EP4026808B1 - Système d'élimination et de concentration de substances per-and polyfluoroalkyl (pfas) à partir d'eau - Google Patents

Système d'élimination et de concentration de substances per-and polyfluoroalkyl (pfas) à partir d'eau Download PDF

Info

Publication number
EP4026808B1
EP4026808B1 EP22000018.6A EP22000018A EP4026808B1 EP 4026808 B1 EP4026808 B1 EP 4026808B1 EP 22000018 A EP22000018 A EP 22000018A EP 4026808 B1 EP4026808 B1 EP 4026808B1
Authority
EP
European Patent Office
Prior art keywords
pfas
anion exchange
water
exchange resin
regenerant solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22000018.6A
Other languages
German (de)
English (en)
Other versions
EP4026808A1 (fr
Inventor
Michael G. Nickelsen
Steven E. Woodard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerging Compounds Treatment Technologies Inc
Original Assignee
Emerging Compounds Treatment Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerging Compounds Treatment Technologies Inc filed Critical Emerging Compounds Treatment Technologies Inc
Priority to EP24182095.0A priority Critical patent/EP4431182A3/fr
Publication of EP4026808A1 publication Critical patent/EP4026808A1/fr
Application granted granted Critical
Publication of EP4026808B1 publication Critical patent/EP4026808B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • This invention relates to a sustainable system for removing and concentrating per- and polyfluoroalkyl substances (PFAS) from water.
  • PFAS per- and polyfluoroalkyl substances
  • PFAS Per- and polyfluoroalkyl substances
  • AFFFs aqueous film forming foams
  • AFFFs have been the product of choice for firefighting at military and municipal fire training sites around the world.
  • AFFFs have also been used extensively at oil and gas refineries for both fire training and firefighting exercises.
  • AFFFs work by blanketing spilled oil/fuel, cooling the surface, and preventing re-ignition.
  • PFAS in AFFFs have contaminated the groundwater at many of these sites and refineries, including more than 100 U.S. Air Force sites.
  • PFAS may be used as surface treatment/coatings in consumer products such as carpets, upholstery, stain resistant apparel, cookware, paper, packaging, and the like, and may also be found in chemicals used for chemical plating, electrolytes, lubricants, and the like, which may eventually end up in the water supply.
  • PFAS are bio-accumulative in wildlife and humans because they typically remain in the body for extended periods of time. Laboratory PFAS exposure studies on animals have shown problems with growth and development, reproduction, and liver damage. In 2016, the U.S. Environmental Protection Agency (EPA) issued the following health advisories (HAs) for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA): 0.07 ⁇ g/L for both the individual constituents and the sum of PFOS and PFOA concentrations, respectively. Additionally, PFAS are highly water soluble in water, result in large, dilute plumes, and have a low volatility.
  • HAs health advisories
  • PFOS perfluorooctanesulfonic acid
  • PFOA perfluorooctanoic acid
  • PFAS are very difficult to treat largely because they are extremely stable compounds which include carbon-fluorine bonds. Carbon-fluorine bonds are the strongest known bonds in nature and are highly resistant to breakdown.
  • anion exchange treatment systems and methods typically utilize anion exchange resin where positively charged anion exchange resin beads are disposed in a lead vessel which receives a flow of water contaminated with anionic contaminants, such as PFAS.
  • anionic contaminants such as PFAS.
  • the negatively charged contaminants are trapped by the positively charged resin beads and clean water flows out of the lead anion exchange vessel into a lag vessel, also containing anion exchange resin beads.
  • a sample tap is frequently used to determine when the majority of the anion exchange beads in the lead exchange vessel have become saturated with contaminants. When saturation of the resin anion exchange beads is approached, a level of contaminants will be detected in the effluent tap. When this happens, the lead vessel is taken off line and the contaminated water continues flowing to the lag vessel which now becomes the lead vessel.
  • the lead-tag vessel configuration ensures that a high level of treatment is maintained at all times.
  • anion exchange resins can also be used to remove PFAS from water.
  • a solvent e.g., methanol or ethanol
  • EP1700869 , US2004/010156 , WO 2015/160926 , WO2012/043870 and US2008/182913 disclose systems for removing and concentrating per- and polyfluoroalkyl substances (PFAS) from water, the system comprising an anion exchange vessel configured to remove PFAS from the water.
  • PFAS per- and polyfluoroalkyl substances
  • the known methods for removing PFAS from water discussed above typically do not optimize the anion exchange resin and may have limited capacity for removing PFAS mass. Such known methods may also incompletely regenerate the anion exchange resin by attempting to desorb the PFAS from the resin. Such known methods may incompletely regenerate the anion exchange resin which may lead to a loss of capacity, otherwise known as active sites, during each successive loading and regeneration cycle. This cumulative buildup of PFAS on the ion exchange resin is often referenced to as a "heel,” and results in reduced treatment effectiveness as the heel builds up over time. Such known methods may also not reclaim and reuse the spent regenerant solution which may increase the amount spent regenerant solution with removed PFAS therein. This increases the amount of toxic spent regenerant solution with PFAS, which must be disposed of at significant expense.
