EP4037923A1 - Antriebsachse eines elektrofahrzeuges und lastschaltverfahren - Google Patents

Antriebsachse eines elektrofahrzeuges und lastschaltverfahren

Info

Publication number
EP4037923A1
EP4037923A1 EP20780986.4A EP20780986A EP4037923A1 EP 4037923 A1 EP4037923 A1 EP 4037923A1 EP 20780986 A EP20780986 A EP 20780986A EP 4037923 A1 EP4037923 A1 EP 4037923A1
Authority
EP
European Patent Office
Prior art keywords
shaft
gear
drive
drive axle
axle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20780986.4A
Other languages
English (en)
French (fr)
Inventor
Johannes Glückler
Stefan Spühler
Stefan Renner
Michael Trübenbach
Kai BORNTRÄGER
Johannes Kaltenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP4037923A1 publication Critical patent/EP4037923A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0806Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts
    • F16H37/0813Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft
    • F16H37/082Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with a plurality of driving or driven shafts with only one input shaft and additional planetary reduction gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • B60K17/08Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing of mechanical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • F16H3/66Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/78Special adaptation of synchronisation mechanisms to these gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/60Electric Machines, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/73Planetary gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/79Drive shafts, output shafts or propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/80Differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0425Bridging torque interruption
    • F16H2061/0433Bridging torque interruption by torque supply with an electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0039Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising three forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2012Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with four sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2038Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with three engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2094Transmissions using gears with orbital motion using positive clutches, e.g. dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing

Definitions

  • the invention relates to a drive axle of an electric vehicle, which comprises a first and a second drive wheel with wheel axles, a first and a second electric machine with a common axis of rotation, a gearbox with a transmission input shaft and a transmission output shaft and an axle differential.
  • the invention also relates to a method for carrying out shifts under load (load shift method) by means of a switching device and a Koppelein direction of the gearbox.
  • a drive unit for an electric vehicle with an electric machine and a three or two-speed manual transmission wherein a switching device with three or two switching elements is provided for switching three or two gears.
  • the three-speed manual transmission can be used as a two-speed manual transmission.
  • the gearbox comprises two planetary sets coupled with one another, the first planetary set being driven by the electric machine via its sun shaft (transmission input shaft), while the ring gear shaft of the first planetary set is held in place.
  • the first planetary gear set is coupled to the ring gear shaft of the second planetary gear set via its spider shaft.
  • the spider shaft of the second planetary gear set forms the transmission output shaft.
  • the three or two shift elements are integrated in a sliding sleeve, which is axially displaceable on the sun shaft of the second planetary gear set, resulting in a total of five positions for the three-speed manual transmission, namely three shift positions and two neutral positions.
  • a drive axle with drive wheels is also disclosed, in which the drive unit serves as a drive and drives an axle differential arranged between the drive wheels.
  • the transmission output shaft of the drive unit is thus connected to the differential input, the differential cage.
  • the invention aims to exploit further potential using the gearbox or gear set described above.
  • the first electric machine drives into the axle differential via the gearbox and that the second electric machine can be switched on if necessary.
  • the second electrical machine can be used on the one hand to increase the drive power, that is to say to support the first electrical machine and / or on the other hand to support the tractive force during the shifting operations. Due to the design of the switching elements as claws, a tensile force interruption would occur without the second electrical machine.
  • the second electrical machine is switched on, power flows from the second electrical machine into the gearbox during the shifting process, so that there is no interruption in tractive force, i.e. H. Powershifts are possible.
  • the drive axle has two electrical machines, but only requires one gearbox.
  • the gearbox is designed as a three-speed gearbox with three shift elements and two tarpaulin sets that are coupled to one another and that form a gear set.
  • This wheel set corresponds to that disclosed in the earlier application to which reference is made.
  • the second sun shaft is coupled to the housing for shifting the first gear.
  • the second planetary gear set is blocked, with basically three variants of the coupling of two of the three shafts of the second planetary gear set.
  • the sun shafts of the first and second planetary gear sets are coupled to one another.
  • the circuits take place each via a first shift element (first gear), a second shift element (second gear) and a third shift element (third gear). This also corresponds to the older registration to which reference is made.
  • the manual transmission is designed as a two-speed manual transmission, the first gear being switched by a first switching element and the second gear being switched by a third switching element. Ge compared to the three-speed manual transmission so the second shift element has been omitted diglich in the two-speed manual transmission le.
  • the two-speed manual transmission also corresponds to that of the earlier application to which reference is made.
  • the switching elements are designed as unsynchronized claws, as already disclosed in the earlier application.
  • the first electrical machine can be decoupled, for which purpose the switching device has at least one neutral position.
  • the decoupling enables the electric vehicle to roll freely without the resistance of the rotating electric machine.
  • the three shift elements are integrated in a sliding sleeve, the sliding sleeve being arranged displaceably on a shaft, namely the sun shaft of the second planetary gear set.
  • the sliding sleeve being arranged displaceably on a shaft, namely the sun shaft of the second planetary gear set.
  • the second electrical Ma machine is assigned a coupling device with two coupling positions and one neutral position. This makes it possible to supply the power of the second electrical machine to the manual transmission on two different paths, depending on requirements.
  • the second electrical machine is connected directly to the transmission input shaft in a first coupling position. the. This adds up the outputs or torques of the two electrical machines. Since both machines have the same speed with this coupling, double the drive power at the differential input results from the same electrical machines.
  • the second electrical Ma machine is coupled in a second coupling position with the sun shaft of the second planetary set.
  • the power of the second electrical machine thus flows into the manual transmission on a different path, resulting in a superimposed operation.
  • this coupling position traction support can be achieved when shifting gears in the manual transmission. If there is an interruption in the tractive effort when passing through the neutral position during a shift, the second electric machine provides support via the second sun shaft, so that there is no interruption in tractive effort at the transmission output shaft. Power shifts are thus possible.
  • the coupling device has a neutral position in which the second electrical machine can be decoupled, that is, it is not dragged along. This avoids drag losses.
  • the sliding sleeve of the switching device has a passage which enables a mechanical connection between the sun's shaft of the second planetary gear set and the coupling device.
  • the second sun shaft can be guided to the coupling device and the second electrical machine can introduce a torque into the gearbox via the coupling device.
  • the wheel axles are arranged coaxially or axially parallel to the axis of rotation of the two electrical machines.
  • the coaxial design results in a compact arrangement of the gear and shift elements in the area close to the axis, the gearbox and also the differential as well as the shift elements can be arranged radially within the electrical machines, ie within their rotors.
  • fixed gear ratios are arranged between the differential output shafts and the drive wheels, as a result of which the overall ratio between the electric machine and the drive wheels is further increased slowly.
  • the translation stages can be represented by various embodiments, as already disclosed in the earlier application to which reference is made.
  • the drive axle is designed as a por tal axle, the wheel axles having an offset with respect to the differential output shafts or with respect to the axis of rotation of the electrical machines. This means that greater ground clearance is achieved for the electric vehicle.
  • the portal axis which can be displayed with different translation levels, also corresponds to the older login.
  • the axis of rotation of the electric machines is arranged perpendicular to the wheel axles, i.e. in the longitudinal direction of the electric vehicle.
  • the axle differential is driven by the gearbox output shaft via a bevel drive.
  • This drive arrangement is referred to as a central drive, with the electrical machines and the gearbox outside the vehicle axle, which only includes the axle differential and drive wheels, are arranged.
  • a method for carrying out shifts under load provides that the first electrical machine is operated as the main drive machine and the second electrical machine can be used to assist traction during the shifting operations. This takes the advantage of a load shift, i. H. a circuit without interruption of the tractive effort.
  • the second sun shaft is coupled to the second electrical machine in preparation for a shift in the manual transmission.
  • additional power flows into the manual transmission, and the second electrical machine provides support during the shifting process, especially when passing through the neutral position.
  • the tractive force there is no interruption of the tractive force.
  • FIG. 1 shows a drive axle according to the invention of an electric vehicle with two electric machines and a three-speed manual transmission
  • FIG. 2 shows the drive axle according to FIG. 1 with a circuit variant
  • Fig. 3 shows the drive axis according to FIG. 1, but as a portal axis in a first imple mentation form
  • Fig. 4 shows the drive axis according to FIG. 1, but as a portal axis in a second imple mentation form
  • FIG. 6 shows a drive arrangement of an electric vehicle with a central drive.
  • Fig. 1 shows as a first embodiment of the invention a drive axle 1, wel che two drive wheels R1, R2 with wheel axles a1, a2, a first electrical Maschi ne EM1 with a first rotor R01, a second electrical machine EM2 with egg nem second rotor R02 and includes a three-speed manual transmission G3.
  • a shifting device SE3 with a first shifting element A, a second shifting element B and a third shifting element C is assigned to the manual transmission G3.
  • Between tween the two drive wheels R1, R2 is a differential Dl with a differential input designed as a differential basket DIK and two differential output shafts 3a, 3b.
  • the three-speed gearbox G3, hereinafter referred to as gearbox G3 for short, comprises two planetary sets coupled to one another, a first planetary set PS1 with a first sun shaft S01, a first spider shaft ST 1 and a first ring gear shaft HR1 fixed to the housing and a second planetary set PS2 with a second Sun shaft S02, a second spider shaft ST2 and a second ring gear shaft HR2, which is firmly connected to the first spider shaft ST 1, and a coupling shaft forms between the two planetary gear sets PS1, PS2.
  • the first sun shaft S01 is firmly connected to the first rotor R01 and thus forms the transmission input shaft EW of the gearbox G3.
  • the second spider shaft ST2 forms the gearbox output shaft AW, which drives into the differential Dl, ie is firmly connected to the differential cage DlK.
  • the two planetary gear sets PS1, PS2 form a gear set which corresponds to the gear set disclosed in the earlier application.
  • Fixed gear ratios are arranged between the differential Dl and the drive wheels R1, R21, here designed as a third planetary set PS3a arranged on the right and a third planetary set PS3b arranged on the left, which are mirror images.
  • the differential Dl has two differential output shafts 3a, 3b, which drive the sun shafts S03 of the planetary gear sets PS3a, PS3b.
  • the hollow wheel shafts HR3 are each held; the output takes place via the Stegwel le ST3, which drive the drive wheels R1, R2 as output shafts 2a, 2b.
  • Three gears can be shifted with the shifting device SE3: To engage the first gear, the second sun shaft S02 is coupled to the housing, represented by hatching, by means of the first shifting element A, i. H. fixed. Both planetary sets PS1, PS2 thus run with fixed gear ratios, which, when multiplied with one another, result in the gear ratio of the first gear.
  • the second shift element B through which the second gear is shifted, locks the second planetary gear set PS2, whereby basically two of the three shafts S02, HR2, ST2 can be coupled to one another.
  • the second sun shaft S02 is gekop pelt with the second ring gear shaft HR2.
  • the second planetary set PS2 rotates as a block, i.e. H. with a ratio of 1: 1, so that the ratio of the second gear results from the fixed ratio of the first planetary gear set PS1.
