EP4023938B1 - Brenneranordnung für einen vormischbrenner - Google Patents

Brenneranordnung für einen vormischbrenner Download PDF

Info

Publication number
EP4023938B1
EP4023938B1 EP21214581.7A EP21214581A EP4023938B1 EP 4023938 B1 EP4023938 B1 EP 4023938B1 EP 21214581 A EP21214581 A EP 21214581A EP 4023938 B1 EP4023938 B1 EP 4023938B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
burner
mixture
combustion
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21214581.7A
Other languages
English (en)
French (fr)
Other versions
EP4023938A1 (de
EP4023938C0 (de
Inventor
Hendrik Gevers
Markus Polus
Stefan Schweitzer-de Bortoli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP4023938A1 publication Critical patent/EP4023938A1/de
Application granted granted Critical
Publication of EP4023938B1 publication Critical patent/EP4023938B1/de
Publication of EP4023938C0 publication Critical patent/EP4023938C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/10Premixing fluegas with fuel and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09002Specific devices inducing or forcing flue gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/101Flame diffusing means characterised by surface shape
    • F23D2203/1012Flame diffusing means characterised by surface shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14241Post-mixing with swirling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14701Swirling means inside the mixing tube or chamber to improve premixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/31019Mixing tubes and burner heads

Definitions

  • the invention relates to a heater with a combustion chamber and a burner arrangement with a premix burner.
  • Modern heaters are operated with a mixture of air and fuel gas.
  • air mixed with a suitable proportion of fuel gas is conveyed by a fan into a burner which has outlet openings for the mixture, which is burned in a combustion chamber after exiting the burner.
  • the mixture is regulated very precisely to avoid the formation of pollutants so that combustion can take place as completely as possible.
  • the resulting combustion gases contain only a little oxygen, but depending on the fuel gas, water vapor, carbon dioxide and mainly nitrogen.
  • Small quantities of nitrogen oxides, hereinafter referred to as NOX can also be formed during combustion, which is undesirable but not entirely avoidable, especially at high combustion temperatures.
  • Particularly high combustion temperatures arise with certain fuel gases, including e.g. B. a large proportion of hydrogen in the fuel gas, as planned in the future, can increase the combustion temperature.
  • the present invention is not just about large systems, but also about e.g. B. Wall devices for heating water and generally heating devices for heating buildings and/or providing warm water.
  • a burner typically used for such devices today has a burner body that is attached to or in a wall of a combustion chamber (usually in a door or maintenance hatch) and protrudes into the combustion chamber.
  • a burner body is designed to be rotationally symmetrical, in particular cylindrical, to a longitudinal axis. Its lateral surface is limited an interior.
  • the mixture of air and fuel gas is fed to an inlet area of the interior of the burner body and blown from an outlet area with many outlet openings into the combustion chamber, where it burns and releases the resulting heat to heat exchanger surfaces.
  • flow-influencing elements can be arranged in the interior of the burner body, in particular in the inlet area.
  • guide vanes or similar elements for generating swirl and/or turbulence can be arranged there (see e.g. WO 2016/182778 A1 ) or a static mixer, such as B. a Venturi nozzle.
  • a static mixer such as B. a Venturi nozzle.
  • the aim is to achieve an even distribution of the mixture across the outlet openings and thus ensure combustion with as few pollutants as possible.
  • the object of the present invention is to at least partially solve the problems described with reference to the prior art and, in particular, to reduce the generation of pollutants, in particular NOX, by making changes to the burner, without additional components or other significant changes to existing or new ones Investments.
  • the combustion temperature should be reduced, which is particularly important for future fuels containing hydrogen or pure hydrogen.
  • a heater according to claim 1 is used to solve this problem.
  • Advantageous refinements and developments of the invention are specified in the dependent claims. The description, especially in connection with the drawing, illustrates the invention and gives further exemplary embodiments.
  • the heater proposed here with a combustion chamber and a burner arrangement comprising a premix burner, has a burner body to which a mixture of air and fuel gas can be supplied, which is attached to or in a wall of a combustion chamber, projects into it and has outlet openings in the combustion chamber for the mixture to exit having.
  • the burner body has an interior with an inlet area and an outlet area, the interior in the inlet area having at least one element for generating swirl or turbulence, so that when the mixture flows through in the inlet area, a lower internal pressure is created than in the outlet area and than in the combustion chamber, and There are connection openings to the combustion chamber in the entry area.
  • the area in which an element for such a flow influence is located is included here and in the following as part of the entry area.