  • PFAS per- and polyfluoroalkyl substances
  • the PFAS maybe removed from the onion exchange resin by a dual mechanism including desorption and anion exchange.
  • the desorption may include providing the optimized regenerant solution having a predetermined concentration of a solvent configured to displace adsorbed hydrophobic tails of PFAS from the backbone of the anion exchange resin with the solvent and providing a predetermined concentration of salt or base configured to displace hydrophilic heads of PFAS with inorganic anions.
  • the optimized regenerant solution may include a mixture of a salt or a base, a solvent, and water.
  • the solvent may include an alcohol.
  • the optimized regenerant solution may include about 50% to about 90% methanol by volume, about 10% to about 50% water by volume, and about 1% to about 5% salt or base by weight.
  • the optimized regenerant solution may include about 70% methanol by volume, about 28% water by volume, and about 2% salt or base by weight.
  • the selected anion exchange resin may include a macroporous, strong base, anion exchange resin.
  • the separation and recovery subsystem may include one or more of an evaporation subsystem, a distillation subsystem and/or a membrane separation subsystem.
  • the system may include a condenser coupled to the evaporation or distillation unit configured to condense the reclaimed regenerant solution.
  • the separation and recovery subsystem may include a solvent purification subsystem configured to remove carryover PFAS from the separation and recovery subsystem and to provide a purified, reclaimed solvent for reuse.
  • the solvent purification subsystem may include anionic exchange resin housed in a vessel.
  • the separation and recovery subsystem includes a super-loading recovery subsystem configured to create an ultra-concentrated PFAS waste product and a solution which may comprise concentrated salt or base and water for reuse.
  • the super-loading recovery subsystem includes an anionic exchange resin housed in a vessel.
  • the super-loading recovery subsystem may be configured to provide purified reclaimed water and purified reclaimed salt or base for reuse.
  • the PFAS may be removed from the anion exchange resin by a dual mechanism including desorption and anion exchange.
  • the desorption may include providing a predetermined concentration of a solvent configured to displace hydrophobic tails of the PFAS on the backbone of the anion exchange resin with the solvent and providing a predetermined concentration of anions configured to displace hydrophilic heads of the PFAS with the anions.
  • the optimized regenerant solution may include a mixture of a salt or a base, a solvent, and water.
  • the solvent may include an alcohol.
  • the optimized regenerant solution may include about 50% to about 70% methanol by volume, about 2% to about 28% water by volume, and about 1% to about 5% salt or base by weight.
  • the optimized regenerant solution may include about 70% methanol by volume, about 28% water by volume, and about 2% salt or base by weight.
  • the selected anion exchange resin may include a macro-porous, strong base, anion exchange resin.
  • the separation and recovery process may be configured to maximize recovery of optimized regenerant solution and minimize volume of concentrated desorbed PFAS.
  • the separation and recovery process may include one or more of evaporation, distillation and membrane separation.
  • the evaporation or vacuum distillation may include condensing the spent regenerant solution.
  • the separation and recovery process may include removing carryover PFAS to provide a purified reclaimed solvent for reuse.
  • the separation and recovery subsystem may include creating an ultra-concentrated PFAS waste product and a solution of concentrated salt or base and water for reuse.
  • anion exchange resins are highly effective at removing PFAS from water because of the multiple removal methods involved.
  • the molecular structure of most PFAS compounds can be broken into two functional units including the hydrophobic non-ionic "tail,” comprised of the fluorinated carbon chain and the hydrophilic anionic "head,” having a negative charge.
  • Fig. 1 shows an example of a typical PFAS 10 with hydrophobic non-ionic tail 12 and hydrophilic anionic head 14, in this example, a sulfonate group, although anionic head 14 may be a carboxylate group or similar type group.
  • Anion exchange resins are essentially adsorbents with anion exchange functionality.
  • the resin beads are typically composed of neutral copolymers (plastics) that have positively charged exchange sites.
  • Fig. 2 shows an example of the complex three-dimensional structure of a typical anion exchange resin bead 16 with positively charged exchange sites exemplarily indicated at 18.