  • the third shift element C through which the third gear is engaged, connects the second sun shaft S02 with the first sun shaft S01. This results in a double coupling of the first and the second planetary gear set PS1, PS2, which results in a superimposed operation of the first and the second planetary gear set PS1, PS2 with a lower gear ratio for the third gear.
  • the switching elements A, B, C are preferably designed as unsynchronized claws, with frictional, synchronized switching elements can also be used for the switching functions described.
  • the gearbox G3 has between the three shift positions in which either the shift element A or the shift element B or the shift element C is closed, two neutral positions in which the first electric machine EM1 can be coupled from the gearbox G3.
  • the rotor R01 of the first electrical machine EM1 has a cylindrical cavity in which the two planetary gear sets PS1, PS2 and partly also the differential Dl can be arranged in a space-saving manner; in particular, installation space is saved in the axial direction.
  • the second sun shaft S02 of the second planetary gear set PS2 is involved in all switching positions - therefore all switching elements, i.e. the first, second and third switching elements A, B, C can be integrated into a single sliding sleeve SM, which rotates in all switching positions the second sun shaft S02 is connected to be integrated.
  • the sliding sleeve SM is operated by a single Aktua tor AK1. Since the gears one to three can be shifted one after the other by moving the sliding sleeve SM in one direction, in each case via neutral positions, there is the possibility of synchronizing the shifting elements.
  • the second electrical machine EM2 can be switched on or decoupled by a coupling device KE.
  • the coupling device KE has a first coupling element D and a second coupling element E.
  • the second electrical machine EM2 is connected to the transmission input shaft EW of the gearbox G3 via its rotor R02 via the second coupling element E.
  • both electrical machines EM1, EM 2 run at the same speed.
  • the second electrical machine EM2 thus increases the drive power, which - with the same electrical machines EM1, EM2 - can be doubled.
  • the second electrical machine EM2 is connected to the second sun shaft S02 by the first coupling element D, this coupling connection being made possible by a passage DU in the sliding sleeve SM of the switching device SE3.
  • the first coupling element D can thus reach through the sliding sleeve SM to the sun shaft S02 of the second planetary gear set PS2.
  • the power of the second electrical machine EM2 thus flows into the gearbox G3 on a different path, and the power flows of the two electrical machines EM1, EM2 are superimposed.
  • a tractive force support is achieved when shifting, which enables power shifts with the gearbox G3.
  • a circuit i. H.
  • a torque fed in from the second electric machine EM2 is applied to the sun shaft S02 of the second plane set PS2, which maintains the tractive force in the output shaft AW or the second Spider wave ST2 causes. Shifting without interruption of traction is also referred to as a power shift process, which is described in more detail below.
  • the power shift method according to the invention assumes that the first electrical cal machine EM1 acts as the main drive machine, since it is permanently connected to the gearbox G3 via the transmission input shaft EW. To support the circuits, the second electrical machine EM2 is connected to the second sun shaft S02 in preparation.
  • the following describes the shift from first to second gear, the first shifting element A of the shifting device SE3 being opened and then the second shifting element B being closed.
  • the load on the second electrical machine EM2 is first reduced, ie. H.
  • the second coupling element E of the coupling device KE is opened and the first coupling element D is synchronized with the second electrical machine EM2, that is, braked here to zero speed.
  • the first coupling element D is closed.
  • the second electrical machine EM2 is then connected to the second sun shaft S02.
  • a torque is built up by the second electrical machine EM2, so that the load on the first switching element A, which acts as a brake, is relieved. If the second electrical machine EM2 cannot generate enough torque, the torque of the first electrical machine EM1 is reduced accordingly. Then the first switching element A is opened.
  • the torques of the first and the second electric machine EM1, EM2 are controlled or regulated in such a way that the speed of the second electric machine EM2 increases and the speed of the first electric machine EM1 decreases.
  • the torque of the second electrical machine EM2 is preferably increased somewhat - if possible - and at the same time the torque of the first electrical machine EM1 is reduced somewhat.
  • the target speed of the second sun shaft S02 which corresponds to the speed of the second electrical machine EM2, is the speed of the second ring gear shaft HR2, so that the second shift element B becomes synchronous. As soon as the second switching element B is synchronous, it can be closed.
  • the torques of the first and the second electrical machine EM1, EM2 can now be divided as desired, since a fixed gear, namely the second, is engaged. If necessary, the second electrical machine EM2 can be decoupled from the second sun shaft S02. If the full drive power is desired, the second electrical machine EM2 can also be connected to the transmission input shaft EW or the first sun shaft S01.
  • the switching device SE3 or its sliding sleeve SM is actuated by a first actuator AK1, while the coupling device KE is actuated by a second actuator AK2.
  • the common axis of rotation m of the two electrical machines EM1, EM2 coincides with the two wheel axles a1, a2.
  • the planetary sets PS1, PS2, PS3a, PS3b, of which only the upper half is provided, are arranged rotationally symmetrical to the axis of rotation m.
  • the power shift process when shifting from second to third gear, with the second shift element B being opened and the third shift element C closed, is analogous to the shifting process from first to second gear, as described above Rotational speeds of the first and second electrical machines.
  • FIG. 2 shows, as a further exemplary embodiment of the invention, a drive axle 2 which essentially, in particular functionally, corresponds to the drive axle 1 according to FIG. 1;
  • the same reference numerals as in FIG. 1 are used for the same parts.
  • Fig. 1 Different from Fig. 1 is the coupling of the shafts of the second Plane tset in the shift position B.
  • Fig. 2 shows a locking variant in which the sun shaft S02 and the spider shaft ST2, which is also the gearbox output shaft AW of the gearbox G3, are interlocked .
  • the second planetary gear set PS2 thus rotates as a block, d. H. the result is a ratio of 1: 1.
  • this blocking variant corresponds functionally to the blocking as shown in FIG. 1.
  • FIG. 3 shows a drive axle 3, which essentially corresponds to the drive axle 1 according to FIG. 1, but with the difference that the drive axle 3 is designed as a portal axle, ie the wheel axles a1, a2 point opposite the axis of rotation m an axial offset u.
  • the axial offset u is achieved by two mirror-inverted gear steps PS4a, PS4b arranged in the area of the drive wheels R1, R2, which are designed as planetary sets, in which the web is held in each case.
  • the drive takes place from the differential output shafts 3a, 3b via a planetary gear, while the output takes place via the sun shaft on the output shafts 2a, 2b, coaxially to the wheel axles a1, a2.
  • the planetary sets PS4a, PS4b correspond to the planetary sets 30 according to FIG older registration and the associated description on page 11, overall page 12, first paragraph, to which reference is hereby made.
  • Fig. 4 shows as a further embodiment of the invention a drive axle 4, which is again designed as a portal axis, but with modified, wheel-related constant gear ratios, which are designed here as spur gear STa, STb and an offset v between the differential output shafts 3a, 3b and the output shafts 2a, 2b.
  • the stationary transmission STa comprises a drive gear Z1 arranged in a rotationally fixed manner on the drive shaft 3a, an output gear Z2 arranged on the output shaft 2a and two intermediate gears Z3, Z4, each of which is in engagement with the drive gear Z1 and the output gear Z2.
  • a gear scheme for the arrangement of the gears Z1, Z2, Z3, Z4 in a radial plane is shown in the drawing at the top right.
  • FIG. 5 shows, as a further exemplary embodiment of the invention, a drive axle 5 in which the gearbox is designed as a two-speed gearbox G2 and has a shifting device SE2 with only two shifting elements, the first shifting element A and the third shifting element C.
  • the second shift element B is omitted in the two-speed manual transmission G2.
  • the first and second gear are shifted via the two shifting elements A, C.
  • the switching element A is closed, the second sun shaft S02 is connected to the housing so that both planetary gear sets PS1, PS2 run with a fixed transmission.
  • the fixed gear ratios connected one after the other result in the gear ratio of the first gear.
  • the second gear is formed by closing the switching element C, whereby both sun shafts S01, S02 are coupled with each other - this results in a Gölagerungsbe the two planetary gear sets PS1, PS2, which results in the translation for the second gear.
  • the gear jump or the gear ratio spread between the first and the second gear in the two-speed gearbox is thus the same as between the first and third gear in the three-speed gearbox G3 (FIG. 1).
  • the two-speed Gearbox G2 has a shorter shift path for the sliding sleeve SM, since there are only three shift positions, namely “A”, neutral and “C”.
  • the transmission output shaft AW of the two-speed gearbox G2, the second spider shaft ST2, is directly connected to the differential cage DIK of the differential Dl the three-speed transmission G3 can, if necessary, be replaced by the two-speed transmission G2 in that the second shift element B is omitted.
  • FIG. 6 shows a drive arrangement 6 which is designed as a so-called central drive.
  • the electrical machines EM1, EM2 and the gearbox G3 are not arranged in the area of the wheel axles a3, a4, but rather at a “central” point in the electric vehicle.
  • the first electrical machine EM1 with gearbox G3 and switching device SE3 and the second electrical Ma machine EM2 with coupling device KE form a drive unit with an axis of rotation and symmetry m, which is arranged perpendicular to the wheel axles a3, a4 of the drive wheels R3, R4.
  • the differential Dl is driven via a bevel gear KT through the transmission output shaft AW of the gearbox G3.
  • a bevel gear pinion KT1 which is attached to the transmission output shaft AW, meshes with a plate wheel KT2, which is firmly connected to the differential cage of the differential Dl.
  • the three-speed manual transmission G3 shown in FIG. 6 can be replaced by the two-speed manual transmission G2 shown in FIG. Reference symbol
  • AW gearbox output shaft a1 wheel axle, left a2 wheel axle, right a3 wheel axle a4 wheel axle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structure Of Transmissions (AREA)
  • Retarders (AREA)

Abstract

Antriebsachse eines Elektrofahrzeuges mit einem ersten und einem zweiten Antriebsrad (R1, R2) mit Radachsen (a1, a2), einer ersten elektrischen Maschine (EM1) und einer zweiten elektrischen Maschine (EM2) mit einer gemeinsamen Rotationsachse (m), einem Schaltgetriebe (G3) mit einer Getriebeeingangswelle (EW) und einer Getriebeausgangswelle (AW) sowie einem Achsdifferenzial (Dl) mit einem Differenzialeingang (DIK) und zwei Differentialausgangswellen (3a, 3b), wobei die erste elektrische Maschine (EM1) mit der Getriebeeingangswelle (EW) und die Getriebeausgangswelle (AW) mit dem Differenzialeingang (DIK) verbunden sind und wobei die zweite elektrische Maschine (EM2) bedarfsweise als zusätzlicher Antrieb zuschaltbar ist.

