EP4045618A1 - Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles - Google Patents

Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles

Info

Publication number
EP4045618A1
EP4045618A1 EP20785537.0A EP20785537A EP4045618A1 EP 4045618 A1 EP4045618 A1 EP 4045618A1 EP 20785537 A EP20785537 A EP 20785537A EP 4045618 A1 EP4045618 A1 EP 4045618A1
Authority
EP
European Patent Office
Prior art keywords
ethylene
fuel
chosen
group
copolymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20785537.0A
Other languages
German (de)
English (en)
Inventor
Ana Maria CENACCHI-PEREIRA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Onetech SAS
Original Assignee
TotalEnergies Onetech SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotalEnergies Onetech SAS filed Critical TotalEnergies Onetech SAS
Publication of EP4045618A1 publication Critical patent/EP4045618A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2368Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine

Definitions

  • TITLE Use of particular cationic polymers as cold strength additives for fuels and fuels
  • the present invention relates to the use of particular cationic polymers as cold strength additives in fuel and fuel compositions, for example to improve their cold resistance properties during storage and / or use at low temperature.
  • the present invention also relates to fuel and fuel compositions supplemented with such polymers.
  • the present invention finally relates to additive compositions (or "additive packages”) containing these polymers, in combination with at least one cold thinning additive (CFI), as well as a method for lowering the limit temperature of filterability d. a fuel or fuel composition using such a polymer.
  • additive compositions or "additive packages” containing these polymers, in combination with at least one cold thinning additive (CFI), as well as a method for lowering the limit temperature of filterability d. a fuel or fuel composition using such a polymer.
  • CFI cold thinning additive
  • Fuels or fuels containing paraffinic compounds are known to exhibit deteriorated flow properties at low temperatures, typically below 0 ° C.
  • the middle distillates obtained by distillation from crude oils of petroleum origin such as gas oil or domestic fuel oil contain different amounts of n-alkanes or n-paraffins depending on their origin. These compounds tend to crystallize at low temperature, blocking pipes, conduits, pumps and filters, for example in the fuel circuits of motor vehicles.
  • CFI cold flow improvers
  • s vinyl ester
  • acrylic s
  • TLF Limit Temperature of Filterability
  • PE pour point
  • EVA polymers of ethylene and vinyl acetate and / or vinyl propionate
  • TLF additives polymers of ethylene and vinyl acetate and / or vinyl propionate
  • Document EP0857776 proposes to use alkylphenol-aldehyde resins resulting from the condensation of alkylphenol and aldehyde in combination with ethylene / vinyl ester copolymers or terpolymers, to improve the fluidity of mineral oils.
  • Patent application WO 2008/006965 describes the use of a combination of a homopolymer obtained from an olefinic ester of carboxylic acid with 3 to 12 carbon atoms and a fatty alcohol comprising one more chain. of 16 carbon atoms and optionally an olefinic double bond and of a cold liquefying additive (CFI) of the EVA or EVP type, to increase the effectiveness of the CFI additives by amplifying their effect on the TLF.
  • CFI cold liquefying additive
  • Patent application WO 2016/128379 describes the use, as an additive for the cold resistance of a fuel or fuel, of a block copolymer comprising:
  • an A block consisting of a chain of structural units derived from one or more ⁇ , b-unsaturated alkyl acrylate or methacrylate monomers
  • a B block consisting of a chain of structural units derived from one or more a, b-unsaturated monomers containing at least one aromatic nucleus.
  • This additive is in particular useful as a TLF booster in combination with a cold thinning additive (CFI).
  • CFI cold thinning additive
  • another object of cold-resistance additives is to ensure the dispersion of the paraffin crystals, so as to delay or prevent the sedimentation of such crystals and of avoid the formation of a layer rich in paraffins at the bottom of containers, tanks or storage tanks; these paraffin dispersing additives are called anti-sedimentation additives or WASA (acronym for the English term “Wax Anti-Settling Additive”).
  • Modified alkylphenol-aldehyde resins have been described in document FR2969620 as an anti-sedimentation additive in combination with a TLF additive.
  • This need is particularly important for fuels or fuels comprising one or more paraffinic compounds, for example compounds containing n-alkyl, iso-alkyl or n-alkenyl groups exhibiting a tendency to crystallize at low temperature.
  • paraffinic compounds for example compounds containing n-alkyl, iso-alkyl or n-alkenyl groups exhibiting a tendency to crystallize at low temperature.
  • distillates used in fuels and fuels are increasingly derived from more complex refining operations than those derived from the direct distillation of petroleum, and may originate in particular from cracking, hydrocracking, catalytic cracking and visbreaking processes.
  • the refiner tends to introduce into these fuels cuts that are more difficult to exploit, such as the heavier cuts resulting from cracking and visbreaking processes which are rich in long-chain paraffins.
  • the present invention applies to fuels and fuels containing not only conventional distillates such as those obtained from the direct distillation of crude oils, but also to bases obtained from other sources, such as those described above.
  • the aim of the present invention is to provide new additives and concentrates containing them, which can be used as additives in fuel compositions and other fuels in order to improve their cold resistance properties, in particular their properties. cold flow at low temperature typically less than 0 ° C, and better still less than -5 ° C.
  • the object of the present invention is furthermore to provide new additives for fuels and fuels, and concentrates containing such additives, acting on the Limit Filtrability Temperature (TLF), the pour point (PE), and retarding and / or preventing the sedimentation of crystals of hydrocarbon compounds, in particular paraffins.
  • TEZ Limit Filtrability Temperature
  • PE pour point
  • these polymers possess unexpected properties for improving the cold resistance of fuel and fuel compositions, including those which are particularly difficult to process.
  • a subject of the present invention is thus the use, to improve the cold resistance properties of a fuel or fuel composition, of one or more polymers comprising at least 70% by moles of units of formula (I) below : in which R 1 represents a hydrogen atom or a methyl group,
  • E represents -O-CO-, or -CO-O- or -NH-CO- or -CO-NH-
  • G represents a group of formula -R2-Q in which R2 denotes a C 1 -C 34 hydrocarbon chain and Q denotes a group comprising a quaternary ammonium function and optionally one or more hydroxyl groups.
  • the polymer defined above is used as an additive called “TLF booster”, that is to say in combination with an additive for improving flow or cold liquefying additive (in English “cold flow improvers ”or CFI) whose performance it improves.
  • TEZ booster an additive for improving flow or cold liquefying additive
  • a subject of the invention is also a fuel or fuel composition, comprising: at least one cut of hydrocarbons obtained from one or more sources chosen from the group consisting of mineral (preferably petroleum), animal sources. , vegetable and synthetic,
  • At least one cold thinning additive chosen from copolymers of ethylene and vinyl ester (s).
  • a subject of the invention is also an additive composition (or “additive package”) comprising such a polymer in combination with at least one cold resistance additive different from the polymers according to the invention, as well as a concentrate of additives containing such a composition.
  • the cold resistance additive is chosen from copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s), alone or as a mixture.
  • a subject of the invention is a method for lowering the limit filterability temperature of a fuel or fuel composition, comprising adding to said fuel or fuel composition of a polymer according to the invention.
  • C N compound or group denotes a compound or a group containing in its chemical structure N carbon atoms.
  • the invention uses a polymer comprising at least 70 mol% of units of formula (I) below: in which R 1 represents a hydrogen atom or a methyl group,
  • E represents -O-CO-, or -CO-O- or -NH-CO- or -CO-NH-
  • G represents a group of formula -R2-Q in which R2 denotes a C 1 to C34 hydrocarbon chain, and Q denotes a group comprising a quaternary ammonium function and optionally one or more hydroxyl groups.
  • the group E of formula (I) is chosen from:
  • the group E is preferably the group -O-CO-.
  • the group E of formula (I) is chosen from: -CO-O- and -CO-NH-, it being understood that the group E is linked to the vinyl carbon via the carbon atom.
  • the group E is preferably the group -CO-O-.
  • the group E is a -CO-O- group, E being linked to the vinyl carbon via the carbon atom.
  • the group G of formula (I) contains an R2 hydrocarbon chain chosen from C1 to C34, cyclic or acyclic, linear or branched hydrocarbon chains.
  • R2 denotes a linear or branched C 1 to C 18, more preferably C 1 to C 8, hydrocarbon chain, even more preferably a linear C 2 to C 4 hydrocarbon chain.
  • the quaternary ammonium function (s) of the group Q can be chosen from quaternary ammoniums of pyrrolinium, pyridinium, imidazolium, triazolium, triazinium, oxazolium, isoxazolium, trialkylammonium, iminium, of amidinium, of formamidinium, of guanidinium and of biguanidinium, and preferably of trialkylammonium.
  • the group G is represented by one of the following formulas (II) and (III): in which :
  • R 2 is as defined above;
  • X is an anion, preferably chosen from hydroxide ions, halides and organic anions, preferably from organic anions,
  • R 3 , R 4 and R 5 are identical or different and chosen, independently of one another, from C 1 to C 24 hydrocarbon chains, preferably from C 4 to C 5, it being understood that the groups R 3 , R 4 and R 5 may contain one or more nitrogenous and / or oxygenated groups and in particular be substituted by one or more hydroxyl group (s) and that the R 3 , R 4 and R 5 groups can be linked together in pairs to form one or more cycles,
  • R O and R 7 are identical or different and independently selected from hydrocarbon chains to C 24, preferably C 4 to C, it being understood that R O and R 7 groups may contain one or more nitrogenous groups and / or oxygenated and in particular be substituted by one or more hydroxyl group (s) and that the R ⁇ and R 7 groups can be linked together to form a ring.
  • the group G is represented by formula (II) above, in which: R 2 denotes a linear or branched C 1 to C 18 hydrocarbon chain, more preferably C 1 to C 8, even more preferably a linear C 2 to C 4 hydrocarbon chain;
  • R 3 , R 4 and R 5 represent, independently of one another, C 1 to C 18, preferably C 1 to C 12 , alkyl groups, optionally substituted by at least one hydroxyl group, it being understood that at least one of the groups R 3 , R 4 and R 5 contains one or more hydroxyl group (s);
  • X is the conjugate base of a carboxylic acid, preferably a monocarboxylic acid containing from 1 to 24 carbon atoms, more preferably from 2 to 18, even more preferably from 2 to 8.
  • X corresponds to the formula R-COO with R a linear or branched alkyl group , preferably linear, C1 to C24, more preferably C2 to Cis, even more preferably C2 to Cs.
  • the polymer according to the invention comprises at least 70% by moles of units of formula (I), preferably at least 80% by moles, and better still at least 90% by moles.
  • the polymer according to the invention is formed from units of formula (I), ie it does not contain units different from the units of formula (I) above.
  • the polymer according to the invention is a homopolymer, that is to say that it is formed from a single repeating unit of formula (I).
  • the polymer used in the present invention can be obtained by homopolymerization or copolymerization of one or more monomer (s) corresponding to the following formula (IV): in which
  • Ri, E and G are as defined above, the preferred variants of Ri, E and G according to formula (I) described above also being preferred variants of formula (IV).
  • the polymer used in the invention is obtained by homopolymerization of a single monomer of formula (IV).
  • the polymer according to the invention is obtained by polymerization of intermediate monomers corresponding to the following formula (V): in which
  • Ri and E are as defined above according to formula (I) and G 'represents a group of formula -R2-P in which R2 denotes a C 1 to C 34 hydrocarbon chain optionally substituted by one or more hydroxyl group (s) , as defined above, and P denotes a group comprising a tertiary amine function capable of leading to the Q group as defined above, by reaction with a quaternization agent.
  • the quaternizing agent is preferably an epoxide, and preferably an epoxide in combination with a monocarboxylic acid which is preferably a monocarboxylic acid containing from 2 to 12 carbon atoms as described above, preferably 4 to 8 atoms. of carbon.
  • the polymerization is advantageously a block polymerization.
  • the sequenced polymerization may be of the group transfer polymerization (GTP) or controlled radical polymerization type; for example, by atom transfer radical polymerization (ATRP); radical polymerization by nitroxide (NMP in English "Nitroxide-mediated polymerization”); degenerative transfer processes such as degenerative iodine transfer polymerization (ITRP-iodine transfer radical polymerization) or radical polymerization by reversible chain transfer by addition-fragmentation ( RAFT in English “Reversible Addition-Fragmentation Chain Transfer”); polymerizations derived from ATRP such as polymerizations using initiators for the continuous regeneration of the activator (ICAR - Initiators for continuous activator regeneration) or using activators regenerated by electron transfer (ARGET in English "activators regenerated by electron transfer ”).
  • GTP group transfer polymerization
  • ATRP atom transfer radical polymerization
  • NMP radical polymerization by nitroxide
  • the polymer according to the invention advantageously has a number-average molar mass (Mn) of between 500 and 5,000 g. mol 1 , more preferably between 1200 and 3000 g. mol 1 .
  • Mn number-average molar mass
  • the number-average molar masses of a polymer are, in a manner known per se, measured by nuclear magnetic resonance (NMR).
  • the polymer described above is used to improve the cold resistance properties of a fuel or fuel composition, in particular, of a composition chosen from gas oils, biodiesels, type B x gas oils and fuel oils. such as in particular domestic fuel oils (FOD).
  • FOD domestic fuel oils
  • the fuel or fuel composition is as described below and advantageously comprises at least one cut of hydrocarbons obtained from one or more sources chosen from the group consisting of mineral sources, preferably petroleum, animal sources. , vegetable and synthetic.
  • the polymer according to the invention is used to improve the low-temperature flow properties of the fuel or of the fuel during its storage and / or its use at low temperature, by lowering its limit filterability temperature (or TLF, measured according to standard NF EN 116) and / or its pour point (or PE, measured according to standard ASTM D 7346) and / or by delaying or preventing the sedimentation of crystals, and preferably by lowering its limit filterability temperature (TLF, measured according to standard NF EN 116).
  • TLF limit filterability temperature
  • PE measured according to standard ASTM D 7346
  • TLF limit filterability temperature
  • the polymer according to the invention can be used to delay or prevent the sedimentation of paraffin crystals and more particularly of n-alkanes, preferably the n-alkanes containing at least 12 carbon atoms, more preferably at least 20 carbon atoms. , even more preferably preferably at least 24.
  • the polymer according to the invention is used as a TLF booster additive, that is to say in combination with at least one flow improvement additive or cold flow additive. improvers ”or CFI).
  • the cold thinning additive (CFI) is preferably chosen from copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s), alone or as a mixture, preferably from among ethylene / vinyl acetate (EVA) copolymers and their mixtures with a terpolymer of ethylene, vinyl acetate and a other vinyl ester.
  • the polymer according to the invention is used to amplify the fluidifying effect of the cold fluidifying additive, in particular by lowering the limit filterability temperature (TLF) and / or the pour point, and / or the pour point. or by delaying or preventing the sedimentation of crystals, such as those containing paraffins.
  • TLF limit filterability temperature
