg in such a way that the trigger element can be pivoted relative to the holding leg.
- the pivot axis is then preferably formed in the area of the connection of the release element to the retaining leg of the clamping spring.
- the connection between the holding leg and the trigger element can preferably be designed in such a way that the holding limb is formed in one piece with the trigger element. It is also possible, however, for the release element to be an element or component formed separately from the clamping spring, the current bar and the guide element.
- connection terminal in particular a series terminal, which has at least one connection arrangement designed and developed as described above.
- the connection terminal can be arranged on a printed circuit board, for example. If the connection terminal is designed as a series terminal, it can be arranged on a mounting rail.
- connection terminal arrangement which can have a plurality of connection terminals arranged in a row, each of which can have at least one connection arrangement developed and developed as described above.
- a plug connector can also be provided which can have one or more of the previously described, developed and further developed connection arrangements.
- the object according to the invention can be achieved by means of an electronic device which can have at least one connection arrangement designed and developed as described above and / or at least one connection terminal designed and developed as described above.
- connection terminal 1 shows a schematic representation of a connection terminal with a connection arrangement according to the invention with the clamping leg of the clamping spring in a clamping position
- FIG. 2 shows a schematic sectional illustration of the connection terminal shown in FIG. 1 with the connection arrangement according to the invention with the clamping leg of the clamping spring in the clamping position
- FIG. 3 shows a schematic representation of the connection terminal shown in FIG. 1 with the clamping leg of the clamping spring in a release position
- FIG. 4 shows a schematic sectional illustration of the connection terminal shown in FIG. 3 with the connection arrangement according to the invention with the clamping leg of the clamping spring in the release position
- FIG. 5 shows a schematic representation of a further connection terminal with a connection arrangement according to the invention with the clamping leg of the clamping spring in a clamping position
- FIG. 6 shows a schematic representation of the connection terminal shown in FIG. 5 with the clamping leg of the clamping spring in a release position
- connection terminal 200 shows a connection terminal 200 with a housing 210, which can be formed from an insulating material, wherein a connection arrangement 100 for connecting a conductor, not shown here, is arranged or received in the housing 210.
- the connection arrangement 100 has a current bar 110 and a clamping spring 111 designed as a leg spring, as can also be seen in particular in the sectional illustration in FIG. 2.
- the clamping spring 111 has a holding leg 112 and a clamping leg 113.
- the holding limb 112 is held in a fixed position, whereas the clamping limb 113 can be pivoted relative to the holding limb 112. By pivoting the clamping leg 113, it can be transferred into a clamping position, as shown in FIGS. 1 and 2, and into a release position, as shown in FIGS. 3 and 4.
- the clamping limb 113 presses against a section 114 of the current bar 110 or against a conductor introduced into the connection arrangement 100 in order to clamp and connect it against the section 114 of the current bar 110.
- the clamping limb 113 is positioned at a distance from the section 114 of the current bar 110, so that a conductor can be inserted into the free space thus formed between the section 114 of the current bar 110 and the clamping limb 113.
- the clamping spring 111 is supported on the current bar 110 via its holding leg 112.
- the holding limb 112 has an opening 132 into which a part 133 of the current bar 110 protrudes, so that the holding limb 112 is suspended from the current bar 110.
- the part 133 of the current bar 110 forms an end portion of the current bar.
- the part 133 of the current bar 110 is formed parallel to the section 114 of the current bar 110.
- the connection arrangement 100 also has a guide element 115.
- the guide element 115 is mounted displaceably in particular with respect to the current bar 110, so that the guide element 115 can execute a horizontal displacement movement V.
- the clamping leg 113 of the clamping spring 111 can be transferred from the clamping position into the release position and held in the release position.
- the guide element 115 is in operative connection with the clamping leg 113 of the clamping spring 111.
- the guide element 115 has two spring contact edges 116a, 116b which are arranged parallel to one another and against which the clamping leg 113 rests.
- the clamping leg 113 has a main section 117, at the free end of which a clamping edge 118 is formed.
- Two sliding sections 119a, 119b are formed to the side of the main section 117, so that the main section 117 is arranged between the two sliding sections 119a, 119b.
- the two sliding sections 119a, 119b rest on the two spring contact edges 116a, 116b of the guide element 115, the sliding section 119a contacting the spring contact edge 116a and the sliding section 119b contacting the spring contact edge 116b.
- the sliding sections 119a, 119b rest against the spring contact edges 116a, 116b both in the release position and in the clamping position of the clamping leg 113 of the clamping spring 111.
- the sliding sections 119a, 119b have a shorter length than the main section 117.