  • Anion exchange resins tend to be effective at removing PFAS from water because they take advantage of the unique properties of both the anion exchange resin bead and the perfluorinated contaminants, or PFAS, using a dual mechanism of adsorption and anion exchange. For example, hydrophobic carbon-fluorine tail 12, Figs.
  • PFAS 10 adsorbs to the hydrophobic backbone on anion exchange resin 16, Fig. 2 , comprised of cross-linked polystyrene polymer chains, exemplarily indicated at 20 and divinylbenzene crosslinks exemplarily indicated at 22.
  • the negatively-charged hydrophilic heads 24 (sulfonate groups) or 26 (carboxylate groups) of PFAS 10 are attracted to positivelycharged anion exchange sites 18 on anion exchange resin bead 16.
  • the negatively charged heads 24, 26 of PFAS 10 displaces exchangeable inorganic counter ion 38, e.g., a chloride ion which is provided on anion exchange bead 18 when it is manufactured.
  • the hydrophobic, uncharged carbon-fluorine tails 12 are adsorbed to the uncharged hydrophobic backbone comprised of polystyrene polymer chain 20 and divinylbenzene crosslink 22 via Van der Waals forces as shown.
  • PFAS removal may be highly effective at removing PFAS from water because the adsorption of the hydrophobic tails of the PFAS to the hydrophobic backbone of the anion resin exchange bead, it also makes resin regeneration and reuse more difficult
  • a high concentration of a brine or base solution e.g., a solution of a salt, such as NaCl, and water, or a solution of a base, such as NaOH and water, may be used to effectively displace the anionic head of the PFAS from the anion exchange site of the anion exchange resin bead, but the hydrophobic carbon-fluorine tail tends to stay adsorbed to the resin backbone.
  • an organic solvent e.g., methanol or ethanol
  • an organic solvent e.g., methanol or ethanol
  • a salt or base such as NaCl or NaOH
  • System 100 includes anion exchange vessel 102 including a selected anion exchange resin therein, exemplarily indicated at 104, configured to remove PFAS from flow of water 106 contaminated with PFAS.
  • System 100 also includes line 108 which is configured to introduce flow of water 108 contaminated with PFAS into anion exchange vessel 102 such that the PFAS binds to selected anion exchange resin 104 and are removed from the water to provide flow of treated water 116.
  • selected anion exchange resin 104 is preferably configured to be small, e.g., about 0.5 mm to about 1 mm diameter beads made of an organic polymer substrate or similar material which is preferably porous and provides a high surface area.
  • Exemplary selected anion exchange resins may include Dow ® AMBERLITE TM , IRA958 Cl, DOWEX TM PSR-2, Dow ® XUS-43568-00, and similar type anion exchange resins.
  • System 100 also includes regenerant solution line 110 coupled to anion exchange vessel 102 configured to introduce optimized regenerant solution 112 into anion exchange vessel 102 to remove the PFAS from anion exchange resin 104 to regenerate anion exchange resin 104 and generate spent regenerant solution 120 in line 122 comprised of removed PFAS and optimized regenerant solution.
  • Optimized regenerant solution 112 is made in regenerant solution make-up tank 114 coupled to regenerant solution line 110 as shown.
  • optimized regenerant solution 112 preferably includes a mixture of a salt or base, e.g., sodium chloride (NaCl) or sodium hydroxide (NaOH), a solvent and water.
  • the solvent may include an alcohol or similar type solvent.
  • optimized regenerant solution 112 includes about 50% to about 90% methanol by volume, about 10% to about 50% water by volume, and about 1% to about 5% salt or base by weight.
  • optimized regenerant solution includes about 70% methanol by volume, about 28% water by volume, and about 2% salt or base by weight.
  • selected anion exchange resin 104 and regenerant solution 112 removes PFAS from water by a dual mechanism including desorption and ion exchange.
  • the anion of the salt or base e.g., chloride of the NaCl or the hydroxide group of NaOH of optimized regenerant solution 112 displaces the hydrophilic heads 24 or 26, Fig. 2 , of PFAS 10 on exchange sites 18 of anion exchange resin 16 due to the high concentration of the anions in optimized regenerant solution 112.
  • the solvent e.g., an alcohol, such as methanol, ethanol or similar type alcohol of the optimized regenerant solution 112 displaces hydrophobic carbon tails 12 of the PFAS 112 bonded to the backbone of anion exchange resin 16 due to the high concentration of the solvent in optimized regenerant solution 112.
  • the result is system 100 and efficiently removes both large and small chain PFAS from water.
  • the PFAS removed by anion exchange resin 14 may include Perfluorobutyric acid (PFBA), Perfluoropentanoic acid (PFPeA), Perfluorobutane sulfonate (PFBS), Perfluorohexanoic acid (PFHxA), Perfluoroheptanoic acid (PFHpA), Perfluorohexane sulfonate (PFHxS), 6:2 Fluorotelomer sulfonate (6:2 FTS), Pcrfluorooctanoic acid (PFOA), Perfluoroheptane sulfonate (PFHpS), Perfluorooctanc sulfonate (PFOS), Perfluorononanoic acid (PFNA), 8:2 Fluorotelomer sulfonate (8:2 FTS).
  • PFBA Perfluorobutyric acid
  • PFPeA Perfluoropentanoic acid
  • PFBS Per
  • System 100 also includes the separation and recovery system 124 coupled to line 122 which recovers optimized regenerant solution 120 for reuse as reclaimed regenerant solution 126 by line 128 coupled to line 110 and preferably to regenerant solution makeup tank 114.
