EP4011582A1 - Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch - Google Patents

Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch Download PDF

Info

Publication number
EP4011582A1
EP4011582A1 EP20213585.1A EP20213585A EP4011582A1 EP 4011582 A1 EP4011582 A1 EP 4011582A1 EP 20213585 A EP20213585 A EP 20213585A EP 4011582 A1 EP4011582 A1 EP 4011582A1
Authority
EP
European Patent Office
Prior art keywords
hydraulically settable
settable mixture
cavity
lattice structure
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20213585.1A
Other languages
English (en)
French (fr)
Inventor
Carsten Rieger
Ammar MIRJAN
Frank Ilg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MESH AG
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Sika Technology AG
Peri GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ, Sika Technology AG, Peri GmbH filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Priority to EP20213585.1A priority Critical patent/EP4011582A1/de
Publication of EP4011582A1 publication Critical patent/EP4011582A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0015Machines or methods for applying the material to surfaces to form a permanent layer thereon on multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3133Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4334Mixers with a converging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/021Feeding the unshaped material to moulds or apparatus for producing shaped articles by fluid pressure acting directly on the material, e.g. using vacuum, air pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/02Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing
    • B28C5/06Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions without using driven mechanical means effecting the mixing the mixing being effected by the action of a fluid
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/842Walls made by casting, pouring, or tamping in situ by projecting or otherwise applying hardenable masses to the exterior of a form leaf
    • E04B2/845Walls made by casting, pouring, or tamping in situ by projecting or otherwise applying hardenable masses to the exterior of a form leaf the form leaf comprising a wire netting, lattice or the like
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8658Walls made by casting, pouring, or tamping in situ made in permanent forms using wire netting, a lattice or the like as form leaves