Description

Antriebsachse eines Elektrofahrzeuges und Lastschaltverfahren
Die Erfindung betrifft eine Antriebsachse eines Elektrofahrzeuges, welches ein erstes und ein zweites Antriebsrad mit Radachsen, eine erste und eine zweite elektrische Maschine mit einer gemeinsamen Rotationsachse, ein Schaltgetriebe mit einer Ge triebeeingangswelle und einer Getriebeausgangswelle und ein Achsdifferenzial um fasst. Die Erfindung betrifft ferner ein Verfahren zur Durchführung von Schaltungen unter Last (Lastschaltverfahren) mittels einer Schalteinrichtung und einer Koppelein richtung des Schaltgetriebes.
In der älteren Anmeldung mit dem Aktenzeichen 10 2019 202 994.9 ist eine An triebseinheit für ein Elektrofahrzeug mit einer elektrischen Maschine und einem Drei oder Zweigang-Schaltgetriebe offenbart, wobei eine Schalteinrichtung mit drei oder zwei Schaltelementen zur Schaltung von drei oder zwei Gängen vorgesehen ist. Durch Weglassen eines Schaltelements ist das Dreigang-Schaltgetriebe als Zwei gang-Schaltgetriebe verwendbar. Das Schaltgetriebe umfasst zwei miteinander ge koppelte Planetensätze, wobei der erste Planetensatz über seine Sonnenwelle (Ge triebeeingangswelle) von der elektrischen Maschine angetrieben wird, während die Hohlradwelle des ersten Planetensatzes festgehalten ist. Der erste Planetensatz ist über seine Stegwelle mit der Hohlradwelle des zweiten Planetensatzes gekoppelt.
Die Stegwelle des zweiten Planetensatzes bildet die Getriebeausgangswelle. Die drei respektive zwei Schaltelemente sind in eine Schiebemuffe integriert, welche auf der Sonnenwelle des zweiten Planetensatzes axial verschiebbar ist, wobei sich für das Dreigang-Schaltgetriebe insgesamt fünf Positionen ergeben, nämlich drei Schaltposi tionen und zwei Neutralpositionen. In der älteren Anmeldung ist auch eine An triebsachse mit Antriebsrädern offenbart, bei welcher die Antriebseinheit als Antrieb dient und ein zwischen den Antriebsrädern angeordnetes Achsdifferenzial antreibt. Die Getriebeausgangswelle der Antriebseinheit ist somit mit dem Differenzialeingang, dem Differenzialkorb, verbunden. Mit dieser Antriebsachse, welche nur eine elektri sche Antriebsmaschine und nur ein Schaltgetriebe und ein Achsdifferenzial aufweist, sind Lastschaltungen nicht möglich. Aufgrund der als Klauen ausgebildeten Schalt elemente erfolgen die Schaltungen mit Zugkraftunterbrechung. Die vorgenannte älte- re Anmeldung wird vollumfänglich in den Offenbarungsgehalt dieser Anmeldung ein bezogen und wird im Folgenden kurz ältere Anmeldung genannt.
Ausgehend von der älteren Anmeldung, bezweckt die Erfindung unter Verwendung des zuvor beschriebenen Schaltgetriebes oder Radsatzes weitere Potenziale auszu schöpfen.
Erfindungsgemäß ist bei der eingangs genannten Antriebsachse eines Elektrofahr zeuges mit zwei elektrischen Maschinen und einem Schaltgetriebe sowie einem Achsdifferenzial vorgesehen, dass die erste elektrische Maschine über das Schaltge triebe in das Achsdifferenzial eintreibt und dass die zweite elektrische Maschine be darfsweise zuschaltbar ist. Vorteilhaft hierbei ist, dass die zweite elektrische Maschi ne einerseits zur Verstärkung der Antriebsleistung, also zur Unterstützung der ersten elektrischen Maschine und/oder andererseits zur Zugkraftstützung während der Schaltvorgänge herangezogen werden kann. Aufgrund der Ausbildung der Schalt elemente als Klauen würde ohne die zweite elektrische Maschine eine Zugkraftun terbrechung auftreten. Wenn die zweite elektrische Maschine zugeschaltet ist, fließt während des Schaltvorganges Leistung aus der zweiten elektrischen Maschine in das Schaltgetriebe, so dass keine Zugkraftunterbrechung auftritt, d. h. Lastschaltun gen möglich sind. Vorteilhaft ist ferner, dass die Antriebsachse zwar zwei elektrische Maschinen aufweist, jedoch nur ein Schaltgetriebe benötigt.
Nach einer vorteilhaften Ausgestaltung ist das Schaltgetriebe als Dreigang- Schaltgetriebe mit drei Schaltelementen und zwei miteinander gekoppelten Plane tensätzen, die einen Radsatz bilden, ausgebildet. Dieser Radsatz entspricht dem, der in der älteren Anmeldung offenbart ist, auf welche verwiesen wird.
Nach weiteren bevorzugten Ausführungsformen wird die zweite Sonnenwelle zur Schaltung des ersten Ganges mit dem Gehäuse gekoppelt. Zur Schaltung des zwei ten Ganges wird der zweite Planetensatz verblockt, wobei sich grundsätzlich drei Varianten der Kopplung von jeweils zwei der drei Wellen des zweiten Planetensatzes ergeben. Zur Schaltung des dritten Ganges werden die Sonnenwellen des ersten und des zweiten Planetensatzes miteinander gekoppelt. Die Schaltungen erfolgen jeweils über ein erstes Schaltelement (erster Gang), ein zweites Schaltelement (zwei ter Gang) und ein drittes Schaltelement (dritter Gang). Auch dies entspricht der älte ren Anmeldung, auf welche verwiesen wird.
Nach einer weiteren bevorzugten Ausführungsform ist das Schaltgetriebe als Zwei gang-Schaltgetriebe ausgebildet, wobei der erste Gang durch ein erstes Schaltele ment und der zweite Gang durch ein drittes Schaltelement geschaltet werden. Ge genüber dem Dreigang-Schaltgetriebe ist also bei dem Zweigang-Schaltgetriebe le diglich das zweite Schaltelement weggelassen worden. Auch das Zweigang- Schaltgetriebe entspricht dem der älteren Anmeldung, auf die verwiesen wird.
Nach einer weiteren bevorzugten Ausführungsform sind die Schaltelemente als un synchron isierte Klauen ausgebildet, wie bereits in der älteren Anmeldung offenbart.
Nach einer weiteren bevorzugten Ausführungsform kann die erste elektrische Ma schine abgekoppelt werden, wozu die Schalteinrichtung mindestens eine Neutralstel lung aufweist. Durch die Abkoppelung ist ein freies Rollen des Elektrofahrzeuges oh ne den Widerstand der mitdrehenden elektrischen Maschine möglich.
Nach einer weiteren bevorzugten Ausführungsform sind die drei Schaltelemente in eine Schiebemuffe integriert, wobei die Schiebemuffe auf einer Welle, nämlich der Sonnenwelle des zweiten Planetensatzes verschiebbar angeordnet ist. Dadurch können sämtliche Schalt- und Neutralpositionen (fünf Positionen) mit einer Schie bemuffe angewählt und mit nur einem Aktuator betätigt werden. Auch dies entspricht der Offenbarung in der älteren Anmeldung.
Nach einer weiteren bevorzugten Ausführungsform ist der zweiten elektrischen Ma schine eine Koppeleinrichtung mit zwei Koppelpositionen und einer Neutralposition zugeordnet. Damit ist es möglich, die Leistung der zweiten elektrischen Maschine, je nach Bedarf, auf zwei unterschiedlichen Pfaden dem Schaltgetriebe zuzuführen.
Nach einer weiteren bevorzugten Ausführungsform wird die zweite elektrische Ma schine in einer ersten Koppelposition direkt mit der Getriebeeingangswelle verbun- den. Damit werden die Leistungen oder Drehmomente der beiden elektrischen Ma schinen summiert. Da beide Maschinen bei dieser Koppelung dieselbe Drehzahl aufweisen, ergibt sich bei gleichen elektrischen Maschinen die doppelte Antriebsleis tung am Differenzialeingang.
Nach einer weiteren bevorzugten Ausführungsform wird die zweite elektrische Ma schine in einer zweiten Koppelposition mit der Sonnenwelle des zweiten Planeten satzes gekoppelt. Damit fließt die Leistung der zweiten elektrischen Maschine auf einem anderen Pfad in das Schaltgetriebe, wobei sich ein Überlagerungsbetrieb ergibt. In dieser Koppelposition kann eine Zugkraftstützung bei Schaltungen im Schaltgetriebe erreicht werden. Wenn bei einem Schaltvorgang beim Durchfahren der Neutralstellung eine Zugkraftunterbrechung auftritt, stützt die zweite elektrische Maschine über die zweite Sonnenwelle, so dass keine Zugkraftunterbrechung an der Getriebeausgangswelle auftritt. Damit sind Lastschaltungen möglich.
Nach einer weiteren bevorzugten Ausführungsform weist die Koppeleinrichtung eine Neutralposition auf, in welcher die zweite elektrische Maschine abkoppelbar ist, also nicht mitgeschleppt wird. Damit werden Schleppverluste vermieden.
Nach einer weiteren bevorzugten Ausführungsform weist die Schiebemuffe der Schalteinrichtung einen Durchgriff auf, welcher eine mechanische Verbindung zwi schen der Sonnenwelle des zweiten Planetensatzes und der Koppeleinrichtung er möglicht. Dadurch kann die zweite Sonnenwelle zur Koppeleinrichtung geführt wer den, und die zweite elektrische Maschine kann über die Koppeleinrichtung ein Dreh moment in das Schaltgetriebe einleiten.
Nach einer weiteren bevorzugten Ausführungsform sind die Radachsen koaxial oder achsparallel zur Rotationsachse der beiden elektrischen Maschinen angeordnet. Bei der koaxialen Bauweise ergibt sich eine kompakte Anordnung von den Getriebe- und Schaltelementen im achsnahen Bereich, wobei das Schaltgetriebe und auch das Dif ferenzial sowie die Schaltelemente radial innerhalb der elektrischen Maschinen, d. h. innerhalb deren Rotoren angeordnet werden können. Nach einer weiteren bevorzugten Ausführungsform sind zwischen den Differenzial ausgangswellen und den Antriebsrädern feste Übersetzungsstufen angeordnet, wodurch die Gesamtübersetzung zwischen elektrischer Maschine und Antriebsrädern weiter ins Langsame erhöht wird. Die Übersetzungsstufen können durch verschiede ne Ausführungsformen dargestellt werden, wie sie bereits in der älteren Anmeldung, auf welche verwiesen wird, offenbart sind.
Nach einer weiteren bevorzugten Ausführungsform ist die Antriebsachse als Por talachse ausgebildet, wobei die Radachsen gegenüber den Differenzialausgangswel len respektive gegenüber der Rotationsachse der elektrischen Maschinen einen Achsversatz aufweisen. Damit wird eine größere Bodenfreiheit für das Elektrofahr zeug erzielt. Auch die Portalachse, die mit unterschiedlichen Übersetzungsstufen dargestellt werden kann, entspricht der älteren Anmeldung.
Nach einer weiteren bevorzugten Ausführungsform ist die Rotationsachse der elektri schen Maschinen senkrecht zu den Radachsen, d.h. in Längsrichtung des Elektro fahrzeuges angeordnet. Dabei wird das Achsdifferenzial über einen Kegeltrieb von der Getriebeausgangswelle angetrieben. Diese Antriebsanordnung wird als Zentral antrieb bezeichnet, wobei die elektrischen Maschinen und das Schaltgetriebe außer halb der Fahrzeugachse, die lediglich das Achsdifferenzial und Antriebsräder um fasst, angeordnet sind.
