EP4055632A1 - Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben - Google Patents

Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben

Info

Publication number
EP4055632A1
EP4055632A1 EP20780665.4A EP20780665A EP4055632A1 EP 4055632 A1 EP4055632 A1 EP 4055632A1 EP 20780665 A EP20780665 A EP 20780665A EP 4055632 A1 EP4055632 A1 EP 4055632A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor fin
section
effect transistor
vertical field
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20780665.4A
Other languages
English (en)
French (fr)
Inventor
Dick Scholten
Jens Baringhaus
Daniel Krebs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP4055632A1 publication Critical patent/EP4055632A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Definitions

  • the invention relates to a vertical field effect transistor and a method of forming the same.
  • Silicon carbide (SiC) or gallium nitride (GaN) has led to the development of new component concepts and manufacturing processes.
  • the use of so-called power FinFETs can be advantageous.
  • the actively switchable component is provided by an inversion channel - for example by the p-region in an npn junction, in which an electron path is formed by applying a gate voltage.
  • the switchable component consists of a narrow semiconductor fin, which is switchable due to its geometry and the appropriate choice of gate metallization.
  • the channel resistance of the power FinFET is significantly lower than that of a conventional MOSFET or MISFET based on SiC or GaN. This results in a lower switch-on resistance of the entire component.
  • the channel area is formed in the area of the semiconductor fin at the level of the gate metal. Since the width of this area essentially determines the threshold voltage of the power FinFET, the width of this area should fall below a certain value in order to ensure complete depletion.
  • the structure of a related art power FinFET 100 is illustrated in FIG.
  • the conventional power FinFET 100 has on a substrate 102 a drift region 104 with n-doping, a drain electrode 106, a source electrode 108, a gate electrode 110, a semiconductor fin 112, a gate dielectric 114 and an insulation 116.
  • the semiconductor fin 112 is connected to the source electrode 108 by means of an n + doping 118.
  • the switchable component consists of the narrow semiconductor fin 112, which is switchable due to its geometry and a suitable choice of the gate metallization 110.
  • the width of the semiconductor fin depends in particular on the semiconductor material used for the semiconductor fin and the work function of the gate metal.
  • Such narrow semiconductor fins can no longer be produced using conventional photolithography, as is typically used in the mass production of power transistors.
  • thin semiconductor fins make electrical contact with a front-side metallization with low electrical resistance more difficult.
  • the object is achieved by a vertical field effect transistor.
  • the vertical field effect transistor has: a drift region, a semiconductor fin on or above the drift region, a connection region on or above the semiconductor fin, and a gate electrode which is formed next to at least one side wall of the semiconductor fin, the semiconductor -Fin in a first section, which is arranged laterally next to the gate electrode, has a smaller lateral extent than in a second section, which makes contact with the drift region, and / or than in a third section, which makes contact with the connection region.
  • the wider areas above and / or below the channel region (first section) enable a larger contact area on the semiconductor fin and thus a reduction in the parasitic electrical contact resistance of the contact areas of the semiconductor fin (second and / or third section of the semiconductor fin Fin).
  • a widened semiconductor fin in the area above and / or below the channel area enables the contact resistance of the front-side contact, for example the source electrode, to be reduced.
  • a semiconductor column can be formed in a further aspect.
  • the object is achieved by a method for forming a vertical field effect transistor.
  • the method comprises: forming a drift region, forming a semiconductor fin on or above the drift region, forming a connection region on or above the semiconductor fin, and forming a gate electrode next to at least one side wall of the semiconductor fin is formed, wherein the semiconductor fin is formed in a first section, which is arranged laterally next to the gate electrode, with a smaller lateral extent than in a second section, which makes contact with the drift region, and / or than in a third section, that contacts the connection area.
  • FIG 1 is a schematic representation of a vertical field effect transistor of the related art
  • FIGS. 2 to 6 show schematic sectional illustrations of a vertical field effect transistor in accordance with various embodiments
  • FIGS. 7A-F each show a schematic representation of a method step for producing a vertical field effect transistor in accordance with various embodiments
  • FIGS. 8A-C each show a schematic plan view of a semiconductor fin, a semiconductor column or a network of connected semiconductor fins in accordance with various embodiments.
  • FIG. 9 shows a flow diagram of a method for forming a vertical field effect transistor in accordance with various embodiments.
  • FIG. 2 shows a schematic sectional illustration of a vertical field effect transistor 200 in accordance with various embodiments.
  • the vertical field effect transistor 200 has a drift region 204 on a semiconductor substrate 202, a semiconductor fin 230 (the longitudinal direction of which extends perpendicular to the plane of the drawing) with a connection region 212 on or above the drift region 204, a first source / drain electrode (e.g., a source electrode 214) and a second
  • Source / drain electrode (e.g. a drain electrode 216).
  • the first source / drain electrode is a source electrode 214 and that the second source / drain electrode is a drain electrode 216.
  • the vertical field effect transistor 200 furthermore has a gate electrode 220 laterally next to at least one side wall of the semiconductor fin 230, the gate electrode 220 being electrically insulated from the source electrode 214 by means of an insulating layer 222.
  • a gate dielectric 218 is arranged between the gate electrode 220 and at least one side wall of the semiconductor fin 230.
  • the semiconductor fin 230 is designed such that it has a smaller lateral extent in a first section 208, which is arranged laterally next to the gate electrode 220, than in a second section 206, which contacts the drift region 204, and / or than in a third section 210, by means of which the source electrode 214 is contacted. This makes it possible to enlarge current-carrying contact areas on the front side of the substrate many times over. As a result, a significantly lower and more reliable ohmic contact area can be produced for the vertical field effect transistor.
  • the semiconductor fin 230 is laterally widened in the second section 206 and / or third section 210 with respect to the first section 208 and thus has a reduced overall resistance.
  • the widened areas in the second section 206 and third section 210 can be formed both with the same and with a lateral extent that is different from one another.
  • the semiconductor fin 230 has a greater lateral extent in the second section 206 but not in the third section 210 than in the first section 208 (see FIG. 3).
  • the semiconductor fin 230 has a greater lateral extent in the third section 210 but not in the second section 206 than in the first section 208 second and third sections 206, 210 have a greater lateral extent than in the first section 208.