Definitions

  • the invention relates to a method for producing shaped bodies from a hydraulically settable mixture and a system for producing shaped bodies from a hydraulically settable mixture.
  • Formwork in particular, is conventionally used in order to produce shaped bodies from hydraulically settable mixtures.
  • a formwork is positioned at a predefined point, the hydraulically settable mixture is poured into this formwork and then you wait until the mixture sets and thus becomes dimensionally stable.
  • the formwork can then be removed and the same process repeated at an adjacent location.
  • this type of method has the disadvantage that a considerable amount of time is required for setting the mixture.
  • it is a great effort to position the formwork and dismantle it again.
  • the shape of the shaped body cannot be freely selected because the formwork has a standardized shape since it has to be reused several times.
  • EP 3 431 172 A1 Another example of a prior art solution is in EP 3 431 172 A1 described.
  • a building material in particular concrete or mortar, is printed by means of a layered structure.
  • two layers can be printed simultaneously on both sides of a reinforcement layer.
  • this method also has the disadvantage that very high demands are placed on the system as a result of the building material and its curing behavior having to be controlled and adjusted very precisely.
  • the object therefore remains to provide a method and a system for the production of shaped bodies which does not have the disadvantages mentioned above.
  • the method or the system should enable a more cost-effective structure or process, which is also more robust and less susceptible to parameter changes.
  • This object is initially achieved by a method for producing shaped bodies from a hydraulically settable mixture, the method comprising the steps of: providing a lattice structure; Filling the lattice structure with a hydraulically settable mixture to which an additive is added before filling; and overspraying the outside of the lattice structure with a shotcrete.
  • this solution has the advantage that no formwork is required, which means that long waiting times during the construction process can be avoided.
  • the use of lattice structures instead of formwork ensures greater design freedom with regard to the shape.
  • Lattice structures can be chosen relatively freely in terms of shape, since they are not reused, as is the case with formwork.
  • the lattice structures also form a reinforcement of the finished molding.
  • the method proposed here has the advantage that the requirements for the hydraulically settable mixture are lower than is the case with printer-like processes. Thanks to the lattice structures, the hydraulically settable mixture does not have to set immediately after it has been applied, but has a support thanks to the lattice structures, which keeps the mixture in shape for the first time after it has been applied. This allows more robust and cost-effective systems to be implemented than would be the case with printer-like processes. In addition, a flow rate of the building material during the manufacturing process is less severely limited than in printer-like processes.
  • reinforcement in the building material can be implemented by using lattice structures. In the case of printer-like processes, such a reinforcement must be added separately, and it is often less easy to integrate it into the molded body.
  • a system for producing shaped bodies from a hydraulically settable mixture comprising: at least one lattice structure; a delivery unit for applying the hydraulically settable mixture, which contains an additive; and an application unit for applying shotcrete.
  • Such a system has the advantage that a system can be made available with relatively simple and mobile means, which can efficiently build up shaped bodies. Since the size of the lattice structures can be freely selected, large machines are not absolutely necessary. A structure of the system can thus be adapted to the respective requirements for the construction process of such shaped bodies.
  • such a system enables the formation of a completely mobile structure.
  • the lattice structures can be provided and positioned by a mobile unit, the hydraulically settable mixture can also be provided and applied by a mobile unit, and the application unit for applying the shotcrete can also be formed by a small mobile unit. In this way, great flexibility can be achieved, which makes it possible to cover a large number of applications for the production of such shaped bodies.
  • the "hydraulically settable mixture” is a mixture containing a hydraulic binder which, in the presence of water, reacts in a hydration reaction to form solid hydrates or hydrate phases.
  • the mixture preferably also contains aggregates, water and optional additives.
  • the hydraulic binder can, for example, be selected from mineral and/or organic binders.
  • the binder comprises cement, lime, hydraulic lime or gypsum, each alone, as a mixture of several of the binders mentioned or in a mixture with latently hydraulic binders and/or pozzolanes. Aggregates are present in particular in the form of sand, gravel and/or aggregates.
  • Organic binders can be epoxy or polyurethane-based binders, for example.
  • the hydraulically settable mixture is particularly preferably a concrete composition or a mortar composition.
  • additive is in particular a substance which is able to change the physical and/or chemical properties of the hydraulically settable mixture. It is preferably a setting accelerator, hardening accelerator and/or a thickener (stabilizer).
  • a “flow-influencing element” is understood to mean a body which protrudes into the cavity and influences the flow of the hydraulically settable mixture flowing through the cavity.
  • the influencing can take place in particular in the form of an at least partial change in the direction of flow of the mixture and/or an at least partial separation of the mixture into partial flows.
  • the additive comprises a setting accelerator.
  • the admixture of such a setting accelerator has the advantage that the hydraulically settable mixture can initially be stored or kept ready without this setting accelerator, in order then to have a changed setting property after the setting accelerator has been added, so that the hydraulically settable mixture after its application in the lattice structure sets faster.
  • a production process for the shaped bodies can be made more efficient, and it can also be ensured that the hydraulically settable mixture does not flow out through the meshes of the lattice structure.
  • the hydraulically settable mixture is a concrete composition or a mortar composition.
  • the concrete composition has a cement content of 350 to 500 kg/m3, preferably 380 to 470 kg/m3, particularly preferably 400 to 450 kg/m3.
  • the concrete composition has an aggregate with a maximum grain size of 20 mm, preferably 15 mm, particularly preferably 10 mm.
  • the concrete composition has a water/cement ratio of less than 0.60, preferably less than 0.55, particularly preferably less than 0.50.
  • the additive is mixed in when the hydraulically settable mixture is provided during filling.
  • the additive is added in a concrete plant or in a truck mixer.
  • the additive is a thickener (stabilizer).
  • the hydraulically settable mixture is conveyed through a line during filling, with the additive being admixed to the hydraulically settable mixture on a section of this line.
  • the introduction of the additive on a section of the line has the advantage that it changes a property of the settable mixture shortly before it is discharged can be changed.
  • a property for the storage or provision of the mixture can be selected differently than a property after its application.
  • this section includes a tubular cavity for conducting the hydraulically settable mixture along an intended flow direction, with a static flow-influencing element protruding into the cavity, at which there is an opening opening into the cavity for introducing the additive.
  • the tubular cavity for conducting the hydraulically settable mixture is preferably in the form of a circular cylinder. However, other shapes are also possible. Thus, the tubular cavity can also have a non-circular or non-round cross-section.
  • the section in the area of the flow-influencing element, on an outside of the section, there is a fluid inlet communicating with the opening for introducing the additive, via which the additive can be supplied.
  • the section can thus be connected directly to a conveying device for the additive.
  • the opening leading into the cavity is preferably designed in such a way that the additive can be introduced into the cavity at a distance from a wall of the cavity.
  • a distance between the wall and the opening is 25-70%, in particular 35-50%, of the diameter of the tubular cavity.
  • the additive can be introduced directly into the inner region of the hydraulically settable mixture that is passed through, which leads to particularly effective mixing.
  • the opening opening into the cavity is designed in such a way that the additive can be introduced into the cavity in a direction essentially along the longitudinal axis of the tubular cavity or at an angle thereto.
  • the additive is introduced in a direction which has an angle of 0-45°, in particular 15-30°, to the longitudinal axis of the cavity.
  • the additive can thus be added in the direction of flow or slightly obliquely, which has proven to be advantageous with regard to the fastest possible homogeneous distribution.
  • the opening leading into the cavity is preferably designed in such a way that the additive can be introduced into the cavity on a downstream side of the flow-influencing element.
  • the opening opening into the cavity is preferably present on the downstream side of the flow-influencing element. In this way, on the one hand, it can be prevented that the hydraulically settable mixture is pressed into the opening as it is being conveyed through, and at the same time the pressure which is required for conveying the additive can be minimized.
  • the opening opening into the cavity to the side of the flow-influencing element and/or in an upstream area.
  • the flow-influencing element is designed as a cylindrical socket, which protrudes into the cavity with its longitudinal axis in a direction essentially perpendicular to the longitudinal axis of the cavity or in the radial direction of the cavity.
  • the opening leading into the cavity is present on the end face and/or the lateral surface of the cylindrical connecting piece. An arrangement in a downstream region of the lateral surface is particularly preferred.
  • the flow-influencing element is designed in such a way that it continuously protrudes further into the cavity along its length running in the longitudinal direction of the cavity, in particular in the direction of flow.
  • the flow-influencing element has a leading edge running from the upstream end to the downstream end at an angle to the direction of flow into the cavity. This has proven to be particularly advantageous with regard to the mixing effect. In addition, the risk of clogging is significantly reduced.
  • the flow-influencing element is designed as a fin, in particular as a triangular fin.
  • a “fin” is understood to mean, in particular, a flat element which has a small thickness compared to the length and the height. The thickness is preferably at most 25% of the length or the width.
  • the fin preferably has a leading edge and an opposite trailing edge which are connected via two side surfaces, in particular two triangular side surfaces.
  • the fin is preferably a triangular fin.
  • Such fins can, for example, be in the form of a flat right-angled triangle.
  • One or more corners can be rounded and/or one or edges can be curved.
  • a triangular fin is arranged in particular in such a way that one of its tips protrudes into the cavity, while a side of the fin opposite the tip is arranged on the wall of the cavity.
  • the fin is preferably aligned along the longitudinal axis of the cavity or it has an acute angle of 0-15°, in particular 1-10°, relative to the longitudinal axis of the cavity.
  • the fin is inclined to a longitudinal axis of the cavity, so that the side surfaces of the fin are inclined to the longitudinal axis of the cavity.
  • the inclination is preferably 0-15°, in particular 1-10°. This can further improve the mixing effect.
  • the fin is curved, in particular in such a way that the first side surface is configured as a concave surface and the second side surface is configured as a convex side surface.
  • the leading edge of the fin preferably has an angle of 20-60° to the longitudinal axis of the cavity and/or the trailing edge has an angle of 80-90° to the longitudinal axis of the cavity.
  • the opening for introducing the additive is preferably arranged on the trailing edge of the fin.
  • a cross-sectional area in the cavity of the section is preferably 100-1500 cm2, in particular 500-1200 cm2, especially 600-800 cm2 or approx. 706 cm2.
  • a diameter of the cavity at the widest point is preferably 50-300 mm, in particular 80-250 mm, in particular 120-180 mm or 150 mm.
  • the upstream side and/or downstream side portion has connecting members.
  • the connecting elements are preferred for connecting to pipelines and/or for connecting several Sections designed with each other.
  • the connecting elements can be present, for example, in the form of flanges, clamps and/or elements of screw connections.
  • each of the flow-influencing elements is preferably a fin, in particular a triangular fin, in particular an inclined and/or curved fin, as described above.
  • the mixing effect can be significantly increased by several flow-influencing elements connected in series.
  • the at least two flow-influencing elements preferably protrude into the cavity from different radial directions.
  • the radial directions of the at least two flow-influencing elements are preferably at an angle of 360°/(number of flow-influencing elements) to one another.
  • the angle is in particular 180°, in the case of three flow-influencing elements it is 120° and in the case of four flow-influencing elements it is 90°.
  • the section comprises at least two, in particular at least three, preferably at least four, individual sections that can be releasably connected to one another, as described above.
  • the sections are designed in such a way that in the connected state they communicate with one another with their tubular cavities.
  • a further pipe section is arranged on the downstream side and/or on the upstream side of the section, this further pipe section having, at least in one area, a free internal cross-section which is smaller than the internal cross-section of the cavity of the section.
  • the free internal cross-section in the further pipe section at the narrowest point is preferably smaller by a factor of 0.2-0.8, in particular 0.3-0.5, compared with the cross-sectional area in the cavity of the section, without taking into account the element(s) influencing the flow.
  • a diameter of the further tube section at the narrowest point is preferably smaller by a factor of 0.4-0.9, in particular 0.5-0.7, in comparison with the cross-sectional area in the cavity of the section.
  • a cross-sectional area in the further pipe section at the narrowest point is preferably 100-600 cm2, in particular 200-400 cm2, in particular 300-350 cm2 or approx. 314 cm2.
  • a diameter of the further pipe section at the narrowest point is preferably 30-300 mm, in particular 50-200 mm, in particular 80-120 mm or 100 mm.
  • a further pipe section which tapers in the direction of flow with respect to the free internal cross section is preferably connected to the downstream side.
  • the free inner cross-section in the further tube section tapers conically.
  • the free internal cross-section in the further tapering pipe section preferably decreases by a factor of 0.2-0.8, in particular 0.3-0.5, in particular over a length of 0.25-2 m, preferably 0.5-1.5 m additional mixing of the additive can be achieved.
  • the risk of clogging can be kept low.
  • a second further pipe section which tapers in terms of the internal cross section counter to the direction of flow, is connected to the upstream side, with the second pipe section preferably tapering in a step-like manner.
  • the second tube section is preferably dimensioned as described above.
  • the volume flow flowing into the section is limited, so that the risk of blockages in the area of the flow-influencing elements can be reduced.
  • the shotcrete has a cement content of 360 to 510 kg/m3, preferably 400 to 470 kg/m3, particularly preferably 420 to 450 kg/m3.
  • the shotcrete has an aggregate with a maximum grain size of 8 mm, preferably 6 mm, particularly preferably 4 mm.
  • the concrete composition has a water/cement ratio of less than 0.60, preferably less than 0.55, particularly preferably less than 0.50.
  • the lattice structure comprises two interconnected lattice mats.
  • the two grid mats are connected to one another in such a way that they run essentially parallel to one another.
  • the grid mats are designed to be essentially planar or essentially wavy or essentially uneven.
  • the distance between the two grid mats is between 5 and 100 cm, preferably between 10 and 80 cm, particularly preferably between 15 and 50 cm.
  • the bars of the grid mats are aligned substantially horizontally and vertically, with the bars forming a grid.
  • the rods of the grid mats are aligned substantially diagonally to a horizontal and a vertical direction, with the rods forming a grid.
  • a plurality of prefabricated lattice structures are provided when the lattice structure is provided, the method comprising an additional step: connecting the plurality of lattice structures to one another; wherein the multiple lattice structures are filled and overmolded.
  • Such provision of a plurality of lattice structures has the advantage that greater freedom for the shaping of the shaped body can be achieved in that individual lattice structures can be added as desired.
  • the provision of prefabricated lattice structures has the advantage that no robots are required to produce the lattice structures, so that the entire method can be accomplished using smaller and more mobile units.
  • the lattice structure when the lattice structure is provided, the lattice structure is created at a filling location, in particular by a robot.
  • this alternative method offers the advantage that the lattice structures do not have to be prefabricated and therefore do not have to be transported to a filling location.
  • the hydraulically settable mixture is introduced into an area between the two lattice mats of the lattice structure.
  • the hydraulically settable mixture can be introduced between the grid mats, for example, from above or from one side.
  • the hydraulically settable mixture is introduced through a lattice of a lattice mat of the lattice structure.
  • a hold-open element is arranged on a lattice mat opposite the filling point of the hydraulically settable mixture during the filling process, so that the hydraulically settable mixture introduced laterally into the lattice structure is prevented from exiting the lattice structure on an opposite side.
  • filling between the grid mats can also be combined with filling through the grid of a grid mat.
  • the filling location can be changed during the filling process.
  • the delivery unit comprises a line for the hydraulically settable mixture, with the additive being admixed to the hydraulically settable mixture on a section of this line.
  • a section of this line includes a tubular cavity for conducting the hydraulically settable mixture along an intended flow direction, with a static flow-influencing element protruding into the cavity, at which there is an opening opening into the cavity for introducing the additive.
  • the system also includes a positioning unit that can arrange the lattice structure at a filling location at which the delivery unit can apply the hydraulically settable mixture into the lattice structure.
  • the positioning unit includes a crane.
  • the positioning unit also includes a loading area for storing and/or transporting lattice structures.
  • the positioning unit is designed in particular as a truck.
  • the delivery unit includes a tank for the hydraulically settable mixture and a line.
  • the line is routed through a movable arm, in particular a crane-like arm.
  • the conveying device is designed as a tanker truck or as a truck.
  • the application unit includes a mobile pump and tank device.
  • the application unit also includes a movable line.
  • the movable line is designed as a flexible hose, which is designed to be movable, in particular, by an application technician.
  • a system 1 for the production of shaped bodies 8 from a hydraulically settable mixture is shown as an example and schematically.
  • the system 1 comprises a plurality of lattice structures 4, which can be arranged by a positioning unit 5 at a location for filling with the hydraulically settable mixture.
  • the positioning unit 5 is designed as a truck with a crane structure.
  • the system 1 also includes a conveyor unit 2 for applying the settable mixture.
  • the delivery unit 2 includes a tank and a crane arm 7 for positioning the line 6 .
  • the hydraulically settable mixture can be delivered from the tank via the line 6 into the lattice structures 4 .
  • the system 1 also includes an application unit 3 for applying shotcrete.
  • the application unit 3 is designed as a compact mobile unit which can be operated by an application technician.
  • the application technician can direct a spray head of the application unit 3 to a desired location.
  • a plurality of lattice structures 4 are connected to one another at the point of filling with the hydraulically settable mixture, filled and sprayed over.
  • a shaped body 8 of any desired size can be constructed.
  • FIG 2a it can be seen that first a lattice structure 4 is provided.
  • the line 6 and a crane arm 7 for positioning the line 6 can also be seen, which are then used for the filling process of the lattice structure.
  • Figure 3a shows an arrangement with a section 100 for admixing the additive into the hydraulically settable mixture 9 in a schematic representation.
  • a flow-influencing element 150 is arranged in section 100, and a fluid inlet 140 is located in the vicinity of this flow-influencing element 150. In this illustration, the opening for injecting the additive on section 100 is not visible.
  • the pipe section 200 Connected to the downstream end 110 of the section 100 is a pipe section 200 that tapers conically in the direction of flow 133 with respect to the free internal cross section.
  • the pipe section 200 has a length of 1 m, for example.
  • the inner diameter of the pipe section 200 corresponds to the diameter 132 of the cavity 130 of the device 100 of approx. 150 mm, while the inner diameter of the pipe section in the narrowest area or in the area of its downstream end is about 100 mm.
  • a second pipe section 300 is connected to the upstream end 120 of the device 100 , which tapers in a stepped manner counter to the direction of flow 133 .
  • the inside diameter of the tube section 300 corresponds to the diameter 132 of the cavity 130 of the device 100 of approximately 150 mm, while the inside diameter of the tube section 300 in the tapered region or in the region of its upstream end is approximately 100 mm.
  • the section 100 is shown schematically and by way of example.
  • the section 100 is in the form of a circular-cylindrical tube section with a circular-cylindrical cavity 130 through which a hydraulically settable mixture can be passed along a longitudinal axis that corresponds to the intended direction of flow 133 .
  • a first annular mounting flange At the downstream end 110 there is a first annular mounting flange while at the upstream end 120 there is a second annular mounting flange.
  • Section 100 can be connected to other tubular elements via the flanges.
  • a triangular and curved fin 150 protrudes from the inner wall of section 100 as a flow-influencing element into cavity 130. At the downstream rear edge 150c of fin 150 there is an opening 160 opening into cavity 130 for introducing an additive.
  • the additive can be routed from the outside to the opening 160 via a fluid inlet 140 in the area of the fin 150 and a fluid channel running through the fin 150 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