Nach einem weiteren Aspekt der Erfindung ist bei einem Verfahren zur Durchführung von Schaltungen unter Last, einem sog Lastschaltverfahren, vorgesehen, dass die erste elektrische Maschine als Haupt-Antriebsmaschine betrieben wird und die zwei te elektrische Maschine zur Zugkraftstützung während der Schaltvorgänge herange zogen werden kann. Damit wird der Vorteil einer Lastschaltung, d. h. einer Schaltung ohne Zugkraftunterbrechung erreicht.
Nach einer bevorzugten Verfahrensvariante wird zur Vorbereitung einer Schaltung im Schaltgetriebe die zweite Sonnenwelle mit der zweiten elektrischen Maschine ge koppelt. Dadurch fließt zusätzliche Leistung in das Schaltgetriebe, und die zweite elektrische Maschine stützt während des Schaltvorganges, insbesondere beim Durchfahren der Neutralstellung. Somit tritt keine Zugkraftunterbrechung auf.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben, wobei sich aus der Beschreibung und/oder der Zeich nung weitere Merkmale und/oder Vorteile ergeben können. Es zeigen
Fig. 1 eine erfindungsgemäße Antriebsachse eines Elektrofahrzeuges mit zwei elektrischen Maschinen und einem Dreigang-Schaltgetriebe,
Fig. 2 die Antriebsachse gemäß Fig. 1 mit einer Schaltungsvariante,
Fig. 3 die Antriebsachse gemäß Fig. 1 , jedoch als Portalachse in einer ersten Aus führungsform,
Fig. 4 die Antriebsachse gemäß Fig. 1 , jedoch als Portalachse in einer zweiten Aus führungsform,
Fig. 5 eine Antriebsachse mit einem Zweigang-Schaltgetriebe und
Fig. 6 eine Antriebsanordnung eines Elektrofahrzeuges mit Zentralantrieb.
Fig. 1 zeigt als erstes Ausführungsbeispiel der Erfindung eine Antriebsachse 1, wel che zwei Antriebsräder R1 , R2 mit Radachsen a1 , a2, eine erste elektrische Maschi ne EM1 mit einem ersten Rotor R01 , eine zweite elektrische Maschine EM2 mit ei nem zweiten Rotor R02 sowie ein Dreigang-Schaltgetriebe G3 umfasst. Dem Schaltgetriebe G3 ist eine Schalteinrichtung SE3 mit einem ersten Schaltelement A, einem zweiten Schaltelement B und einem dritten Schaltelement C zugeordnet. Zwi schen den beiden Antriebsrädern R1 , R2 ist ein Differenzial Dl mit einem als Diffe renzialkorb DIK ausgebildeten Differenzialeingang und zwei Differenzialausgangs wellen 3a, 3b angeordnet.
Das Dreigang-Schaltgetriebe G3, im Folgenden kurz Schaltgetriebe G3 genannt, um fasst zwei miteinander gekoppelte Planetensätze, einen ersten Planetensatz PS1 mit einer ersten Sonnenwelle S01 , einer ersten Stegwelle ST 1 und einer ersten gehäu sefesten Hohlradwelle HR1 sowie einen zweiten Planetensatz PS2 mit einer zweiten Sonnenwelle S02, einer zweiten Stegwelle ST2 und einer zweiten Hohlradwelle HR2, welche mit der ersten Stegwelle ST 1 fest verbunden ist und eine Koppelwelle zwischen den beiden Planetensätzen PS1 , PS2 bildet. Die erste Sonnenwelle S01 ist fest mit dem ersten Rotor R01 verbunden und bildet somit die Getriebeeingangs welle EW des Schaltgetriebes G3. Die zweite Stegwelle ST2 bildet die Getriebeaus gangswelle AW, welche in das Differenzial Dl eintreibt, d. h. mit dem Differenzialkorb Dl K fest verbunden ist. Die beiden Planetensätze PS1 , PS2 bilden einen Radsatz, welcher dem in der älteren Anmeldung offenbarten Radsatz entspricht. Zwischen dem Differenzial Dl und den Antriebsrädern R1 , R21 sind jeweils feste Überset zungsstufen angeordnet, hier ausgebildet als rechts angeordneter dritter Planeten satz PS3a und links angeordneter dritter Planetensatz PS3b, welche spiegelbildlich aufgebaut sind. Das Differenzial Dl weist zwei Differenzialausgangswellen 3a, 3b auf, welche die Sonnenwellen S03 der Planetensätze PS3a, PS3b antreiben. Die Hohl radwellen HR3 sind jeweils festgehalten; der Abtrieb erfolgt jeweils über die Stegwel le ST3, welche als Abtriebswellen 2a, 2b die Antriebsräder R1 , R2 antreiben.
Mit der Schalteinrichtung SE3 sind drei Gänge schaltbar: Zum Einlegen des ersten Ganges wird die zweite Sonnenwelle S02 mittels des ersten Schaltelements A mit dem Gehäuse, dargestellt durch eine Schraffur, gekoppelt, d. h. festgesetzt. Damit laufen beide Planetensatze PS1 , PS2 jeweils mit festen Übersetzungen, welche, mit einander multipliziert, die Übersetzung des ersten Ganges ergeben.
Das zweite Schaltelement B, durch welches der zweite Gang geschaltet wird, verb lockt den zweiten Planetensatz PS2, wobei grundsätzlich zwei der drei Wellen S02, HR2, ST2 miteinander gekoppelt werden können. Beim dargestellten Ausführungs beispiel ist die zweite Sonnenwelle S02 mit der zweiten Hohlradwelle HR2 gekop pelt. Durch die Verblockung läuft der zweite Planetensatz PS2 als Block um, d. h. mit einer Übersetzung von 1 : 1 , so dass sich die Übersetzung des zweiten Ganges aus der festen Übersetzung des ersten Planetensatzes PS1 ergibt.
Das dritte Schaltelement C, durch welches der dritte Gang eingelegt wird, verbindet die zweite Sonnenwelle S02 mit der ersten Sonnenwelle S01. Damit ergibt sich eine zweifache Koppelung des ersten und des zweiten Planetensatzes PS1 , PS2, wodurch sich ein Überlagerungsbetrieb des ersten und des zweiten Planetensatzes PS1 , PS2 mit geringerer Übersetzung für den dritten Gang ergibt. Die Schaltelemente A, B, C sind vorzugsweise als unsynchronisierte Klauen ausge bildet, wobei grundsätzlich auch reibschlüssige, synchronisierte Schaltelemente für die beschriebenen Schaltfunktionen verwendbar sind. Das Schaltgetriebe G3 weist zwischen den drei Schaltstellungen, in welchen entweder das Schaltelement A oder das Schaltelement B oder das Schaltelement C geschlossen ist, zwei Neutralstellun gen auf, in welchen die erste elektrische Maschine EM1 vom Schaltgetriebe G3 ab gekoppelt werden kann. Dies ermöglicht einen so genannten Segelbetrieb, d. h. ein freies Rollen des Elektrofahrzeuges ohne Verluste der mitdrehenden ersten elektri schen Maschine EM1. Wie auch aus der Zeichnung ersichtlich ist, weist der Rotor R01 der ersten elektrischen Maschine EM1 einen zylindrischen Hohlraum auf, in welchem die beiden Planetensätze PS1 , PS2 und teilweise auch das Differenzial Dl raumsparend angeordnet werden können; insbesondere wird dabei Bauraum in axia ler Richtung eingespart.
Wie oben ausgeführt, ist die zweite Sonnenwelle S02 des zweiten Planetensatzes PS2 bei allen Schaltstellungen beteiligt - daher können alle Schaltelemente, also das erste, das zweite und das dritte Schaltelement A, B, C in eine einzige Schiebemuffe SM, welche in allen Schaltstellungen drehfest mit der zweiten Sonnenwelle S02 ver bunden ist, integriert werden. Die Schiebemuffe SM wird durch einen einzigen Aktua tor AK1 betätigt. Da die Gänge eins bis drei durch Verschieben der Schiebemuffe SM in eine Richtung, jeweils über Neutralstellungen, nacheinander geschaltet werden können, ergibt sich die Möglichkeit der Synchronisation der Schaltelemente.
Die zweite elektrische Maschine EM2 kann durch eine Koppeleinrichtung KE zuge schaltet oder abgekoppelt werden. Die Koppeleinrichtung KE weist ein erstes Kop pelelement D und ein zweites Koppelelement E auf. Über das zweite Koppelelement E wird die zweite elektrische Maschine EM2 über ihren Rotor R02 mit der Getriebe eingangswelle EW des Schaltgetriebes G3 verbunden. Durch diese Koppelung bei der Rotoren R01, R02 laufen beide elektrischen Maschinen EM1 , EM 2 mit dersel ben Drehzahl. Die zweite elektrische Maschine EM2 erhöht damit die Antriebsleis tung, welche - bei gleichen elektrischen Maschinen EM1 , EM2 - verdoppelt werden kann. Durch das erste Koppelelement D wird die zweite elektrische Maschine EM2 mit der zweiten Sonnenwelle S02 verbunden, wobei diese Koppelverbindung durch einen Durchgriff DU in der Schiebemuffe SM der Schalteinrichtung SE3 ermöglicht wird. Das erste Koppelelement D kann somit durch die Schiebemuffe SM hindurch auf die Sonnenwelle S02 des zweiten Planetensatzes PS2 durchgreifen. Damit fließt die Leistung der zweiten elektrischen Maschine EM2 auf einem anderen Pfad in das Schaltgetriebe G3, die Leistungsflüsse beider elektrischen Maschinen EM1 , EM2 überlagern sich.
Mit der ersten Koppelposition D der Koppeleinrichtung KE wird erfindungsgemäß ei ne Zugkraftstützung beim Schalten erreicht, wodurch Lastschaltungen mit dem Schaltgetriebe G3 ermöglicht werden. Wird beispielsweise bei einer Schaltung, d. h. dem Einlegen eines neuen Ganges der Leistungsfluss von der ersten elektrischen Maschine EM1 unterbrochen, so liegt an der Sonnenwelle S02 des zweiten Plane tensatzes PS2 ein von der zweiten elektrischen Maschine EM2 eingespeistes Dreh moment an, welches eine Aufrechterhaltung der Zugkraft in der Abtriebswelle AW respektive der zweiten Stegwelle ST2 bewirkt. Das Schalten ohne Zugkraftunterbre chung wird auch als Lastschaltverfahren bezeichnet, welches im Folgenden genauer beschrieben wird.
Das erfindungsgemäße Lastschaltverfahren geht davon aus, dass die erste elektri sche Maschine EM1 als Haupt-Antriebsmaschine wirkt, da sie über die Getriebeein gangswelle EW fest mit Schaltgetriebe G3 verbunden ist. Zur Stützung der Schaltun gen wird die zweite elektrische Maschine EM2 vorbereitend mit der zweiten Sonnen welle S02 verbunden.