  • TLF booster This effect is usually referred to as the "TLF booster" effect insofar as the presence of the polymer according to the invention improves the fluidifying nature of the CFI additive.
  • This improvement is reflected, in particular, by a significant reduction in the TLF of the fuel composition or fuel additive with this combination compared to the same fuel or fuel composition additive only with the additive CFI, at the same treatment rate.
  • a significant drop in TLF results in a decrease of at least 3 ° C in TLF according to standard NF EN 116.
  • the polymer is used to amplify the liquefying (flow) effect of the cold liquefying additive (CFI) by improving the Limit Filterability Temperature (TLF) of the fuel or fuel, the TLF being measured according to standard NF EN 116.
  • CFI cold liquefying additive
  • TLF Limit Filterability Temperature
  • the polymer can be added to the fuels or fuels within the refinery, and / or be incorporated downstream of the refinery, optionally, in admixture with other additives, in the form of a concentrated composition of additives, also called according to usage "additive package”.
  • the polymer is advantageously used in a content of at least 0.0001% by weight, relative to the total weight of the fuel or fuel composition.
  • the content of said polymer ranges from 0.0001 to 0.01% by weight, preferably from 0.0002 to 0.005% by weight, and more preferably from 0.0003 to 0.002% by weight, relative to the total weight. fuel or fuel composition.
  • a subject of the invention is also a composition of additives comprising a polymer as described above, and at least one cold thinning additive (CFI) chosen from copolymers of ethylene and of vinyl ester (s). ), the weight ratio between the content of polymer (s) formed from units of formula (I) on the one hand, and the content of copolymer (s) of ethylene and vinyl ester (s) ) on the other hand, being included in the range from 0.1: 100 to 10: 100.
  • CFI cold thinning additive
  • Said copolymers of ethylene and vinyl ester (s) are different from polymers formed from units of formula (I).
  • copolymers and terpolymers of ethylene and of vinyl ester (s) and / or acrylic (s) can be used alone or as a mixture.
  • copolymers of ethylene and of unsaturated ester such as ethylene / vinyl acetate (EVA), ethylene / vinyl propionate (EVP), ethylene / vinyl ethanoate (EVE) copolymers.
  • EVA ethylene / vinyl acetate
  • EVE ethylene / vinyl ethanoate
  • EMMA ethylene / methyl methacrylate
  • the copolymers of ethylene and of vinyl ester (s) are chosen from ethylene / vinyl acetate (EVA) copolymers, ethylene / vinyl propionate (EVP) copolymers and terpolymers.
  • EVA ethylene / vinyl acetate
  • EDP ethylene / vinyl propionate
  • ethylene, vinyl acetate and another vinyl ester more preferably from ethylene / vinyl acetate (EVA) copolymers and their mixtures with a terpolymer of ethylene, of vinyl acetate and of another vinyl ester, such as in particular vinyl neodecanoate.
  • the weight ratio between the content of polymer (s) according to the invention on the one hand, and the content of copolymer (s) of ethylene and of vinyl ester (s) on the other hand, is included in the range from 0.1: 100 to 10: 100, preferably from 0.5: 100 to 5: 100.
  • a particularly preferred weight ratio is 1: 100 ⁇ 10%.
  • the additive composition may also comprise one or more several anti-sedimentation additives and / or paraffin dispersants (WASA), different from the polymer according to the invention and from the cold thinning additives described above.
  • WASA paraffin dispersants
  • These additives may be in particular, but not limited to, chosen from the group consisting of (meth) acrylic acid / (meth) acrylate copolymers of alkyl amidified with a polyamine, polyamine alkenylsuccinimides, derivatives of phthalamic acid and of double chain fatty amine; optionally grafted alkylphenol resins. Examples of such additives are given in the following documents: EP261959, EP593331, EP674689, EP327423, EP512889, EP832172;
  • WASA paraffin dispersant additives
  • the additive composition may also include one or more other additives commonly used in fuels or fuels, other than the polymer according to the invention and cold resistance additives described above.
  • the additive composition may typically comprise one or more other additives chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, biocides, reodorants, procetane additives, friction modifiers, lubricity additives. or lubricity additives, combustion aid agents (catalytic combustion and soot promoters), antiwear agents and / or conductivity modifiers.
  • procetane additives in particular (but not limited to) chosen from alkyl nitrates, preferably 2-ethylhexyl nitrate, aryl peroxides, preferably peroxide benzyl, and alkyl peroxides, preferably tert-butyl peroxide;
  • anti-foam additives in particular (but not limited to) chosen from polysiloxanes, oxyalkylated polysiloxanes, and fatty acid amides obtained from vegetable oils or animal.
  • additives examples include EP861882, EP663000, EP736590; c) detergent and / or anti-corrosion additives, in particular (but not limited to) chosen from the group consisting of amines, succinimides, alkenylsuccinimides, polyalkylamines, polyalkyl polyamines, polyetheramines, quaternary ammonium salts and triazole derivatives; examples of such additives are given in the following documents: EP0938535, US2012 / 0010112 and W02012 / 004300.
  • block copolymers formed from at least one polar unit and one non-polar unit such as, for example, those described in patent application FR 1761700 in the name of the Applicant; d) lubricating additives or anti-wear agents, in particular (but not limited to) chosen from the group consisting of fatty acids and their ester or amide derivatives, in particular glycerol monooleate, and mono- and carboxylic acid derivatives. polycyclic. Examples of such additives are given in the following documents: EP680506, EP860494, WO98 / 04656, EP915944, FR2772783,
  • the additive composition can advantageously comprise from 0.1 to 50% by weight of polymer as described above, preferably from 0.2 to 20% by weight, and more preferably from 0.5 to 10% by weight. , relative to the total weight of additives present in said additive composition.
  • a subject of the present invention is also an additive concentrate comprising an additive composition as described above, mixed with an organic liquid.
  • the organic liquid is advantageously inert with respect to the constituents of the additive composition, and miscible with fuels or fuels, in particular those obtained from one or more sources chosen from the group consisting of mineral sources, preferably petroleum, animal, vegetable and synthetic.
  • the organic liquid is preferably chosen from aromatic hydrocarbon solvents such as the solvent sold under the name “SOLVESSO”, alcohols, ethers and other oxygenated compounds, and paraffinic solvents such as hexane, pentane or isoparaffins, alone or as a mixture.
  • aromatic hydrocarbon solvents such as the solvent sold under the name “SOLVESSO”
  • alcohols, ethers and other oxygenated compounds such as hexane, pentane or isoparaffins, alone or as a mixture.
  • paraffinic solvents such as hexane, pentane or isoparaffins
  • the invention also relates to a fuel or fuel composition, comprising:
  • At least one cold thinning additive chosen from copolymers of ethylene and vinyl ester (s).
  • the mineral sources are preferably petroleum.
  • the fuel or fuel composition according to the invention advantageously comprises said polymer (s) formed from units of formula (I) in a content of at least 0.0001% by weight, relative to the total weight. fuel or fuel composition.
  • the content of such polymer (s) ranges from 0.0001 to 0.01% by weight, preferably from 0.0002 to 0.005% by weight, and more preferably from 0.0003 to 0.002% by weight. weight, relative to the total weight of the fuel or fuel composition.
  • the cold thinning additives (CLI) chosen from copolymers of ethylene and vinyl ester (s) are as described above. They are different (s) from the polymers according to the invention formed from units of formula (I).
  • the fuel composition preferably contains at least 20 ppm (0.002% by weight), preferably at least 50 ppm (0.005% by weight), preferably between 20 and 5000 ppm (between 0.002% and 0.5% by weight), more preferably between 50 and 1000 ppm (between 0.005% and 0.1% by weight) in total of cold thinning additive (s) chosen from copolymers of ethylene and of ester (s) vinyl (s).
  • the composition may also contain one or more anti-sedimentation additives and / or paraffin dispersants (WASA), different from the polymers according to the invention formed from units of formula (I) and ethylene copolymers and vinyl ester (s).
  • WASA paraffin dispersants
  • the fuels or fuels can be chosen from liquid hydrocarbon fuels or fuels, alone or as a mixture.
  • Liquid hydrocarbon fuels or fuels include in particular middle distillates with a boiling point of between 100 and 500 ° C. These distillates can for example be chosen from the distillates obtained by direct distillation of crude hydrocarbons, the vacuum distillates, the hydrotreated distillates, the distillates resulting from the catalytic cracking and / or the hydrocracking of vacuum distillates, the distillates resulting from ARDS-type conversion processes (by desulphurization of atmospheric residue) and / or visbreaking, distillates resulting from the upgrading of Fischer Tropsch cuts, distillates resulting from the BTL (biomass to liquid) conversion of plant and / or animal biomass, taken alone or in combination, and / or biodiesels of animal and / or vegetable origin and / or oils and / or esters of vegetable and / or animal oils.
  • the sulfur content of the fuels or combustibles is preferably less than 5000 ppm, preferably less than 500 ppm, and more preferably less than 50 ppm, or even less than 10 ppm, and advantageously sulfur free.
  • the fuel or fuel is preferably chosen from gas oils, biodiesels, type B x gas oils and fuel oils, preferably domestic fuel oils (FOD).
  • diesel type B x diesel compression engine
  • a diesel fuel which contains x% (v / v) of esters of vegetable or animal oils (including used cooking oils) transformed by a process chemical called transesterification by reacting this oil with an alcohol to obtain fatty acid esters (EAG).
  • EAG fatty acid esters
  • FAME fatty acid methyl esters
  • EEAG fatty acids
  • B followed by a number x ranging from 0 to 100, which indicates the percentage of EAG contained in the diesel fuel.
  • a B99 contains 99% of EAG and 1% of middle distillates of fossil origin, B20, 20% of EAG and 80% of middle distillates of fossil origin etc.
  • type Bx diesel fuels which contain x% (v / v) of esters of vegetable or animal oils or of fatty acids, most often methyl esters (EMHV or FAME).
  • EAG methyl esters
  • FAME methyl esters
  • the fuel or fuel may also contain hydrogenated vegetable oils, known to those skilled in the art under the name HVO (standing for “hydrotreated vegetable oil”) or HDRD (standing for “hydrogenation-derived renewable diesel”).
  • HVO hydrogenated vegetable oil
  • HDRD hydrogenation-derived renewable diesel
  • the fuel or fuel is chosen from gas oils, biodiesels, type B x gas oils, hydrogenated vegetable oils (HVO), and mixtures thereof.
  • the fuel or fuel composition may also contain one or more additional additives, different from the polymers according to the invention and from the cold resistance additives described above.
  • additives can in particular be chosen from detergents, anti-corrosion agents, dispersants, demulsifiers, anti-foam agents, biocides, reodorants, procetane additives, friction modifiers, lubricity additives or additives. lubricity, combustion aid agents (catalytic combustion and soot promoters), antiwear agents and / or conductivity modifiers, as described above.
  • a method of improving the cold resistance properties of a fuel or fuel composition comprises a step of adding to said composition a polymer formed from units of formula (I ) as defined above.
  • this method comprises the successive steps of: a) determining a composition of additive (s) suitable for the composition of the fuel or fuel to be treated as well as the rate of treatment, said composition of additive ( s) comprising at least one polymer according to the invention formed from units of formula (I) and, optionally, at least one cold-thinning additive chosen from copolymers of ethylene and of vinyl ester (s), different from polymers formed from units of formula (I); b) treatment of the fuel or fuel composition with the quantity determined in step a) of said composition of additive (s).
  • the process for improving the cold resistance properties is typically intended for a fuel or fuel composition as described above.
  • Step a) is carried out according to any known process and falls within common practice in the field of fuel or fuel additives.
  • This step involves defining a characteristic representative of the cold resistance properties of the fuel or fuel, for example the low temperature flow characteristics, setting the target value (in particular a given specification relating to the cold resistance properties), then determine the improvement that is required to achieve such a target value.
  • a specification relating to cold resistance can be a European Deep Cold specification defining, in particular, a maximum TLF according to standard NF EN 116. Determination of the quantity of additive composition (s) to be added to the Fuel or fuel composition to achieve the specification will typically be achieved by comparison with the fuel or fuel composition without said composition of additive (s).
  • the amount of additive composition required to treat the fuel or fuel composition may vary depending on the nature and origin of the fuel or fuel, in particular depending on the rate and nature of the paraffinic compounds that it contains. contains. The nature and origin of the fuel or fuel can therefore also be a factor to be taken into account for step a).
  • the method of improving the cold resistance properties may also include an additional step after step b) of verifying the target reached and / or adjusting the rate of treatment with the composition of additive (s).
  • RAFT 2-cyano-2-propyl dodecyl trithiocarbonate
  • the intermediate polymer thus obtained has a number-average molar mass Mn of 1500 G. mol 1 which corresponds to an average of 8 units of formula (I) per polymer chain.
  • the conversion rate is 99% by weight (ie 1% by weight of residual monomer).
  • Two polymers PI and P2 according to the invention were prepared, by quaternization of the intermediate amino polymer above, in accordance with the protocols below.
  • Example 1 The PI and P2 polymers described in Example 1 were tested as cold-resistance additives in a fuel composition G of diesel fuel type which is particularly difficult to process, and the characteristics of which are detailed in Table 1 below:
  • the gas oil composition G was additivated with a conventional cold-resistance additive A, which consists of the following two commercial cold-thinning additives (CFI additives), in Solvesso 150 solvent:
  • CFI additives commercial cold-thinning additives
  • additive marketed by the company Total Additives Carburants Spéciaux, and which is an ethylene / vinyl acetate (EVA) copolymer having a molecular mass of between 2000 and 6000 gmol 1 ; - 0.5% by weight of Dodiflow D4134 additive marketed by the company
  • EVA ethylene / vinyl acetate
  • Clariant and which is an ethylene / vinyl acetate / vinyl ester terpolymer.
  • Additive A has been incorporated into the diesel fuel composition G at a content of 300 ppm by weight of active material relative to the total weight of the diesel fuel composition.
  • the gas oil composition with additive Gl This has a limit filterability temperature (TLF, standard EN 116) of -6 ° C.
  • TLF limit filterability temperature
  • the performances as cold-resistance additives of each of the polymers PI and P2 of Example 1 were tested, by evaluating their ability to lower the limit filterability temperature (TFL) of the additive gas oil composition G l.
  • TLF limit filterability temperature
  • Each polymer was added at a content of 3 ppm by weight (0.0003% by weight) to composition Gl, to give gas oil G2, the TLF of which was then measured, in accordance with standard EN 116.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention a pour objet l'utilisation, comme additif de tenue à froid dans une composition de carburant ou de combustible, d'un ou plusieurs polymères comprenant au moins 70% en moles de motifs de formule (I) dans laquelle R1 représente un atome d'hydrogène ou un groupement méthyle; E représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-; et G représente un groupe de formule -R2-Q dans laquelle R2 désigne une chaîne hydrocarbonée en C1 à C34 et Q désigne un groupement comprenant une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle. La présente invention concerne également des compositions de carburants et de combustibles additivées avec de tels polymères, ainsi que des compositions d'additifs (ou « packages d'additifs ») contenant ces polymères, en combinaison avec au moins un additif fluidifiant à froid (CFI).