- the sliding sections 119a, 119b are curved so that they form a runner shape, by means of which the sliding sections 119a, 119b when the clamping leg 113 is transferred into the release position and into the Can slide along the clamping position on the spring contact edges 116a, 116b, as shown in particular in FIG.
- the two spring contact edges 116a, 116b are formed on opposite longitudinal side walls 120a, 120b of the guide element 115.
- the two longitudinal side walls 120a, 120b are arranged parallel to one another.
- the two longitudinal side walls 120a, 120b each have an upper edge 121a, 121b and an opposite lower edge 122a, 122b.
- the spring contact edges 116a, 116b each extend perpendicular to the upper edge 121a, 121b. Starting from the horizontally extending upper edge 121a, 121b, the spring contact edges 116a, 116b extend downward in the direction of the horizontally extending lower edge 122a, 122b of the guide element 115.
- the current bar 110 and the clamping spring 111 are arranged between the two longitudinal side walls 120a, 120b of the guide element 115.
- the current bar 110 and the clamping spring 111 are enclosed by the guide element 115.
- the guide element 115 also has two end walls 123a, 123b, which are aligned parallel to one another.
- the two end walls 123a, 123b are arranged transversely to the two longitudinal side walls 120a, 120b of the guide element 115.
- the conductor connection space 124 is covered or limited by the two longitudinal side walls 120a, 120b of the guide element 115, so that the guide element 115 also forms a guide for the conductor to be connected.
- the conductor connection space 124 is formed in alignment with a conductor insertion opening 211 formed in the housing 210, via which the conductor to be connected can be inserted into the housing 210 of the connection terminal 200.
- the connection arrangement 100 furthermore has a trigger element 125.
- the trigger element 125 is arranged in alignment with the conductor insertion opening 211 and the conductor connection space 124.
- the trigger element 125 delimits the conductor connection space 124 at the bottom.
- the release element 125 In the release position of the clamping leg 113 of the clamping spring 111, the release element 125 is in engagement with the guide element 115, as can be seen in FIGS the sliding sections 119a, 119b of the clamping leg 113 is held in its position, so that an unintentional pivoting back of the clamping leg 113 from the release position into the clamping position can be prevented.
- the trigger element 125 has two laterally arranged undercuts 126 which, in the release position of the clamping leg 113, engage with the clamping spring 111 each of a latching lug 127a, 127b of the guide element 115 in order to form a latch between the guide element 115 and the release element 125.
- the latching lug 127a is formed on the lower edge 122a of the longitudinal side wall 120a and the latching lug 127b is formed on the lower edge 122b of the longitudinal side wall 120b.
- the release element 125 In the clamping position, the release element 125 is out of engagement with the guide element 115, as can be seen in FIGS. 1 and 2, so that the guide element 115 is freely displaceable.
- the trigger element 125 is mounted so that it can be tilted relative to the guide element 115.
- the trigger element 125 has a pressure surface 128 pointing in the direction of the conductor connection space 124, which is arranged in alignment with the conductor insertion opening 211 or in alignment with the conductor connection space 124, so that the conductor hits the pressure surface 128 of the release element 125 when it is inserted into the connection arrangement 100, whereby a compressive force is applied from the conductor to the trigger element 125.
- the release element 125 By applying a pressure force by means of the conductor to the pressure surface 128 and thus to the release element 125, the release element 125 can be set in a pivoting movement or tilting movement in the direction of the insertion direction E of the conductor, so that the release element 125 in the insertion direction E of the conductor from the Guide element 115 can be pivoted or tilted away.
- the trigger element 125 is connected to the holding leg 112 of the clamping spring 111.
- the release element 125 is connected in such a way that the release element 125 can be pivoted relative to the holding leg 112, which remains in a fixed position.
- the pivot axis can be formed in the area of the connection of the release element 125 to the holding leg 112.
- the displacement movement V of the guide element 115 when it is out of engagement with the triggering element 125, takes place in a direction which is oriented transversely to the direction of insertion E of the conductor to be connected into the conductor connection space 124.
- connection arrangement 100 has an actuating element 129.
- the actuation element 129 is mounted displaceably along an actuation direction B, the actuation direction B being parallel to the insertion direction E of the conductor.
- the actuation direction B extends transversely to the displacement movement B of the guide element 115.
- the guide element 115 can be displaced in such a way that the clamping leg 113 of the clamping spring 111 resting on the guide element 115 can be transferred from the clamping position to the release position.