  • the static pressure in a system with a flow is inversely related to the flow velocity, which in turn depends on the flow cross section while the volume flow remains the same, so that a higher static pressure is achieved in areas with slow flow There is more pressure than in areas with faster currents.
  • the present invention makes use of this to suck combustion gases from the combustion chamber into the interior of the burner body during operation of the burner and add them to the mixture there. For various reasons, this leads to a lower combustion temperature and thus to a lower production of pollutants, especially NOX.
  • combustion gases contain little oxygen and can therefore be viewed as almost inert, this lowers the combustion temperature and reduces the formation of pollutants, although the combustion gases remain after a certain cooling Due to heat exchange during recirculation, they still have a higher temperature than the rest of the mixture.
  • One element for generating swirl or turbulence is sufficient to generate a sufficient pressure difference.
  • the entry area in the axial direction is very short, namely 3 mm to 20 mm [millimeters], preferably 5 mm to 10 mm, whereby the area that the element occupies for influencing the flow is also included in the entry area.
  • the inlet area has a smaller flow cross section than the outlet area. This leads to a faster flow with the same volume flow as in the outlet area with a larger cross section and thus to a pressure difference that can be used for exhaust gas recirculation. Since the pressure in the combustion chamber, at least in most heaters, is close to atmospheric pressure (1 bar), small constrictions in the cross-section of the inlet area are sufficient for exhaust gas recirculation, in particular constrictions with 5 to 30% [percent] less cross-sectional area than that of the exit area. The proportion of recirculated combustion gases depends on the size of the restriction (and/or the design of elements for influencing flow) and an effective total cross-sectional area of the connecting openings. This can be between 2% and 20% [volume percent] of the mixture emerging from the outlet openings, preferably between 5% and 10%.
  • the entry area preferably forms approximately 2% to 20%, in particular 5% to 10%, of the axial length of the interior and has a lateral surface which is predominantly formed from connecting openings. Since only a small pressure difference can be utilized between the combustion chamber and the inlet area, it is important that the connecting openings have a sufficiently large effective cross-sectional area in order to suck in a quantity of exhaust gases that sufficiently influences the combustion temperature. This not only depends on the number of connection openings and their individual cross-sectional areas, but also their shape. The aim is therefore to provide as many and/or large connection openings as possible, as long as the size of the inlet area allows this and the stability of the burner body is not impaired.
  • connection openings particularly preferably form a type of annular gap (at least one or, if necessary, several) which is interrupted by holding webs which carry the remaining burner body.
  • annular gap can have an axial width of 0.5 mm to 5 mm, in particular 1 mm to 3 mm.
  • FIG. 1 and Fig. 2 show schematically a section of a combustion chamber 1 with a wall 2 in which there is a door 3 (or flap) on one Burner assembly is attached.
  • a premix burner 4 which can be supplied with a mixture of air and fuel from a system not shown, has a burner body 5 which projects into the combustion chamber 1 in an axial direction (see arrow).
  • the burner body 5 has an interior 6, which is composed of an entry area 7 and an exit area 8.
  • In the outlet area 8 there are numerous outlet openings 9 through which the mixture can flow into the combustion chamber 1, where it is burned to form combustion gases.
  • the entry area 7 there is an element 11 for influencing the flow, in the present example a swirl generator.
  • the connecting openings 10 preferably have the largest possible cross-sectional area overall in order to be able to recirculate as much combustion gases as possible. Since the inlet area 7 is usually only a few millimeters long in the axial direction, there is not much lateral surface 12 available, so that the connecting openings 10 take up a large part of it, although the stability of the burner body 5 must be maintained.
  • a type of annular gap 13 is advantageous as a connecting opening 10, which is interrupted by (as narrow and/or as few as possible) retaining webs 14 due to the stability of the burner body.
  • this annular gap 13 can lie approximately in the same axial position as the element 11.
  • He can run around the Burner body 5 may be designed with a width (in the axial direction) of 0.5 mm to 5 mm, preferably 1 mm to 3 mm, being interrupted by three to ten holding webs 14, which have a width (in the circumferential direction) of 1 mm to have 10 mm.
  • a cross-sectional narrowing of the inlet area 7 which leads to an (additionally) reduced pressure and enables or supports the described recirculation of combustion gases.
  • adding combustion gases to the mixture of air and fuel gas reduces the production of pollutants, especially NOX.
  • the present invention enables a reduction in the combustion temperature and thus a reduction in pollutant emissions in heaters, in particular those that are operated with hydrogen or hydrogen-containing fuel gases, through simple design changes to the burner of a heater.