Description

DESCRIPTION
TITRE : Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles La présente invention concerne l’utilisation de polymères cationiques particuliers en tant qu’ additifs de tenue à froid dans des compositions de carburants et de combustibles, par exemple pour améliorer leurs propriétés de tenue à froid lors de leur stockage et/ou leur utilisation à basse température. La présente invention concerne également des compositions de carburants et de combustibles additivées avec de tels polymères.
La présente invention concerne enfin des compositions d’ additifs (ou « packages d’ additifs ») contenant ces polymères, en combinaison avec au moins un additif fluidifiant à froid (CFI), ainsi qu’une méthode pour abaisser la température limite de filtrabilité d’une composition de carburant ou de combustible mettant en œuvre un tel polymère.
ETAT DE L'ART ANTERIEUR
Les carburants ou combustibles contenant des composés paraffiniques, notamment des composés contenant des groupements n- alkyle, iso-alkyle ou n-alcényle telles que des cires paraffiniques, sont connus pour présenter des propriétés d'écoulement détériorées à basse température, typiquement en dessous de 0°C. En particulier, on sait que les distillais moyens obtenus par distillation à partir d'huiles brutes d'origine pétrolière comme le gazole ou le fioul domestique contiennent différentes quantités de n-alcanes ou n-paraffines selon leur provenance. Ces composés ont tendance à cristalliser à basse température, bouchant les tuyaux, canalisations, pompes et filtres, par exemple dans les circuits du carburant des véhicules automobiles. En hiver ou dans des conditions d'utilisation des carburants ou combustibles à température inférieure à 0°C, le phénomène de cristallisation de ces composés peut conduire à la diminution des propriétés d’écoulement des carburants ou combustibles et, par conséquent engendrer des difficultés lors de leur transport, de leur stockage et/ou de leur utilisation. L'opérabilité à froid des carburants ou combustibles est une propriété très importante, notamment pour assurer le démarrage des moteurs à froid. Si des paraffines sont cristallisées au fond du réservoir, elles peuvent être entraînées au démarrage dans le circuit de carburant et colmater notamment les filtres et préfiltres disposés en amont des systèmes d'injection (pompe et injecteurs). De même, pour le stockage des fiouls domestiques, si des paraffines précipitent en fond de cuve, elles peuvent être entraînées et obstruer les conduites en amont de la pompe et du système d'alimentation de la chaudière (gicleur et filtre).
Ces problèmes sont bien connus dans le domaine des carburants et combustibles, et de nombreux additifs ou mélanges d'additifs ont été proposés et commercialisés pour réduire la taille des cristaux de paraffines et/ou changer leur forme et/ou les empêcher de se former. Une taille de cristaux la plus faible possible est préférée car elle minimise les risques de bouchage ou de colmatage des filtres.
Les agents d'amélioration d'écoulement habituels dits fluidifiants à froid (en anglais « cold flow improvers » ou CFI) sont en général des co- et ter-polymères d'éthylène et d'ester(s) vinylique(s) et/ou acrylique(s), employés seuls ou en mélange. Ces additifs fluidifiants à froid (CFI), destinés à abaisser la Température Limite de Filtrabilité (TLF) et le point d’écoulement (PE), inhibent la croissance des cristaux à basse température en favorisant la dispersion des cristaux de paraffine ; ce sont par exemple les polymères d'éthylène et d'acétate de vinyle et/ou de propionate de vinyle (respectivement dénommés EVA ou EVP), aussi communément appelés additifs de TLF. Ce type d'additifs, très largement connu par l'homme du métier, est systématiquement ajouté aux distillais moyens classiques en sortie de raffinerie. Ces distillais additivés sont utilisés comme carburants pour moteur Diesel ou comme combustibles de chauffage. Des quantités supplémentaires de ces additifs peuvent être ajoutées aux carburants vendus en stations-service notamment pour satisfaire les spécifications dites Grand Froid. Pour améliorer à la fois la TLF et le point d'écoulement des distillais, il est connu d’ajouter à ces additifs CFI des additifs supplémentaires ou « boosters » ayant la fonction d'agir en combinaison avec les additifs CFI de manière à en augmenter l’efficacité. L'art antérieur décrit abondamment de telles combinaisons d'additifs.
A titre d’exemple, on peut citer le brevet US 3 275427 décrivant un distillât moyen de coupe de distillation comprise entre 177 et 400°C contenant un additif constitué de 90 à 10 % massique d'un copolymère d'éthylène comprenant de 10 à 30% de motifs acétate de vinyle de masse molaire en poids comprise entre 1000 et 3000 g. mol 1 et de 10 à 90 % massique d'un polyacrylate de lauryle et/ou d’un polyméthacrylate de lauryle de masse molaire en poids variant de 760 à 100.000 g. mol 1.
Le document EP0857776 propose d’employer des résines alkylphénol-aldéhyde issues de la condensation d’alkylphénol et d’ aldéhyde en association avec des copolymères ou terpolymères éthylène /ester vinylique, pour améliorer la fluidité d’huiles minérales.
La demande de brevet WO 2008/006965 décrit l’utilisation d’une combinaison d’un homopolymère obtenu à partir d'un ester oléfinique d'acide carboxylique de 3 à 12 atomes de carbone et d'un alcool gras comprenant une chaîne de plus de 16 atomes de carbone et éventuellement une double liaison oléfinique et d’un additif fluidifiant à froid (CFI) de type EVA ou EVP, pour augmenter l’efficacité des additifs CFI en amplifiant leur effet sur la TLF.
La demande de brevet WO 2016/128379 décrit l’ utilisation, comme additif de tenue à froid d’un carburant ou combustible, d’un copolymère à blocs comprenant :
(i) un bloc A consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères a,b-insaturés acrylate ou méthacrylate d’ alkyle, et (ii) un bloc B consistant en une chaîne de motifs structuraux dérivés d’un ou de plusieurs monomères a,b-insaturés contenant au moins un noyau aromatique.
Cet additif est notamment utile comme booster de TLF en association avec un additif fluidifiant à froid (CFI). Outre l'amélioration de l'écoulement de la composition de carburant ou combustible, un autre but des additifs de tenue à froid est d'assurer la dispersion des cristaux de paraffines, de manière à retarder ou empêcher la sédimentation de tels cristaux et d’éviter la formation d'une couche riche en paraffines au fond des récipients, cuves ou réservoirs de stockage ; ces additifs dispersants de paraffines sont dénommés additifs anti-sédimentation ou WASA (acronyme du terme anglais « Wax Anti-Settling Additive »).
Des résines alkylphénol-aldéhyde modifiées ont été décrites dans le document FR2969620 comme additif anti-sédimentation en combinaison avec un additif de TLF.
Du fait de la diversification des sources de carburants et de combustibles, il existe toujours un besoin de trouver de nouveaux additifs pour améliorer les propriétés des carburants ou combustibles à basse température également dénommées propriétés de tenue à froid, et notamment leurs propriétés d’écoulement lors de leur stockage et/ou leur utilisation à basse température.
Ce besoin est particulièrement important pour les carburants ou combustibles comprenant un ou plusieurs composés paraffiniques, par exemple des composés contenant des groupements n-alkyle, iso-alkyle ou n-alcényle présentant une tendance à la cristallisation à basse température.
Notamment, les distillais utilisés dans les carburants et combustibles sont de plus en plus issus d’opérations de raffinage plus complexes que ceux issus de la distillation directe du pétrole, et peuvent provenir notamment des procédés de craquage, d’hydrocraquage, de craquage catalytique et des procédés de viscoréduction. Avec la demande croissante en carburants Diesel, le raffineur a tendance à introduire dans ces carburants des coupes plus difficilement exploitables, comme les coupes les plus lourdes issues des procédés de craquage et de viscoréduction qui sont riches en paraffines à longues chaînes.
En outre, des distillais synthétiques issus de la transformation du gaz tels que ceux issus du procédé Fischer Tropsch, ainsi que des distillais résultant du traitement de biomasses d'origine végétale ou animale, comme notamment le NexBTL et des distillais comprenant des ester d'huiles végétales ou animales, sont apparus sur le marché, et constituent une nouvelle gamme de produits utilisables comme base pour formuler des carburants et ou des fiouls domestiques. Ces produits comprenant également des hydrocarbures à chaînes paraffiniques longues.
De plus, on a constaté l'arrivée de nouveaux pétroles bruts sur le marché, beaucoup plus riches en paraffines que ceux communément raffinés et dont la température de filtrabilité des distillais issus de distillation directe était difficilement améliorée par les additifs de filtrabilité classique au même titre que ceux précédemment cités.
On a constaté que les propriétés de tenue à froid des distillais obtenus par combinaison des anciennes bases et de ces nouvelles sources étaient difficilement améliorées par l'ajout d'additifs classiques de filtrabilité, entre autres du fait de la présence importante de paraffines à longue chaîne et de la distribution complexe en paraffines dans leur composition. On a pu noter en effet, dans ces nouvelles combinaisons de distillais, des distributions discontinues en paraffines, en présence desquelles les additifs de filtrabilité connus ne sont pas toujours suffisamment efficaces.
Il existe donc un besoin d'adapter les additifs de tenue à froid à ces nouveaux types de bases pour carburants et combustibles, considérés comme particulièrement difficiles à traiter. La présente invention s'applique aux carburants et combustibles contenant non seulement des distillais classiques tels que ceux issus de la distillation directe des pétroles bruts, mais également aux bases issues d’ autres sources, telles que celles décrites ci-avant.
Ainsi, le but de la présente invention est de proposer de nouveaux additifs et des concentrés les contenant, qui peuvent être utilisés comme additifs dans des compositions de carburants et de combustibles en autres pour en améliorer les propriétés de tenue à froid, en particulier les propriétés d’écoulement à froid à basse température typiquement inférieure à 0°C, et mieux inférieure à -5°C. Le but de la présente invention est en outre de proposer de nouveaux additifs pour carburants et combustibles, et des concentrés contenant de tels additifs, agissant sur la Température Limite de Filtrabilité (TLF), le point d’écoulement (PE), et retardant et/ou empêchant la sédimentation de cristaux de composés hydrocarbonés, notamment des paraffines.
OBJET DE L’INVENTION La demanderesse a maintenant découvert que des polymères cationiques particuliers, tels que décrits ci-après, pouvaient être avantageusement utilisés comme additifs de tenue à froid pour carburant et combustibles.
En particulier, ces polymères possèdent des propriétés inattendues pour améliorer la tenue à froid des compositions de carburants et de combustibles, y compris celles qui sont particulièrement difficiles à traiter.
La présente invention a ainsi pour objet l’utilisation, pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, d’un ou plusieurs polymères comprenant au moins 70% en moles de motifs de formule (I) suivante : dans laquelle Ri représente un atome d’hydrogène ou un groupement méthyle,
E représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et G représente un groupe de formule -R2-Q dans laquelle R2 désigne une chaîne hydrocarbonée en Ci à C34 et Q désigne un groupement comprenant une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle.
Selon un mode de réalisation préféré, le polymère défini ci-avant est employé comme additif dit « booster de TLF », c’est à dire en combinaison avec un additif d’ amélioration d’écoulement ou additif fluidifiant à froid (en anglais « cold flow improvers » ou CFI) dont il améliore les performances.
L’invention a également pour objet une composition de carburant ou de combustible, comprenant : - au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales (de préférence le pétrole), animales, végétales et synthétiques,
- au moins un polymère tel que défini ci-avant, et
- au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s).
L'invention a également pour objet une composition d’additifs (ou « package d’ additifs ») comprenant un tel polymère en association avec au moins un additif de tenue à froid différent des polymères selon l’invention, ainsi qu’un concentré d’ additifs contenant une telle composition. L’ additif de tenue à froid est choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange.
L’invention a enfin pour objet une méthode pour abaisser la température limite de filtrabilité d’une composition de carburant ou de combustible, comprenant l’ ajout à ladite composition de carburant ou de combustible d’un polymère selon l’invention.
D’ autres objets, caractéristiques, aspects et avantages de l’invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent. Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions « compris entre » et « allant de ... à ... » .
Par ailleurs, les expressions « au moins un » et « au moins » utilisées dans la présente description sont respectivement équivalentes aux expressions « un ou plusieurs » et « supérieur ou égal ».
Enfin, de manière connue en soi, on désigne par composé ou groupe en CN un composé ou un groupe contenant dans sa structure chimique N atomes de carbone.
DESCRIPTION DETAILLEE
Le polymère cationique :
L’invention met en œuvre un polymère comprenant au moins 70% en moles de motifs de formule (I) suivante : dans laquelle Ri représente un atome d’hydrogène ou un groupement méthyle,
E représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et G représente un groupe de formule -R2-Q dans laquelle R2 désigne une chaîne hydrocarbonée en Ci à C34, et Q désigne un groupement comprenant une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle.
Le groupement E de la formule (I) est choisi parmi :
-E = -O-CO-, étant entendu que E est alors relié au carbone vinylique par l’ atome d’oxygène -O- ;
- E = -CO-O-, étant entendu que E est alors relié au carbone vinylique par l’ atome de carbone ;
- E = -NH-CO-, étant entendu que E est alors relié au carbone vinylique par l’ atome d’ azote ; et
- E = -CO-NH-, étant entendu que E est alors relié au carbone vinylique par l’ atome de carbone. Selon un premier mode de réalisation, le groupement E de la formule (I) est choisi parmi : -O-CO- et -NH-CO-, étant entendu que le groupement E=-0-CO- est relié au carbone vinylique par l’ atome d’oxygène et que le groupement E=-NH-CO- est relié au carbone vinylique par l’ atome d’ azote. Dans ce mode de réalisation, le groupement E est de préférence le groupement -O-CO-.
Selon un deuxième mode de réalisation, le groupement E de la formule (I) est choisi parmi : -CO-O- et -CO-NH-, étant entendu que le groupement E est relié au carbone vinylique par l’ atome de carbone. Dans ce mode de réalisation, le groupement E est de préférence le groupement -CO-O-.
Selon un mode de réalisation particulièrement préféré, le groupement E est un groupement -CO-O-, E étant relié au carbone vinylique par l’ atome de carbone.
Le groupement G de la formule (I) contient une chaîne hydrocarbonée R2 choisie parmi les chaînes hydrocarbonées en Ci à C34, cycliques ou acycliques, linéaires ou ramifiées. De préférence R2 désigne une chaîne hydrocarbonée linéaire ou ramifiée en Ci à Cis, plus préférentiellement en Ci à Cs, encore plus préférentiellement une chaîne hydrocarbonée linéaire en C2 à C4.
La ou les fonction(s) ammonium quaternaire du groupement Q peuvent être choisies parmi les ammoniums quaternaires de pyrrolinium, de pyridinium, d’imidazolium, de triazolium, de triazinium, d’oxazolium, d’isoxazolium, de trialkylammonium, d’iminium, d’ amidinium, de formamidinium, de guanidinium et de biguanidinium, et de préférence de trialkylammonium.
Selon un mode de réalisation particulièrement préféré, le groupement G est représenté par l’une des formules (II) et (III) suivantes : dans lesquelles :
R2 est tel que défini ci-avant ;
X est un anion, de préférence choisi parmi les ions hydroxyde, halogénures et les anions organiques, de préférence parmi les anions organiques,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment les uns des autres, parmi les chaînes hydrocarbonées en Ci à C24, de préférence de C4 à Cs, étant entendu que les groupements R3, R4 et R5 peuvent contenir un ou plusieurs groupements azotés et/ou oxygénés et notamment être substitués par un ou plusieurs groupement(s) hydroxyle et que les groupements R3, R4 et R5 peuvent être reliés ensemble deux à deux pour former un ou plusieurs cycles,
RÔ et R7 sont identiques ou différents et choisis indépendamment parmi les chaînes hydrocarbonées en Ci à C24, de préférence de C4 à Cs, étant entendu que les groupements RÔ et R7 peuvent contenir un ou plusieurs groupements azotés et/ou oxygénés et notamment être substitués par un ou plusieurs groupement(s) hydroxyle et que les groupements RÔ et R7 peuvent être reliés ensemble pour former un cycle.
Selon un mode de réalisation particulièrement préféré, le groupement G est représenté par la formule (II) ci-avant, dans laquelle : R2 désigne une chaîne hydrocarbonée linéaire ou ramifiée en Ci à Cis, plus préférentiellement en Ci à Cs, encore plus préférentiellement une chaîne hydrocarbonée linéaire en C2 à C4 ;
R3, R4 et R5 représentent, indépendamment les uns des autres, des groupements alkyle en Ci à Cis, de préférence en Ci à C12, éventuellement substitués par au moins un groupement hydroxyle, étant entendu qu’ au moins un des groupements R3, R4 et R5 contient un ou plusieurs groupement(s) hydroxyle ;
X est la base conjuguée d’un acide carboxylique, de préférence d’un acide monocarboxylique contenant de 1 à 24 atomes de carbone, plus préférentiellement de 2 à 18, encore plus préférentiellement de 2 à 8. Selon un mode de réalisation particulièrement préféré, X répond à la formule R-COO avec R un groupement alkyle linéaire ou ramifié, de préférence linéaire, en Ci à C24, plus préférentiellement en C2 à Cis, encore plus préférentiellement en C2 à Cs.
Le polymère selon l’invention comprend au moins 70% en moles de motifs de formule (I), de préférence au moins 80% en moles, et mieux encore au moins 90% en moles.
Selon un mode de réalisation particulièrement préféré, le polymère selon l’invention est formé de motifs de formule (I), c’est-à- dire qu’il ne contient pas de motifs différents des motifs de formule (I) ci-avant. Selon un mode de réalisation particulièrement préféré, le polymère selon l’invention est un homopolymère, c’est-à-dire qu’il est formé d’un unique motif répétitif de formule (I).
Le polymère employé dans la présente invention peut être obtenu par homopolymérisation ou copolymérisation d’un ou plusieurs monomère(s) répondant à la formule suivante (IV) : dans laquelle
Ri, E et G sont tels que définis ci-dessus, les variantes préférées de Ri , E et G selon la formule (I) décrites ci-dessus étant également des variantes préférées de la formule (IV).
Dans ce mode de réalisation, de préférence, le polymère employé dans l’invention est obtenu par homopolymérisation d’ un unique monomère de formule (IV).
Il est entendu que l’on ne sortirait pas de l’invention si l’on obtenait le polymère selon l’invention à partir de monomères différents de ceux de formule (IV) ci-avant, dans la mesure où le polymère final correspond à un polymère tel que défini ci-avant. Par exemple, on ne sortirait pas de l’invention, si l’on obtenait le polymère par polymérisation de monomères différents de ceux de formule (IV), suivie d’une post-fonctionnalisation.
Selon une variante préférée, le polymère selon l’invention est obtenu par polymérisation de monomères intermédiaires répondant à la formule suivante (V) : dans laquelle
Ri et E sont tels que définis ci-dessus selon la formule (I) et G’ représente un groupe de formule -R2-P dans laquelle R2 désigne une chaîne hydrocarbonée en Ci à C34 éventuellement substituée par un ou plusieurs groupement(s) hydroxyle, telle que définie ci-avant, et P désigne un groupement comprenant une fonction amine tertiaire susceptible de conduire au groupement Q tel que défini ci-avant, par réaction avec un agent de quaternisation.
On préfère polymériser des monomères intermédiaires portant une fonction amine tertiaire puis dans une seconde étape fonctionnaliser le polymère intermédiaire ainsi obtenu en le faisant réagir avec un agent de quaternisation, plutôt que de polymériser des monomères déjà quaternisés.
L’ agent de quaternisation est de préférence un époxyde, et de préférence un époxyde en combinaison avec un acide monocarboxylique qui est de préférence un acide monocarboxylique contenant de 2 à 12 atomes de carbone tel que décrit ci-avant, de préférence 4 à 8 atomes de carbone.
Que l’on procède par polymérisation directe de monomères de formule (IV) ou par polymérisation de monomères intermédiaires de formule (V) suivie de post-fonctionnalisation, la réaction de polymérisation proprement dite peut être réalisée en employant tout procédé connu de polymérisation. Les différentes techniques et conditions de polymérisation sont largement décrites dans la littérature et relèvent des connaissances générales de l’homme de l’ art.
La polymérisation est, avantageusement, une polymérisation séquencée. La polymérisation séquencée peut être de type polymérisation par transfert de groupe (GTP en anglais « Group Transfer Polymerization ») ou polymérisation radicalaire contrôlée ; par exemple, par polymérisation radicalaire par transfert d’ atome (ATRP en anglais « Atom Transfer Radical Polymerization») ; la polymérisation radicalaire par le nitroxyde (NMP en anglais « Nitroxide-mediated polymerization ») ; les procédés de transfert dégénératif (en anglais « degenerative transfer processes ») tels que la polymérisation par transfert d'iode dégénérative (en anglais « ITRP- iodine transfer radical polymerization ») ou la polymérisation radicalaire par transfert de chaîne réversible par addition-fragmentation (RAFT en anglais « Réversible Addition-Fragmentation Chain Transfer ») ; les polymérisations dérivées de l’ATRP telles que les polymérisations utilisant des initiateurs pour la régénération continue de l'activateur (ICAR -Initiators for continuous activator régénération) ou utilisant des activateurs régénérés par transfert d’électron (ARGET en anglais « activators regenerated by électron transfer »).
On peut citer à titre d’exemple de description de polymérisation radicalaire RAFT les documents suivants WO 1998/01478, WO 1999/31 144, W02001/77198, W02005/00319, W02005/000924.