  • the semiconductor fin 230 can have at least one essentially linear or straight or vertically planar side wall.
  • the semiconductor fin 230 has, for example, a linear first side wall and a linear second side wall, which is opposite to the first side wall.
  • the first and second side walls can be parallel to each other.
  • FIG. 2 shows a schematic sectional view through a single FinFET cell in accordance with various embodiments.
  • the vertical field effect transistor can be a power semiconductor component.
  • the semiconductor substrate 202 can be a GaN substrate 202 or a SiC substrate 202.
  • a weakly n-conducting semiconductor drift region 204 can be formed (eg applied) on the semiconductor substrate 202, for example a GaN drift region 204 or an SiC drift region 204.
  • an n-conducting semiconductor region can be in the form the semiconductor fin 230 may be designed, for example in the form of a GaN or SiC fin.
  • the connection region 212 can comprise or be formed from an n-doped (e.g. n + doped) semiconductor material.
  • the semiconductor fin 230 in the first section 208 has, for example, a lateral dimension in the plane of the drawing shown in the range from approximately 100 nm to approximately 200 nm and a vertical dimension in the plane of the drawing shown in the range of about 0.3 pm to about 3 pm.
  • the field effect transistor 200 can be normally off, since the electron gas below the semiconductor fin 230 in the drift region 204 can be depleted.
  • a positive voltage to the gate electrode 220 electrons can be accumulated in the region of the semiconductor fin 230 which is adjacent to the gate electrode 220. The electrons can flow from the source electrode 214 through the semiconductor fin 230 into the bottom of the semiconductor fin 230 and from there into the drift region 204 and further through the drift region 204 and the substrate 202 into the drain electrode 216.
  • connection region 212 is formed over the entire depth (in the plane of the drawing) over the third section 210.
  • the gate dielectric 218, the drift region 204 and / or the semiconductor fin 230 can be formed such that the interface to the gate dielectric 218 has rounded corners and / or edges or has the largest possible radius of curvature. This enables field peaks to be reduced.
  • connection region 212 has a lateral extent that is greater than the lateral extent of the semiconductor fin 230 in the third section 210, as shown in FIG. 3 illustrating a vertical field effect transistor 300 in accordance with various embodiments.
  • the semiconductor fin 230 can have a connection region 402 in the second section 206, which has a greater conductivity than the semiconductor fin 230 in the first section 208 and / or than the drift region 204, as shown in FIG. 4 showing a vertical field effect transistor 400 in accordance with various embodiments.
  • a shielding structure 404 can be provided, which is formed laterally next to the connection region 402, the shielding structure 404 having a different conductivity type than that
  • connection area 402 as shown in FIG. 4 is illustrated.
  • the connection region 402 in the second section may comprise or be formed from an n-doped (e.g. n + doped) semiconductor material.
  • the shielding structure 404 has, for example, p-doped or intrinsic semiconductor material or is formed therefrom.
  • the semiconductor fin 230 can be more heavily n-doped in the second section 206 than in the first section 208. This enables better current spreading. Furthermore, a shielding structure 404 can be provided, which is arranged below the gate electrode 220 in the drift region 204. This enables the gate dielectric 218 to be shielded from field spikes. In the second section 206, the semiconductor fin 230 can have an increased n-doping. Alternatively, the increased n-doping can be formed up to the lower edge of the shielding structure 404. The shielding structure 404 with the p-doping can be connected to the source electrode 214 in an electrically conductive manner.
  • FIG. 5 illustrates a vertical field effect transistor 500 according to FIG shows various embodiments.
  • the second insulating layer 223 can be arranged between the gate dielectric 218 and the drift region 204.
  • the second insulating layer 223 may have a greater thickness than the gate dielectric 218.
  • At least one side wall of the semiconductor fin 230 can be curved or curved, as is illustrated in FIG. 6, which shows a vertical field effect transistor 600 in accordance with various embodiments.
  • a multiplicity of semiconductor fins 230 can be arranged next to one another (see FIG. 8A).
  • one or more semiconductor columns 240 can be provided.
  • a network of two or more interconnected semiconductor fins 230 can be provided (see FIG. 8C).
  • FIG. 9 illustrates a flowchart of a method 900 for forming a vertical field effect transistor in accordance with various embodiments.
  • the method 900 includes: forming 910 a drift region; Formation 920 of a semiconductor fin on or above the drift region, and formation 930 of a connection region on or above the semiconductor fin, and formation 940 of a gate electrode which is formed next to at least one side wall of the semiconductor fin.
  • the semiconductor fin is formed in a first section, which is arranged laterally next to the gate electrode, with a smaller lateral extent than in a second section, which contacts the drift region, and / or than in a third section, which contacts the connection region .
  • the laterally smaller extension of the semiconductor fin can be formed, for example, using an etch stop mask and anisotropic etching.
  • the etch stop mask can be formed on or above the semiconductor fin.
  • gallium nitride (GaN), gallium oxide (GaOx), aluminum nitride (AlN), diamond an anisotropic etching process can offer the possibility of the shape of the semiconductor fins 230 shown in FIG to realize.
  • FIGS. 7A-F schematic sectional views of an example of a method for forming a vertical field effect transistor based on GaN are illustrated.
  • n + doped semiconductor material 212
  • a flat semiconductor fin is formed in the n + doped semiconductor material, as a result of which the connection region 212 is formed in a structured manner.
  • the structuring can be formed by means of wet chemical etching or dry etching.
  • gallium nitride gallium oxide and aluminum nitride, for example, dry etching in a chlorine-containing plasma can be used.
  • a comparable etching in an oxygen-containing plasma can be used for diamond.
  • Wet chemical etching processes for gallium nitride are possible, for example, in potassium hydroxide (KOH) or tetramethylammonium hydroxide (TMAH) of various concentrations and temperatures.
  • FIG. 7B shows a masking or a formation of a mask 702 on or above the connection region 212 and a structuring or formation of a trench structure (trench) in order to expose or form the semiconductor fin.
  • Nitride and / or oxide compounds can be used as masking materials.
  • FIG. 7C shows anisotropic wet etching, for example by means of KOH or TMAH, in order to form the first section of the semiconductor fin.
  • FIG. 7D shows a further masking or formation of a mask 704 on or above the semiconductor fin.
  • FIG. 7E shows the formation of a further trench structure around the masked semiconductor fin, in order to form the widening of the semiconductor fin 230 or the second section of the semiconductor fin.
  • FIG.7F shows a formation of the gate, source and drain electrodes and the insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