Ein Verfahren zur Herstellung von Formkörpern (8) aus einem hydraulisch abbindbaren Gemisch (9) umfassend die folgenden Schritte: Bereitstellen einer Gitterstruktur (4); Befüllen der Gitterstruktur (4) mit einem hydraulisch abbindbaren Gemisch (9), welchem vor dem Befüllen ein Zusatzmittel beigemischt wird; und Überspritzen der Aussenseiten der Gitterstruktur (4) mit einem Spritzbeton (10).

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch sowie ein System zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch.
  • Für die Herstellung von Formkörpern aus hydraulisch abbindbaren Gemischen, insbesondere aus Beton- oder Mörtelzusammensetzungen, gibt es bereits verschiedene Ansätze.
  • Herkömmlicherweise werden insbesondere Schalungen verwendet, um Formkörper aus hydraulisch abbindbaren Gemischen herzustellen. Dabei wird eine Schalung an einer vordefinierten Stelle positioniert, das hydraulisch abbindbare Gemisch wird in diese Schalung gegossen und danach wird abgewartet, bis das Gemisch abbindet und dadurch formstabil wird. Sodann kann die Schalung entfernt werden, und derselbe Prozess kann an einer benachbarten Stelle wiederholt werden. Diese Art von Verfahren hat jedoch den Nachteil, dass ein erheblicher Zeitbedarf für die Abbindung des Gemisches aufgewendet werden muss. Zudem ist es ein grosser Aufwand, die Schalungen zu positionieren und wieder abzubauen. Weiterhin ist dadurch eine Formgebung des Formkörpers nicht frei wählbar, weil die Schalungen eine standardisierte Formgebung aufweisen, da sie mehrfach wiederverwendet werden müssen.
  • Um solche Nachteile zu vermeiden, wurden Systeme vorgeschlagen, welche ohne eine solche Schalung auskommen. So offenbart die WO 2019/202156 A1 beispielsweise ein Verfahren zur Herstellung eines Bauteils aus aushärtbarem Material, bei welchem einzelne Lagen des aushärtbaren Materials übereinandergelegt werden, und bei welchem Verstärkungselemente jeweils von Lage zu Lage weitergeführt werden und in das Baumaterial eingeschlossen werden. Diese Methode kommt einerseits ohne oben beschriebene Schalung aus, hat andererseits aber den Nachteil, dass der Prozess des lageweisen Aufbaus sehr schwierig zu kontrollieren ist. Insbesondere muss eine Abbindung des Baumaterials sehr exakt eingestellt sein, damit die Lagen einerseits schnell genug aushärten nach der Ausbringung, und andererseits damit das Baumaterial genug flüssig bzw. extrudierbar ist, um in einem Applikator verarbeitet zu werden. Eine Vorrichtung zur Durchführung eines solchen Verfahrens ist daher konstruktiv sehr aufwendig und kostenintensiv.
  • Ein weiteres Beispiel einer vorbekannten Lösung ist in der EP 3 431 172 A1 beschrieben. Dabei wird wiederum ein Baumaterial, insbesondere Beton oder Mörtel, mittels eines lageweisen Aufbaus gedruckt. Insbesondere können dabei zwei Lagen jeweils auf beiden Seiten einer Verstärkungsschicht gleichzeitig gedruckt werden. Jedoch hat auch dieses Verfahren den Nachteil, dass dadurch sehr hohe Anforderungen an das System gestellt werden, indem das Baumaterial bzw. dessen Aushärteverhalten sehr genau kontrolliert und eingestellt werden muss.
  • Somit besteht weiterhin die Aufgabe, ein Verfahren bzw. ein System zur Herstellung von Formkörpern zur Verfügung zu stellen, welches die oben genannten Nachteile nicht aufweist. Insbesondere soll das Verfahren bzw. das System einen kostengünstigeren Aufbau bzw. Prozess ermöglichen, welcher zudem robuster und weniger anfällig auf Parameterveränderungen ist.
  • Gelöst wird diese Aufgabe zunächst durch ein Verfahren zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch, das Verfahren umfassend die Schritte: Bereitstellen einer Gitterstruktur; Befüllen der Gitterstruktur mit einem hydraulisch abbindbaren Gemisch, welchem vor dem Befüllen ein Zusatzmittel beigemischt wird; und Überspritzen der Aussenseiten der Gitterstruktur mit einem Spritzbeton.
  • Diese Lösung hat zunächst den Vorteil, dass keine Schalungen notwendig sind und dadurch lange Wartezeiten beim Bauvorgang vermieden werden können. Zudem ist durch die Verwendung von Gitterstrukturen anstelle der Schalungen eine grössere Gestaltungsfreiheit hinsichtlich der Formgebung gewährleistet. Gitterstrukturen können dabei relativ frei gewählt werden hinsichtlich einer Formgebung, da diese nicht wiederverwendet werden, wie dies bei Schalungen der Fall ist. Die Gitterstrukturen bilden zudem eine Armierung des fertigen Formkörpers.
  • Weiterhin hat das hier vorgeschlagene Verfahren den Vorteil, dass die Anforderungen an das hydraulisch abbindbare Gemisch geringer sind, als dies bei druckerähnlichen Prozessen der Fall ist. Dank den Gitterstrukturen muss das hydraulisch abbindbare Gemisch nicht sofort nach dessen Ausbringung abbinden, sondern hat dank den Gitterstrukturen eine Stütze, welche das Gemisch für die erste Zeit nach dessen Ausbringung in Form hält. Dadurch lassen sich robustere und kostengünstigere Systeme realisieren, als dies bei druckerähnlichen Verfahren der Fall wäre. Zudem ist eine Flussrate des Baumaterials während dem Herstellungsprozess weniger stark limitiert als bei druckerähnlichen Prozessen.
  • Ein weiterer Vorteil ist darin zu sehen, dass durch das Verwenden von Gitterstrukturen eine Armierung im Baumaterial realisierbar ist. Bei druckerähnlichen Prozessen muss eine solche Armierung separat hinzugefügt werden, und kann dabei oftmals weniger gut in den Formkörper integriert werden.
  • Zur Lösung der eingangs genannten Aufgabe wird zudem ein System zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch vorgeschlagen, das System umfassend: zumindest ein Gitterstruktur; eine Fördereinheit zur Applikation des hydraulisch abbindbaren Gemisches, welches ein Zusatzmittel enthält; und eine Applikationseinheit zur Anbringung von Spritzbeton.
  • Ein solches System hat den Vorteil, dass dadurch mit relativ einfachen und mobilen Mitteln ein System zur Verfügung gestellt werden kann, welches effizient Formkörper aufbauen kann. Dadurch, dass eine Grösse der Gitterstrukturen frei gewählt werden kann, sind dazu nicht zwingend grosse Maschinen erforderlich. Somit kann ein Aufbau des Systems den jeweiligen Anforderungen an den Bauprozess von solchen Formkörpern angepasst werden.
  • Zudem ermöglicht ein solches System die Ausbildung eines vollständig mobilen Aufbaus. Beispielsweise können die Gitterstrukturen durch eine mobile Einheit bereitgestellt und positioniert werden, das hydraulisch abbindbare Gemisch kann ebenso durch eine mobile Einheit bereitgestellt und appliziert werden, und auch die Applikationseinheit zur Anbringung des Spritzbetons kann durch eine kleine mobile Einheit ausgebildet werden. Dadurch kann eine grosse Flexibilität erreicht werden, welche es erlaubt, eine Vielzahl von Anwendungen zur Herstellung von solchen Formkörpern abzudecken.
  • Beim "hydraulisch abbindbaren Gemisch" handelt es sich um ein Gemisch enthaltend ein hydraulisches Bindemittel, welches in Anwesenheit von Wasser in einer Hydratationsreaktion zu festen Hydraten oder Hydratphasen reagiert. Bevorzugt enthält das Gemisch zudem Aggregate, Wasser und optional Additive.
  • Das hydraulische Bindemittel kann z.B. ausgewählt sein aus mineralischen und/oder organischen Bindemitteln. Beispielsweise umfasst das Bindemittel Zement, Kalk, hydraulischer Kalk oder Gips, je alleine, als Mischung aus mehreren der genannten Bindemittel oder in Abmischung mit latent hydraulischen Bindemitteln und/oder Pozzolanen. Aggregate liegen insbesondere in Form von Sand, Kies und/oder Gesteinskörnungen vor. Organische Bindemittel können z.B. Epoxid- oder Polyurethanbasierte Bindemittel sein.
  • Besonders bevorzugt handelt es sich beim hydraulisch abbindbaren Gemisch um eine Betonzusammensetzung oder eine Mörtelzusammensetzung.
  • Ein "Zusatzmittel" ist insbesondere eine Substanz, welche die physikalischen und/oder chemischen Eigenschaften des hydraulisch abbindbaren Gemisches zu verändern vermag. Bevorzugt handelt es sich um einen Erstarrungsbeschleuniger, Erhärtungsbeschleuniger und/oder einen Verdicker (Stabilisator).
  • Unter einem "strömungsbeeinflussenden Element" wird vorliegend ein Körper verstanden, welcher in den Hohlraum hineinragt und die Strömung des durch den Hohlraum fliessenden hydraulisch abbindbaren Gemischs beeinflusst. Die Beeinflussung kann insbesondere in Form einer wenigstens teilweisen Änderung der Strömungsrichtung des Gemischs und/oder einer wenigstens teilweisen Auftrennung des Gemischs in Teilströme erfolgen.
  • Der Zusatz "statisch" bedeutet, dass das strömungsbeeinflussende Element unbeweglich an der Vorrichtung befestigt ist und während dem Durchleiten des hydraulisch abbindbaren Gemischs nicht bewegt wird.
  • In einer beispielhaften Ausführungsform umfasst das Zusatzmittel einen Erstarrungsbeschleuniger.
  • Die Beimischung eines solchen Erstarrungsbeschleunigers hat den Vorteil, dass dadurch das hydraulisch abbindbare Gemisch zunächst ohne diese Erstarrungsbeschleuniger gelagert werden kann bzw. bereitgehalten werden kann, um dann nach der Beimischung des Erstarrungsbeschleunigers eine veränderte Abbindeeigenschaft aufzuweisen, so dass das hydraulisch abbindbare Gemisch nach dessen Ausbringung in die Gitterstruktur schneller abbindet. Dadurch kann ein Herstellungsprozess der Formkörper effizienter gestaltet werden, zudem kann dadurch sichergestellt werden, dass das hydraulisch abbindbare Gemisch nicht durch Maschen der Gitterstruktur hinausfliesst.
  • In einer beispielhaften Ausführungsform ist das hydraulisch abbindbare Gemisch eine Betonzusammensetzung oder eine Mörtelzusammensetzung.
  • In einer beispielhaften Weiterbildung hat die Betonzusammensetzung einen Zementanteil von 350 bis 500 kg/m3, bevorzugt von 380 bis 470 kg/m3, besonders bevorzugt von 400 bis 450 kg/m3.
  • In einer beispielhaften Weiterbildung hat die Betonzusammensetzung eine Gesteinskörnung mit einer maximalen Korngrösse von 20 mm, bevorzugt von 15 mm, besonders bevorzugt von 10 mm.
  • In einer beispielhaften Weiterbildung hat die Betonzusammensetzung einen Wasserzementwert von weniger als 0,60, bevorzugt von weniger als 0,55, besonders bevorzugt von weniger als 0,50.
  • In einer beispielhaften Ausführungsform wird beim Befüllen das Zusatzmittel bei einer Bereitstellung des hydraulisch abbindbaren Gemisches beigemischt. Insbesondere wird das Zusatzmittel in einem Betonwerk oder in einem Fahrmischer beigemischt.
  • In einer beispielhaften Weiterbildung mit einer solchen Beimischung des Zusatzmittels ist das Zusatzmittel ein Verdicker (Stabilisator).
  • In einer alternativen beispielhaften Ausführungsform wird beim Befüllen das hydraulisch abbindbare Gemisch durch eine Leitung gefördert, wobei das Zusatzmittel auf einem Abschnitt dieser Leitung dem hydraulisch abbindbaren Gemisch beigemischt wird.
  • Das Einbringen des Zusatzmittels auf einem Abschnitt der Leitung hat den Vorteil, dass dadurch eine Eigenschaft des abbindbaren Gemisches kurz vor dessen Ausbringung verändert werden kann. Somit kann eine Eigenschaft für die Lagerung bzw. Bereithaltung des Gemisches anders gewählt sein als eine Eigenschaft nach dessen Ausbringung.
  • In einer beispielhaften Ausführungsform umfasst dieser Abschnitt einen rohrförmigen Hohlraum zum Durchleiten des hydraulisch abbindbaren Gemisches entlang einer vorgesehenen Flussrichtung, wobei ein statisches strömungsbeeinflussendes Element in den Hohlraum hineinragt, an welchem eine in den Hohlraum mündende Öffnung zum Einleiten des Zusatzmittels vorliegt.
  • Das Vorsehen eines solchen strömungsbeeinflussenden Elements in diesem Abschnitt hat den Vorteil, dass dadurch eine Mischung des Zusatzmittels mit dem hydraulisch abbindbaren Gemisch stark verbessert werden kann, indem dank dem statischen strömungsbeeinflussenden Element Turbulenzen in einem Strömungsverlauf des Gemisches erzeugt werden.
  • In einer beispielhaften Ausführungsform liegen auf diesem Abschnitt wenigstens zwei, insbesondere wenigstens drei, besonders bevorzugt wenigstens vier, in longitudinaler Richtung des Hohlraums voneinander beabstandete strömungsbeeinflussende Elemente vor, wobei bevorzugt die wenigstens zwei strömungsbeeinflussenden Elemente aus verschiedenen radialen Richtungen in den Hohlraum hineinragen.
  • Durch das Vorsehen mehrerer solcher strömungsbeeinflussender Elemente wird sichergestellt, dass eine möglichst vollständige Vermischung des Zusatzmittels mit dem hydraulisch abbindbaren Gemisch erzielt werden kann.
  • Der rohrförmige Hohlraum zum Durchleiten des hydraulisch abbindbaren Gemischs hat bevorzugt die Form eines Kreiszylinders. Es sind aber auch andere Formen möglich. So kann der rohrförmige Hohlraum auch einen nicht kreisförmigen oder einen nicht runden Querschnitt aufweisen.
  • Besonders bevorzugt liegt im Bereich des strömungsbeeinflussenden Elements an einer Aussenseite des Abschnittes ein mit der Öffnung zum Einleiten des Zusatzmittels kommunizierender Fluideinlass vor, über welchen das Zusatzmittel zugeführt werden kann. Damit kann der Abschnitt direkt mit einer Fördervorrichtung für das Zusatzmittel verbunden werden.
  • Es ist gemäss einer anderen Ausführungsform aber auch möglich, den Fluideinlass in einem anderen Bereich vorzusehen und über eine Fluidleitung zum strömungsbeeinflussenden Element zu führen.
  • Die in den Hohlraum mündende Öffnung ist bevorzugt derart ausgestaltet, dass das Zusatzmittel von einer Wandung des Hohlraums beabstandet in den Hohlraum eingeleitet werden kann. Insbesondere beträgt eine Distanz zwischen der Wandung und der Öffnung 25 - 70%, insbesondere 35 - 50%, des Durchmessers des rohrförmigen Hohlraums.
  • Damit kann das Zusatzmittel direkt in den inneren Bereich des durchgeleiteten hydraulisch abbindbaren Gemischs eingeleitet werden, was zu einer besonders effektiven Vermischung führt.
  • Insbesondere ist die in den Hohlraum mündende Öffnung derart ausgestaltet, dass das Zusatzmittel in einer Richtung im Wesentlichen entlang der longitudinalen Achse des rohrförmigen Hohlraums oder schräg dazu in den Hohlraum eingeleitet werden kann. Insbesondere wird das Zusatzmittel in einer Richtung, welche einen Winkel von 0 - 45°, insbesondere 15 - 30°, zur longitudinalen Achse des Hohlraums aufweist, eingeleitet. Damit kann das Zusatzmittel in Strömungsrichtung oder leicht schräg dazu zugegeben werden, was sich als vorteilhaft bezüglich einer möglichst raschen homogenen Verteilung herausgestellt hat.
  • Die in den Hohlraum mündende Öffnung ist bevorzugt derart ausgestaltet, dass das Zusatzmittel auf einer stromabwärtigen Seite des strömungsbeeinflussenden Elements in den Hohlraum eingeleitet werden kann. Mit anderen Worten liegt die in den Hohlraum mündende Öffnung bevorzugt auf der stromabwärtigen Seite des strömungsbeeinflussenden Elements vor. Damit kann einerseits verhindert werden, dass hydraulisch abbindbares Gemisch beim Durchleiten in die Öffnung gedrückt wird und zugleich kann der Druck, welcher zur Förderung des Zusatzmittels benötigt wird, minimiert werden.
  • Es ist aber auch möglich, die in den Hohlraum mündende Öffnung seitlich des strömungsbeeinflussenden Elements und/oder in einem stromaufwärtigen Bereich anzuordnen.
  • Bei Bedarf können auch mehrere Öffnungen in verschiedenen Bereichen des strömungsbeeinflussenden Elements angeordnet werden.
  • Gemäss einer besonders vorteilhaften Ausführungsform ist das strömungsbeeinflussende Element als zylinderförmiger Stutzen ausgestaltet, welcher mit seiner longitudinalen Achse in einer Richtung im Wesentlichen senkrecht zur longitudinalen Achse des Hohlraums oder in radialer Richtung des Hohlraums in diesen hineinragt. Insbesondere liegt dabei die in den Hohlraum mündende Öffnung auf der Stirnseite und/oder der Mantelfläche des zylinderförmigen Stutzens vor. Besonders bevorzugt ist eine Anordnung in einem stromabwärtigen Bereich der Mantelfläche.
  • Gemäss einer weiteren vorteilhaften Ausführungsform ist das strömungsbeeinflussende Element derart ausgestaltet, dass es entlang seiner in longitudinaler Richtung des Hohlraums verlaufenden Länge, insbesondere in Strömungsrichtung, kontinuierlich zunehmend weiter in den Hohlraum hineinragt.
  • Im Besonderen verfügt das strömungsbeeinflussende Element über eine vom stromaufwärtigen Ende zum stromabwärtigen Ende schräg zur Strömungsrichtung in den Hohlraum hinein verlaufende Anströmkante. Dies hat sich in Bezug auf die Mischwirkung als besonders vorteilhaft erwiesen. Zudem wird damit das Risiko des Verstopfens signifikant reduziert.
  • Gemäss einer besonders bevorzugten Ausführungsform ist das strömungsbeeinflussende Element als Finne, insbesondere als dreieckförmige Finne, ausgestaltet. Unter einer "Finne" wird insbesondere ein flächiges Element verstanden, welche eine gegenüber der Länge und der Höhe geringe Dicke aufweist. Die Dicke beträgt bevorzugt höchsten 25% der Länge oder der Breite.
  • Die Finne verfügt bevorzugt über eine Anströmkante und eine gegenüberliegende Hinterkante welche über zwei Seitenflächen, insbesondere zwei dreieckförmige Seitenflächen, verbunden sind.
  • Die Finne ist bevorzugt eine dreieckförmige Finne. Solche Finnen können z.B. in Form eines flächigen rechtwinkligen Dreiecks vorliegen. Dabei können eine oder mehrere Ecken abgerundet sein und/oder eine oder Kanten können gekrümmt sein.
  • Eine dreieckförmige Finne ist insbesondere derart angeordnet, dass mit einer ihrer Spitze in den Hohlraum hineinragt während eine der Spitze gegenüberliegende Seite der Finne an der Wandung des Hohlraums angeordnet ist.
  • Prinzipiell können aber auch anders geformte Finnen eingesetzt werden.
  • Die Finne ist im Bereich der Wandung des Hohlraums bevorzugt entlang der longitudinalen Achse des Hohlraums ausgerichtet oder sie weist gegenüber der longitudinalen Achse des Hohlraums einen spitzen Winkel von 0 - 15°, insbesondere 1 - 10°, auf. Damit kann mit der Finne das hydraulisch abbindbare Gemisch beim Durchleiten lokal aufteilt werden. Zugleich wird das Risiko einer Verstopfung im Bereich der Finne stark reduziert.
  • Gemäss einer besonders bevorzugten Ausführungsform steht die Finne schräg zu einer longitudinalen Achse des Hohlraums, so dass die Seitenflächen der Finne schräg zur longitudinalen Achse des Hohlraums stehen. Die Schrägstellung beträgt bevorzugt 0 - 15°, insbesondere 1 - 10°. Dadurch kann die Mischwirkung nochmals verbessert werden.
  • Weiter hat es sich als vorteilhaft erwiesen, wenn die Finne gekrümmt ist, insbesondere so, dass die erste Seitenfläche als konkave Fläche ausgestaltet ist und die zweite Seitenfläche als konvexe Seitenfläche ausgestaltet ist.
  • Die Anströmkante der Finne weist bevorzugt einen Winkel von 20 - 60° zur longitudinalen Achse des Hohlraums auf und/oder die Hinterkante weist einen Winkel von 80 - 90° zur longitudinalen Achse des Hohlraums auf.
  • Die Öffnung zum Einleiten des Zusatzmittels ist bevorzugt an der Hinterkante der Finne angeordnet.
  • Eine Querschnittsfläche im Hohlraum des Abschnittes, ohne Berücksichtigung des oder der strömungsbeeinflussenden Elemente, beträgt vorzugsweise 100 - 1'500 cm2, insbesondere 500 - 1'200 cm2, im Speziellen 600 - 800 cm2 oder ca. 706 cm2. Ein Durchmesser des Hohlraums an der weitesten Stelle beträgt vorzugsweise 50 - 300 mm, insbesondere 80 - 250 mm, im Speziellen 120 - 180 mm oder 150 mm.
  • Bevorzugt verfügt der Abschnitt an der stromaufwärtigen Seite und/oder an der stromabwärtigen Seite über Verbindungselemente. Die Verbindungselemente sind bevorzugt zum Anschluss an Rohrleitungen und/oder zur Verbindung von mehreren Abschnitten untereinander ausgelegt. Die Verbindungselemente können z.B. in Form von Flanschen, Klammern und/oder Elementen von Schraubverbindungen vorliegen.
  • Gemäss einer vorteilhaften Ausführungsform liegen wenigstens zwei, insbesondere wenigstens drei, besonders bevorzugt wenigsten vier, in longitudinaler Richtung des Hohlraums voneinander beanstandete strömungsbeeinflussende Elemente vor. Dabei handelt es sich bevorzugt bei jedem der strömungsbeeinflussenden Elemente um eine Finne, insbesondere eine dreieckförmige Finne, im Speziellen eine schräg stehende und/oder gekrümmte Finne, wie sie vorstehend beschrieben ist.
  • Durch mehrere hintereinander geschaltete strömungsbeeinflussende Elemente kann die Mischwirkung signifikant gesteigert werden.
  • Die wenigstens zwei strömungsbeeinflussenden Elemente ragen bevorzugt aus verschiedenen radialen Richtungen in den Hohlraum hinein.
  • Die radialen Richtungen der wenigstens zwei strömungsbeeinflussenden Elemente weisen zueinander bevorzugt einen Winkel von 360°/(Anzahl der strömungsbeeinflussenden Elemente) auf. Bei zwei strömungsbeeinflussenden Elementen beträgt der Winkel insbesondere 180°, bei drei strömungsbeeinflussenden Elementen 120° und bei vier strömungsbeeinflussenden Elementen 90°.
  • Im Besonderen umfasst der Abschnitt wenigstens zwei, insbesondere wenigstens drei, bevorzugt wenigstens vier, lösbar miteinander verbindbare einzelne Abschnitte wie sie vorstehend beschrieben sind. Die Abschnitte sind dabei derart ausgelegt, dass sie in verbundenem Zustand mit ihren rohrförmigen Hohlräumen miteinander kommunizieren.
  • In einer beispielhaften Ausführungsform ist an der stromabwärtigen Seite und/oder an der stromaufwärtigen Seite des Abschnittes ein weiterer Rohrabschnitt angeordnet ist, wobei dieser weitere Rohrabschnitt zumindest in einem Bereich einen freien Innenquerschnitt aufweist, welcher geringer ist als der innere Querschnitt des Hohlraums des Abschnittes.
  • Bevorzugt ist der freie Innenquerschnitt im weiteren Rohrabschnitt an der engsten Stelle im Vergleich mit der Querschnittsfläche im Hohlraum des Abschnittes, ohne Berücksichtigung des oder der strömungsbeeinflussenden Elemente, um einen Faktor 0.2 - 0.8, insbesondere 0.3 - 0.5, kleiner. Ein Durchmesser des weiteren Rohrabschnitts an der engsten Stelle ist im Vergleich mit der Querschnittsfläche im Hohlraum des Abschnittes bevorzugt um einen Faktor 0.4 - 0.9, insbesondere 0.5 - 0.7, kleiner.
  • Eine Querschnittsfläche im weiteren Rohrabschnitt an der engsten Stelle beträgt vorzugsweise 100 - 600 cm2, insbesondere 200 - 400 cm2, im Speziellen 300 - 350 cm2 oder ca. 314 cm2. Ein Durchmesser des weiteren Rohrabschnitts an der engsten Stelle beträgt vorzugsweise 30 - 300 mm, insbesondere 50 - 200 mm, im Speziellen 80 - 120 mm oder 100 mm.
  • Bevorzugt ist an der stromabwärtigen Seite ein sich bezüglich dem freien Innenquerschnitt in Strömungsrichtung verjüngender weiterer Rohrabschnitt angeschlossen. Insbesondere ist der freie Innenquerschnitt im weiteren Rohrabschnitt konisch verjüngt.
  • Es hat sich gezeigt, dass durch die Kombination des Abschnittes mit dem sich verjüngenden weiteren Rohrabschnitt die Mischwirkung nochmals gesteigert werden kann, so dass rascher bzw. innerhalb einer kürzeren Strecke eine homogenere Verteilung des Zusatzmittels erreicht wird.
  • Bevorzugt verkleinert sich der freie Innenquerschnitt im sich verjüngenden weiteren Rohrabschnitt um einen Faktor 0.2 - 0.8, insbesondere 0.3 - 0.5, dies insbesondere über einer Länge von 0.25 - 2 m, bevorzugt 0.5 - 1.5 m. Damit kann einerseits eine zusätzliche Vermischung des Zusatzmittels erreicht werden. Andererseits kann das Risiko von Verstopfungen tief gehalten werden.
  • Weiter ist es bevorzugt, wenn zugleich an der stromaufwärtigen Seite ein sich bezüglich dem Innenquerschnitt entgegen der Strömungsrichtung verjüngender zweiter weiterer Rohrabschnitt angeschlossen ist, wobei sich der zweite Rohrabschnitt bevorzugt stufenartig verjüngt. Bezüglich Querschnitt und Durchmesser ist der zweite Rohrabschnitt bevorzugt wie vorstehend beschrieben dimensioniert.
  • Dadurch wird der in den Abschnitt einströmende Volumenstrom begrenzt, so dass die Gefahr von Verstopfungen im Bereich der strömungsbeeinflussenden Elemente reduziert werden kann.
  • Beim Überspritzen der Aussenseiten der Gitterstruktur wird ein Spritzbeton eingesetzt.
  • In einer beispielhaften Weiterbildung hat der Spritzbeton einen Zementanteil von 360 bis 510 kg/m3, bevorzugt von 400 bis 470 kg/m3, besonders bevorzugt von 420 bis 450 kg/m3.
  • In einer beispielhaften Weiterbildung hat der Spritzbeton eine Gesteinskörnung mit einer maximalen Korngrösse von 8 mm, bevorzugt von 6 mm, besonders bevorzugt von 4 mm.
  • In einer beispielhaften Weiterbildung hat die Betonzusammensetzung einen Wasserzementwert von weniger als 0,60, bevorzugt von weniger als 0,55, besonders bevorzugt von weniger als 0,50.
  • In einer beispielhaften Ausführungsform umfasst die Gitterstruktur zwei miteinander verbundene Gittermatten.
  • In einer beispielhaften Ausführungsform sind die beiden Gittermatten derart miteinander verbunden, dass sie im Wesentlichen parallel zueinander verlaufen.
  • In einer beispielhaften Ausführungsform sind die Gittermatten im Wesentlichen ebenförmig oder im Wesentlichen wellenförmig oder im Wesentlichen unebenförmig ausgebildet.
  • In einer beispielhaften Ausführungsform beträgt ein Abstand zwischen den beiden Gittermatten zwischen 5 und 100 cm, bevorzugt zwischen 10 und 80 cm, besonders bevorzugt zwischen 15 und 50 cm.
  • In einer beispielhaften Ausführungsform sind die Stangen der Gittermatten im Wesentlichen horizontal und vertikal ausgerichtet, wobei die Stangen ein Gitter bilden.
  • In einer alternativen Ausführungsform sind die Stangen der Gittermatten im Wesentlichen diagonal zu einer horizontalen und einer vertikalen Richtung ausgerichtet, wobei die Stangen ein Gitter bilden.
  • In einer beispielhaften Ausführungsform werden beim Bereitstellen der Gitterstruktur mehrere vorgefertigte Gitterstrukturen bereitgestellt, wobei das Verfahren einen zusätzlichen Schritt umfasst: Verbinden der mehreren Gitterstrukturen untereinander; wobei die mehreren Gitterstrukturen befüllt und überspritzt werden.
  • Ein solches Vorsehen von mehreren Gitterstrukturen hat den Vorteil, dass dadurch eine grössere Freiheit für die Formgebung des Formkörpers erreicht werden kann, indem einzelne Gitterstrukturen nach Wunsch hinzugefügt werden können.
  • Zudem hat das Vorsehen von vorgefertigten Gitterstrukturen den Vorteil, dass keine Roboter zur Herstellung der Gitterstrukturen notwendig sind, so dass das ganze Verfahren durch kleinere und mobilere Einheiten bewerkstelligt werden kann.
  • In einer alternativen Ausführungsform wird beim Bereitstellen der Gitterstruktur die Gitterstruktur an einem Ort der Befüllung erstellt, insbesondere durch einen Roboter.
  • Dieses alternative Verfahren bieten hingegen den Vorteil, dass die Gitterstrukturen nicht vorgefertigt werden müssen und somit auch nicht an einen Ort der Befüllung transportiert werden müssen.
  • In einer beispielhaften Ausführungsform wird beim Befüllen der Gitterstruktur das hydraulisch abbindbare Gemisch in einem Bereich zwischen den beiden Gittermatten der Gitterstruktur eingeführt.
  • Dabei kann das hydraulisch abbindbare Gemisch beispielsweise von oben oder von einer Seite zwischen die Gittermatten eingeführt werden.
  • In einem alternativen Ausführungsbeispiel wird beim Befüllen der Gitterstruktur das hydraulisch abbindbare Gemisch durch ein Gitter einer Gittermatte der Gitterstruktur eingeführt.
  • In einer beispielhaften Weiterbildung wird an einer dem Einfüllort des hydraulisch abbindbaren Gemisches gegenüberliegenden Gittermatte während dem Befüllvorgang ein Aufhalteelement angeordnet, so dass das seitlich in die Gitterstruktur eingeführte hydraulisch abbindbare Gemisch an einem Austritt aus der Gitterstruktur auf einer gegenüberliegenden Seite gehindert wird.
  • Beim Befüllen kann auch eine Befüllung zwischen den Gittermatten mit einer Befüllung durch das Gitter einer Gittermatte kombiniert werden. Insbesondere kann während dem Befüllvorgang der Einfüllort gewechselt werden.
  • In einer beispielhaften Ausführungsform umfasst die Fördereinheit eine Leitung für das hydraulisch abbindbare Gemisch, wobei das Zusatzmittel auf einem Abschnitt dieser Leitung dem hydraulisch abbindbaren Gemisch beigemischt wird.
  • In einer beispielhaften Ausführungsform umfasst ein Abschnitt dieser Leitung einen rohrförmigen Hohlraum zum Durchleiten des hydraulisch abbindbaren Gemisches entlang einer vorgesehenen Flussrichtung, wobei ein statisches strömungsbeeinflussendes Element in den Hohlraum hineinragt, an welchem eine in den Hohlraum mündende Öffnung zum Einleiten des Zusatzmittels vorliegt.
  • In einer beispielhaften Ausführungsform umfasst das System weiterhin eine Positionierungseinheit, welche die Gitterstruktur an einem Befüllungsort anordnen kann, an welchem die Fördereinheit das hydraulisch abbindbare Gemisch in die Gitterstruktur applizieren kann.
  • In einer beispielhaften Weiterbildung umfasst die Positionierungseinheit einen Kran.
  • In einer beispielhaften Weiterbildung umfasst die Positionierungseinheit zudem eine Ladefläche zur Lagerung und/oder für einen Transport von Gitterstrukturen.
  • In einer beispielhaften Weiterbildung ist die Positionierungseinheit insbesondere als Lkw ausgebildet.
  • In einer beispielhaften Ausführungsform umfasst die Fördereinheit einen Tank für das hydraulisch abbindbare Gemisch und eine Leitung.
  • In einer beispielhaften Ausführungsform ist die Leitung durch einen bewegbaren Arm geführt, insbesondere durch einen kranartigen Arm.
  • In einer beispielhaften Ausführungsform ist die Fördereinrichtung als Tanklastwagen bzw. als Lkw ausgebildet.
  • In einer beispielhaften Ausführungsform umfasst die Applikationseinheit eine mobile Pump- und Tankeinrichtung.
  • In einer beispielhaften Ausführungsform umfasst die Applikationseinheit zudem eine bewegbare Leitung.
  • In einer beispielhaften Weiterbildung ist die bewegbare Leitung als flexibler Schlauch ausgebildet, welcher insbesondere durch einen Applikationstechniker bewegbar ausgebildet ist.
  • Im Folgenden sind verschiedene Ausführungsbeispiele aufgeführt, welche die beschriebene Erfindung näher erläutern sollen. Selbstverständlich ist die Erfindung nicht auf diese beschriebenen Ausführungsbeispiele beschränkt. Zur Erläuterung der Ausführungsbeispiele liegen folgende Zeichnungen vor, welche zeigen:
  • Fig. 1
    ein beispielhaftes System zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch;
    Fig. 2a bis 2c
    eine schematische und beispielhafte Darstellung eines Verfahrens zur Herstellung von Formkörpern aus einem hydraulisch abbindbaren Gemisch; und
    Fig. 3a und 3b
    eine schematische und beispielhafte Darstellung eines Abschnitts einer Leitung, auf welchem dem hydraulisch abbindbaren Gemisch ein Zusatzmittel beigemischt werden kann.
  • In Fig. 1 ist beispielhaft und schematisch ein System 1 zur Herstellung von Formkörpern 8 aus einem hydraulisch abbindbaren Gemisch dargestellt. Das System 1 umfasst in diesem Ausführungsbeispiel mehrere Gitterstrukturen 4, welche von einer Positionierungseinheit 5 an einen Ort der Befüllung mit dem hydraulisch abbindbaren Gemisch angeordnet werden können. Die Positionierungseinheit 5 ist in diesem Ausführungsbeispiel als Lkw mit einem Kranaufbau ausgestaltet.
  • Das System 1 umfasst weiterhin eine Fördereinheit 2 zur Applikation des abbindbaren Gemisches. Die Fördereinheit 2 umfasst dabei einen Tank sowie einen Kranarm 7 zur Positionierung der Leitung 6. Dadurch kann das hydraulisch abbindbare Gemisch vom Tank über die Leitung 6 in die Gitterstrukturen 4 gefördert werden.
  • Das System 1 umfasst zudem eine Applikationseinheit 3 zur Anbringung von Spritzbeton. Die Applikationseinheit 3 ist in diesem Ausführungsbeispiel als kompakte mobile Einheit ausgebildet, welche durch einen Applikationstechniker bedient werden kann. Dabei kann der Applikationstechniker einen Spritzkopf der Applikationseinheit 3 auf eine gewünschte Stelle richten.
  • In diesem Ausführungsbeispiel werden mehrere Gitterstrukturen 4 am Ort der Befüllung mit dem hydraulisch abbindbaren Gemisch miteinander verbunden, befüllt und überspritzt. Dadurch kann ein beliebig grosser Formkörper 8 aufgebaut werden.
  • In den Fig. 2a bis 2c ist schematisch und beispielhaft ein Verfahren zur Herstellung von Formkörpern 8 aus einem hydraulisch abbindbaren Gemisch 9 dargestellt.
  • In Fig. 2a ist ersichtlich, dass zunächst eine Gitterstruktur 4 bereitgestellt wird. In dieser Figur ist zudem die Leitung 6 und ein Kranarm 7 zur Positionierung der Leitung 6 ersichtlich, welche dann für den Befüllungsvorgang der Gitterstruktur verwendet werden.
  • In Fig. 2b ist nun das Befüllen der Gitterstruktur 4 mit dem hydraulisch abbindbaren Gemisch 9 schematisch dargestellt. In diesem Ausführungsbeispiel wird die Leitung 6 so über der Gitterstruktur 4 positioniert, dass das hydraulisch abbindbare Gemisch 9 zwischen die Gittermatten der Gitterstruktur 4 eingeführt werden kann.
  • In Fig. 2c ist sodann schematisch und beispielhaft das Überspritzen der Aussenseiten der Gitterstruktur 4 mit einem Spritzbeton 10 dargestellt. Dabei wird der Spritzbeton 10 durch einen Applikationstechniker auf die Aussenseite der Gitterstruktur 4 angebracht, welche mit dem hydraulisch abbindbaren Gemisch 9 befüllt ist. Dadurch entsteht schliesslich der Formkörper 8.
  • Fig. 3a zeigt eine Anordnung mit einem Abschnitt 100 zur Beimischung des Zusatzmittels in das hydraulisch abbindbare Gemisch 9 in schematischer Darstellung. Im Abschnitt 100 ist ein strömungsbeeinflussendes Element 150 angeordnet, und ein Fluideinlass 140 befindet sich in der nähe dieses strömungsbeeinflussenden Elementes 150. Auf dieser Darstellung ist die Öffnung zur Eindüsung des Zusatzmittels auf dem Abschnitt 100 nicht sichtbar.
  • Am stromabwärtigen Ende 110 des Abschnittes 100 ist ein sich bezüglich dem freien Innenquerschnitt in Strömungsrichtung 133 konisch verjüngender Rohrabschnitt 200 angeschlossen. Der Rohrabschnitt 200 hat z.B. eine Länge von 1 m. Im Bereich seines stromaufwärtigen Endes entspricht der Innendurchmesser des Rohrabschnitts 200 dem Durchmesser 132 des Hohlraums 130 der Vorrichtung 100 von ca. 150 mm, während der Innendurchmesser des Rohrabschnitts im engsten Bereich bzw. im Bereich seines stromabwärtigen Endes ca. 100 mm beträgt.
  • Am stromaufwärtigen Ende 120 der Vorrichtung 100 ist des Weiteren ein zweiter Rohrabschnitt 300 angeschlossen, welcher sich entgegen der Strömungsrichtung 133 stufenartig verjüngt. Im Bereich seines mit der Vorrichtung 100 verbundenen Endes entspricht der Innendurchmesser des Rohrabschnitts 300 dem Durchmesser 132 des Hohlraums 130 der Vorrichtung 100 von ca. 150 mm, während der Innendurchmesser des Rohrabschnitts 300 im verjüngten Bereich bzw. im Bereich seines stromaufwärtigen Endes ca. 100 mm beträgt.
  • In Fig. 3b ist der Abschnitt 100 schematisch und beispielhaft dargestellt. In diesem Ausführungsbeispiel liegt der Abschnitt 100 in Form eines kreiszylindrischen Rohrabschnitts mit einem kreiszylindrischen Hohlraum 130 vor, durch welchen ein hydraulisch abbindbares Gemisch entlang einer Längssachse, welche der vorgesehenen Strömungsrichtung 133 entspricht, durchgeleitet werden kann. Am stromabwärtigen Ende 110 liegt ein erster ringförmiger Befestigungsflansch vor, während am stromaufwärtigen Ende 120 ein zweiter ringförmiger Befestigungsflansch vorliegt. Über die Flansche kann der Abschnitt 100 an weiteren rohrförmigen Elementen angeschlossen werden.
  • Von der inneren Wandung des Abschnittes 100 ragt eine dreieckförmige und gekrümmte Finne 150 als strömungsbeeinflussendes Element in den Hohlraum 130. An der stromabwärtigen Hinterkante 150c der Finne 150 ist eine in den Hohlraum 130 mündende Öffnung 160 zum Einleiten eines Zusatzmittels angeordnet.
  • Das Zusatzmittel kann über einen Fluideinlass 140 im Bereich der Finne 150 und einen durch die Finne 150 durchlaufenden Fluidkanal von aussen zur Öffnung 160 geleitet werden.
  • Bezugszeichenliste
  • 1
    System
    2
    Fördereinheit
    3
    Applikationseinheit
    4
    Gitterstruktur
    5
    Positionierungseinheit
    6
    Leitung
    7
    Kranarm
    8
    Formkörper
    9
    hydraulisch abbindbares Gemisch
    10
    Spritzbeton
    100
    Abschnitt der Leitung
    110
    stromabwärtiges Ende
    120
    stromaufwärtiges Ende
    130
    Hohlraum
    133
    Strömungsrichtung
    140
    Fluideinlass
    150
    strömungsbeeinflussendes Element
    150c
    stromabwärtige Hinterkante
    160
    Öffnung
    200
    stromabwärtiger Abschnitt
    300
    stromaufwärtiger Abschnitt

Claims (15)

  1. Verfahren zur Herstellung von Formkörpern (8) aus einem hydraulisch abbindbaren Gemisch (9), das Verfahren umfassend die Schritte:
    Bereitstellen zumindest einer Gitterstruktur (4);
    Befüllen der Gitterstruktur (4) mit einem hydraulisch abbindbaren Gemisch (9), welchem vor dem Befüllen ein Zusatzmittel beigemischt wird; und
    Überspritzen der Aussenseiten der Gitterstruktur (4) mit einem Spritzbeton (10).
  2. Verfahren nach Anspruch 1, wobei das Zusatzmittel einen Erstarrungsbeschleuniger umfasst, und/oder wobei das hydraulisch abbindbare Gemisch (9) eine Betonzusammensetzung oder eine Mörtelzusammensetzung ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei beim Befüllen das hydraulisch abbindbare Gemisch (9) durch eine Leitung (6) gefördert wird, wobei das Zusatzmittel auf einem Abschnitt (100) dieser Leitung dem hydraulisch abbindbaren Gemisch (9) beigemischt wird.
  4. Verfahren nach Anspruch 3, wobei dieser Abschnitt (100) einen rohrförmigen Hohlraum (130) zum Durchleiten des hydraulisch abbindbaren Gemisches (9) entlang einer vorgesehenen Flussrichtung (133) umfasst, wobei ein statisches strömungsbeeinflussendes Element (150) in den Hohlraum (130) hineinragt, an welchem eine in den Hohlraum (130) mündende Öffnung (160) zum Einleiten des Zusatzmittels vorliegt.
  5. Verfahren nach Anspruch 4, wobei auf diesem Abschnitt (100) wenigstens zwei, insbesondere wenigstens drei, besonders bevorzugt wenigstens vier, in longitudinaler Richtung des Hohlraums (130) voneinander beabstandete strömungsbeeinflussende Elemente (150) vorliegen, wobei bevorzugt die wenigstens zwei strömungsbeeinflussenden Elemente (150) aus verschiedenen radialen Richtungen in den Hohlraum (130) hineinragen.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Gitterstruktur (4) zwei miteinander verbundene Gittermatten umfasst.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei beim Bereitstellen der Gitterstruktur (4) mehrere vorgefertigte Gitterstrukturen (4) bereitgestellt werden, wobei das Verfahren einen zusätzlichen Schritt umfasst: Verbinden der mehreren Gitterstrukturen (4) untereinander; wobei die mehreren Gitterstrukturen (4) befüllt und überspritzt werden.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei beim Befüllen der Gitterstruktur (4) das hydraulisch abbindbare Gemisch (9) durch ein Gitter einer Gittermatte der Gitterstruktur (4) eingeführt wird.
  9. System (1) zur Herstellung von Formkörpern (8) aus einem hydraulisch abbindbaren Gemisch (9), das System (1) umfassend:
    zumindest eine Gitterstruktur (4);
    eine Fördereinheit (2) zur Applikation des hydraulisch abbindbaren Gemisches (9), welches ein Zusatzmittel enthält; und
    eine Applikationseinheit (3) zur Anbringung von Spritzbeton (10).
  10. System (1) nach Anspruch 9, wobei die Fördereinheit (2) eine Leitung (6) für das hydraulisch abbindbare Gemisch (9) umfasst, wobei das Zusatzmittel auf einem Abschnitt (100) dieser Leitung (6) dem hydraulisch abbindbaren Gemisch (9) beigemischt wird.
  11. System (1) nach Anspruch 10, wobei der Abschnitt (100) dieser Leitung (6) einen rohrförmigen Hohlraum (130) zum Durchleiten des hydraulisch abbindbaren Gemisches (9) entlang einer vorgesehenen Flussrichtung (133) umfasst, wobei ein statisches strömungsbeeinflussendes Element (150) in den Hohlraum (130) hineinragt, an welchem eine in den Hohlraum (130) mündende Öffnung (160) zum Einleiten des Zusatzmittels vorliegt.
  12. System (1) nach einem der Ansprüche 9 bis 11, wobei das System (1) weiterhin eine Positionierungseinheit (5) umfasst, welche die Gitterstruktur (4) an einem Befüllungsort anordnen kann, an welchem die Fördereinheit (2) das hydraulisch abbindbare Gemisch (9) in die Gitterstruktur (4) applizieren kann.
  13. System (1) nach Anspruch 12, wobei die Positionierungseinheit (5) einen Kran und optional eine Ladefläche zur Lagerung und/oder für einen Transport von Gitterstrukturen (4) umfasst, und wobei die Positionierungseinheit (5) insbesondere als Lkw ausgebildet ist.
  14. System (1) nach einem der Ansprüche 9 bis 13, wobei die Fördereinrichtung (2) einen Tank für das hydraulisch abbindbare Gemisch (9) und eine Leitung (6), insbesondere eine durch einen bewegbaren Arm (7) geführte Leitung (6), umfasst.
  15. System (1) nach einem der Ansprüche 9 bis 14, wobei die Applikationseinheit (3) eine mobile Pump- und Tankeinrichtung und/oder eine bewegbare Leitung umfasst.
EP20213585.1A 2020-12-11 2020-12-11 Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch Pending EP4011582A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20213585.1A EP4011582A1 (de) 2020-12-11 2020-12-11 Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20213585.1A EP4011582A1 (de) 2020-12-11 2020-12-11 Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch

Publications (1)

Publication Number Publication Date
EP4011582A1 true EP4011582A1 (de) 2022-06-15

Family

ID=73834388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20213585.1A Pending EP4011582A1 (de) 2020-12-11 2020-12-11 Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch

Country Status (1)

Country Link
EP (1) EP4011582A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT360737B (de) * 1979-05-03 1981-01-26 Ivar Wolff Ges M B H Dr Vorrichtung zum zumischen von zuschlagstoffen in einen materialstrom
FR2564875A1 (fr) * 1984-05-28 1985-11-29 Deschamps Rene Nouveau procede rapide de construction d'ouvrages en materiaux pompes, au moyen d'armatures multidimensionnelles permanentes, autocoffrantes et d'un ensemble echafaudant a differents usages
FR2637632A1 (fr) * 1988-10-10 1990-04-13 Sari Procede de construction in situ d'un element vertical tel qu'un mur, un voile, une cloison, un poteau ou analogue; materiau textile et dispositif de suspension pour la mise en oeuvre de ce procede; element vertical de construction susceptible d'etre realise par ce procede
EP3431172A1 (de) 2017-06-30 2019-01-23 Baumit Beteiligungen GmbH Düse für beton, mörtel od. dgl. sowie deren verwendung
US20190308342A1 (en) * 2017-01-15 2019-10-10 Michael George BUTLER Apparatuses and systems for and methods of generating and placing zero-slump-pumpable concrete
WO2019202156A1 (de) 2018-04-20 2019-10-24 Peri Gmbh Verfahren zur herstellung eines bauteils aus aushärtbarem material sowie entsprechendes bauteil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT360737B (de) * 1979-05-03 1981-01-26 Ivar Wolff Ges M B H Dr Vorrichtung zum zumischen von zuschlagstoffen in einen materialstrom
FR2564875A1 (fr) * 1984-05-28 1985-11-29 Deschamps Rene Nouveau procede rapide de construction d'ouvrages en materiaux pompes, au moyen d'armatures multidimensionnelles permanentes, autocoffrantes et d'un ensemble echafaudant a differents usages
FR2637632A1 (fr) * 1988-10-10 1990-04-13 Sari Procede de construction in situ d'un element vertical tel qu'un mur, un voile, une cloison, un poteau ou analogue; materiau textile et dispositif de suspension pour la mise en oeuvre de ce procede; element vertical de construction susceptible d'etre realise par ce procede
US20190308342A1 (en) * 2017-01-15 2019-10-10 Michael George BUTLER Apparatuses and systems for and methods of generating and placing zero-slump-pumpable concrete
EP3431172A1 (de) 2017-06-30 2019-01-23 Baumit Beteiligungen GmbH Düse für beton, mörtel od. dgl. sowie deren verwendung
WO2019202156A1 (de) 2018-04-20 2019-10-24 Peri Gmbh Verfahren zur herstellung eines bauteils aus aushärtbarem material sowie entsprechendes bauteil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORMAN HACK ET AL: "MESHMOULD: AN ON SITE,ROBOTICALLY FABRICATED ,FUNCTIONAL FORMWORK", CONFERENCE PAPER, 14 March 2017 (2017-03-14), XP055361089, Retrieved from the Internet <URL:https://www.researchgate.net/profile/Norman_Hack/publication/314952069_MESH_MOULD_AN_ON_SITE_ROBOTICALLY_FABRICATED_FUNCTIONAL_FORMWORK/links/58c7c9fc458515478dcf7f00/MESH-MOULD-AN-ON-SITE-ROBOTICALLY-FABRICATED-FUNCTIONAL-FORMWORK.pdf?origin=publication_detail> [retrieved on 20170403] *

Similar Documents

Publication Publication Date Title
EP3431172A1 (de) Düse für beton, mörtel od. dgl. sowie deren verwendung
CH633730A5 (de) Verfahren zur herstellung von durch fasern oder stifte verstaerkten bauelementen oder oberflaechenbeschichtungen und spruehvorrichtung zur durchfuehrung des verfahrens.
EP3781372B1 (de) Verfahren zur herstellung eines bauteils aus aushärtbarem material
DE102011102337A1 (de) Vorrichtung und Verfahren zum Herstellen von Bauteilen mit zumindest einer kontinuierlichen Eigenschaftsänderung
DE102013108836A1 (de) Ultrahochfester Beton und daraus hergestelltes Betonbauteil
EP4011582A1 (de) Herstellung von formkörpern aus einem hydraulisch abbindbaren gemisch
EP3705250B1 (de) Verfahren zum herstellen eines betonbauteils und betonteil-herstellvorrichtung
EP2699742B1 (de) Anordnung und verfahren zur herstellung von betonbauteilen
WO2007033989A1 (de) Mischeinrichtung sowie verfahren zur zugabe eines zusatzmittels zu einem pumpfähigen gemisch
CH656420A5 (de) Verfahren und vorrichtung zum aufbringen von moertel oder beton.
DE4329568C2 (de) Vorrichtung zur Förderung eines trockenen, streufähigen Baustoffes und Verfahren zur Anwendung dieser Vorrichtung im Lehmbau
EP3943689B1 (de) Siloboden mit geprägter bodenrinne
DE202013002771U1 (de) Modulare Betonfördervorrichtung
DE1683960C3 (de) Vorrichtung zum Herstellen und Aufbringen eines ein wärmehärtbares Kunstharz und einen mineralischen Füllstoff enthaltenden Mörtels sowie Verfahren zum Aufbringen des Mörtels auf eine Fläche
DE2758475A1 (de) Verfahren und vorrichtung zum herstellen von rohrfoermigen gegenstaenden aus spritzbeton mit einer gleichmaessig verteilten bewehrung und nach diesem verfahren hergestelltes produkt
AT396216B (de) Verfahren zum herstellen eines trennwand-elements fuer stallungen
AT523366B1 (de) Mischer einer Durchlaufmischanlage
AT525649B1 (de) Vorrichtung zum Ausbringen eines hydraulisch aushärtenden Baustoffes sowie dessen Verwendung
AT504803A1 (de) Anlage zur herstellung und verarbeitung von nassspritz-mischgut
EP4182064A1 (de) Vorrichtung und verfahren zur zugabe und einmischung eines zusatzmittels in ein hydraulisch abbindbares gemisch
DE10259961A1 (de) Vorgefertigtes Bauelement, insbesondere Decken- oder Wandbauelement aus einem ausgehärteten Material sowie Verfahren zur Herstellung eines solchen Bauelements
AT522502B1 (de) Verfahren zur Betoneinbringung bei einer horizontalen Gleitbauweise in Ortbetonbauweise, Vorrichtung zur Herstellung eines horizontalen Betonelements
WO2004078438A1 (de) Transportfahrzeug und verfahren zur anlieferung eines bindemittel/zuschlagsgemischs
DE10321428B4 (de) Vorrichtung und Verfahren zum Herstellen, Fördern und Auftragen einer Schüttung
AT513020B1 (de) Halbfertig-Bauteil zum Erstellen von Bauwerken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESH AG