Le polymère selon l’invention a, avantageusement, une masse molaire moyenne en nombre (Mn) comprise entre 500 et 5 000 g. mol 1 , plus préférentiellement entre 1 200 et 3 000 g. mol 1. Les masses molaires moyennes en nombre d’un polymère sont, de manière connue en soi, mesurées par résonance magnétique nucléaire (RMN).
L’utilisation : Le polymère décrit ci-avant est utilisé pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, en particulier, d’une composition choisie parmi les gazoles, les biodiesels, les gazoles de type Bx et les fiouls tels que notamment les fiouls domestiques (FOD).
La composition de carburant ou de combustible est telle que décrite ci-après et comprend avantageusement au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, de préférence le pétrole, les sources animales, végétales et synthétiques.
Avantageusement, le polymère selon l’invention est utilisé pour améliorer les propriétés d’écoulement à basse température du carburant ou du combustible lors de son stockage et/ou son utilisation à basse température, en abaissant sa température limite de filtrabilité (ou TLF, mesurée selon la norme NF EN 116) et/ou son point d’écoulement (ou PE, mesuré selon la norme ASTM D 7346) et/ou en retardant ou en empêchant la sédimentation de cristaux, et de préférence en abaissant sa température limite de filtrabilité (TLF, mesurée selon la norme NF EN 116). Le polymère selon l’invention peut être utilisé pour retarder ou empêcher la sédimentation des cristaux de paraffines et plus particulièrement de n-alcanes, de préférence, les n-alcanes contenant au moins 12 atomes de carbone, plus préférentiellement au moins 20 atomes de carbone, encore plus préférentiellement de préférence au moins 24.
Selon un mode de réalisation préféré, le polymère selon l’invention est employé comme additif booster de TLF, c’est à dire en combinaison avec au moins un additif d’ amélioration d’écoulement ou additif fluidifiant à froid (en anglais « cold flow improvers » ou CFI). L’ additif fluidifiant à froid (CFI) est, de préférence, choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange, de préférence parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique.
Dans ce mode de réalisation, le polymère selon l’invention est utilisé pour amplifier l’effet fluidifiant de l’ additif fluidifiant à froid, notamment en abaissant la température limite de filtrabilité (TLF) et/ou le point d’écoulement, et/ou en retardant ou en empêchant la sédimentation de cristaux, tels que ceux contenant des paraffines.
Cet effet est usuellement dénommé effet « booster de TLF » dans la mesure où la présence du polymère selon l’invention améliore le caractère fluidifiant de l’ additif CFI. Cette amélioration se traduit, en particulier, par une baisse significative de la TLF de la composition de carburant ou combustible additivée avec cette association comparativement à la même composition de carburant ou combustible additivée uniquement avec l’ additif CFI, au même taux de traitement. Généralement, une baisse significative de la TLF se traduit par une diminution d’ au moins 3°C de la TLF selon la norme NF EN 116.
Selon un mode de réalisation particulièrement préféré, le polymère est utilisé pour amplifier l’effet fluidifiant (d’écoulement) de l’ additif fluidifiant à froid (CFI) en améliorant la Température Limite de Filtrabilité (TLF) du carburant ou combustible, la TLF étant mesurée selon la norme NF EN 116.
Le polymère peut être ajouté dans les carburants ou combustibles au sein de la raffinerie, et/ou être incorporé en aval de la raffinerie, éventuellement, en mélange avec d'autres additifs, sous forme d’une composition concentrée d’additifs, encore appelé selon l’usage « package d'additifs ».
Le polymère est avantageusement utilisé à une teneur d’ au moins 0,0001 % en poids, par rapport au poids total de la composition de carburant ou de combustible.
De préférence, la teneur dudit polymère va de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,002% en poids, par rapport au poids total de la composition de carburant ou de combustible.
La ’ additifs : L'invention a également pour objet une composition d’ additifs comprenant un polymère tel que décrit ci-avant, et au moins un additif fluidifiant à froid (CFI) choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), le ratio pondéral entre la teneur en polymère(s) formé(s) de motifs de formule (I) d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’ autre part, étant compris dans la gamme allant de 0, 1 : 100 à 10 : 100.
Lesdits copolymères d’éthylène et d’ester(s) vinylique(s)sont différents des polymères formés de motifs de formule (I).
On peut utiliser les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s) seuls ou en mélange. A titre d’exemple, on peut citer les copolymères d'éthylène et d'ester insaturé, tels que les copolymères éthylène/acétate de vinyle (EVA), éthylène/propionate de vinyle (EVP), éthylène/éthanoate de vinyle (EVE), éthylène/méthacrylate de méthyle (EMMA), et éthylène/fumarate d'alkyle décrits, par exemple, dans les documents US3048479, US3627838, US3790359, US3961961 et EP261957. On peut également citer les terpolymères d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique, par exemple le néodécanoate de vinyle.
Selon un mode de réalisation préféré, les copolymères d’éthylène et d’ester(s) vinylique(s) sont choisis parmi les copolymères éthylène/acétate de vinyle (EVA), le copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle.
Le ratio pondéral entre la teneur en polymère(s) selon l’invention d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’ autre part, est compris dans la gamme allant de 0, 1 : 100 à 10 : 100, de préférence de 0,5 : 100 à 5 : 100. Un ratio pondéral particulièrement préféré est de 1 : 100 ± 10%.
La composition d’ additifs peut également comprendre un ou plusieurs additifs d'anti-sédimentation et/ou dispersants de paraffines (WASA), différents du polymère selon l’invention et des additifs fluidifiants à froid décrits précédemment. Ces additifs peuvent être notamment, mais non limitativement, choisis dans le groupe constitué par les copolymères acide (méth)acrylique/(méth)acrylate d'alkyle amidifiés par une polyamine, les alkénylsuccinimides de polyamine, les dérivés d'acide phtalamique et d'amine grasse à double chaîne ; des résines alkylphénol éventuellement greffées. Des exemples de tels additifs sont donnés dans les documents suivants : EP261959, EP593331 , EP674689, EP327423, EP512889, EP832172;
US2005/0223631 ; US5998530; W093/14178.
Les additifs d'anti-sédimentation et/ou dispersants de paraffines (WASA) particulièrement préférés sont choisis parmi les résines alkylphénol et les résines alkylphénol greffées par exemple par des groupes fonctionnels tels que des polyamines.
La composition d’ additifs peut également comprendre un ou plusieurs autres additifs couramment utilisés dans les carburants ou combustibles, différents du polymère selon l’invention et des additifs de tenue à froid décrits précédemment. La composition d’ additifs peut, typiquement, comprendre un ou plusieurs autres additifs choisis parmi les détergents, les agents anti corrosion, les dispersants, les désémulsifiants, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents anti-usure et/ou les agents modifiant la conductivité.
Parmi ces additifs, on peut citer en particulier : a) les additifs procétane, notamment (mais non limitativement) choisis parmi les nitrates d'alkyle, de préférence le nitrate de 2-éthyl hexyle, les peroxydes d'aryle, de préférence le peroxyde de benzyle, et les peroxydes d'alkyle, de préférence le peroxyde de ter-butyle ; b) les additifs anti-mousse, notamment (mais non limitativement) choisis parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales. Des exemples de tels additifs sont donnés dans EP861882, EP663000, EP736590 ; c) les additifs détergents et/ou anti-corrosion, notamment (mais non limitativement) choisis dans le groupe constitué par les amines, les succinimides, les alkénylsuccinimides, les polyalkylamines, les polyalkyles polyamines, les polyétheramines, les sels d’ ammonium quaternaire et les dérivés du triazole ; des exemples de tels additifs sont donnés dans les documents suivants : EP0938535, US2012/0010112 et W02012/004300. On peut également avantageusement employer les copolymères blocs formés d’ au moins un motif polaire et un motif apolaire, tels que par exemple ceux décrits dans la demande de brevet FR 1761700 au nom de la Demanderesse ; d) les additifs de lubrifiance ou agents anti-usure, notamment (mais non limitativement) choisis dans le groupe constitué par les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol, et les dérivés d'acides carboxyliques mono- et polycycliques. Des exemples de tels additifs sont donnés dans les documents suivants: EP680506, EP860494, WO98/04656, EP915944, FR2772783 ,
FR2772784. La composition d’ additifs peut, avantageusement, comprendre de 0, 1 à 50% en poids de polymère tel que décrit précédemment, de préférence de 0,2 à 20% en poids, et plus préférentiellement de 0,5 à 10% en poids, par rapport au poids total des additifs présents dans ladite composition d’ additifs. La présente invention a également pour objet un concentré d’ additifs comprenant une composition d’ additifs telle que décrite ci- avant, en mélange avec un liquide organique. Le liquide organique est avantageusement inerte vis-à-vis des constituants de la composition d’ additifs, et miscible aux carburants ou combustibles, notamment ceux issus d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérale, de préférence le pétrole, animale, végétale et synthétique.
Le liquide organique est de préférence choisi parmi les solvants hydrocarbonés aromatiques tels que le solvant commercialisé sous le nom « SOLVESSO », les alcools, les éthers et autres composés oxygénés, et les solvants paraffiniques tels que l’hexane, pentane ou les isoparaffines, seuls ou en mélange. La composition de carburant ou de combustible :
L’invention concerne également une composition de carburant ou de combustible, comprenant :
- au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales, animales, végétales et synthétiques,
- au moins un polymère formé de motifs de formule (I), tel que défini ci-avant, et
- au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s).
Les sources minérales sont de préférence le pétrole.
La composition de carburant ou de combustible selon l’invention comprend avantageusement ledit ou lesdits polymère(s) formé(s) de motifs de formule (I) en une teneur d’ au moins 0,0001 % en poids, par rapport au poids total de la composition de carburant ou de combustible.
De préférence, la teneur en tel(s) polymère(s) va de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,002% en poids, par rapport au poids total de la composition de carburant ou de combustible. Le additifs fluidifiants à froid (CLI) choisis parmi les copolymères d’éthylène et d’ester(s) vinylique(s) sont tels que décrits ci-avant. Ils sont différent(s) des polymères selon l’invention formés de motifs de formule (I) .
La composition de carburant contient avantageusement au moins 20 ppm (0,002% en poids), de préférence au moins 50 ppm (0,005% en poids), avantageusement entre 20 et 5000 ppm (entre 0,002% et 0,5% en poids), plus préférentiellement entre 50 et 1 000 ppm (entre 0,005% et 0, 1 % en poids) au total d’ additif(s) fluidifiant(s) à froid choisi(s) parmi les copolymères d’éthylène et d’ester(s) vinylique(s). La composition peut contenir en outre un ou plusieurs additifs d'anti-sédimentation et/ou dispersants de paraffines (WASA), différent(s) des polymères selon l’invention formés de motifs de formule (I) et des copolymères d’éthylène et d’ester(s) vinylique(s). De tels additifs sont avantageusement choisis parmi ceux décrits ci-avant.