Description

  • Die Erfindung betrifft ein Heizgerät mit einer Verbrennungskammer und einer Brenneranordnung mit einem Vormischbrenner.
  • Moderne Heizgeräte werden mit einem Gemisch aus Luft und Brenngas betrieben. Dazu wird mit einem geeigneten Anteil an Brenngas gemischte Luft von einem Gebläse in einen Brenner gefördert, der Austrittsöffnungen für das Gemisch aufweist, welches nach dem Austritt aus dem Brenner in einem Verbrennungsraum verbrannt wird. Das Gemisch wird zur Vermeidung des Entstehens von Schadstoffen sehr genau geregelt, so dass eine möglichst vollständige Verbrennung stattfinden kann. Die entstehenden Verbrennungsgase enthalten nur noch wenig Sauerstoff, aber je nach Brenngas Wasserdampf, Kohlendioxid und hauptsächlich Stickstoff. In geringen Mengen können bei der Verbrennung auch Stickoxide, im Folgenden mit NOX bezeichnet, entstehen, was unerwünscht, aber besonders bei hohen Verbrennungstemperaturen nicht ganz vermeidbar ist. Besonders hohe Verbrennungstemperaturen entstehen bei bestimmten Brenngasen, wobei auch z. B. ein großer Anteil an Wasserstoff im Brenngas, wie er in Zukunft geplant ist, die Verbrennungstemperatur erhöhen kann. Bei der vorliegenden Erfindung geht es nicht nur um große Anlagen, sondern auch um z. B. Wandgeräte zur Erwärmung von Wasser und generell um Heizgeräte für die Beheizung von Gebäuden und/oder die Bereitstellung von warmem Wasser.
  • Ein für solche Geräte heute typischerweise verwendeter Brenner weist einen Brennerkörper auf, der an oder in einer Wand eines Verbrennungsraumes befestigt ist (meistens in einer Tür oder Wartungsklappe) und in den Verbrennungsraum hineinragt. Oft, aber nicht notwendigerweise, ist ein solcher Brennerkörper rotationssymmetrisch, insbesondere zylindrisch, zu einer Längsachse ausgebildet. Seine Mantelfläche begrenzt einen Innenraum. Das Gemisch aus Luft und Brenngas wird einem Eintrittsbereich des Innenraums des Brennerkörpers zugeführt und aus einem Austrittsbereich mit vielen Austrittsöffnungen in den Verbrennungsraum geblasen, wo es verbrennt und die dabei entstehende Wärme an Wärmetauscher-Flächen abgibt. Es ist auch bekannt, dass in dem Innenraum des Brennerkörpers strömungsbeeinflussende Elemente angeordnet sein können, insbesondere im Eintrittsbereich. Dort können beispielsweise Leitschaufeln oder ähnliche Elemente zur Drall-Erzeugung und/oder Verwirbelung angeordnet sein (vergleiche z. B. WO 2016/182778 A1 ) oder ein statischer Mischer, wie z. B. eine Venturi-Düse. So soll eine gleichmäßige Verteilung des Gemisches auf die Austrittsöffnungen erreicht werden und damit eine möglichst schadstoffarme Verbrennung. Eine Beeinflussung der Verbrennungstemperatur ist auf diese Weise aber kaum möglich, da diese im Wesentlichen von der Art des Brenngases und dem Mischungsverhältnis mit Luft abhängt.
  • Aus der DE 100 64 259 A1 ist es auch schon bekannt, durch Rezirkulation von Verbrennungsgasen die Flammenstabilität in einem Verbrennungsraum zu beeinflussen und in der WO2004/102071 A1 wird auch schon die Reduzierung der Erzeugung von NOX durch Abgasrezirkulation in einer Art Venturi-Düse beschrieben. Allerdings erfordern die genannten Anordnungen einen relativ langen Bauraum, der oft nicht zur Verfügung steht.
  • Aus der EP 0 970 327 A1 und der EP 0 867 659 A1 gehen Gasbrenner hervor, bei dem ein Flammrohr an einer Stauscheibe angeordnet ist, wobei die Stauscheibe mit einem Blendeneinsatz Öffnungen und Leitbleche ausbildet, über die Luft bzw. ein Gas-LuftGemisch in das Flammrohr eintreten kann. Im Betrieb kann sich stromabwärts der Stauscheibe ein Unterdruck einstellen, wodurch über an bzw. in dem Flammrohr ausgebildete Rezirkulationsschlitze und -Öffnungen Abgas ansaugen kann, um einer Verrußung der Stauscheibe vorzubeugen bzw. die Flamme dort zu erhitzen. Im Gegensatz dazu findet bei den hier angesprochenen Heizgeräten eine Verbrennung des Gases außerhalb des Brennerkörpers in dem Verbrennungsraum statt, so dass die damit adressierten Probleme der Verrußung und der Flammenerwärmung hier nicht auftreten. Zudem verlangen diese Konzepte des Standes der Technik eine abgestimmte Einbausituation hin zur Wand des Brennraums, so dass ein erhöhter apparativer Aufwand erforderlich ist.
  • Aufgabe der vorliegenden Erfindung ist es, die mit Bezug auf den Stand der Technik geschilderten Probleme wenigstens teilweise zu lösen und ganz besonders durch Veränderungen am Brenner die Erzeugung von Schadstoffen, insbesondere NOX, zu verringern, ohne zusätzliche Komponenten oder andere wesentliche Änderungen an vorhandenen oder neuen Anlagen. Dabei soll insbesondere die Verbrennungstemperatur gesenkt werden, was für zukünftige Brennstoffe mit Anteilen von Wasserstoff oder aus reinem Wasserstoff besonders von Bedeutung ist.
  • Zur Lösung dieser Aufgabe dient ein Heizgerät gemäß dem Anspruch 1. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben. Die Beschreibung, insbesondere im Zusammenhang mit der Zeichnung, veranschaulicht die Erfindung und gibt weitere Ausführungsbeispiele an.
  • Das hier vorgeschlagene Heizgerät mit einem Verbrennungsraum und einer Brenneranordnung, umfassend einen Vormischbrenner hat einen Brennerkörper, dem ein Gemisch aus Luft und Brenngas zuführbar ist, der an oder in einer Wand eines Verbrennungsraums befestigt ist, in diesen hineinragt und im Verbrennungsraum Austrittsöffnungen zum Austritt des Gemisches aufweist. Dabei hat der Brennerkörper einen Innenraum mit einem Eintrittsbereich und einem Austrittsbereich, wobei der Innenraum im Eintrittsbereich mindestens ein Element zur Drall-Erzeugung oder Verwirbelung aufweist, sodass bei Durchströmung mit dem Gemisch im Eintrittsbereich ein niedrigerer Innendruck als im Austrittsbereich und als im Verbrennungsraum entsteht, und wobei im Eintrittsbereich Verbindungsöffnungen zum Verbrennungsraum vorhanden sind.
  • Der Bereich, in dem sich ein Element zu einer solchen Strömungsbeeinflussung befindet, wird hier und im Folgenden mit zum Eintrittsbereich gerechnet.
  • Wie aus der Strömungslehre bekannt ist (und z. B. bei Saugstrahlpumpen angewendet wird), verhält sich der statische Druck in einem durchströmten System umgekehrt zur Strömungsgeschwindigkeit, die wiederum bei gleichbleibendem Volumenstrom vom Strömungsquerschnitt abhängt, so dass in Bereichen mit langsamer Strömung ein höherer statischer Druck herrscht als in Bereichen mit schneller Strömung. Dies macht sich die vorliegende Erfindung zu Nutze, um Verbrennungsgase aus dem Verbrennungsraum während des Betriebes des Brenners in den Innenraum des Brennerkörpers einzusaugen und dort dem Gemisch hinzuzufügen. Das führt aus verschiedenen Gründen zu einer geringeren Verbrennungstemperatur und damit zu einer geringeren Erzeugung von Schadstoffen, insbesondere NOX.
  • Untersuchungen haben gezeigt, dass z. B. ein Drall-Erzeuger oder ein ähnliches Element im Eintrittsbereich eines Brennerkörpers trotz geringer Baulänge dazu führt, dass im Eintrittsbereich, besonders im Bereich des Drall-Erzeugers, ein deutlich niedrigerer Druck als im Austrittsbereich herrscht. Das geht so weit, dass der Druck sogar niedriger ist als im Verbrennungsraum, wo der Druck wiederum niedriger als im Austrittsbereich des Brennerkörpers sein muss, damit Gemisch aus den Austrittsöffnungen in den Verbrennungsraum austreten kann. Diese Bedingungen erlauben es, Verbrennungsgase aus dem Verbrennungsraum durch erfindungsgemäße Verbindungsöffnungen in den Eintrittsraum einzusaugen, wo sie sich mit dem dort eingeblasenen Gemisch aus Luft und Brenngas vermischen (oder jedenfalls in dem nachfolgenden Element), so dass zu den Austrittsöffnungen nunmehr ein Gemisch aus Luft, Brenngas und rückgeführten Verbrennungsgasen gelangt. Da Verbrennungsgase wenig Sauerstoff enthalten, also fast als inert angesehen werden können, senkt dies die Verbrennungstemperatur und vermindert die Entstehung von Schadstoffen, obwohl die Verbrennungsgase nach einer gewissen Abkühlung durch Wärmeaustausch bei Rückführung noch eine höhere Temperatur haben als das übrige Gemisch. Ein Element zur Drall-Erzeugung oder Verwirbelung reicht aus, um eine genügende Druckdifferenz zu erzeugen. Dabei ist der Eintrittsbereich in axialer Richtung sehr kurz, nämlich 3 mm bis 20 mm [Millimeter], vorzugsweise 5 mm bis 10 mm, wobei der Bereich, den das Element zur Strömungsbeeinflussung einnimmt, auch mit zum Eintrittsbereich gerechnet wird.
  • In einer besonderen Ausführungsform hat der Eintrittsbereich einen geringeren Strömungsquerschnitt als der Austrittsbereich. Dies führt zu einer schnelleren Strömung bei gleichem Volumenstrom wie im Austrittsbereich mit größerem Querschnitt und damit zu einer Druckdifferenz, die zur Abgasrückführung ausgenutzt werden kann. Da der Druck im Verbrennungsraum, jedenfalls bei den meisten Heizgeräten, in der Nähe des Atmosphärendruckes (1 bar) liegt, sind geringe Verengungen des Querschnitts des Einlassbereiches ausreichend für eine Abgasrückführung, insbesondere Verengungen mit 5 bis 30 % [Prozent] weniger Querschnittsfläche gegenüber der des Austrittsbereiches. Von der Größe der Verengung (und/oder der Bauart von Elementen zur Strömungsbeeinflussung) und einer effektiven Gesamtquerschnittsfläche der Verbindungsöffnungen hängt der Anteil an rückgeführten Verbrennungsgasen ab. Dieser kann zwischen 2 % und 20 % [Volumenprozent] des an den Austrittsöffnungen austretenden Gemisches liegen, vorzugsweise zwischen 5 % und 10 %.
  • Dabei bildet der Eintrittsbereich bevorzugt etwa 2 % bis 20 %, insbesondere 5 % bis 10 % der axialen Länge des Innenraumes und weist eine Mantelfläche auf, die zum überwiegenden Teil aus Verbindungsöffnungen gebildet ist. Da zwischen Verbrennungsraum und Eintrittsbereich nur eine geringe Druckdifferenz ausgenutzt werden kann, ist es für das Ansaugen einer die Verbrennungstemperatur genügend beeinflussenden Menge an Abgasen wichtig, dass die Verbindungsöffnungen eine genügend große effektive Querschnittsfläche haben. Diese hängt nicht nur von der Zahl der Verbindungsöffnungen und deren einzelnen Querschnittsflächen ab, sondern auch von deren Form. Es wird daher angestrebt, möglichst viele und/oder große Verbindungsöffnungen vorzusehen, soweit die Größe des Eintrittsbereiches dies zulässt und die Stabilität des Brennerkörpers nicht beeinträchtigt wird.
  • Besonders bevorzugt bilden die Verbindungsöffnungen eine Art Ringspalt (mindestens einen oder bei Bedarf auch mehrere), der von Haltestegen unterbrochen ist, die den restlichen Brennerkörper tragen. Ein solcher Ringspalt kann eine axiale Breite von 0,5 mm bis 5 mm aufweisen, insbesondere 1 mm bis 3 mm.
  • Es sei erwähnt, dass ein solcher Brenner beim Starten unter Umständen zusätzliche Luft aus dem Verbrennungsraum (in dem sich dann möglicherweise noch keine Verbrennungsgase befinden) ansaugt, wodurch das zum Zünden vorgesehene Gemisch magerer ist als ohne Rückführung. Dies kann aber durch eine entsprechend fettere Einstellung des Gemisches beim Zündvorgang oder andere gleichwirkende Maßnahmen ausgeglichen werden, um eine sichere Zündung zu gewährleisten.
  • Ein schematisches Ausführungsbeispiel der Erfindung, auf das diese jedoch nicht beschränkt ist, und dessen Funktionsweise werden nun anhand der Zeichnung näher erläutert. Es stellen dar:
  • Fig. 1:
    einen Brennerkörper mit Verbindungsöffnungen zur Verbrennungsgasrückführung in perspektivischer Ansicht und
    Fig. 2:
    einen zentralen axialen Längsschnitt durch den Brennerkörper von Fig. 1.
  • Fig. 1 und Fig. 2 zeigen schematisch einen Ausschnitt aus einem Verbrennungsraum 1 mit einer Wand 2, in der sich eine Tür 3 (oder Klappe) befindet, an der eine Brenneranordnung befestigt ist. Ein Vormischbrenner 4, der aus einem nicht dargestellten System mit einem Gemisch aus Luft und Brennstoff versorgt werden kann, weist einen Brennerkörper 5 auf, der in einer axialen Richtung (siehe Pfeil) in den Verbrennungsraum 1 hineinragt. Der Brennerkörper 5 hat einen Innenraum 6, der sich aus einem Eintrittsbereich 7 und einem Austrittsbereich 8 zusammensetzt. Im Austrittsbereich 8 befinden sich zahlreiche Austrittsöffnungen 9, durch die das Gemisch in den Verbrennungsraum 1 strömen kann, wo es unter Bildung von Verbrennungsgasen verbrannt wird. Im Eintrittsbereich 7 befindet sich ein Element 11 zur Strömungsbeeinflussung, im vorliegenden Beispiel ein Drall-Erzeuger. Dieser bewirkt, dass sich im Eintrittsbereich 7 beim Betrieb ein geringerer Druck ausbildet als im Austrittsbereich 8 und auch als im Verbrennungsraum 1. Dies ergibt sich aus den Strömungsgeschwindigkeiten im Eintrittsbereich 7, insbesondere im Bereich des Elementes 11, bzw. im Austrittsbereich 8. Durch Verbindungsöffnungen 10 in einer Mantelfläche 12 des Eintrittsbereiches 7 werden daher beim Betrieb Verbrennungsgase aus dem Verbrennungsraum 1 in den Eintrittsbereich 7 eingesaugt und dort mit dem übrigen Gemisch vermischt, was durch einen Drall-Erzeuger oder ein Verwirbelungselement unterstützt wird.
  • Die Verbindungsöffnungen 10 haben, da im Allgemeinen nur eine geringe Druckdifferenz zwischen Eintrittsbereich 7 und Verbrennungsraum 1 genutzt werden kann, bevorzugt insgesamt eine möglichst große Querschnittsfläche, um möglichst viel Verbrennungsgase rückführen zu können. Da der Eintrittsbereich 7 in axialer Richtung meist nur wenige Millimeter lang ist, steht nicht viel Mantelfläche 12 zur Verfügung, so dass die Verbindungsöffnungen 10 einen großen Teil davon einnehmen, wobei aber die Stabilität des Brennerkörpers 5 erhalten bleiben muss. Günstig ist eine Art Ringspalt 13 als Verbindungsöffnung 10, wobei dieser wegen der Stabilität des Brennerkörpers von (möglichst schmalen und/oder möglichst wenigen) Haltestegen 14 unterbrochen ist. Je nach Befestigung des Elementes 11 zur Strömungsbeeinflussung kann dieser Ringspalt 13 etwa auf gleicher axialer Position mit dem Element 11 liegen. Er kann umlaufend um den Brennerkörper 5 ausgebildet sein mit einer Breite (in axialer Richtung) von 0,5 mm bis 5 mm, vorzugsweise 1 mm bis 3 mm, wobei er von drei bis zehn Haltestegen 14 unterbrochen ist, die eine Breite (in Umfangsrichtung) von 1 mm bis 10 mm haben. Nicht dargestellt, aber einzeln oder mit dem beschriebenen System gemeinsam anwendbar ist eine Querschnittsverengung des Eintrittsbereiches 7, die zu einem (zusätzlich) verringerten Druck führt und die beschriebene Rückführung von Verbrennungsgasen ermöglicht oder unterstützt. Beimischungen von Verbrennungsgasen zum Gemisch aus Luft und Brenngas verringern je nach ihrem Anteil die Produktion von Schadstoffen, insbesondere von NOX.
  • Die vorliegende Erfindung ermöglicht durch einfache konstruktive Änderungen am Brenner eines Heizgerätes eine Reduzierung der Verbrennungstemperatur und damit eine Verringerung des Schadstoffausstoßes bei Heizgeräten, insbesondere solchen, die mit Wasserstoff oder wasserstoffhaltigen Brenngasen betrieben werden.
  • Bezugszeichenliste
  • 1
    Verbrennungsraum
    2
    Wand
    3
    Tür (Klappe)
    4
    Vormischbrenner
    5
    Brennerkörper
    6
    Innenraum
    7
    Eintrittsbereich
    8
    Austrittsbereich
    9
    Austrittsöffnungen
    10
    Verbindungsöffnungen
    11
    Element zur Strömungsbeeinflussung
    12
    Mantelfläche
    13
    Ringspalt
    14
    Haltestege

Claims (4)

  1. Heizgerät mit einem Verbrennungsraum (1) und einer Brenneranordnung, umfassend einen Vormischbrenner (4), der einen, einen Innenraum (6) aufweisenden Brennerkörper (5) hat, der an oder in einer Wand (2) des Verbrennungsraums (1) befestigt ist und in diesen Verbrennungsraum (1) hineinragt, dem ein Gemisch aus Luft und Brenngas zuführbar ist, und zum Verbrennungsraum (1) hin eine Vielzahl von Austrittsöffnungen (9) zum Austritt des Gemisches und zur Verbrennung außerhalb des Innenraums (6) in dem Verbrennungsraum (1) aufweist, wobei sich der Innenraum (6) aus einem von der Wand (2) des Verbrennungsraums (1) in einem Bereich bis 20 mm in einer axialen Richtung des Brennerkörpers (5) ausgehenden Eintrittsbereich (7) und einem Austrittsbereich (8) mit der Vielzahl von Austrittsöffnungen (9) zusammensetzt, wobei der Eintrittsbereich (7) des Innenraums (6) zumindest ein Element (11) wenigstens zur Drall-Erzeugung oder Verwirbelung aufweist, sodass bei dessen Durchströmung mit dem Gemisch im Eintrittsbereich (7) ein niedrigerer Innendruck als im Austrittsbereich (8) und als im Verbrennungsraum (1) entsteht, und wobei im Eintrittsbereich (7) Verbindungsöffnungen (10) zum Verbrennungsraum (1) vorhanden sind, über die Verbrennungsgase aus dem Verbrennungsraum (1) angesaugt und im Eintrittsbereich (7) mit dem übrigen Gemisch vermischt werden.
  2. Heizgerät nach Anspruch 1, wobei der Innenraum (6) im Eintrittsbereich (7) einen geringeren Strömungsquerschnitt als im Austrittsbereich (8) hat.
  3. Heizgerät nach einem der Ansprüche 1 oder 2, wobei der Eintrittsbereich (7) 1 % bis 20% des Innenraumes (6) bildet und eine Mantelfläche (12) aufweist, die zum überwiegenden Teil aus den Verbindungsöffnungen (10) gebildet ist.
  4. Heizgerät nach einem der vorhergehenden Ansprüche, wobei die Verbindungsöffnungen (10) eine Art von Haltestegen (14) unterbrochenen Ringspalt (13) bilden, der eine axiale Breite von 0,5 bis 5 mm aufweist.
EP21214581.7A 2021-01-04 2021-12-15 Brenneranordnung für einen vormischbrenner Active EP4023938B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021100007.6A DE102021100007A1 (de) 2021-01-04 2021-01-04 Brenneranordnung für einen Vormischbrenner