  • separation and recovery subsystem 124 provides reclaimed solvent 132 by line 128 as shown and solution 136 of concentrated PFAS, salt or base, and water by line 138 which is coupled to line 128 as shown.
  • the PFAS in solution 138 is removed (discussed below) to provide solution 152 of concentrated salt or base and water output by line 138 coupled to line 128.
  • reclaimed regenerant solution 126 preferably includes reclaimed solvent 132 and reclaimed salt or base and water.
  • separation and recovery subsystem 124 may include evaporation subsystem 130.
  • spent regenerant solution 120 is subjected to evaporation by evaporation subsystem 130 to produce reclaimed solvent 132 output to line 128 and solution 136 of concentrated desorbed PFAS 36, salt or base and water.
  • Condenser 140 may be utilized to condense reclaimed solvent 132.
  • separation and recovery subsystem 124 may include one or more of a distillation subsystem 142 and/or a membrane separation subsystem 144 which similarly produce reclaimed solvent 132 for reuse by lines 128 and 110 and solution 136 of concentrated PFAS, salt or base, and water.
  • separation and recovery subsystem 124 may further include solvent purification subsystem 140 coupled to line 128 which removes carryover PFAS from separation and recovery subsystem 124 and provides purified reclaimed solvent 144 in line 128 for reuse as regenerant solution 112 via regenerant solution makeup tank 114 and regenerant solution line 110.
  • solvent purification subsystem 140 is a small vessel, e.g., vessel 160 shown in caption 162 as shown having anion exchange resin 104 therein which removes carryover PFAS in line 134 to create concentrated PFAS in the vessel. When vessel 160 becomes saturated with PFAS, it can be removed and taken off-site for destruction.
  • Separation and recovery subsystem 122 includes a super-loading recovery subsystem 150 coupled to line 138 output by separation and recovery subsystem 124 having solution 136 of concentrated PFAS, salt or base, and water.
  • Superloading recovery subsystem 130 creates ultra-concentrated PFAS waste product adsorbed to anion exchange resin 104 and concentrated salt or base or caustic water solution 152 purified for reuse.
  • Super-loading recovery subsystem 150 preferably provides solution 152 of concentrated salt or base and water coupled to line 128 for reuse as regenerant solution 112 via regenerant solution makeup tank 114 and regenerant solution line 112.
  • Superloading and recovery subsystem 150 is a small vessel, e.g., vessel 170 in caption 172 as shown having anion exchange resin therein which provides ultra-concentrated PFAS on anion exchange resin 104 and outputs solution 152 of concentrated salt or base and water.
  • vessel 170 becomes saturated with PFAS, it can be removed and taken off-site for distribution.
  • the small size and high concentration of PFAS reduces costs associated with removal of PFAS from water.
  • System 100 also preferably includes sample tap 156 or 158 as shown for testing the level of PFAS in treated water 116.
  • PFAS When PFAS are detected in treated water 116, it means anion exchange resin 104 in vessel 102 has been saturated with PFAS attached to anion exchange resin 104 and anion exchange resin 104 need to be regenerated.
  • the sustainable method for removing concentrated per- and polyfluoroalkyl substances (PFAS) from one embodiment of this invention may include selecting an anion exchange resin configured to move PFAS and provide clean, treated water, step 200, Fig. 4 , The selected anion exchange resin is then added to an anion exchange vessel, step 202.
  • a flow of water contaminated with PFAS is introduced to the anion exchange vessel such that the PFAS bind to the selected anion exchange resin and are thereby removed from the water, step 204.
  • An optimized regenerant solution is introduced to the anion exchange vessel to desorb PFAS from the anion exchange resin thereby regenerating the anion exchange resin and generating a spent regenerant solution comprised of desorbed PFCs and the optimized regenerant solution, step 206.
  • the spent regenerant solution is then subjected to a separation and recovery process to recover the optimized regenerant solution for reuse and separate and concentrate the removed PFAS.
  • system 100 for removing and concentrating PFAS from water efficiently and effectively removes PFAS from water, regenerates the anion exchange resin and then concentrates, or ultra concentrates, the desorbed PFAS with a solvent purification subsystem and/or on super-loading recovery subsystem in small vessels that can be inexpensively disposed of
  • system 100 and the method thereof provides a sustainable system and method for concentrating and removing PFAS from water and regenerating the selected anion exchange resin, which significantly reduces the cost to remove PFAS from water because it generates less toxic waste than conventional and known methods for removing PFAS.
  • the separated and concentrated or ultra-concentrated PFAS is easier and less expensive to handle and transport.
  • System 100 efficiently reclaims the solvent, salt or base, and water from the spent regenerant solution which further reduces cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Claims (6)