Les carburants ou combustibles peuvent être choisis parmi les carburants ou combustibles hydrocarbonés liquides, seuls ou en mélange. Les carburants ou combustibles hydrocarbonés liquides comprennent notamment des distillais moyens de température d'ébullition comprise entre 100 et 500°C. Ces distillais peuvent par exemple être choisis parmi les distillais obtenus par distillation directe d'hydrocarbures bruts, les distillais sous vide, les distillais hydrotraités, les distillais issus du craquage catalytique et/ou de l'hydrocraquage de distillais sous vide, les distillais résultant de procédés de conversion type ARDS (par désulfuration de résidu atmosphérique) et/ou de viscoréduction, les distillais issus de la valorisation des coupes Fischer Tropsch, les distillais résultant de la conversion BTL (biomass to liquid) de la biomasse végétale et/ou animale, prise seule ou en combinaison, et/ou les biodiesels d'origine animale et/ou végétale et/ou les huiles et/ou esters d'huiles végétales et/ou animales.
La teneur en soufre des carburants ou combustibles est, de préférence, inférieure à 5000 ppm, de préférence inférieure à 500 ppm, et plus préférentiellement inférieure à 50 ppm, voire même inférieure à 10 ppm, et avantageusement sans soufre. Le carburant ou combustible est, de préférence, choisi parmi les gazoles, les biodiesels, les gazoles de type Bx et les fiouls, de préférence, les fiouls domestiques (FOD).
On entend par gazole de type Bx pour moteur Diesel (moteur à compression), un carburant gazole qui contient x% (v/v) d’esters d’huiles végétales ou animale (y compris huiles de cuisson usagées) transformés par un procédé chimique appelé transestérification faisant réagir cette huile avec un alcool afin d'obtenir des esters d’ acide gras (EAG). Avec le méthanol et l’éthanol, on obtient respectivement des esters méthyliques d’ acides gras (EMAG) et des esters éthyliques d’ acides gras (EEAG). La lettre "B" suivie par un nombre x allant de 0 à 100, qui indique le pourcentage d’EAG contenu dans le gazole. Ainsi, un B99 contient 99% de EAG et 1 % de distillais moyens d’origine fossile, le B20, 20% de EAG et 80% de distillais moyens d’origine fossile etc... On distingue donc les carburants gazoles de type Bo qui ne contiennent pas de composés oxygénés, des carburants gazoles de type Bx qui contiennent x% (v/v) d’esters d’huiles végétales ou animales ou d’ acides gras, le plus souvent esters méthyliques (EMHV ou EMAG). Lorsque l’EAG est utilisé seul dans les moteurs, on désigne le carburant par le terme B 100.
Le carburant ou combustible peut également contenir des huiles végétales hydrogénées, connues de l’homme du métier sous l’ appellation HVO (de l’anglais « hydrotreated vegetable oil ») ou HDRD (de l’ anglais « hydrogenation-derived renewable diesel »). Selon un mode de réalisation préféré, le carburant ou combustible est choisi parmi les gazoles, les biodiesels, les gazoles de type Bx, les huiles végétales hydrogénées (HVO), et leurs mélanges.
La composition de carburant ou combustible peut également contenir un ou plusieurs additifs additionnels, différents des polymères selon l’invention et des additifs de tenue à froid décrits ci-avant. De tels additifs peuvent être notamment choisis parmi les détergents, les agents anti-corrosion, les dispersants, les désémulsifiants, les agents anti-mousse, les biocides, les réodorants, les additifs procétane, les modificateurs de friction, les additifs de lubrifiance ou additifs d'onctuosité, les agents d'aide à la combustion (promoteurs catalytiques de combustion et de suie), les agents anti-usure et/ou les agents modifiant la conductivité, tels que décrits ci-avant.
Ces additifs additionnels peuvent être en général présents en quantité allant de 10 à 1 000 ppm (chacun). Selon un autre mode de réalisation de l’invention, une méthode d’ amélioration des propriétés de tenue à froid d’une composition de carburant ou combustible comprend une étape d’ ajout à ladite composition d’un polymère formé de motifs de formule (I) tel que défini ci-avant. Selon un mode de réalisation, cette méthode comprend les étapes successives de : a) détermination d’une composition d’ additif(s) adaptée à la composition de carburant ou combustible à traiter ainsi que du taux de traitement, ladite composition d’ additif(s) comprenant au moins un polymère selon l’invention formé de motifs de formule (I) et, en option, au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), différent(s) des polymères formés de motifs de formule (I); b) traitement de la composition de carburant ou de combustible avec la quantité déterminée à l’étape a) de ladite composition d’ additif(s).
Le procédé d’ amélioration des propriétés de tenue à froid est typiquement destiné à une composition de carburant ou de combustible telle que décrite ci-avant.
L’étape a) est réalisée selon tout procédé connu et relève de la pratique courante dans le domaine de l’ additivation des carburants ou combustibles. Cette étape implique de définir une caractéristique représentative des propriétés de tenue à froid du carburant ou combustible, par exemple les caractéristiques d’écoulement à basse température, de fixer la valeur cible (notamment une spécification donnée relative aux propriétés de tenue à froid), puis de déterminer l’amélioration qui est requise pour atteindre une telle valeur cible.
Par exemple, une spécification relative à la tenue à froid peut être une spécification européenne Grand Froid définissant, en particulier, une TLF maximale selon la norme NF EN 116. La détermination de la quantité de composition d’ additif(s) à ajouter à la composition de carburant ou combustible pour atteindre la spécification sera réalisée typiquement par comparaison avec la composition de carburant ou combustible sans ladite composition d’ additif(s).
La quantité de composition d’ additifs nécessaire pour traiter la composition de carburant ou combustible peut varier en fonction de la nature et de l’origine du carburant ou combustible, en particulier en fonction du taux et de la nature des composés paraffiniques qu’il contient. La nature et l’origine du carburant ou combustible peut donc être également un facteur à prendre en compte pour l’étape a).
La méthode d’ amélioration des propriétés de tenue à froid peut également comprendre une étape supplémentaire après l’étape b) de vérification de la cible atteinte et/ou d’ ajustement du taux de traitement avec la composition d’ additif(s).
Les exemples ci-après sont donnés à titre d’illustration de l’invention, et ne sauraient être interprétés de manière à en limiter la portée.
EXEMPLES Exemple 1 : Synthèse de polymères selon l’invention
Composés de départ :
- Monomère aminé : Dimethylaminoethyl acrylate (2439-35-2)
- Amorceur : 2,2’ -Azobis-(2-methylpropionitrile) (AIBN) (CAS 78-67- 1)
- Agent de transfert (RAFT) : 2-cyano-2-propyl dodecyl trithiocarbonate (CAS 870196-83- 1)
- Solvant : 1 ,4-dioxane (CAS 123-91 - 1). 1.1. Protocole de synthèse d’un polymère aminé intermédiaire :
10,0 g (69,84 mmol) de monomère aminé sont introduits dans un ballon monocol de 50 mL, puis 3,02 g (8,7 mmol) d’ agent RAFT et 11 ,2 g de 1,4-dioxane sont ajoutés. Fe ballon est ensuite mis à dégazer 30 minutes sous azote et sous agitation magnétique, puis fermé hermétiquement. En parallèle, 0, 179 g ( 1 ,09 mmol) d’AIBN sont introduits dans un second ballon de 25mF, ainsi que 2,0 g de 1 ,4-dioxane comme solvant de dissolution. Fe second ballon est à son tour mis à dégazer 30 minutes sous azote. Fa solution d’AIBN est ensuite transférée à l’ aide d’une seringue purgée à l’ azote dans le ballon de 50 mF, préalablement chauffé à 80°C, pour démarrer la polymérisation. Fa réaction est laissée 24h.
Un échantillon est prélevé pour caractérisation afin de déterminer par RMN la masse molaire moyenne en nombre et la conversion de la réaction. Le polymère intermédiaire ainsi obtenu présente une masse molaire moyenne en nombre Mn de 1500 G. mol 1 ce qui correspond à en moyenne 8 motifs de formule (I) par chaîne polymérique. Le taux de conversion est de 99% en poids (soit 1 % en poids de monomère résiduel). Deux polymères PI et P2 selon l’invention ont été préparés, par quaternisation du polymère aminé intermédiaire ci-avant, conformément aux protocoles ci-dessous .
1.2. Préparation du polymère P I : 2eq (0, 138 mol) d'époxyoctane et d'acide acétique sont ajoutés au milieu réactionnel obtenu à l’issue du protocole de synthèse décrit en 1.1 ci- avant, ainsi que 13g de butanol. Le mélange est chauffé à 60°C et laissé sous agitation à température constante pendant 12h. Le solvant est ensuite évaporé à pression réduite (55 mbar) afin de récupérer le polymère PI formé.
Ce dernier est caractérisé par RMN afin de déterminer le taux de quaternisation. Le taux de quaternisation du polymère PI ainsi obtenu est de 100% (en pourcentage molaire). Préparation du polymère P2 :
2eq (0, 138 mol) d'époxybutane et d'acide octanoïque sont ajoutés au milieu réactionnel obtenu à l’issue du protocole de synthèse décrit en 1.1 ci-avant, ainsi que 13g de butanol. Le mélange est chauffé à 60°C et laissé sous agitation à température constante pendant 12h. Le solvant est ensuite évaporé à pression réduite (55 mbar) afin de récupérer le polymère P2 formé.
Ce dernier est caractérisé par RMN afin de déterminer le taux de quaternisation. Le taux de quaternisation du polymère P2 ainsi obtenu est de 100% (en pourcentage molaire). Exemple 2 : Evaluation des performances de tenue à froid
Les polymères PI et P2 décrits dans l’exemple 1 ont été testés comme additifs de tenue à froid dans une composition G de carburant de type gazole particulièrement difficile à traiter, et dont les caractéristiques sont détaillées dans le tableau 1 ci-dessous :
[Table 1]
La composition de gazole G a été additivée avec un additif A de tenue à froid classique, qui est constitué des deux additifs commerciaux fluidifiants à froid (additifs CFI) suivants, dans du solvant Solvesso 150 :
- 0,5% en poids d’ additif commercialisé par la société Total Additifs Carburants Spéciaux, et qui est un copolymère éthylène / acétate de vinyle (EVA) ayant une masse moléculaire comprise entre 2000 et 6000 gmol 1 ; - 0,5% en poids d’additif Dodiflow D4134 commercialisé par la société
Clariant, et qui est un terpolymère éthylène / acétate de vinyle / ester vinylique.
L’ additif A a été incorporé dans la composition de gazole G à une teneur de 300 ppm en poids de matière active par rapport au poids total de la composition de gazole.
On a ainsi obtenu la composition de gazole additivée Gl . Celle- ci présente une température limite de filtrabilité (TLF, norme EN 116) de -6°C. Les performances comme additifs de tenue à froid de chacun des polymères PI et P2 de l’exemple 1 ont été testées, en évaluant leur aptitude à abaisser la température limite de filtrabilité (TFL) de la composition de gazole additivée G l . Chaque polymère a été ajouté à une teneur de 3 ppm en poids (0,0003% en poids) à la composition Gl , pour donner le gazole G2, dont on a ensuite mesuré la TLF, conformément à la norme EN 116.
Les résultats obtenus figurent dans le tableau 2 ci-dessous :
[Table 2]
Les résultats ci-dessus montrent que l’utilisation des polymères selon l’invention, même employés à des teneurs très faibles, conduit à un abaissement très significatif de la TLF.