Im Folgenden wird der Schaltvorgang vom ersten in den zweiten Gang beschrieben, wobei zunächst das erste Schaltelement A der Schalteinrichtung SE3 geöffnet und anschließend das zweite Schaltelement B geschlossen wird. Ausgehend von dem Fall, dass die zweite elektrische Maschine EM2 zuvor mit der Getriebeeingangswelle EW verbunden war, d. h. beide elektrischen Maschinen EM1 , EM2 gemeinsam an treiben, wird zuerst die Last an der zweiten elektrischen Maschine EM2 abgebaut, d. h. das zweite Koppelelement E der Koppeleinrichtung KE wird geöffnet und das erste Koppelelement D wird mit der zweiten elektrischen Maschine EM2 synchronisiert, d. h. hier auf die Drehzahl Null abgebremst. Dann wird das erste Koppelelement D ge schlossen. Die zweite elektrische Maschine EM2 ist dann mit der zweiten Sonnen welle S02 verbunden. Nachfolgend wird durch die zweite elektrische Maschine EM2 ein Drehmoment aufgebaut, so dass das erste Schaltelement A, welches als Bremse wirkt, entlastet wird. Falls die zweite elektrische Maschine EM2 nicht genügend Drehmoment aufbringen kann, wird das Drehmoment der ersten elektrischen Ma schine EM1 entsprechend reduziert. Dann wird das erste Schaltelement A geöffnet. Die Drehmomente der ersten und der zweiten elektrischen Maschine EM1 , EM2 wer den so gesteuert bzw. geregelt, dass sich die Drehzahl der zweiten elektrischen Ma schine EM2 erhöht und die Drehzahl der ersten elektrischen Maschine EM1 absinkt. Dazu wird vorzugsweise das Drehmoment der zweiten elektrischen Maschine EM2 - sofern möglich - etwas erhöht und gleichzeitig das Drehmoment der ersten elektri schen Maschine EM1 etwas abgesenkt. Die Soll-Drehzahl der zweiten Sonnenwelle S02, welche der Drehzahl der zweiten elektrischen Maschine EM2 entspricht, ist die Drehzahl der zweiten Hohlradwelle HR2, so dass das zweite Schaltelement B syn chron wird. Sobald das zweite Schaltelement B synchron ist, kann es geschlossen werden. Die Drehmomente der ersten und der zweiten elektrischen Maschine EM1 , EM2 können jetzt beliebig aufgeteilt werden, da ein fester Gang, nämlich der zweite eingelegt ist. Bei Bedarf kann die zweite elektrische Maschine EM2 von der zweiten Sonnenwelle S02 abgekoppelt werden. Wenn die volle Antriebsleistung gewünscht wird, kann die zweite elektrische Maschine EM2 auch mit der Getriebeeingangswelle EW respektive der ersten Sonnenwelle S01 verbunden werden.
Die Schalteinrichtung SE3 respektive deren Schiebemuffe SM wird durch einen ers ten Aktuator AK1 betätigt, während die Koppeleinrichtung KE durch einen zweiten Aktuator AK2 betätigt wird. Die gemeinsame Rotationsachse m der beiden elektri schen Maschinen EM1 , EM2 fällt mit den beiden Radachsen a1 , a2, zusammen. Die Planetensätze PS1 , PS2, PS3a, PS3b, von denen jeweils nur die obere Hälfte dar gestellt ist, sind rotationssymmetrisch zur Rotationsachse m angeordnet. Das Lastschaltverfahren beim Schalten vom zweiten in den dritten Gang, wobei das zweite Schaltelement B geöffnet und das dritte Schaltelement C geschlossen wird, verläuft analog zu dem Schaltvorgang vom ersten in den zweiten Gang, wie oben beschrieben Die Rückschaltungen erfolgen analog, nur in umgekehrter Richtung der Drehzahlen bei der ersten und der zweiten elektrischen Maschine.
Fig. 2 zeigt als weiteres Ausführungsbeispiel der Erfindung eine Antriebsachse 2, welche im Wesentlichen, insbesondere funktionell der Antriebsachse 1 gemäß Fig. 1 entspricht; für gleiche Teile werden gleiche Bezugszeichen wie in Fig. 1 verwendet. Unterschiedlich gegenüber Fig. 1 ist die Koppelung der Wellen des zweiten Plane tensatzes in der Schaltposition B. Fig. 2 zeigt eine Verblockungsvariante, bei welcher die Sonnenwelle S02 und die Stegwelle ST2, welche gleichzeitig die Getriebeaus gangswelle AW des Schaltgetriebes G3 ist, miteinander verblockt sind. Der zweite Planetensatz PS2 läuft somit als Block um, d. h. es ergibt sich eine Übersetzung von 1 :1. Insofern entspricht diese Verblockungsvariante funktionell der Verblockung, wie sie in Fig. 1 dargestellt ist. Grundsätzlich gibt es für den zweiten Planetensatz PS2 noch eine weitere Verblockungsvariante, bei welcher die Stegwelle ST2 mit der Hohl radwelle HR2 verbunden ist. Diese Verblockungsvariante, bei welcher die Sonnen welle S02 nicht beteiligt ist, wird hier weniger bevorzugt, da dies mit einer einzigen Schiebemuffe SM, die mit der Sonnenwelle S02 verbunden ist, nicht darstellbar ist.
Fig. 3 zeigt als weiteres Ausführungsbeispiel der Erfindung eine Antriebsachse 3, welche im Wesentlichen der Antriebsachse 1 gemäß Fig. 1 entspricht, jedoch mit dem Unterschied, dass die Antriebsachse 3 als Portalachse ausgebildet ist, d. h. die Radachsen a1 , a2 weisen gegenüber der Rotationsachse m einen Achsversatz u auf. Dadurch wird eine größere Bodenfreiheit erreicht. Der Achsversatz u wird durch zwei spiegelbildlich ausgebildete, im Bereich der Antriebsräder R1 , R2 angeordnete Übersetzungsstufen PS4a, PS4b erreicht, die als Planetensätze ausgebildet sind, bei welchen jeweils der Steg festgehalten ist. Der Antrieb erfolgt von den Differenzial ausgangswellen 3a, 3b über ein Planetenrad, während der Abtrieb über die Sonnen welle auf die Abtriebswellen 2a, 2b, koaxial zu den Radachsen a1 , a2, erfolgt. Die Planetensätze PS4a, PS4b entsprechen den Planetensätzen 30 gemäß Fig. 3 der älteren Anmeldung und der zugehörigen Beschreibung auf Seite 11 , übergreifend Seite 12, erster Absatz, auf welche hiermit ergänzend verwiesen wird.
Fig. 4 zeigt als weiteres Ausführungsbeispiel der Erfindung eine Antriebsachse 4, welche wiederum als Portalachse ausgebildet ist, allerdings mit abgewandelten, rad nahen Konstantübersetzungsstufen, welche hier als Stirnrad-Standgetriebe STa, STb ausgebildet sind und einen Achsversatz v zwischen den Differenzialausgangswellen 3a, 3b und den Abtriebswellen 2a, 2b aufweisen. Das Standgetriebe STa umfasst ein auf der Antriebswelle 3a drehfest angeordnetes Antriebszahnrad Z1 , ein auf der Abtriebswelle 2a angeordnetes Abtriebszahnrad Z2 sowie zwei Zwischenräder Z3, Z4, welche jeweils mit dem Antriebszahnrad Z1 und dem Abtriebszahnrad Z2 in Ein griff stehen. Ein Räderschema für die Anordnung der Zahnräder Z1 , Z2, Z3, Z4 in einer Radialebene ist in der Zeichnung oben rechts dargestellt. Durch die Zwischen räder Z3, Z4 wird einerseits eine Leistungsteilung und andererseits ein relativ großer Achsversatz v, welcher größer als der Achsversatz u des vierten Planetensatzes PS4a, PS4b in Fig. 3 ist, erreicht.
Fig. 5 zeigt als weiteres Ausführungsbeispiel der Erfindung eine Antriebsachse 5, bei welcher das Schaltgetriebe als Zweigang-Schaltgetriebe G2 ausgeführt ist und eine Schalteinrichtung SE2 mit lediglich zwei Schaltelementen, dem ersten Schaltelement A und dem dritten Schaltelement C, aufweist. Gegenüber dem Dreigang- Schaltgetriebe G3 gemäß Fig. 1 ist also beim Zweigang-Schaltgetriebe G2 das zwei te Schaltelement B weggelassen. Über die beiden Schaltelemente A, C werden der erste und der zweite Gang geschaltet. Bei geschlossenem Schaltelement A wird die zweite Sonnenwelle S02 mit dem Gehäuse verbunden, so dass beide Planetensätze PS1, PS2 mit einer festen Übersetzung laufen. Die hintereinander geschalteten fes ten Übersetzungen ergeben die Übersetzung des ersten Ganges. Der zweite Gang wird durch Schließen des Schaltelements C gebildet, wodurch beide Sonnenwellen S01, S02 miteinander gekoppelt werden - dadurch ergibt sich ein Überlagerungsbe trieb der beiden Planetensätze PS1 , PS2, woraus die Übersetzung für den zweiten Gang resultiert. Der Gangsprung bzw. die Getriebespreizung zwischen dem ersten und dem zweiten Gang beim Zweigang-Getriebe ist somit derselbe wie zwischen dem ersten und dritten Gang beim Dreigang-Getriebe G3 (Fig. 1). Das Zweigang- Getriebe G2 weist einen kürzeren Schaltweg für die Schiebemuffe SM auf, da es nur drei Schaltstellungen, nämlich „A“, Neutral und „C“ gibt. Die Getriebeausgangswelle AW des Zweigang-Schaltgetriebes G2, die zweite Stegwelle ST2, ist direkt mit dem Differenzialkorb DIK des Differenzials Dl verbunden Die hier dargestellte Variante für ein Zweigang-Schaltgetriebe G2 ist grundsätzlich für alle bisherigen Ausführungs beispiele mit dem Dreigang-Schaltgetriebe G3 kompatibel, d. h. das Dreigang- Getriebe G3 kann bedarfsweise durch das Zweigang-Getriebe G2 ersetzt werden, indem das zweite Schaltelement B weggelassen wird.
Fig. 6 zeigt als weiteres Ausführungsbeispiel der Erfindung eine Antriebsanordnung 6, welche als so genannter Zentralantrieb ausgeführt ist. Abweichend gegenüber den vorherigen Ausführungsbeispielen ist, dass die elektrischen Maschinen EM1 , EM2 und das Schaltgetriebe G3 nicht im Bereich der Radachsen a3, a4 angeordnet sind, sondern an „zentraler“ Stelle im Elektrofahrzeug. Die erste elektrische Maschine EM1 mit Schaltgetriebe G3 und Schalteinrichtung SE3 sowie die zweite elektrische Ma schine EM2 mit Koppeleinrichtung KE bilden eine Antriebseinheit mit einer Rotations und Symmetrieachse m, welche senkrecht zu den Radachsen a3, a4 der Antriebsrä der R3, R4 angeordnet ist. Zwischen den Antriebsrädern R3, R4 ist ein Differenzial Dl mit Differenzialausgangswellen 6a, 6b, welche die Antriebsräder R3, R4 antreiben, angeordnet. Das Differenzial Dl wird über einen Kegeltrieb KT durch die Getriebe ausgangswelle AW des Schaltgetriebes G3 angetrieben. Dabei kämmt ein Kegelrad ritzel KT1 , welches auf der Getriebeausgangswelle AW befestigt ist, mit einem Teller rad KT2, welches mit dem Differenzialkorb des Differenzials Dl fest verbunden ist.
Das in Fig. 6 dargestellte Dreigang-Schaltgetriebe G3 kann durch das in Fig. 5 dar gestellte Zweigang-Schaltgetriebe G2 ersetzt werden. Bezuqszeichen
1 Antriebsachse
2 Antriebsachse
2a Abtriebswelle, rechts
2b Abtriebswelle, links
3 Antriebsachse
3a Differenzialausgangswelle, rechts
3b Differenzialausgangswelle, links
4 Antriebsachse
5 Antriebsachse
6 Antriebsanordnung
6a Differenzialausgangswelle
6b Differenzialausgangswelle
A erstes Schaltelement
AK1 Aktuator
AK2 Aktuator
AW Getriebeausgangswelle a1 Radachse, links a2 Radachse, rechts a3 Radachse a4 Radachse
B zweites Schaltelement
C drittes Schaltelement
D erstes Koppelelement
Dl Achsdifferenzial
DIK Differenzialkorb
DU Durch griff
E zweites Koppelelement
EM1 erste elektrische Maschine
EM2 zweite elektrische Maschine EW Getriebeeingangswelle G2 Zweigang-Schaltgetriebe
G3 Dreigang-Schaltgetriebe
HR1 erste Hohlradwelle
HR2 zweite Hohlradwelle
HR3 dritte Hohlradwelle
KE Koppeleinrichtung
KT Kegeltrieb
KT1 Ritzel
KT2 Tellerrad m Rotationsachse (EM1 , EM2)
PS1 erster Planetensatz
PS2 zweiter Planetensatz
PS3a dritter Planetensatz, rechts
PS3b dritter Planetensatz, links
PS4a vierter Planetensatz, rechts
PS4b vierter Planetensatz, links
R1 Antriebrad, links
R2 Antriebsrad, rechts
R3 Antriebsrad
R4 Antriebsrad
R01 Rotor (EM1)
R02 Rotor (EM2)
SE2 Schalteinrichtung (G2)
SE3 Schalteinrichtung (G3)
SM Schiebemuffe
501 erste Sonnenwelle (PS1)
502 zweite Sonnenwelle (PS2)
503 dritte Sonnenwelle (PS3)
ST 1 erste Stegwelle (PS1 )
ST2 zweite Stegwelle (PS2)
ST3 dritte Stegwelle (PS3)
STa Stirnrad-Standgetriebe, links
STb Stirnrad-Standgetriebe, rechts u Achsversatz v Achsversatz
Z1 Antriebszahnrad
Z2 Abtriebszahnrad
Z3 Zwischenrad
Z4 Zwischenrad

Claims

Patentansprüche
1 . Antriebsachse eines Elektrofahrzeuges mit einem ersten und einem zweiten Antriebsrad (R1 , R2) mit Radachsen (a1 , a2), einer ersten elektrischen Maschine (EM1 ) und einer zweiten elektrischen Ma schine (EM2) mit einer gemeinsamen Rotationsachse (m), einem Schaltgetriebe (G3, G2) mit einer Getriebeeingangswelle (EW) und ei ner Getriebeausgangswelle (AW) sowie einem Achsdifferenzial (Dl) mit einem Differenzialeingang (DIK) und zwei Dif ferentialausgangswellen (3a, 3b), wobei die erste elektrische Maschine (EM1) mit der Getriebeeingangswelle (EW) und die Getriebeausgangswelle (AW) mit dem Differenzialeingang (DIK) verbunden sind und wobei die zweite elektrische Maschine (EM2) bedarfsweise als zusätzlicher Antrieb zuschaltbar ist.
2. Antriebsachse nach Anspruch 1 , dadurch gekennzeichnet, dass das Schaltgetrie be als Dreigang-Schaltgetriebe (G3) mit einem ersten Schaltelement (A), einem zwei ten Schaltelement (B), einem dritten Schaltelement (C) und zwei miteinander gekop pelten Planetensätzen (PS1 , PS2) ausgebildet ist, wobei der erste Planetensatz (PS1) eine erste Sonnenwelle (S01 ), eine erste Hohlradwelle (HR1 ) und eine erste Stegwelle (ST1 ) und der zweite Planetensatz (PS2) eine zweite Sonnenwelle (S02), eine zweite Hohlradwelle (HR2) und eine zweite Stegwelle (ST2) aufweisen, wobei die erste Stegwelle (ST 1 ) fest mit der zweiten Hohlradwelle (HR2) verbunden ist, wo bei die erste Sonnenwelle (S01 ) die Getriebeeingangswelle (EW) bildet, wobei die erste Hohlradwelle (HR1 ) festgehalten ist, wobei die zweite Stegwelle (ST2) die Ge triebeausgangswelle (AW) bildet und wobei zur Schaltung des ersten Ganges das erste Schaltelement (A), zur Schaltung des zweiten Ganges das zweite Schaltele ment (B) und zur Schaltung des dritten Ganges das dritte Schaltelement (C) betätig bar sind.
3. Antriebsachse nach Anspruch 2, dadurch gekennzeichnet, dass durch das erste Schaltelement (A) die zweite Sonnenwelle (S02) mit dem Gehäuse koppelbar ist.
4. Antriebsachse nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass durch das zweite Schaltelement (B) der zweite Planetensatz (PS2) verblockt wird, indem jeweils zwei der drei Wellen (S02, HR2, ST2) miteinander verbunden werden.
5. Antriebsachse nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass durch das dritte Schaltelement (C) die zweite Sonnenwelle (S02) mit der ersten Sonnen welle (S01 ) koppelbar ist.
6. Antriebachse nach Anspruch 1 , dadurch gekennzeichnet, dass das Schaltgetriebe als Zweigang-Schaltgetriebe (G2) mit einem ersten Schaltelement (A), einem dritten Schaltelement (C) und zwei miteinander gekoppelten Planetensätzen (PS1 , PS2), wobei der erste Planetensatz (PS1) eine erste Sonnenwelle (S01), eine erste Hohl radwelle (HR1) und eine erste Stegwelle (ST1) und der zweite Planetensatz (PS2) eine zweite Sonnenwelle (S02), eine zweite Hohlradwelle (HR2) und eine zweite Stegwelle (ST2) aufweisen, wobei die erste Stegwelle (ST 1 ) fest mit der zweiten Hohlradwelle (HR2) verbunden ist, wobei die erste Sonnenwelle (S01) die Getriebe eingangswelle (EW) bildet, wobei die erste Hohlradwelle (HR1) festgehalten ist, wo bei die zweite Stegwelle (ST2) die Getriebeausgangswelle (AW) bildet und wobei zur Schaltung des ersten Ganges das erste Schaltelement (A) und zur Schal tung des zweiten Ganges das dritte Schaltelement (C) betätigbar sind.
7. Antriebsachse nach Anspruch 6, dadurch gekennzeichnet, dass durch das erste Schaltelement (A) die zweite Sonnenwelle (S02) mit dem Gehäuse koppelbar ist.
8. Antriebsachse nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass durch das dritte Schaltelement (C) die zweite Sonnenwelle (S02) mit der ersten Sonnenwelle (S01) koppelbar ist.
9. Antriebsachse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Schaltelemente (A, B, C) als unsynchronisierte Klauen ausgebildet sind.
10. Antriebsachse nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Schaltgetriebe (G3, G2) Neutralstellungen aufweist, in welchen die erste elektri sche Maschine (EM1 ) abkoppelbar ist.
11. Antriebsachse nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Schaltelemente (A, B, C) in eine Schiebemuffe (SM) integriert sind und dass die Schiebemuffe (SM) auf der zweiten Sonnenwelle (S02) verschiebbar angeordnet ist.
12. Antriebsachse nach Anspruch 11 , dadurch gekennzeichnet, dass die Schie bemuffe (SM) durch einen Aktuator (Ak1 ) betätigbar ist.
13. Antriebsachse nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die zweite elektrische Maschine (EM2) über eine Koppeleinrichtung (KE), wel che zwei Koppelpositionen (D, E) aufweist, zuschaltbar ist.
14. Antriebsachse nach Anspruch 13 , dadurch gekennzeichnet, dass in einer ersten Koppelposition (E) die zweite elektrische Maschine (EM2) mit der Getriebeeingangs welle (EW) koppelbar ist.
15. Antriebsachse nach Anspruch 13 oder 14 , dadurch gekennzeichnet, dass in ei ner zweiten Koppel Position (D) die zweite elektrische Maschine (EM2) mit der zwei ten Sonnenwelle (S02) koppelbar ist.
16. Antriebsachse nach Anspruch 13, 14 oder 15, dadurch gekennzeichnet, dass die Koppeleinrichtung (KE) eine Neutralstellung aufweist, in welcher die zweite elektri sche Maschine (EM2) abkoppelbar ist.
17. Antriebsachse nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass die Schiebemuffe (SM) einen Durchgriff (DU) aufweist, durch welchen eine Ver bindung zu der Koppeleinrichtung (KE) herstellbar ist.
18. Antriebsachse nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Radachsen (a1 , a2) der Antriebsräder (R1 , R2) koaxial oder achsparallel zu der Rotationsachse (m) der elektrischen Maschinen (EM1 , EM2) angeordnet sind.
19. Antriebsachse nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass zwischen den Differenzialausgangswellen (3a, 3b) und den Antriebsrädern (R1 , R2) feste Übersetzungsstufen (PS3a, PS3b, PS4a, PS4b, STa, STb) angeordnet sind.
20. Antriebsachse nach Anspruch 19, dadurch gekennzeichnet, dass die feste Über setzungsstufe als dritter Planetensatz (PS3a, PS3b) mit fest gehaltener Hohlradwelle (HR3) ausgebildet ist.
21. Antriebsachse nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Antriebsachse (3, 4) als Portalachse ausgebildet ist, wobei die Differenzial ausgangswellen (3a, 3b) gegenüber den Radachsen (a1 , a2) jeweils einen Achsver- satz (u, v) aufweisen.
22. Antriebsachse nach Anspruch 19 oder 21 , dadurch gekennzeichnet, dass die fes te Übersetzungsstufe als vierter Planetensatz (PS4a, PS4b) mit fest gehaltenem Steg ausgebildet ist.
23. Antriebsachse nach Anspruch 19 oder 21 , dadurch gekennzeichnet, dass die fes te Übersetzungsstufe als Stirnrad-Standgetriebe (STa, STb) mit einem Antriebszahn rad (Z1 ), einem Abtriebszahnrad (Z2) und zwei Zwischen rädern (Z3, Z4) ausgebildet ist.
24. Antriebsanordnung eines Elektrofahrzeuges mit einem ersten und einem zweiten Antriebsrad (R3, R4) und Radachsen (a3, a4), einer ersten elektrischen Maschine (EM1 ) und einer zweiten elektrischen Ma schine (EM2) mit einer gemeinsamen Rotationsachse (m), einem Schaltgetriebe (G3, G2) mit einer Getriebeeingangswelle (EW) und ei ner Getriebeausgangswelle (AW) sowie einem Achsdifferenzial (Dl) mit zwei Differentialausgangswellen (6a, 6b), wobei die erste elektrische Maschine (EM1) mit der Getriebeeingangswelle (EW) und die Getriebeausgangswelle (AW) mit dem Differenzial (Dl) verbun den sind und wobei die zweite elektrische Maschine (EM2) bedarfsweise als zusätzlicher Antrieb zuschaltbar ist, wobei die Radachsen (a3, a4) senkrecht zu der Rotationsachse (m) der elektrischen Maschinen (EM1, EM2) angeordnet sind und wobei das Differen zial (Dl) über einen Kegeltrieb (KT) von der Getriebeausgangswelle(AW) an- treibbar ist.
25. Antriebsanordnung nach Anspruch 24, dadurch gekennzeichnet, dass das Schaltgetriebe (G3, G2) nach einem der Ansprüche 1 bis 17 ausgebildet ist.
26. Verfahren zur Durchführung von Schaltungen unter Last mittels der Schaltele mente (A, B, C) der Schalteinrichtung (SE3, SE2) und der Koppelelemente (D, E) der Koppeleinrichtung (KE) des Schaltgetriebes (G3, G2) und der ersten sowie der zwei ten elektrischen Maschine (EM1 , EM2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste elektrische Maschine (EM1 ) als Haupt-Antriebsmaschine betrieben und die zweite elektrische Maschine (EM2) während der Schaltvorgänge zur Zug kraftstützung verwendet wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass zur Vorbereitung einer Schaltung vom ersten in den zweiten Gang oder vom zweiten in den dritten Gang die zweite Sonnenwelle (S02 ) mit der zweiten elektrischen Maschine (EM2) gekoppelt wird.
28. Verfahren nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass die zweite elektrische Maschine (EM2) nach Beendigung des Schaltvorganges abgekoppelt werden kann.
EP20780986.4A 2019-09-30 2020-09-24 Antriebsachse eines elektrofahrzeuges und lastschaltverfahren Withdrawn EP4037923A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019214986.3A DE102019214986A1 (de) 2019-09-30 2019-09-30 Antriebsachse eines Elektrofahrzeuges und Lastschaltverfahren
PCT/EP2020/076679 WO2021063789A1 (de) 2019-09-30 2020-09-24 Antriebsachse eines elektrofahrzeuges und lastschaltverfahren

Publications (1)

Publication Number Publication Date
EP4037923A1 true EP4037923A1 (de) 2022-08-10

Family

ID=72659795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20780986.4A Withdrawn EP4037923A1 (de) 2019-09-30 2020-09-24 Antriebsachse eines elektrofahrzeuges und lastschaltverfahren

Country Status (6)

Country Link
US (1) US11846343B2 (de)
EP (1) EP4037923A1 (de)
KR (1) KR20220064374A (de)
CN (1) CN114514388A (de)
DE (1) DE102019214986A1 (de)
WO (1) WO2021063789A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209461A1 (de) * 2019-06-28 2020-12-31 Zf Friedrichshafen Ag Getriebe mit einer Torque-Vectoring-Überlagerungseinheit
DE102019214986A1 (de) 2019-09-30 2021-04-01 Zf Friedrichshafen Ag Antriebsachse eines Elektrofahrzeuges und Lastschaltverfahren
DE102020216240A1 (de) * 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Klauenschaltung und Antriebsanordnung
US11498431B1 (en) 2021-07-26 2022-11-15 Rivian Ip Holdings, Llc Selectable differential drive for a vehicle
DE102021004235A1 (de) * 2021-08-19 2021-10-14 Daimler Ag Elektrische Antriebsvorrichtung für ein Kraftfahrzeug
WO2023031206A1 (de) 2021-08-31 2023-03-09 Zf Friedrichshafen Ag Elektrischer antriebsstrang für eine arbeitsmaschine, verfahren zum betreiben des antriebsstrangs und arbeitsmaschine
DE102021209593A1 (de) * 2021-09-01 2023-03-02 Zf Friedrichshafen Ag Antriebseinheit für ein Elektrofahrzeug
US20230099321A1 (en) * 2021-09-20 2023-03-30 Dana Belgium N.V. Electric driveline system and electric driveline system operating method
DE102022200712A1 (de) 2022-01-24 2023-07-27 Zf Friedrichshafen Ag Leistungsstrang für eine Arbeitsmaschine
DE102022200713B4 (de) 2022-01-24 2024-02-29 Zf Friedrichshafen Ag Antriebsstrang für eine Arbeitsmaschine
CN114562559B (zh) * 2022-03-23 2024-04-26 广汽埃安新能源汽车有限公司 两挡电机的空挡控制方法、装置、电子设备及存储介质
DE102022203097A1 (de) 2022-03-30 2023-10-05 Zf Friedrichshafen Ag Antriebseinheit für eine Antriebsachse eines Fahrzeugs
DE102022203098A1 (de) 2022-03-30 2023-10-05 Zf Friedrichshafen Ag Antriebseinheit für eine Antriebsachse eines Fahrzeugs
DE102023203639A1 (de) 2022-04-21 2023-10-26 Dana Automotive Systems Group, Llc Elektroachse mit kompaktem layout von elektrischer maschine und getriebezug
DE102022003149A1 (de) 2022-08-29 2024-02-29 Mercedes-Benz Group AG Elektrischer Antriebsstrang für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102022209062A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug
DE102022209052A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs eines Fahrzeugs
DE102022209057A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug
DE102022209050A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs eines Fahrzeugs
DE102022209051A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs eines Fahrzeugs
DE102022209054A1 (de) 2022-08-31 2024-02-29 Zf Friedrichshafen Ag Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug
DE102023102510A1 (de) 2023-02-02 2024-08-08 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Steuerung eines Einzelradantriebs in zweiachsigen elektrifizierten Kraftfahrzeugen, Antriebsachse und Kraftfahrzeug
US20240328491A1 (en) * 2023-03-29 2024-10-03 Fca Us Llc Gearbox for electric off-road vehicles