  1. Système d'élimination et de concentration de substances de perfluoroalkyle et de polyfluoroalkyle (PFAS) à partir d'eau, le système comprenant :
    un récipient d'échange d'anions (102) incluant une résine d'échange d'anions (104) configuré pour éliminer les PFAS (10) de l'eau ;
    une conduite (108) raccordée au récipient d'échange d'anions (102) configurée pour introduire un écoulement d'eau contaminée par des PFAS (10) de telle sorte que les PFAS se lient à la résine d'échange d'anions (104) et sont ainsi retirées de l'eau ;
    un réservoir d'appoint de solution de régénération (114) contenant une solution de régénération (112), la solution de régénération (112) comprenant un sel ou une base, un alcool et de l'eau ;
    une conduite de solution de régénération (110) raccordée au récipient d'échange d'anions (102) et au réservoir d'appoint de solution de régénération, la conduite de solution de régénération étant configurée pour introduire la solution de régénération dans le récipient d'échange d'anions (102) pour retirer les PFAS (10) de la résine d'échange d'anions (120) et régénérer ainsi la résine d'échange d'anions (104) et générer une solution de régénération usée (120) comprenant les PFAS retirées (10) et la solution de régénération (112) ;
    un sous-système de séparation et de récupération (124) configuré pour récupérer la solution de régénération usée (120) et séparer et concentrer les PFAS retirées (10) pour produire une solution de PFAS concentrée (136) ; et
    un sous-système d'ultra-récupération de chargement (150) configuré pour recevoir la solution de PFAS concentrées (136) et séparer et concentrer plus encore les PFAS retirées en adsorbant les PFAS concentrées sur une résine d'échange d'anions supplémentaire (104) logée dans un récipient supplémentaire (170) pour produire un déchet de PFAS et une solution sensiblement sans PFAS (152).
  2. Système selon la revendication 1, dans lequel la résine d'échange d'anions du récipient d'échange d'anions inclut une résine d'échange d'anions à base forte, macroporeuse.
  3. Système selon la revendication 1, dans lequel le sous-système de séparation et de récupération (124) inclut un ou plusieurs sous-systèmes parmi : un sous-système d'évaporation (130), un sous-système de distillation (142) et/ou un sous-système de séparation par membrane (144).
  4. Système selon la revendication 1, dans lequel le sous-système de séparation et de récupération (124) inclut un sous-système de purification de solvant (140) configuré pour éliminer les PFAS contaminées (10) du sous-système de séparation et de récupération (124) et pour fournir un solvant récupéré, purifié (144) aux fins de réutilisation.
  5. Système selon la revendication 4, dans lequel le sous-système de purification de solvant (140) inclut un récipient supplémentaire (160) incluant une résine d'échange d'anions (104).
  6. Système selon la revendication 1, dans lequel le sous-système d'ultra-récupération de chargement (150) est configuré pour produire le déchet de PFAS et une solution (152) d'eau et de sel concentrée aux fins de réutilisation.
EP22000018.6A 2016-04-13 2017-04-03 Système d'élimination et de concentration de substances per-and polyfluoroalkyl (pfas) à partir d'eau Active EP4026808B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP24182095.0A EP4431182A3 (fr) 2016-04-13 2017-04-03 Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662321929P 2016-04-13 2016-04-13
PCT/US2017/025754 WO2017180346A1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau
EP17782842.3A EP3442911B1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17782842.3A Division EP3442911B1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau
EP17782842.3A Division-Into EP3442911B1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP24182095.0A Division-Into EP4431182A3 (fr) 2016-04-13 2017-04-03 Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau
EP24182095.0A Division EP4431182A3 (fr) 2016-04-13 2017-04-03 Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau

Publications (2)

Publication Number Publication Date
EP4026808A1 EP4026808A1 (fr) 2022-07-13
EP4026808B1 true EP4026808B1 (fr) 2024-07-24

Family

ID=60039859

Family Applications (3)

Application Number Title Priority Date Filing Date
EP24182095.0A Pending EP4431182A3 (fr) 2016-04-13 2017-04-03 Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau
EP22000018.6A Active EP4026808B1 (fr) 2016-04-13 2017-04-03 Système d'élimination et de concentration de substances per-and polyfluoroalkyl (pfas) à partir d'eau
EP17782842.3A Active EP3442911B1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP24182095.0A Pending EP4431182A3 (fr) 2016-04-13 2017-04-03 Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17782842.3A Active EP3442911B1 (fr) 2016-04-13 2017-04-03 Système durable et procédé pour retirer et concentrer des substances de perfluoroalkyle et de polyfluoroalkyle (pfas) à partir d'eau

Country Status (10)

Country Link
US (6) US10287185B2 (fr)
EP (3) EP4431182A3 (fr)
JP (1) JP6775667B2 (fr)
CN (2) CN109195922B (fr)
AU (5) AU2017249070B2 (fr)
CA (1) CA3020691C (fr)
DK (1) DK3442911T3 (fr)
NZ (1) NZ747014A (fr)
SG (2) SG11201808910PA (fr)
WO (1) WO2017180346A1 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4431182A3 (fr) * 2016-04-13 2024-10-02 Emerging Compounds Treatment Technologies, Inc. Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau
US11512012B2 (en) * 2016-09-12 2022-11-29 Aecom Use of electrochemical oxidation for treatment of per-and polyfluoroalkyl substances (PFAS) in waste generated from sorbent and resin regeneration processes
GB201805058D0 (en) 2018-03-28 2018-05-09 Customem Ltd Modified polyamines grafted to a particulate, solid support as sorbent materials for remediation of contaminated fluids
US12024442B2 (en) * 2018-08-14 2024-07-02 Evoqua Water Technologies Llc Modified activated carbon and methods of using same
US11413668B2 (en) 2018-10-04 2022-08-16 Ezraterra, Llc Sintered wave multi-media polarity conversion treatment apparatus and process for nondestructive removal and condensation of per- and polyfluoroalkyl substances (PFAS) and other dangerous compounds
US20210379602A1 (en) * 2019-02-20 2021-12-09 Board Of Trustees Of Michigan State University Electrode apparatus for creating a non-uniform electric field to remove polarized molecules in a fluid
JP7477527B2 (ja) * 2019-04-03 2024-05-01 カルゴン カーボン コーポレーション ペルフルオロアルキルおよびポリフルオロアルキル吸着剤材料および使用方法
US11548800B2 (en) 2019-04-26 2023-01-10 Geyser Remediation LLC Water purification apparatus and method
EP3990157A1 (fr) * 2019-06-26 2022-05-04 Chromafora AB Procédé d'élimination de pfas de l'eau
WO2020264530A1 (fr) 2019-06-28 2020-12-30 Battelle Memorial Institute Destruction de pfas par l'intermédiaire d'un procédé d'oxydation et appareil approprié pour le transport vers des sites contaminés
US11623884B1 (en) 2019-08-02 2023-04-11 Wm Intellectual Property Holdings, L.L.C. System and method for removal of PFAS from waste streams
US20220305458A1 (en) * 2019-08-23 2022-09-29 The University Of North Carolina At Chapel Hill Polymers, fluorinated ionic polymer networks, and methods related thereto
US20210206670A1 (en) * 2019-09-27 2021-07-08 Auburn University Compositions and methods for removal of per- and polyfluoroalkyl substances (pfas)
WO2021072446A1 (fr) 2019-10-11 2021-04-15 Flood Cody M Matériau de filtre composite réutilisable et procédés de fabrication et d'utilisation de ce dernier pour éliminer et détruire des contaminants moléculaires de l'eau
CA3167621A1 (fr) * 2020-02-12 2021-08-19 Patrick Brady Appareil de traitement de conversion de polarite multisupport a ondes frittees et procede d'elimination non destructive et de condensation de substances per-et polyfluoroalkyle (pfas) et d'autres composes dangereu
CN111495108B (zh) * 2020-04-22 2022-03-15 浙江利化新材料科技有限公司 一种六氟环氧丙烷的分离纯化方法及所用吸附剂
WO2021257946A1 (fr) * 2020-06-18 2021-12-23 Ionic Water Technologies, LLC Système pour élimination de contaminants pouvant être régénéré
US11958763B2 (en) 2020-06-18 2024-04-16 Ionic Water Technologies, LLC Regeneratable system for contaminant removal
CN115943125A (zh) * 2020-07-14 2023-04-07 卡尔冈碳素公司 用于从流体中去除pfas的具有高体积碘值和高体积糖蜜值的吸附剂和其制备和使用方法
CA3180965A1 (fr) 2020-08-06 2022-02-10 Stephen H. Rosansky Separation de sel et destruction de pfas a l'aide d'une osmose inverse et d'une separation de sel
US12064745B2 (en) 2020-08-31 2024-08-20 Calgon Carbon Corporation Iron and nitrogen treated sorbent and method for making same
KR20230062593A (ko) 2020-08-31 2023-05-09 칼곤 카본 코포레이션 구리, 철, 및 질소로 처리된 흡착제 및 이를 제조하는 방법
KR20230060515A (ko) 2020-08-31 2023-05-04 칼곤 카본 코포레이션 구리 및 질소로 처리된 흡착제 및 이를 제조하는 방법
US20220088570A1 (en) * 2020-09-21 2022-03-24 Stride Cross-linked polymeric ammonium salts and their use in absorbing organic contaminants
CA3205137A1 (fr) * 2021-01-15 2022-07-21 University Of Washington Systeme hydrothermique pour le traitement de sous-produits de regeneration d'adsorbant
US20220227644A1 (en) * 2021-01-20 2022-07-21 Noblis, Inc. Systems and methods of removing per- and polyfluoroalkyl substances (pfas) with calcium oxide