Publications (3)

Publication Number Publication Date
EP4023938A1 EP4023938A1 (de) 2022-07-06
EP4023938B1 true EP4023938B1 (de) 2023-12-06
EP4023938C0 EP4023938C0 (de) 2023-12-06

Family

ID=79024498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21214581.7A Active EP4023938B1 (de) 2021-01-04 2021-12-15 Brenneranordnung für einen vormischbrenner

Country Status (2)

Country Link
EP (1) EP4023938B1 (de)
DE (1) DE102021100007A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687854A1 (de) 1994-06-13 1995-12-20 N.V. Acotech S.A. Brenner mit Abgasrückführung
US6305331B1 (en) * 1997-03-24 2001-10-23 Vth - Verfahrenstechnik Fur Heizung Ag Boiler fitted with a burner
EP0867659A1 (de) * 1997-03-24 1998-09-30 VTH Verfahrentechnik für Heizung AG Verfahren und Vorrichtung zur Verbrennung von gasförmigem Brennstoff
DE10064259B4 (de) 2000-12-22 2012-02-02 Alstom Technology Ltd. Brenner mit hoher Flammenstabilität
NL1023439C2 (nl) 2003-05-16 2004-11-17 Nederlandse Gasunie Nv Brander.
US10767900B2 (en) * 2015-05-14 2020-09-08 Lochinvar, Llc Burner with flow distribution member

Also Published As

Publication number Publication date
EP4023938A1 (de) 2022-07-06
EP4023938C0 (de) 2023-12-06
DE102021100007A1 (de) 2022-07-07

Similar Documents

Publication Publication Date Title
DE60007946T2 (de) Eine Brennkammer
DE3217674C2 (de) Brennkammer für eine Gasturbine
DE60032663T2 (de) Verkokungbeständige Kraftstoffeinspritzdüse
DE2461078C2 (de) Verfahren zur Verringerung des Gehalts an Stickstoffoxiden, Kohlenmonoxid und Kohlenstoff in einem Abgas, sowie Feuerungsanlage zur Durchführung des Verfahrens
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
DE10064259B4 (de) Brenner mit hoher Flammenstabilität
WO2008092795A1 (de) Brennkammer für eine gasturbine
DE2120022A1 (de) Verbrennungsofen mit Wärmeaustausch zwischen den heissen Abgasen des Ofens und einer diesem zugeführten kälteren Gasströmung
DE2841637A1 (de) Brenneranlage zum verbrennen gasfoermiger oder fluessiger brennstoffe
DE2306537A1 (de) Verminderung der bildung von no tief x bei der verbrennung von brennstoffen
DE2460740A1 (de) Brennkammer fuer gasturbinentriebwerke
DE3819898C2 (de)
DE102011000589A1 (de) Axial gestufte Vormischbrennkammer
EP0629817A2 (de) Feuerungsanlage
DE2341904B2 (de) Brennkammer für Gasturbinentriebwerke
EP2171354B1 (de) Brenner
EP3254027B1 (de) Gasverteilervorrichtung für einen atmosphärischen gasbrenner
DE1932881A1 (de) Brennkammer
DE60224518T2 (de) Vormischende turbinenverbrennungskammer
EP4023938B1 (de) Brenneranordnung für einen vormischbrenner
DE2705647A1 (de) Brenner fuer gasfoermigen oder fluessigen brennstoff
DE2606704A1 (de) Brennkammer fuer gasturbinentriebwerke
DE102017118165B4 (de) Brennerkopf, Brennersystem und Verwendung des Brennersystems
EP0961905B1 (de) Vorrichtung und verfahren zum verbrennen von brennstoff
DE102016118632A1 (de) Brennkammersystem, Verwendung eines Brennkammersystems mit einer angeschlossenen Turbine und Verfahren zur Durchführung eines Verbrennungsprozesses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230629

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWEITZER-DE BORTOLI, STEFAN

Inventor name: POLUS, MARKUS

Inventor name: GEVERS, HENDRIK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002122

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231206

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231211

U20 Renewal fee paid [unitary effect]

Year of fee payment: 3

Effective date: 20231214

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 43218

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231201

Year of fee payment: 3