Claims

REVENDICATIONS
1. Utilisation, pour améliorer les propriétés de tenue à froid d’une composition de carburant ou de combustible, d’un ou plusieurs polymères comprenant au moins 70% en moles de motifs de formule (I) suivante : dans laquelle
Ri représente un atome d’hydrogène ou un groupement méthyle,
E représente -O-CO-, ou -CO-O- ou -NH-CO- ou -CO-NH-, et G représente un groupe de formule -R2-Q dans laquelle R2 désigne une chaîne hydrocarbonée en Ci à C34 et Q désigne un groupement comprenant une fonction ammonium quaternaire et éventuellement un ou plusieurs groupements hydroxyle.
2. Utilisation selon la revendication précédente, caractérisée en ce que le groupement E de la formule (I) est choisi parmi -CO-O- et - CO-NH-, étant entendu que le groupement E est relié au carbone vinylique par l’ atome de carbone, et de préférence le groupement E est
3. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que le groupement G est représenté par l’une des formules (II) et (III) suivantes : dans lesquelles :
R2 est tel que défini dans la revendication 1 ;
X est un anion, de préférence choisi parmi les ions hydroxyde, halogénures et les anions organiques, de préférence parmi les anions organiques,
R3, R4 et R5 sont identiques ou différents et choisis, indépendamment les uns des autres, parmi les chaînes hydrocarbonées en Ci à C24, de préférence de C4 à Cs, étant entendu que les groupements R3, R4 et R5 peuvent contenir un ou plusieurs groupements azotés et/ou oxygénés et notamment être substitués par un ou plusieurs groupement(s) hydroxyle et que les groupements R3, R4 et R5 peuvent être reliés ensemble deux à deux pour former un ou plusieurs cycles,
RÔ et R7 sont identiques ou différents et choisis indépendamment parmi les chaînes hydrocarbonées en Ci à C24, de préférence de C4 à Cs, étant entendu que les groupements RÔ et R7 peuvent contenir un ou plusieurs groupements azotés et/ou oxygénés et notamment être substitués par un ou plusieurs groupement(s) hydroxyle et que les groupements RÔ et R7 peuvent être reliés ensemble pour former un cycle, et de préférence le groupement G est de formule (II).
4. Utilisation selon la revendication précédente, caractérisée en ce que le groupement G est représenté par la formule (II) ci-avant, dans laquelle :
R2 désigne une chaîne hydrocarbonée linéaire ou ramifiée en Ci à Cis, plus préférentiellement en Ci à Cs, encore plus préférentiellement une chaîne hydrocarbonée linéaire en C2 à C4 ;
R3, R4 et R5 représentent, indépendamment les uns des autres, des groupements alkyle en Ci à Cis, de préférence en C i à C12, éventuellement substitués par au moins un groupement hydroxyle, étant entendu qu’ au moins un des groupements R3, R4 et R5 contient un ou plusieurs groupement(s) hydroxyle ; X est la base conjuguée d’un acide carboxylique, de préférence d’un acide monocarboxylique contenant de 1 à 24 atomes de carbone, plus préférentiellement de 2 à 18, encore plus préférentiellement de 2 à 8.
5. Utilisation d’un polymère selon l’une quelconque des revendications précédentes, pour abaisser la température limite de filtrabilité de la composition de carburant ou de combustible mesurée selon la norme NF EN 1 16 et/ou le point d’écoulement mesuré selon la norme ASTM D 7346, et/ou pour retarder ou empêcher la sédimentation de cristaux, et de préférence pour abaisser la température limite de filtrabilité mesurée selon la norme NF EN 116.
6. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que ledit polymère est employé en combinaison avec au moins un additif fluidifiant à froid, de préférence choisi parmi les copolymères et terpolymères d’éthylène et d’ester(s) vinylique(s) et/ou acrylique(s), seuls ou en mélange, de préférence choisi parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique.
7. Utilisation selon l’une quelconque des revendications précédentes, caractérisée en ce que la teneur en polymère(s) formé(s) de motifs de formule (I) va de 0,0001 à 0,01 % en poids, de préférence de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,002% en poids, par rapport au poids total de la composition de carburant ou de combustible.
8. Composition de carburant ou de combustible, comprenant :
- au moins une coupe d’hydrocarbures issue d’une ou de plusieurs sources choisies parmi le groupe consistant en les sources minérales (de préférence le pétrole), animales, végétales et synthétiques,
- au moins un polymère tel que défini dans l’une quelconque des revendications 1 à 4, et
- au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s).
9. Composition selon la revendication précédente, caractérisée en ce qu’elle contient ledit (lesdits) polymère(s) formé(s) de motifs de formule (I) en une teneur d’au moins 0,0001 % en poids, de préférence de 0,0001 à 0,01 % en poids, plus préférentiellement de 0,0002 à 0,005% en poids, et mieux encore de 0,0003 à 0,002% en poids, par rapport au poids total de la composition de carburant ou de combustible.
10. Composition selon l’une des revendications 8 et 9, caractérisée en ce que les copolymères d’éthylène et d’ester(s) vinylique(s) sont choisis parmi les copolymères éthylène/acétate de vinyle (EVA), les copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement choisis parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle.
11 . Composition selon l’une des revendications 8 à 10, caractérisée qu’elle contient au moins 0,002% en poids, de préférence entre 0,002% et 0,5% en poids, plus préférentiellement entre 0,005% et 0, 1 % en poids au total d’ additif(s) fluidifiant à froid choisi(s) parmi les copolymères d’éthylène et d’ester(s) vinylique(s).
12. Composition d’ additifs comprenant un polymère tel que défini dans l’une des revendications 1 à 4, et au moins un additif fluidifiant à froid choisi parmi les copolymères d’éthylène et d’ester(s) vinylique(s), le ratio pondéral entre la teneur en polymère(s) formé(s) de motifs de formule (I) d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’ autre part, étant compris dans la gamme allant de 0, 1 : 100 à 10 : 100.
13. Composition d’ additifs selon la revendication précédente, caractérisée en ce que les copolymères d’éthylène et d’ester(s) vinylique(s) sont choisis parmi les copolymères éthylène/acétate de vinyle (EVA), les copolymères éthylène/propionate de vinyle (EVP) et les terpolymères d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique ; plus préférentiellement choisis parmi les copolymères éthylène/acétate de vinyle (EVA) et leurs mélanges avec un terpolymère d’éthylène, d’ acétate de vinyle et d’un autre ester vinylique, tel que notamment le néodécanoate de vinyle.
14. Composition d’additifs selon l’une des revendications 12 ou 13, caractérisée en ce que le ratio pondéral entre la teneur en polymère(s) formé(s) de motifs de formule (I) d’une part, et la teneur en copolymère(s) d’éthylène et d’ester(s) vinylique(s) d’ autre part, est compris dans la gamme allant de 0,5 : 100 à 5 : 100, et plus préférentiellement le ratio pondéral est de 1 : 100, ± 10% .
EP20785537.0A 2019-10-14 2020-10-08 Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles Pending EP4045618A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1911384A FR3101882B1 (fr) 2019-10-14 2019-10-14 Utilisation de polymères cationiques particuliers comme additifs pour carburants et combustibles
PCT/EP2020/078284 WO2021074006A1 (fr) 2019-10-14 2020-10-08 Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles

Publications (1)

Publication Number Publication Date
EP4045618A1 true EP4045618A1 (fr) 2022-08-24

Family

ID=69158093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20785537.0A Pending EP4045618A1 (fr) 2019-10-14 2020-10-08 Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles

Country Status (3)

Country Link
EP (1) EP4045618A1 (fr)
FR (1) FR3101882B1 (fr)
WO (1) WO2021074006A1 (fr)

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048479A (en) 1959-08-03 1962-08-07 Exxon Research Engineering Co Ethylene-vinyl ester pour depressant for middle distillates
US3275427A (en) 1963-12-17 1966-09-27 Exxon Research Engineering Co Middle distillate fuel composition
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US3790359A (en) 1969-03-17 1974-02-05 Exxon Research Engineering Co Middle distillate fuel having increased low temperature flowability
US3961961A (en) 1972-11-20 1976-06-08 Minnesota Mining And Manufacturing Company Positive or negative developable photosensitive composition
EP0261959B1 (fr) 1986-09-24 1995-07-12 Exxon Chemical Patents Inc. Additifs pour mazout
IN184481B (fr) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
FR2626578B1 (fr) 1988-02-03 1992-02-21 Inst Francais Du Petrole Polymeres amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures
FR2676062B1 (fr) 1991-05-02 1993-08-20 Inst Francais Du Petrole Polymere amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures.
GB9200694D0 (en) 1992-01-14 1992-03-11 Exxon Chemical Patents Inc Additives and fuel compositions
GB9219962D0 (en) 1992-09-22 1992-11-04 Exxon Chemical Patents Inc Additives for organic liquids
DE69309842T2 (de) 1992-10-09 1997-10-16 Inst Francais Du Petrole Aminephosphate mit einem Imid Endring, deren Herstellung, und deren Verwendung als Zusätze für Motorkraftstoffe
FR2699550B1 (fr) 1992-12-17 1995-01-27 Inst Francais Du Petrole Composition de distillat moyen de pétrole contenant des additifs azotés utilisables comme agents limitant la vitesse de sédimentation des paraffines.
GB9301119D0 (en) 1993-01-21 1993-03-10 Exxon Chemical Patents Inc Fuel composition
FR2735494B1 (fr) 1995-06-13 1997-10-10 Elf Antar France Additif bifonctionnel de tenue a froid et composition de carburant
ATE210684T1 (de) 1996-07-10 2001-12-15 Du Pont POLYMERISATION MIT ßLIVINGß KENNZEICHEN
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
FR2753455B1 (fr) 1996-09-18 1998-12-24 Elf Antar France Additif detergent et anti-corrosion pour carburants et composition de carburants
ES2183073T5 (es) 1997-01-07 2007-10-16 Clariant Produkte (Deutschland) Gmbh Mejoramiento de la fluidez de aceites minerales y destilados de aceites minerales mediando utilizacion de resinas de alquil-fenoles y aldehidos.
JPH10237467A (ja) 1997-02-26 1998-09-08 Tonen Corp ディーゼルエンジン用燃料油組成物
US5730029A (en) 1997-02-26 1998-03-24 The Lubrizol Corporation Esters derived from vegetable oils used as additives for fuels
NZ505654A (en) 1997-12-18 2002-03-28 John Chiefair Living polymerisation process whereby photo-initiators of polymerisation utilises a thermal process resulting in polymers of controlled molecular weight and low polydispersity
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
FR2772783A1 (fr) 1997-12-24 1999-06-25 Elf Antar France Additif d'onctuosite pour carburant
AUPQ679400A0 (en) 2000-04-07 2000-05-11 Commonwealth Scientific And Industrial Research Organisation Microgel synthesis
TWI329024B (en) 2003-06-26 2010-08-21 Suntory Holdings Ltd Composition for skin, kit for skin and skin permeation enhancer
WO2005000924A1 (fr) 2003-06-26 2005-01-06 Symyx Technologies, Inc. Polymeres a base de photoresist
US20050223631A1 (en) 2004-04-07 2005-10-13 Graham Jackson Fuel oil compositions
FR2903418B1 (fr) 2006-07-10 2012-09-28 Total France Utilisation de composes revelateurs d'efficacite des additifs de filtrabilite dans des distillats hydrocarbones, et composition synergique les contenant.
US20120010112A1 (en) 2010-07-06 2012-01-12 Basf Se Acid-free quaternized nitrogen compounds and use thereof as additives in fuels and lubricants
PL2808350T3 (pl) 2010-07-06 2018-04-30 Basf Se Kwaternizowane związki azotu niezawierające kwasów i ich zastosowanie jako dodatku do paliw silnikowych i smarów
FR2969620B1 (fr) 2010-12-23 2013-01-11 Total Raffinage Marketing Resines alkylphenol-aldehyde modifiees, leur utilisation comme additifs ameliorant les proprietes a froid de carburants et combustibles hydrocarbones liquides
CN104193892B (zh) * 2014-07-31 2016-06-08 西北大学 一种具有油品抗静电性能的聚季铵盐的制备方法
EP3056526A1 (fr) 2015-02-11 2016-08-17 Total Marketing Services Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
FR3041349B1 (fr) * 2015-09-18 2020-01-24 Total Marketing Services Copolymere utilisable comme additif detergent pour carburant
FR3054225B1 (fr) * 2016-07-21 2019-12-27 Total Marketing Services Copolymere utilisable comme additif detergent pour carburant
FR3054240B1 (fr) * 2016-07-21 2018-08-17 Total Marketing Services Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles

Also Published As

Publication number Publication date
FR3101882B1 (fr) 2022-03-18
FR3101882A1 (fr) 2021-04-16
WO2021074006A1 (fr) 2021-04-22

Similar Documents

Publication Publication Date Title
EP2867348B1 (fr) Compositions d'additifs et leur utilisation pour ameliorer les proprietes a froid de carburants et combustibles
FR2925916A1 (fr) Terpolymere ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
FR3041349A1 (fr) Copolymere utilisable comme additif detergent pour carburant
CA2975564A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
FR3054225A1 (fr) Copolymere utilisable comme additif detergent pour carburant
CA2975028A1 (fr) Copolymeres a blocs et leur utilisation pour ameliorer les proprietes a froid de carburants ou combustibles
FR3054224A1 (fr) Copolymere et son utilisation comme additif detergent pour carburant
WO2020141126A1 (fr) Utilisation de copolymères spécifiques pour abaisser la température limite de filtrabilité de carburants ou combustibles
WO2021074006A1 (fr) Utilisation de polymères cationiques particuliers comme additifs de tenue à froid pour carburants et combustibles
EP3844250B1 (fr) Utilisation de copolymères spécifiques pour améliorer les propriétés à froid de carburants ou combustibles
WO2019121485A1 (fr) Utilisation de polymères réticulés pour abaisser la température limite de filtrabilité de carburants ou combustibles
EP4189048A1 (fr) Utilisation de copolymères à distribution de masse molaire spécifique pour abaisser la température limite de filtrabilité de carburants ou de combustibles
FR3054240A1 (fr) Utilisation de copolymeres pour ameliorer les proprietes a froid de carburants ou combustibles
EP3844251A1 (fr) Composition d'additifs comprenant au moins un copolymère, un additif fluidifiant à froid et un additif anti-sédimentation
WO2019091950A1 (fr) Nouveau copolymère et son utilisation comme additif pour carburant
WO2019068845A1 (fr) Composition d'additifs pour carburant
WO2017109369A1 (fr) Additif détergent pour carburant et copolymères utilisables dans cette application
WO2017109368A1 (fr) Additif détergent pour carburant
WO2021105321A1 (fr) Utilisation de diols comme additifs de détergence

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)