US20220250948A1 (en) * 2021-02-10 2022-08-11 Emerging Compounds Treatment Technologies, Inc. System and method for removing long-chain and short-chain per- and polyfluoroalkyl substances (pfas) from contaminated water
US11484922B2 (en) 2021-03-25 2022-11-01 Ezraterra, Llc Apparatus and methods for removal, measurement, and mapping of per- and polyfluoroalkyl substances
EP4313347A4 (fr) * 2021-04-02 2024-10-09 Emerging Compounds Treat Technologies Inc Système et procédé pour séparer des anions concurrents de substances per- et polyfluoroalkyle (pfas) dans de l'eau
US20220402779A1 (en) * 2021-06-17 2022-12-22 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Composite and method for removing dissolved organic matter from water
EP4219412A1 (fr) 2022-01-27 2023-08-02 3M Innovative Properties Company Technologies en boucle fermée pour la purification de flux d'eau contenant du fluor
US11479489B1 (en) 2022-04-27 2022-10-25 Pure Muskegon Development Company, LLC Ground water contamination remediation using a man-made surface water feature
US20230399246A1 (en) * 2022-06-13 2023-12-14 Emerging Compounds Treatment Technologies, Inc. System and method for enhancing the capacity of an adsorptive media to remove per- and polyfluoroalkyl substances (pfas) from a flow of liquid contaminated with pfas and at least one precursor
GB2626404A (en) * 2022-12-02 2024-07-24 Johnson Matthey Plc Recycling of catalyst coated membrane components
EP4419249A1 (fr) 2023-01-12 2024-08-28 Cyclopure, Inc. Régénération d'adsorbants polymères de cyclodextrine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639231A (en) * 1970-11-13 1972-02-01 Bresler And Associates Inc Desalination process
US3905903A (en) * 1975-01-24 1975-09-16 Aerojet General Co Method of purification of cation regenerant solution
JPS5945438B2 (ja) * 1976-06-22 1984-11-06 株式会社クボタ イオン交換樹脂の再生廃液処理方法
US5665239A (en) * 1996-01-16 1997-09-09 Culligan International Company Processes for deionization and demineralization of fluids
US5951874A (en) * 1997-07-25 1999-09-14 Hydromatix, Inc. Method for minimizing wastewater discharge
JP3952429B2 (ja) * 1998-08-27 2007-08-01 月島機械株式会社 テレフタル酸廃液の処理方法およびその処理装置
BR0110696B1 (pt) * 2000-05-12 2011-11-29 composição polimérica, seu processo de produção, seu uso, processo para produção de corpos moldados de ação antiestática e corpo moldado.
JP4087052B2 (ja) * 2000-06-21 2008-05-14 三徳化学工業株式会社 イオン交換樹脂の再生方法
JP2002059160A (ja) * 2000-08-11 2002-02-26 Daikin Ind Ltd 含フッ素陰イオン系界面活性剤の分離方法
AU2002316514A1 (en) * 2001-06-29 2003-03-03 Colorado State University Research Foundation Extraction and recovery of ions from a solution
US6977825B2 (en) * 2003-07-24 2005-12-20 Monolithic Power Systems, Inc. Voltage regulator using a transimpedance block to measure output
EP1561742B1 (fr) * 2004-02-05 2012-11-21 3M Innovative Properties Company Procédé de récupération de tensioactifs acide fluorés à partir des adsorbants chargés en ces tensioactifs
EP1700869A1 (fr) * 2005-03-11 2006-09-13 3M Innovative Properties Company Récupération de tensioactifs fluorés d'une résine basique anionique contenant des groupes ammonium quaternaire
RU2388537C2 (ru) * 2005-10-14 2010-05-10 Асахи Гласс Компани, Лимитед Способ регенерации основной анионообменной смолы
JP4745158B2 (ja) * 2006-07-24 2011-08-10 本田技研工業株式会社 電動機の制御装置
US8480365B2 (en) * 2007-08-03 2013-07-09 Robert Ochoa Cap having pivotably movable fan
US8864999B2 (en) * 2009-12-23 2014-10-21 Uop Llc Methods for regenerating acidic ion-exchange resins and reusing regenerants in such methods
EP2431334A1 (fr) * 2010-09-16 2012-03-21 LANXESS Deutschland GmbH Traitement d'eaux usées à partir de l'industrie de galvanisation
WO2012043870A1 (fr) * 2010-10-01 2012-04-05 Daikin Industries, Ltd. Procédé de récupération de tensioactif fluoré
WO2012155074A1 (fr) * 2011-05-12 2012-11-15 Virent, Inc. Procédés de purification de charges d'alimentation lignocellulosiques
DE102011107645A1 (de) * 2011-07-12 2013-01-17 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zum Detektieren von Licht
US20140048490A1 (en) * 2012-08-17 2014-02-20 E I Du Pont De Nemours And Company Treating wastewater by ultrafiltration in fluoropolymer resin manufacture
JP6477481B2 (ja) * 2013-10-10 2019-03-06 Agc株式会社 含フッ素乳化剤の回収方法
WO2015160926A1 (fr) * 2014-04-18 2015-10-22 3M Innovative Properties Company Récupération d'émulsifiants fluorés ramifiés
US10695683B2 (en) * 2014-07-10 2020-06-30 Morphonauts LLC Action character models and accessories with movable parts
US20160184694A1 (en) * 2014-12-30 2016-06-30 Jeffrey Hwang Wagering game variation based on omaha poker
WO2017131972A1 (fr) * 2016-01-25 2017-08-03 Oxytec Llc Procédé de réhabilitation de sol et d'eau et appareil pour le traitement de substances halogénées et récalcitrantes
EP4431182A3 (fr) 2016-04-13 2024-10-02 Emerging Compounds Treatment Technologies, Inc. Système pour éliminer et concentrer des substances per- et polyfluoroalkyliques (pfa) de l'eau
US10695709B2 (en) * 2017-01-10 2020-06-30 Emerging Compounds Treatment Technologies, Inc. System and method for enhancing adsorption of contaminated vapors to increase treatment capacity of a regenerable, synthetic adsorptive media