Es wird ein vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) bereitgestellt, aufweisend: einen Driftbereich (204); eine Halbleiter-Finne (230) auf oder über dem Driftbereich (204), und einen Anschlussbereich (212) auf oder über der Halbleiter-Finne (230), eine Gate-Elektrode (220), die neben mindestens einer Seitenwand der Halbleiter-Finne (230) ausgebildet ist, wobei die Halbleiter-Finne (230) in einem ersten Abschnitt (208), der lateral neben der Gate-Elektrode (220) angeordnet ist, eine geringere laterale Ausdehnung aufweist als in einem zweiten Abschnitt (206), der den Driftbereich (204) kontaktiert, und/oder als in einem dritten Abschnitt (210), der den Anschlussbereich (212) kontaktiert.

Description

Beschreibung VERTIKALER FELDEFFEKTTRANSISTOR UND VERFAHREN ZUM AUSBILDEN DESSELBEN
Die Erfindung betrifft einen vertikalen Feldeffekttransistor und ein Verfahren zum Ausbilden desselben.
Im Automotivbereich sind mit der fortschreitenden Entwicklung hin zur Elektromobilität Lösungen für schnell und verlustfrei schaltende Leistungshalbleiter gefragt. Der gleichzeitige Trend von lateralen zu vertikalen Bauteilen sowie der Trend der seit Jahrzehnten etablierten Siliziumtechnologie hin zu sogenannten „wide-band-gap“ Materialien, d.h. Halbleitermaterialien mit breitem Bandabstand, beispielsweise
Siliziumcarbid (SiC) oder Galliumnitrid (GaN), hat hierbei zur Entwicklung von neuen Bauteilkonzepten und Fertigungsprozessen geführt.
Für die Anwendung von Halbleitern mit breitem Bandabstand kann der Einsatz von sogenannten Leistungs-FinFETs (Fin= Finne, FET= Feldeffekttransistor) vorteilhaft sein. In konventionellen MOSFETs oder MISFETs, wird die aktiv schaltfähige Komponente durch einen Inversionskanal bereitgestellt - beispielsweise durch das p-Gebiet in einem npn- Übergang, in welchem durch Anlegen einer Gate-Spannung ein Elektronenpfad ausgebildet wird. In einem Leistungs-FinFET hingegen besteht die schaltfähige Komponente aus einer schmalen Halbleiter-Finne, welche durch ihre Geometrie und passende Wahl der Gate-Metallisierung schaltfähig ist. Der Kanalwiderstand des Leistungs-FinFET ist wesentlich geringer als bei einem konventionellen MOSFET oder MISFET auf Basis von SiC oder GaN. Hieraus resultiert ein geringerer Einschaltwiderstand des gesamten Bauteils.
Beim Leistungs-FinFET bildet sich der Kanalbereich im Bereich der Halbleiter-Finne auf Höhe des Gate-Metalls aus. Da die Breite dieses Bereichs wesentlich die Schwellenspannung des Leistungs-FinFETs bestimmt, sollte dieser Bereich in seiner Breite einen bestimmten Wert unterschreiten, um eine vollständige Verarmung sicherzustellen. Die Struktur eines Leistungs-FinFETs 100 der bezogenen Technik ist in FIG.l veranschaulicht. Der herkömmliche Leistungs-FinFET 100 weist auf einem Substrat 102 einen Driftbereich 104 mit einer n- Dotierung, eine Drain- Elektrode 106, eine Source- Elektrode 108, eine Gate- Elektrode 110, eine Halbleiter-Finne 112, ein Gate-Dielektrikum 114 und eine Isolation 116 auf. Die Halbleiter-Finne 112 ist mittels einer n+ Dotierung 118 mit der Source- Elektrode 108 verbunden. In dem Leistungs-FinFET 100 besteht die schaltfähige Komponente aus der schmalen Halbleiter-Finne 112, welche durch ihre Geometrie und passende Wahl der Gate-Metallisierung 110 schaltfähig ist. Die Breite der Halbleiter-Finne hängt insbesondere vom verwendeten Halbleiter-Material der Halbleiter- Finne sowie der Austrittsarbeit des Gate-Metalls ab. Derartig schmale Halbleiter-Finnen können unter Verwendung konventioneller Fotolithographie, wie sie typischerweise in der Massenfertigung von Leistungstransistoren verwendet wird, nicht mehr herstellbar sein. Zudem erschweren dünne Halbleiter- Finnen die elektrische Kontaktierung mit einer Vorderseiten-Metallisierung mit geringem elektrischen Widerstand.
Eine Aufgabe der Erfindung ist es, einen vertikalen Feldeffekttransistor sowie ein Verfahren zum Ausbilden desselben bereitzustellen, der/das einen vertikalen Feldeffekttransistor mit einem verbesserten Vorderseiten kontakt ermöglicht.
Die Aufgabe wird gemäß einem Aspekt der Erfindung gelöst durch einen vertikalen Feldeffekttransistor. Der vertikale Feldeffekttransistor weist auf: einen Driftbereich, eine Halbleiter-Finne auf oder über dem Driftbereich, einen Anschlussbereich auf oder über der Halbleiter- Finne, und eine Gate- Elektrode, die neben mindestens einer Seitenwand der Halbleiter-Finne ausgebildet ist, wobei die Halbleiter-Finne in einem ersten Abschnitt, der lateral neben der Gate- Elektrode angeordnet ist, eine geringere laterale Ausdehnung aufweist als in einem zweiten Abschnitt, der den Driftbereich kontaktiert, und/oder als in einem dritten Abschnitt, der den Anschlussbereich kontaktiert. Die breiteren Bereiche ober- und/oder unterhalb des Kanalgebiets (erster Abschnitt) ermöglichen eine größere Kontaktfläche auf der Halbleiter- Finne und damit ein Reduzieren des parasitären elektrischen Kontakt- Widerstandes der Kontaktbereiche der Halbleiter- Finne (zweiter und/oder dritter Abschnitt der Halbleiter- Finne). Eine verbreiterte Halbleiter- Finne im Bereich ober- und/oder unterhalb des Kanalgebietes ermöglicht eine Reduzierung des Kontaktwiderstandes des Vorderseitenkontaktes, beispielsweise der Source-Elektrode.
Alternativ zu einer Halbleiter- Finne kann in einem weiteren Aspekt eine Halbleiter-Säule ausgebildet sein.
Die Aufgabe wird gemäß einem weiteren Aspekt der Erfindung gelöst durch ein Verfahren zum Ausbilden eines vertikalen Feldeffekttransistors. Das Verfahren weist auf: Ausbilden eines Driftbereichs, Ausbilden einer Halbleiter- Finne auf oder über dem Driftbereich, Ausbilden eines Anschlussbereichs auf oder über der Halbleiter-Finne, und Ausbilden einer Gate- Elektrode, die neben mindestens einer Seitenwand der Halbleiter- Finne ausgebildet wird, wobei die Halbleiter- Finne in einem ersten Abschnitt, der lateral neben der Gate- Elektrode angeordnet ist, mit einer geringeren lateralen Ausdehnung ausgebildet wird als in einem zweiten Abschnitt, der den Driftbereich kontaktiert, und/oder als in einem dritten Abschnitt, der den Anschlussbereich kontaktiert. Dies ermöglicht, dass zur Herstellung der vertikalen Feldeffekttransistoren, hinsichtlich Investitions- und Betriebskosten, auf eine im Vergleich zu anderen Konzepten kostengünstigere Anlagenausstattung zurückgegriffen werden kann.
Weiterbildungen der Aspekte sind in den Unteransprüchen und der Beschreibung dargelegt. Ausführungsformen der Erfindung sind in den Figuren dargestellt und werden im Folgenden näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung eines vertikalen Feldeffekttransistors der bezogenen Technik; Figuren 2 bis 6 schematische Schnittdarstellungen eines vertikalen Feldeffekttransistors gemäß verschiedenen Ausführungsformen;
Figuren 7A-F jeweils eine schematische Darstellung eines Verfahrensschritts zum Herstellen eines vertikalen Feldeffekttransistors gemäß verschiedenen Ausführungsformen;
Figuren 8A-C jeweils eine schematische Aufsicht auf eine Halbleiter-Finne, eine Halbleiter-Säule bzw. ein Netzwerk aus verbundenen Halbleiter- Finnen gemäß verschiedenen Ausführungsformen; und
Figur 9 ein Ablaufdiagramm eines Verfahrens zum Ausbilden eines vertikalen Feldeffekttransistors gemäß verschiedenen Ausführungsformen. In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsbeispiele gezeigt sind, in denen die Erfindung ausgeübt werden kann. Es versteht sich, dass andere Ausführungsbeispiele benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen Ausführungsbeispiele miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist. FIG.2 zeigt eine schematische Schnittdarstellung eines vertikalen Feldeffekttransistors 200 gemäß verschiedenen Ausführungsformen. In verschiedenen Ausführungsformen weist der vertikale Feldeffekttransistor 200 einen Driftbereich 204 auf einem Halbleiter- Substrat 202, eine Halbleiter- Finne 230 (deren Längsrichtung sich senkrecht zur Zeichenebene erstreckt) mit einem Anschlussbereich 212 auf oder über dem Driftbereich 204, eine erste Source/Drain- Elektrode (z.B. eine Source- Elektrode 214) und eine zweite
Source/Drain- Elektrode (z.B. eine Drain- Elektrode 216) auf. Nachfolgend wird beispielhaft angenommen, dass die erste Source/Drain- Elektrode eine Source- Elektrode 214 ist und dass die zweite Source/Drain- Elektrode eine Drain- Elektrode 216 ist. Der vertikale Feldeffekttransistor 200 weist weiterhin eine Gate- Elektrode 220 lateral neben mindestens einer Seitenwand der Halbleiter- Finne 230 auf, wobei die Gate- Elektrode 220 mittels einer Isolierschicht 222 von der Source- Elektrode 214 elektrisch isoliert ist. Ein Gate- Dielektrikum 218 ist zwischen der Gate- Elektrode 220 und mindestens einer Seitenwand der Halbleiter- Finne 230 angeordnet. Die Halbleiter-Finne 230 ist derart ausgebildet, dass sie in einem ersten Abschnitt 208, der lateral neben der Gate- Elektrode 220 angeordnet ist, eine geringere laterale Ausdehnung aufweist als in einem zweiten Abschnitt 206, der den Driftbereich 204 kontaktiert, und/oder als in einem dritten Abschnitt 210, mittels dessen die Source- Elektrode 214 kontaktiert ist. Dies ermöglicht es, stromführende Kontaktflächen an der Substrat- Vorderseite um ein Vielfaches zu vergrößern. Dadurch kann ein deutlich niedrigerer und zuverlässigerer ohmscher Kontaktbereich für den vertikalen Feldeffekttransistor hergestellt werden.
Mit anderen Worten: Die Halbleiter- Finne 230 ist im zweiten Abschnitt 206 und/oder dritten Abschnitt 210 bezüglich des ersten Abschnitts 208 lateral verbreitert und verfügt so über einen reduzierten Gesamtwiderstand. Die Verbreiterungen im zweiten Abschnitt 206 und dritten Abschnitt 210 können sowohl mit gleicher, als auch mit zueinander unterschiedlicher lateraler Ausdehnung ausgebildet sein. In verschiedenen Ausführungsformen weist die Halbleiter- Finne 230 in dem zweiten Abschnitt 206 aber nicht in dem dritten Abschnitt 210 eine größere laterale Ausdehnung auf als in dem ersten Abschnitt 208 (siehe FIG. 3). Alternativ weist die Halbleiter-Finne 230 in dem dritten Abschnitt 210 aber nicht in dem zweiten Abschnitt 206 eine größere laterale Ausdehnung auf als in dem ersten Abschnitt 208. Alternativ weist die Halbleiter- Finne 230 in dem zweiten und dritten Abschnitt 206, 210 eine größere laterale Ausdehnung auf als in dem ersten Abschnitt 208. Die Halbleiter- Finne 230 kann mindestens eine im Wesentlichen lineare bzw. gerade oder vertikal planare Seitenwand aufweisen. Die Halbleiter- Finne 230 weist beispielsweise eine lineare erste Seitenwand und eine lineare zweite Seitenwand, die der ersten Seitenwand gegenüberliegt, auf. Die erste und zweite Seitenwand können zueinander parallel sein.
FIG.2 zeigt eine schematische Schnittansicht durch eine einzelne FinFET-Zelle gemäß verschiedenen Ausführungsformen. Im Allgemeinen sind viele hundert bis tausend solcher Zellen parallelgeschaltet, und die Struktur setzt sich in der dritten Dimension in die Ebene hinein fort. Durch Kombination mehrerer Zellen entsteht ein zweidimensional ausgedehntes Feld von FinFET-Zellen. Der vertikale Feldeffekttransistor kann ein Leistungshalbleiter-Bauelement sein. Als Beispiel: das Halbleiter-Substrat 202 kann ein GaN-Substrat 202 oder ein SiC-Substrat 202 sein. Auf dem Halbleiter-Substrat 202 kann ein schwach n-leitender Halbleiter- Driftbereich 204 ausgebildet (z.B. aufgebracht) sein, beispielsweise ein GaN-Driftbereich 204 oder ein SiC-Driftbereich 204. Oberhalb des Driftbereichs 204 kann ein n-leitendes Halbleiter-Gebiet in Form der Halbleiter- Finne 230 ausgebildet sein, beispielsweise in Form einer GaN- oder SiC-Finne. Der Anschlussbereich 212 kann ein n dotiertes (z.B. n+ dotiertes) Halbleitermaterial aufweisen oder daraus gebildet sein.
Für die Funktion des vertikalen Feldeffekttransistors 200 als Transistor bzw. Schalter weist die Halbleiter- Finne 230 in dem ersten Abschnitt 208 beispielsweise eine laterale Ausdehnung in der dargestellten Zeichenebene im Bereich von ungefähr 100 nm bis ungefähr 200 nm auf und eine vertikale Ausdehnung in der dargestellten Zeichenebene im Bereich von ungefähr 0,3 pm bis ungefähr 3 pm.
Ohne Anlegen einer Gate-Spannung kann der Feldeffekttransistor 200 selbstsperrend sein, da das Elektronengas unterhalb der Halbleiter- Finne 230 in dem Driftbereich 204 verarmt sein kann. Durch Anlegen einer positiven Spannung an die Gate- Elektrode 220 können Elektronen in dem Bereich der Halbleiter- Finne 230, welcher der Gate- Elektrode 220 benachbart ist, akkumuliert werden. Die Elektronen können von der Source- Elektrode 214 durch die Halbleiter-Finne 230 in den Boden der Halbleiter-Finne 230 fließen und von dort in den Driftbereich 204, und weiter durch den Driftbereich 204 und das Substrat 202 in die Drain- Elektrode 216 gelangen.
In verschiedenen Ausführungsformen ist der Anschlussbereich 212 in ganzer Tiefe (in die Zeichenebene) über dem dritten Abschnitt 210 ausgebildet. In verschiedenen Ausführungsformen können das Gate- Dielektrikum 218, der Driftbereich 204 und/oder die Halbleiter-Finne 230 derart ausgebildet sein, dass die Grenzfläche zum Gate- Dielektrikum 218 abgerundete Ecken und/oder Kanten aufweist bzw. einen möglichst großen Krümmungsradius aufweist. Dies ermöglicht, Feldspitzen zu reduzieren.
In verschiedenen Ausführungsformen weist der Anschlussbereich 212 eine laterale Ausdehnung auf, die größer ist als die laterale Ausdehnung der Halbleiter-Finne 230 im dritten Abschnitt 210, wie in FIG. 3 veranschaulicht ist, die einen vertikalen Feldeffekttransistor 300 gemäß verschiedenen Ausführungsformen zeigt.
Die Halbleiter-Finne 230 kann in dem zweiten Abschnitt 206 einen Verbindungsbereich 402 aufweisen, der eine größere Leitfähigkeit aufweist als die Halbleiter- Finne 230 in dem ersten Abschnitt 208 und/oder als der Driftbereich 204, wie in FIG. 4 veranschaulicht ist, die einen vertikalen Feldeffekttransistor 400 gemäß verschiedenen Ausführungsformen zeigt.
In verschiedenen Ausführungsformen kann eine Abschirmstruktur 404 vorgesehen sein, die lateral neben dem Verbindungsbereich 402 ausgebildet ist, wobei die Abschirmstruktur 404 einen anderen Leitfähigkeitstyp aufweist als der
Verbindungsbereich 402, wie in FIG. 4 veranschaulicht ist. Der Verbindungsbereich 402 in dem zweiten Abschnitt kann ein n dotiertes (z.B. n+ dotiertes) Halbleitermaterial aufweisen oder daraus gebildet sein. Die Abschirmstruktur 404 weist beispielsweise p dotiertes oder intrinsisches Halbleitermaterial auf oder ist daraus gebildet.
Die Halbleiter- Finne 230 kann in dem zweiten Abschnitt 206 stärker n-dotiert sein als in dem ersten Abschnitt 208. Dies ermöglicht eine bessere Stromspreizung. Es kann ferner eine Abschirmstruktur 404 vorgesehen sein, die unterhalb der Gate- Elektrode 220 in dem Driftbereich 204 angeordnet ist. Dies ermöglicht, das Gate- Dielektrikum 218 gegen Feldspitzen abzuschirmen. In dem zweiten Abschnitt 206 kann die Halbleiter-Finne 230 eine erhöhte n-Dotierung aufweisen. Alternativ kann die erhöhte n-Dotierung bis zur Unterkante der Abschirmstruktur 404 ausgebildet sein. Die Abschirmstruktur 404 mit der p-Dotierung kann mit der Source- Elektrode 214 elektrisch leitfähig verbunden sein. Alternativ oder zusätzlich können elektrische Feldspitzen, welche vertikal am Gate- Dielektrikum 218 zwischen Gate- Elektrode 220 und Driftbereich 204 auftreten, mittels einer zweiten Isolierschicht 223, die im Boden zwischen Driftbereich 204 und Gate- Elektrode 220 neben der Halbleiter-Finne 230 angeordnet ist, reduziert werden, wie in FIG. 5 veranschaulicht ist, die einen vertikalen Feldeffekttransistor 500 gemäß verschiedenen Ausführungsformen zeigt. Beispielsweise kann die zweite Isolierschicht 223 zwischen dem Gate- Dielektrikum 218 und dem Driftbereich 204 angeordnet sein.
Dies ermöglicht es, die Durchbruchfestigkeit des Gate-Dielektrikums 218 in diesem Bereich zu erhöhen und damit die Spannungsfestigkeit des vertikalen Feldeffekttransistors zu erhöhen. Die zweite Isolierschicht 223 kann eine größere Dicke aufweisen als das Gate- Dielektrikum 218.
In verschiedenen Ausführungsformen kann mindestens eine Seitenwand der Halbleiter- Finne 230 gewölbt oder gebogen sein, wie in FIG.6 veranschaulicht ist, die einen vertikalen Feldeffekttransistor 600 gemäß verschiedenen Ausführungsformen zeigt.
Eine Vielzahl von Halbleiter-Finnen 230 können nebeneinander (siehe FIG.8A) angeordnet sein. Alternativ zu einer Halbleiter- Finne können eine oder mehrere Halbleiter- Säulen 240 (siehe FIG.8B) vorgesehen sein. Alternativ kann ein Netzwerk aus zwei oder mehr miteinander verbundenen Halbleiter-Finnen 230 vorgesehen sein (siehe FIG. 8C).
FIG.9 veranschaulicht ein Ablaufdiagramm eines Verfahrens 900 zum Ausbilden eines vertikalen Feldeffekttransistors gemäß verschiedenen Ausführungsformen. Das Verfahren 900 weist auf: Ausbilden 910 eines Driftbereichs; Ausbilden 920 einer Halbleiter- Finne auf oder über dem Driftbereich, und Ausbilden 930 eines Anschlussbereichs auf oder über der Halbleiter-Finne, und Ausbilden 940 einer Gate- Elektrode, die neben mindestens einer Seitenwand der Halbleiter-Finne ausgebildet wird. Die Halbleiter-Finne wird in einem ersten Abschnitt, der lateral neben der Gate- Elektrode angeordnet ist, mit einer geringeren lateralen Ausdehnung ausgebildet als in einem zweiten Abschnitt, der den Driftbereich kontaktiert, und/oder als in einem dritten Abschnitt, der den Anschlussbereich kontaktiert. Die lateral geringere Ausdehnung der Halbleiter- Finne kann beispielsweise unter Verwendung einer Ätzstopp- Maske und eines anisotropen Ätzens ausgebildet werden. Die Ätzstopp- Maske kann auf oder über der Halbleiter-Finne ausgebildet werden. Bei Halbleitermaterialien, auf denen kein thermisches Oxid ausgebildet werden kann, beispielsweise Galliumnitrid (GaN), Galliumoxid (GaOx), Aluminiumnitrid (AIN), Diamant, kann ein anisotroper Ätzprozess die Möglichkeit bieten, die in FIG.2 gezeigte Form der Halbleiter-Finnen 230 zu realisieren. In FIG.7A-F sind schematische Schnittdarstellungen zu einem Beispiel eines Verfahrens zum Ausbilden eines vertikalen Feldeffekttransistors auf Basis von GaN veranschaulicht.
FIG.7A zeigt das Bereitstellen eines n+ dotierten Halbleitermaterials (212), das mittels Epitaxie oder (Ionen-) Implantation auf oder über einem Driftbereich 204 und einem Substrat 202 bereitgestellt wird. Eine flache Halbleiter-Finne wird in dem n+ dotierten Halbleitermaterial ausgebildet, wodurch der Anschlussbereich 212 strukturiert ausgebildet wird. Das Strukturieren kann mittels eines nasschemischen Ätzens oder eines Trocken- Ätzens ausgebildet werden. Für Galliumnitrid, Galliumoxid und Aluminiumnitrid kann beispielsweise eine Trockenätzung in einem Chlor-haltigen Plasma Anwendung finden. Für Diamant kann eine vergleichbare Ätzung in einem Sauerstoff-haltigen Plasma Anwendung finden. Nasschemische Ätzprozesse für Galliumnitrid sind beispielsweise in Kaliumhydroxid (KOH) oder Tetramethylammoniumhydroxid (TMAH) verschiedener Konzentration und Temperatur möglich.
FIG.7B zeigt ein Maskieren bzw. ein Ausbilden einer Maske 702 auf oder über dem Anschlussbereich 212 und ein Strukturieren bzw. Ausbilden einer Grabenstruktur (Trench), um die Halbleiter- Finne freizulegen bzw. auszubilden. Als Maskierungsmaterialien können Nitrid- und/oder Oxid-Verbindungen verwendet werden.
FIG.7C zeigt ein anisotropes Nassätzen, beispielsweise mittels KOH oder TMAH, um den ersten Abschnitt der Halbleiter-Finne auszubilden.
FIG.7D zeigt ein weiteres Maskieren bzw. Ausbilden einer Maske 704 auf oder über der Halbleiter-Finne.
FIG.7E zeigt ein Ausbilden einer weiteren Grabenstruktur, um die maskierte Halbleiter- Finne herum, um die Verbreiterung der Halbleiter- Finne 230 bzw. den zweiten Abschnitt der Halbleiter-Finne auszubilden.
FIG.7F zeigt ein Ausbilden der Gate-, Source- und Drain- Elektroden sowie der Isolationen.
Die beschriebenen und in den Figuren gezeigten Ausführungsformen sind nur beispielhaft gewählt. Unterschiedliche Ausführungsformen können vollständig oder in Bezug auf einzelne Merkmale miteinander kombiniert werden. Auch kann eine Ausführungsform durch Merkmale einer weiteren Ausführungsform ergänzt werden. Ferner können beschriebene Verfahrensschritte wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden. Insbesondere ist die Erfindung nicht auf das angegebene Verfahren beschränkt.

Claims

Patentansprüche
1. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600), aufweisend: einen Driftbereich (204); eine Halbleiter- Finne (230) auf oder über dem Driftbereich (204); einen Anschlussbereich (212) auf oder über der Halbleiter-Finne (230); und eine Gate- Elektrode (220), die neben mindestens einer Seitenwand der Halbleiter- Finne (230) ausgebildet ist, wobei die Halbleiter-Finne (230) in einem ersten Abschnitt (208), der lateral neben der Gate- Elektrode (220) angeordnet ist, eine geringere laterale Ausdehnung aufweist als in einem zweiten Abschnitt (206), der den Driftbereich (204) kontaktiert, und/oder als in einem dritten Abschnitt (210), der den Anschlussbereich (212) kontaktiert. 2. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) gemäß Anspruch 1, wobei die Halbleiter-Finne (230) mindestens eine im Wesentlichen lineare Seitenwand aufweist.
3. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) gemäß einem der Ansprüche 1 oder 2, wobei die Halbleiter-Finne (230) eine lineare erste Seitenwand und eine lineare zweite Seitenwand, die der ersten Seitenwand gegenüberliegt, aufweist.
4. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) gemäß einem der Ansprüche 1 bis 3, wobei der Anschlussbereich (212) eine laterale Ausdehnung aufweist, die größer ist als die laterale Ausdehnung der Halbleiter- Finne (230) im dritten Abschnitt (210). 5. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) gemäß einem der
Ansprüche 1 bis 4, wobei die Halbleiter- Finne (230) in dem zweiten Abschnitt (206) einen Verbindungsbereich (402) aufweist, der eine größere Leitfähigkeit aufweist als die Halbleiter- Finne (230) in dem ersten Abschnitt (208) und/oder als der Driftbereich (204).
6. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) gemäß Anspruch 5, ferner aufweisend eine Abschirmstruktur (404), die lateral neben dem Verbindungsbereich (402) ausgebildet ist, wobei die Abschirmstruktur (404) einen anderen Leitfähigkeitstyp aufweist als der Verbindungsbereich (402).
7. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) einem der Ansprüche 1 bis 6, ferner aufweisend eine Isolierschicht (223), die zwischen der Gate- Elektrode
(220) und dem Driftbereich (204) angeordnet ist.
8. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) einem der Ansprüche 1 bis
7, wobei der Driftbereich (204) und die Halbleiter-Finne (230) Galliumnitrid oder Siliziumcarbid aufweisen oder daraus gebildet sind.
9. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600) einem der Ansprüche 1 bis
8, wobei die Halbleiter- Finne (230) als ein Netzwerk aus zwei oder mehr miteinander verbundenen Halbleiter- Finnen (230) ausgebildet ist.
10. Vertikaler Feldeffekttransistor (200, 300, 400, 500, 600), aufweisend: einen Driftbereich (204); eine Halbleiter-Säule (240) auf oder über dem Driftbereich (204); einen Anschlussbereich (212) auf oder über der Halbleiter-Säule (240); und eine Gate- Elektrode (220), die neben mindestens einer Seitenwand der Halbleiter- Säule (240) ausgebildet ist, wobei die Halbleiter-Säule (240) in einem ersten Abschnitt (208), der lateral neben der Gate- Elektrode (220) angeordnet ist, eine geringere laterale Ausdehnung aufweist als in einem zweiten Abschnitt (206), der den Driftbereich (204) kontaktiert, und/oder als in einem dritten Abschnitt (210), der den Anschlussbereich (212) kontaktiert.
11. Verfahren (900) zum Ausbilden eines vertikalen Feldeffekttransistors (200, 300, 400, 500, 600), das Verfahren (900) aufweisend:
Ausbilden (910) eines Driftbereichs (204);
Ausbilden (920) einer Halbleiter- Finne (230) auf oder über dem Driftbereich (204); Ausbilden (930) eines Anschlussbereichs (212) auf oder über der Halbleiter-Finne (230); und Ausbilden (940) einer Gate- Elektrode (220), die neben mindestens einer
Seitenwand der Halbleiter- Finne (230) ausgebildet wird, wobei die Halbleiter-Finne (230) in einem ersten Abschnitt (208), der lateral neben der Gate- Elektrode (220) angeordnet ist, mit einer geringeren lateralen Ausdehnung ausgebildet wird als in einem zweiten Abschnitt (206), der den Driftbereich (204) kontaktiert, und/oder als in einem dritten Abschnitt (210), der den Anschlussbereich (212) kontaktiert. 12. Verfahren (900) gemäß Anspruch 11, wobei die lateral geringere Ausdehnung der Halbleiter- Finne (230) unter Verwendung einer Ätzstopp- Maske und eines anisotropen Ätzens ausgebildet wird, wobei die Ätzstopp- Maske auf oder über der Halbleiter-Finne (230) ausgebildet wird.
EP20780665.4A 2019-11-06 2020-09-24 Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben Pending EP4055632A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019217081.1A DE102019217081A1 (de) 2019-11-06 2019-11-06 Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben
PCT/EP2020/076738 WO2021089230A1 (de) 2019-11-06 2020-09-24 Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben

Publications (1)

Publication Number Publication Date
EP4055632A1 true EP4055632A1 (de) 2022-09-14

Family

ID=72659233

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20780665.4A Pending EP4055632A1 (de) 2019-11-06 2020-09-24 Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben

Country Status (6)

Country Link
US (1) US20220367713A1 (de)
EP (1) EP4055632A1 (de)
JP (2) JP2023500880A (de)
CN (1) CN114667609A (de)
DE (1) DE102019217081A1 (de)
WO (1) WO2021089230A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230006049A1 (en) * 2021-06-30 2023-01-05 Hunan Sanan Semiconductor Co., Ltd. Silicon carbide power device with an enhanced junction field effect transistor region

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707681B2 (ja) * 2009-03-04 2015-04-30 富士電機株式会社 半導体装置およびその製造方法
JP5894383B2 (ja) * 2011-06-30 2016-03-30 ローム株式会社 半導体装置およびその製造方法
KR20140063703A (ko) * 2011-08-17 2014-05-27 램고스, 인크. 산화물 반도체 기판 상의 수직 전계 효과 트랜지스터 및 그 제조 방법
US20160027881A1 (en) * 2013-03-15 2016-01-28 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method for manufacturing the same
US9281379B1 (en) * 2014-11-19 2016-03-08 International Business Machines Corporation Gate-all-around fin device
DE102014117558B4 (de) * 2014-11-28 2020-06-18 Infineon Technologies Dresden Gmbh Halbleiterbauelement mit feldelektrode zwischen benachbarten halbleiterfinnen und verfahren zu dessen herstellung
WO2018147466A1 (ja) * 2017-02-13 2018-08-16 富士電機株式会社 半導体装置
US10811528B2 (en) * 2018-03-21 2020-10-20 International Business Machines Corporation Two step fin etch and reveal for VTFETs and high breakdown LDVTFETs

Also Published As

Publication number Publication date
JP2023162328A (ja) 2023-11-08
JP2023500880A (ja) 2023-01-11
WO2021089230A1 (de) 2021-05-14
DE102019217081A1 (de) 2021-05-06
US20220367713A1 (en) 2022-11-17
CN114667609A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
DE102013022570B4 (de) Halbleiterbauelement und verfahren zu seiner herstellung
DE112016003510B4 (de) HALBLEITERVORRlCHTUNG UND VERFAHREN ZUR HERSTELLUNG EINER HALBLEITERVORRICHTUNG
DE102013224134B4 (de) Halbleiterbauelement und Verfahren zu seiner Herstellung
DE112004002310B4 (de) Trench-Metalloxid-Halbleiter-Feldeffekttransistor mit geschlossenen Zellen und Verfahren zum Herstellen
DE102014107325A1 (de) Halbleiterbauelement
DE19530109A1 (de) Hochleistungs-Graben-MOSFET-Transistor
DE102019111308A1 (de) Siliziumcarbid halbleiterbauelement
DE102012220166B4 (de) Verfahren zur Herstellung eines IGBT mit vertikalen Gräben
DE102018203693A1 (de) Halbleitervorrichtung
DE112006001280B4 (de) Halbleitervorrichtung und Verfahren zu deren Herstellung
DE102014113746A1 (de) Transistorbauelement mit einer feldelektrode
EP4107784B1 (de) Vertikaler fin-feldeffekttransistor, vertikale fin-feldeffekttransistor-anordnung und verfahren zum bilden eines vertikalen fin-feldeffekttransistors
DE102016106848A1 (de) Halbleitervorrichtung mit einem Transistor
DE102016104757B4 (de) Halbleitertransistor und Verfahren zum Bilden des Halbleitertransistors
EP4055632A1 (de) Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben
EP4107785A1 (de) Vertikaler feldeffekttransistor, verfahren zum herstellen desselben und bauelement aufweisend vertikale feldeffekttransistoren
WO2021078451A1 (de) Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben
DE102018123164B3 (de) Halbleitervorrichtung, die eine graben-gatestruktur enthält, und herstellungsverfahren
DE102020201997A1 (de) Vertikaler fin-feldeffekttransistor, fin-feldeffekttransistor-anordnung und verfahren zum bilden eines vertikalen fin-feldeffekttransistors
DE102015102115B3 (de) Halbleitervorrichtung mit einem transistorarray und einem abschlussbereich und verfahren zum herstellen einer solchen halbleitervorrichtung
DE102013112887A1 (de) Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
EP4049318A1 (de) Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben
DE102020202036A1 (de) Vertikaler Feldeffekttransistor und Verfahren zum Ausbilden desselben
DE102016104317A1 (de) Halbleitervorrichtung mit transistor einschliesslich eines bodykontaktteiles und herstellungsverfahren für die halbleitervorrichtung
DE102022210835A1 (de) Verfahren zum Herstellen einer vertikalen Feldeffekttransistorstruktur und entsprechende vertikale Feldeffekttransistorstruktur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)