- the actuating element 129 can be displaced in such a way that it applies a pressure force to the guide element 115 in order to move the guide element 115 against the spring force of the clamping leg 113 of the clamping spring 115 in such a way that when the release position of the Clamping leg 113, the guide element 115 can come into engagement with the release element 125.
- This displacement movement V of the guide element 115 causes the clamping leg 113 to pivot from the clamping position into the release position.
- the guide element 115 has a sliding surface 130 in the form of an inclined surface, along which the actuating element 129 can be guided.
- the sliding surface 130 is integrally formed on the end wall 123b of the guide element 115.
- the sliding surface 130 extends, starting from the end wall 123b, in the direction of the actuating element 129.
- the sliding surface 129 is arranged inclined due to the design as an inclined surface, so that the sliding surface 129 extends here at an angle between 130 ° and 160 ° to the end wall 123b of the guide element 115.
- the sliding surface 130 it would also be possible for the sliding surface 130 to be arranged at a distance from the end wall 123b between the two longitudinal side walls 120a, 120b, so that the sliding surface 130 is connected directly to the longitudinal side walls 120a, 120b.
- the actuating element 129 also has an inclined surface 131 designed in accordance with the inclination of the sliding surface 130.
- the inclined surface 131 of the actuating element 129 lies flat on the sliding surface 130, so that when the actuating element 129 is actuated in the actuating direction B, the inclined surface 131 can slide downward along the sliding surface 130 in order to move the guide element 115.
- the inclination of the sliding surface 130 and also the inclination of the inclined surface 131 preferably have an angle between 30 ° and 50 ° to the actuation direction B of the actuation element 129.
- the actuating element 129 is arranged adjacent to the retaining leg 112 of the clamping spring 111.
- the actuating element 129 is thus arranged behind the clamping spring 111.
- the clamping spring 111 is arranged between the section 114 of the current bar 110 and the actuating element 129.
- the clamping spring 111 is likewise arranged between the section 114 of the current bar 110, against which a conductor can be clamped, and the actuating element 129.
- the actuating element 129 is thus arranged at a distance from the conductor connection space 124.
- the clamping spring 111 is arranged between the conductor connection space 124 and the actuating element 129.
- connection arrangement 100 does not have a trigger element 125.
- the transfer of the clamping leg 113 from the clamping position to the release position in order to introduce a conductor into the conductor connection space 124 can thus take place in the embodiment shown in FIGS Sliding surface 130 slides and thereby the guide element 115 is displaced in such a way that This is shifted to the right here so that the clamping leg 113 is pulled away from the section 114 of the current bar 110 via its sliding sections 119a, 119b via the spring contact edges 116a, 116b so that the conductor connection space 124 becomes free and a conductor can be inserted into the conductor connection space 124.
- the retaining leg 112 of the clamping spring 111 is also supported on the current bar 110, in particular on the part 133 of the current bar 110, with the retaining leg 112 with its end section being flat on the part 133 of the current bar 110 is applied.
Landscapes
- Connections Arranged To Contact A Plurality Of Conductors (AREA)
- Details Of Connecting Devices For Male And Female Coupling (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019131145.4A DE102019131145A1 (de) | 2019-11-19 | 2019-11-19 | Anschlussanordnung, Anschlussklemme und elektronisches Gerät |
PCT/EP2020/081551 WO2021099173A1 (de) | 2019-11-19 | 2020-11-10 | Anschlussanordnung, anschlussklemme und elektronisches gerät |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4062496A1 true EP4062496A1 (de) | 2022-09-28 |
Family
ID=73452161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20807676.0A Pending EP4062496A1 (de) | 2019-11-19 | 2020-11-10 | Anschlussanordnung, anschlussklemme und elektronisches gerät |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220407244A1 (zh) |
EP (1) | EP4062496A1 (zh) |
JP (1) | JP7405974B2 (zh) |
CN (1) | CN114730995A (zh) |
DE (1) | DE102019131145A1 (zh) |
WO (1) | WO2021099173A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU501848B1 (de) * | 2022-04-14 | 2023-10-16 | Phoenix Contact Gmbh & Co | Anschlussanordnung |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1213024B (de) * | 1961-09-08 | 1966-03-24 | Siemens Ag | Klemme fuer schraubenlosen Leiteranschluss |
JP2585758Y2 (ja) * | 1992-11-30 | 1998-11-25 | 松下電工株式会社 | 端子装置 |
DE202004000418U1 (de) * | 2004-01-14 | 2005-06-02 | Bals Elektrotechnik Gmbh & Co. Kg | Schraubenlose Rahmenklemme |
US7115001B1 (en) * | 2005-09-30 | 2006-10-03 | Rockwell Automation Technologies, Inc. | Wire actuated terminal spring clamp assembly |
DE202006009460U1 (de) * | 2005-10-29 | 2007-03-15 | Weidmüller Interface GmbH & Co. KG | Anschlussvorrichtung für Leiter |
DE202013100740U1 (de) * | 2013-02-19 | 2013-03-08 | Weidmüller Interface GmbH & Co. KG | Federkraftklemme für Leiter |
ES2834962T3 (es) * | 2013-08-27 | 2021-06-21 | Weidmueller Interface Gmbh & Co Kg | Borne de resorte para cable |
WO2017207429A2 (de) | 2016-05-30 | 2017-12-07 | Weidmüller Interface GmbH & Co. KG | Federkraftklemme für leiter |
DE102016115601A1 (de) * | 2016-08-23 | 2018-03-01 | Wago Verwaltungsgesellschaft Mbh | Federkraftklemmanschluss |
DE202016104971U1 (de) * | 2016-09-08 | 2017-12-11 | Weidmüller Interface GmbH & Co. KG | Direktsteckklemme für einen Leiter |
DE102017117459A1 (de) * | 2017-08-02 | 2019-02-07 | Phoenix Contact Gmbh & Co. Kg | Anschlusseinrichtung zum Anschließen einer elektrischen Leitung |
CN111869011B (zh) * | 2018-03-13 | 2022-05-24 | 威德米勒界面有限公司及两合公司 | 用于导体的弹力端子 |
-
2019
- 2019-11-19 DE DE102019131145.4A patent/DE102019131145A1/de active Pending
-
2020
- 2020-11-10 CN CN202080080235.XA patent/CN114730995A/zh active Pending
- 2020-11-10 JP JP2022529063A patent/JP7405974B2/ja active Active
- 2020-11-10 WO PCT/EP2020/081551 patent/WO2021099173A1/de unknown
- 2020-11-10 US US17/777,298 patent/US20220407244A1/en active Pending
- 2020-11-10 EP EP20807676.0A patent/EP4062496A1/de active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2023505022A (ja) | 2023-02-08 |
WO2021099173A1 (de) | 2021-05-27 |
CN114730995A (zh) | 2022-07-08 |
US20220407244A1 (en) | 2022-12-22 |
JP7405974B2 (ja) | 2023-12-26 |
DE102019131145A1 (de) | 2021-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102020104140A1 (de) | Anschlussanordnung | |
DE102019135203A1 (de) | Anschlussanordnung, Anschlusseinrichtung sowie elektronisches Gerät | |
EP4062497A1 (de) | Anschlussanordnung, anschlussklemme und elektronisches gerät | |
EP3391470B1 (de) | Leiteranschlussklemme | |
EP2253260B1 (de) | Steckbares Rohrsystem für einen Staubsauger | |
DE102019131146B4 (de) | Anschlussanordnung | |
DE102020104138B4 (de) | Anschlussanordnung | |
WO2021099173A1 (de) | Anschlussanordnung, anschlussklemme und elektronisches gerät | |
DE102016115490B4 (de) | Anschlusselement | |
WO2021099172A1 (de) | Anschlussanordnung, anschlussklemme und elektronisches gerät | |
DE102005050778B4 (de) | Kontaktgehäuse sowie elektrische Kontaktvorrichtung | |
EP4033610A1 (de) | Elektrische anschlussanordnung | |
AT520878B1 (de) | Vorrichtung zum aufrasten auf eine tragschiene für reihenklemmen | |
DE102019135202B4 (de) | Anschlusseinrichtung | |
EP0197376B1 (de) | Sockel für Bauelement | |
DE102021101909A1 (de) | Anschlussanordnung, Reihenklemme sowie elektronisches Gerät | |
DE202020100528U1 (de) | Anschlussanordnung, Reihenklemme sowie elektronisches Gerät | |
EP1050929B1 (de) | Anschlusskontakt für Elektrogeräte zur lösbaren Verbindung von Kabeln | |
DE102005050779A1 (de) | Kontaktgehäuse sowie elektrische Kontaktvorrichtung | |
DE102021122816A1 (de) | Anschlussanordnung, Anschlussklemme und elektronisches Gerät | |
EP4285445A1 (de) | Anschlussanordnung, anschlussklemme und elektronisches gerät | |
DE102022132277A1 (de) | Anschlussklemme | |
DE102022100132A1 (de) | Elektrische Anschlussvorrichtung | |
DE102021201000A1 (de) | Modul zum Aufrasten auf einer Tragschiene | |
DE202009012913U1 (de) | Zugentlastungseinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220613 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240916 |