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2037126A (en) 1932-05-02 1936-04-14 Ford Motor Co Motor vehicle
DE1505723C3 (de) 1966-04-21 1975-03-13 Daimler-Benz Ag, 7000 Stuttgart Planetenräderwechselgetriebe für Fahrzeuge, insbesondere für schwere Kraftfahrzeuge
DE4021652A1 (de) * 1989-07-14 1991-01-24 Zahnradfabrik Friedrichshafen Schaltgetriebe
DE19619321C2 (de) 1996-05-14 1998-07-09 Voith Turbo Kg Verfahren zum Betrieb eines Fahrzeugs mit mehreren elektrischen Antriebsmaschinen
EP1142744A4 (de) 1998-12-01 2003-08-27 Hitachi Ltd Antriebsvorrichtung und fahrzeug
US7220200B2 (en) 2004-07-29 2007-05-22 General Motors Corporation Electrically variable transmission arrangement with spaced-apart simple planetary gear sets
US7220203B2 (en) 2004-09-01 2007-05-22 General Motors Corporation Electrically variable transmission with selective fixed ratio operation
JP3998016B2 (ja) 2004-11-12 2007-10-24 トヨタ自動車株式会社 車両用駆動装置
US7387585B2 (en) * 2006-03-17 2008-06-17 Gm Global Technology Operations, Inc. Electrically variable transmission having three planetary gear sets, two fixed interconnections and a stationary member
JP4222406B2 (ja) 2006-10-24 2009-02-12 トヨタ自動車株式会社 動力出力装置およびハイブリッド自動車
US7479081B2 (en) 2006-10-25 2009-01-20 Gm Global Technology Operations Hybrid electrically variable transmission with dual power paths and selective motor connection
US7967711B2 (en) 2006-11-28 2011-06-28 GM Global Technology Operations LLC Highly configurable hybrid powertrain and control system therefor
US7594869B2 (en) 2007-01-31 2009-09-29 Gm Global Technology Operations, Inc. Torque-transmitting assembly with dog clutch and hydrostatic damper and electrically variable transmission with same
JP4240128B2 (ja) 2007-02-28 2009-03-18 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP4293268B2 (ja) 2007-06-14 2009-07-08 トヨタ自動車株式会社 動力出力装置およびそれを備えたハイブリッド自動車
DE102010017966A1 (de) * 2010-04-23 2011-10-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Fahrzeug mit elektrischem Antrieb
US8512187B2 (en) 2010-09-15 2013-08-20 Chrysler Group Llc Multi-mode drive unit
DE102011088647B4 (de) * 2011-12-15 2016-07-28 Schaeffler Technologies AG & Co. KG Elektromechanische Antriebseinrichtung für ein Kraftfahrzeug
DE102012204717A1 (de) * 2012-03-23 2013-09-26 Zf Friedrichshafen Ag Antriebseinrichtung für ein Kraftfahrzeug
DE102012208678A1 (de) * 2012-05-24 2013-11-28 Bayerische Motoren Werke Aktiengesellschaft Antriebsanordnung
DE102015215393A1 (de) * 2015-08-12 2016-09-29 Continental Automotive Gmbh Antriebsstrang für ein elektrisch antreibbares Kraftfahrzeug, elektrisch antreibbares Kraftfahrzeug und Verfahren zum elektrischen Antrieb eines Kraftfahrzeugs
US9566857B1 (en) 2015-08-19 2017-02-14 Borgwarner Inc. Electric drive unit and powertrain system incorporating the same
DE102015223879A1 (de) * 2015-12-01 2017-06-01 Schaeffler Technologies AG & Co. KG Antriebsanordnung für ein Kraftfahrzeug, sowie Koppelungsgetriebe hierfür
DE102016220060B3 (de) 2016-10-14 2018-03-22 Schaeffler Technologies AG & Co. KG Antriebsvorrichtung für ein Kraftfahrzeug
WO2018102498A1 (en) 2016-11-30 2018-06-07 Dana Limited Electric axle transmission for electric and hybrid electric vehicles
CN206749500U (zh) * 2017-01-13 2017-12-15 苏州绿控传动科技有限公司 一种不同轴双电机的电驱驱动桥
JP6353576B1 (ja) 2017-03-22 2018-07-04 株式会社ユニバンス 動力伝達装置
US11002350B2 (en) 2017-06-02 2021-05-11 Dana Heavy Vehicle Systems Group, Llc Axle assembly
DE102017218513B4 (de) * 2017-10-17 2024-08-22 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, Kraftfahrzeugantriebsstrang mit einem solchen Ge-triebe und Verfahren zum Betreiben eines solchen Getriebes
CN107985068A (zh) * 2017-11-28 2018-05-04 合肥工业大学 一种纯电动汽车双电机构型的动力总成及其工作模式
DE102017011387A1 (de) * 2017-12-11 2019-06-13 Daimler Ag Elektrische Antriebsvorrichtung für ein Kraftfahrzeug
DE102018001508B3 (de) 2018-02-26 2019-05-29 Daimler Ag Elektrische Antriebsvorrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
DE102018119484A1 (de) * 2018-08-10 2020-02-13 Schaeffler Technologies AG & Co. KG Elektromechanische Antriebsanordnung für ein Kraftfahrzeug
CN208630340U (zh) 2018-08-27 2019-03-22 吉林大学 一种双电机耦合行星排式两挡变速驱动桥
DE102019202994A1 (de) 2019-03-06 2020-09-10 Zf Friedrichshafen Ag Antriebseinheit für ein Elektrofahrzeug und Antriebsachse mit einer Antriebseinheit
DE102019203730A1 (de) 2019-03-19 2020-09-24 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs für eine Arbeitsmaschine, Antriebsstrang für eine Arbeitsmaschine und Arbeitsmaschine
DE102019214286A1 (de) 2019-09-19 2021-03-25 Henkel Ag & Co. Kgaa Verfahren zum Färben von keratinischem Material, umfassend die Anwendung von einer siliciumorganischen Verbindung, eines beschichteten Effektpigments und eines filmbildenden Polymers I
DE102019214986A1 (de) 2019-09-30 2021-04-01 Zf Friedrichshafen Ag Antriebsachse eines Elektrofahrzeuges und Lastschaltverfahren
DE102019216562A1 (de) 2019-10-28 2021-04-29 Zf Friedrichshafen Ag Antriebsanordnung eines Elektrofahrzeuges und Lastschaltverfahren
US11331991B2 (en) 2019-12-20 2022-05-17 Allison Transmission, Inc. Motor configurations for multiple motor mixed-speed continuous power transmission
DE102020203669A1 (de) 2020-03-23 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebssystem mit zwei elektrischen Maschinen
US11421759B2 (en) 2020-06-02 2022-08-23 Allison Transmission, Inc. Output gearing for a dual motor mixed-speed continuous power transmission
DE102020215124A1 (de) 2020-12-01 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer elektrischen Maschine

Also Published As

Publication number Publication date
DE102019214986A1 (de) 2021-04-01
US20220364631A1 (en) 2022-11-17
WO2021063789A1 (de) 2021-04-08
CN114514388A (zh) 2022-05-17
KR20220064374A (ko) 2022-05-18
US11846343B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
EP4037923A1 (de) Antriebsachse eines elektrofahrzeuges und lastschaltverfahren
DE102017218513B4 (de) Getriebe für ein Kraftfahrzeug, Kraftfahrzeugantriebsstrang mit einem solchen Ge-triebe und Verfahren zum Betreiben eines solchen Getriebes
EP3649374B1 (de) Getriebevorrichtung für einen elektrischen antrieb eines kraftfahrzeugs, sowie elektrischer antrieb für ein kraftfahrzeug
DE102019202994A1 (de) Antriebseinheit für ein Elektrofahrzeug und Antriebsachse mit einer Antriebseinheit
DE102019216562A1 (de) Antriebsanordnung eines Elektrofahrzeuges und Lastschaltverfahren
WO2014124640A2 (de) Antriebsvorrichtung für ein fahrzeug
DE102019206967A1 (de) Antriebsachse für ein elektrisch antreibbares Fahrzeug
WO2019025076A1 (de) Antriebsvorrichtung
DE102019206963A1 (de) Antriebsachse für ein elektrisch antreibbares Fahrzeug
DE102019211678A1 (de) Antriebssystem und Verfahren zum Betreiben eines Antriebssystems
WO2020048710A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeuganstriebsstrang und verfahren zum betreiben eines getriebes
DE102019206961A1 (de) Antriebseinheit für ein Elektrofahrzeug und Antriebsachse eines Elektrofahrzeuges
WO2020048711A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeuganstriebsstrang und verfahren zum betreiben eines getriebes
DE102018205126B4 (de) Torque Vectoring-Überlagerungseinheit für ein Differenzialausgleichsgetriebe
WO2020229061A1 (de) Antriebsachse eines elektrofahrzeuges
WO2020229060A1 (de) Antriebsachse eines elektrofahrzeuges
DE102018202585B4 (de) Getriebe für ein Kraftfahrzeug, Kraftfahrzeugantriebsstrang für ein Hybrid- oder Elektrofahrzeug sowie Verfahren zum Betreiben eines Getriebes
EP2861445A1 (de) Übersetzungs- und ausgleichsgetriebe sowie motor- und getriebeeinheit
WO2023160738A1 (de) Hybridgetriebe, antriebsstrang für ein hybridfahrzeug und verfahren zum betrieb eines antriebsstrangs
DE102017222711B4 (de) Getriebe für ein Kraftfahrzeug
DE102017222723B4 (de) Getriebe für ein Kraftfahrzeug
DE102017222710B4 (de) Getriebe für ein Kraftfahrzeug
WO2020048712A1 (de) Getriebe für ein kraftfahrzeug, kraftfahrzeuganstriebsstrang und verfahren zum betreiben eines getriebes
WO2020099042A1 (de) Getriebe für ein kraftfahrzeug
DE102018219631A1 (de) Getriebe für ein Kraftfahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221123