Also Published As

Publication number Publication date
AU2020213340B2 (en) 2022-07-21
EP4026808A1 (fr) 2022-07-13
CN109195922A (zh) 2019-01-11
US20190263684A1 (en) 2019-08-29
US10287185B2 (en) 2019-05-14
NZ747014A (en) 2020-05-29
WO2017180346A1 (fr) 2017-10-19
EP3442911A1 (fr) 2019-02-20
US20200180979A1 (en) 2020-06-11
US11174175B2 (en) 2021-11-16
US10913668B2 (en) 2021-02-09
EP4431182A2 (fr) 2024-09-18
AU2022221526A1 (en) 2022-09-22
DK3442911T3 (da) 2022-06-07
AU2022221526B2 (en) 2024-03-21
AU2017249070B2 (en) 2020-05-28
WO2017180346A8 (fr) 2018-11-08
JP6775667B2 (ja) 2020-10-28
AU2022221525B2 (en) 2024-03-28
SG11201808910PA (en) 2018-11-29
AU2017249070A1 (en) 2018-10-25
JP2019511363A (ja) 2019-04-25
AU2020213340A1 (en) 2020-08-27
EP3442911A4 (fr) 2019-10-09
US20170297926A1 (en) 2017-10-19
US20220055923A1 (en) 2022-02-24
CN114835196A (zh) 2022-08-02
EP4431182A3 (fr) 2024-10-02
AU2022221527B2 (en) 2024-03-28
CN109195922B (zh) 2022-06-07
US20220073379A1 (en) 2022-03-10
US11027988B2 (en) 2021-06-08
EP3442911B1 (fr) 2022-03-16
CA3020691A1 (fr) 2017-10-19
AU2022221527A1 (en) 2022-09-22
SG10202106474XA (en) 2021-07-29
CA3020691C (fr) 2022-07-19
US20200270148A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
EP4026808B1 (fr) Système d'élimination et de concentration de substances per-and polyfluoroalkyl (pfas) à partir d'eau
Woodard et al. Ion exchange resin for PFAS removal and pilot test comparison to GAC
Chularueangaksorn et al. Batch and column adsorption of perfluorooctane sulfonate on anion exchange resins and granular activated carbon
WO2015041866A1 (fr) Procédé de régénération de résine pour réduire des contaminants organiques
Murray et al. PFAS adsorbent selection: The role of adsorbent use rate, water quality, and cost
Kassar et al. Removal of PFAS from groundwater using weak‐base anion exchange resins
AU2022219946B2 (en) A system and method for removing long-chain and short-chain per-and polyfluoroalkyl substances (pfas) from contaminated water
US20220259077A1 (en) System for removing per- and polyfluorinated sulfonic acids (pfsas) and per- and polyfluorinated carboxylic acids (pfcas) from contaminated water using regenerable anion exchange resins
Feeney Removal of organic materials from wastewaters with polymeric adsorbents
WO2024010617A1 (fr) Utilisation de dioxyde de carbone supercritique pour extraction de sorbant
Cooper Challenges in PFAS Separation and Concentration Technologies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220209

AC Divisional application: reference to earlier application

Ref document number: 3442911

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

19U Interruption of proceedings before grant

Effective date: 20221030

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20230201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230330

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 3/00 20060101ALN20231214BHEP

Ipc: B01D 1/00 20060101ALN20231214BHEP

Ipc: C02F 101/36 20060101ALN20231214BHEP

Ipc: B01J 49/57 20170101ALI20231214BHEP

Ipc: B01J 41/12 20170101ALI20231214BHEP

Ipc: B01J 41/05 20170101ALI20231214BHEP

Ipc: C02F 1/42 20060101AFI20231214BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 3/00 20060101ALN20240123BHEP

Ipc: B01D 1/00 20060101ALN20240123BHEP

Ipc: C02F 101/36 20060101ALN20240123BHEP

Ipc: B01J 49/57 20170101ALI20240123BHEP

Ipc: B01J 41/12 20170101ALI20240123BHEP

Ipc: B01J 41/05 20170101ALI20240123BHEP

Ipc: C02F 1/42 20060101AFI20240123BHEP

INTG Intention to grant announced

Effective date: 20240216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AC Divisional application: reference to earlier application

Ref document number: 3442911

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017083638

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP