EP4002955A1 - Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction - Google Patents
Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction Download PDFInfo
- Publication number
- EP4002955A1 EP4002955A1 EP20207654.3A EP20207654A EP4002955A1 EP 4002955 A1 EP4002955 A1 EP 4002955A1 EP 20207654 A EP20207654 A EP 20207654A EP 4002955 A1 EP4002955 A1 EP 4002955A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- subsequence
- duration
- power
- driving signal
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 165
- 230000006698 induction Effects 0.000 title claims abstract description 95
- 238000010411 cooking Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000004913 activation Effects 0.000 claims abstract description 32
- 230000009849 deactivation Effects 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims description 27
- 230000001965 increasing effect Effects 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 7
- 230000001939 inductive effect Effects 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 description 26
- 239000003990 capacitor Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
Definitions
- the invention relates to an induction heating unit for a cooking device, in particular for an induction cooking device, more particularly for an induction hob, to a corresponding induction cooking device, and to a method for operating an induction heating unit.
- the electric components in the induction heating unit are chosen to resonate at a frequency corresponding to high level of power.
- a pulsed power mode might be implemented with a period of order of ten of seconds in which the induction heating unit operates at a minimum continuous power for a part of the period as active part and stays off for the other part of the period as non-active part.
- the average power delivered to a cookware can be less than the minimum continuous heating power, but a possible disadvantage of this approach is that the cooking experience might be poor as food can become overcooked in the active part and undercooked in the non-active part.
- the invention relates in particular to an induction heating unit for a cooking device, in particular for an induction cooking device, more particularly for an induction hob, comprising
- low power can be delivered smoothly by an induction heating unit for a cooking device, in particular for an induction cooking device, more particularly for an induction hob.
- noise and/or thermal losses can be avoided or at least reduced by the repeated activation and deactivation of the resonant tank according to the invention.
- the heating power is generated corresponding or at least essentially equal to or in a predetermined relation to the or a requested power.
- the driving signal toggles and/or is configured to toggle, in particular in or during one, two, at least one, at least two or each subsequence(s), between at least one first driving state, in particular resulting in or effecting a partly or gradually closed state or in an at least essentially closed state of the switching element, and at least one second driving state, in particular resulting in or effecting an opened or in an at least essentially opened state of the switching element, preferably with a first, second and/or third drive frequency.
- the first driving state is determined by a first driving signal parameter, preferably by a first driving signal voltage or by a first driving signal current.
- the second driving state is determined by a second driving signal parameter, preferably by a second driving signal voltage or by a second driving signal current.
- the first driving state and/or the second driving state vary between the first, the second and the third subsequence.
- the first driving signal parameter and/or the second driving signal parameter vary between the first, the second and/or the third subsequence.
- first driving state and/or the second driving state of the third subsequence vary compared to the first driving states and/or the second driving states of the first subsequence and the second subsequence.
- first driving state and/or the second driving state of the first subsequence is/are at least essentially identical to the first driving state and/or the second driving state of the second subsequence.
- first driving signal parameter and/or the second driving signal parameter of the third subsequence vary compared to the first driving signal parameters and/or the second driving signal parameters of the first subsequence and the second subsequence.
- first driving signal parameter and/or the second driving signal parameter of the first subsequence is/are at least essentially identical to the first driving signal parameter and/or the second driving signal parameter of the second subsequence.
- the first driving signal voltage and/or the second driving signal voltage of the third subsequence is lower or higher than the first driving signal voltage and/or the second driving signal voltage of the first subsequence and/or the second subsequence.
- the first driving signal voltage of the third subsequence is or can be lower than the first driving signal voltage of the first subsequence and/or the first driving signal voltage of the second subsequence.
- the second driving signal voltage of the third subsequence is or can be the same voltage or at least essentially the same voltage as the second driving signal voltage of the first subsequence and/or the second driving signal voltage of the second subsequence.
- the first driving signal voltage and/or the second driving signal voltage are (or: correspond to) gate voltages of the switching element.
- the first driving signal voltage can be a voltage which closes the switching element, in particular drives it to a closed state
- the second driving signal voltage can be a voltage which opens the switching element or leaves it open, in particular drives it to an opened state.
- the switching element is or comprises a transistor, more in particular an insulated gate bipolar transistor, IGBT.
- the switching element is gradually closed by gradually, preferably linearly or at least essentially linearly, increasing the first driving signal voltage, preferably from a predetermined first voltage value to a predetermined second voltage value. More in particular, the switching element is or can be gradually closed by gradually increasing the first driving signal voltage over a predetermined number of pulses or periods of the first driving signal.
- the first subsequence duration and the second subsequence duration are selected such that a variation and/or the reduction of the heating power is in a predetermined range, in particular such that the variation and/or the reduction of the power in relation to the requested power is more than a predetermined minimum variation and/or reduction and less than a predetermined maximum variation and/or reduction.
- the cooking result can be improved, as the corresponding variation and/or reduction of the cooking temperature can be limited, in particular while still avoiding or at least reducing noise and/or thermal losses due to the repeated activation and deactivation of the resonant tank.
- the minimum variation and/or reduction of the power can be 3%, more in particular 5%.
- the maximum variation and/or reduction of the power can be 30%, more in particular 20%, more in particular 10%.
- the heating power is generated at least essentially corresponding to the requested power.
- the minimum reduction of the heating power can be 3%, corresponding to a power reduction of at least 30W, i. e. to a power of 970W or less, whereas the maximum reduction of the heating power can be 30%, corresponding to a power reduction of 300W or less, i. e. to a power of 700W or more. More in particular, for a power reduction between 3% and 30%, for an assumed requested and/or continuous power of 1000W, the reduction of the power will or can result in a power between 700W and 1000W.
- a subsequent sequence is a sequence which immediately follows a previous sequence, so that more in particular the first sequence is immediately followed by the second sequence and/or the second sequence is immediately followed by the third sequence and/or the third sequence is immediately followed by the first sequence.
- At least one resonant tank is supplied with power by a pulsed supply signal, in particular a pulsed DC supply signal, more in particular a pulsed DC bus supply signal,
- a pulsed DC supply signal comprises DC pulses, wherein a DC pulse is a rectified half-period of an external AC supply signal, in particular of an AC supply signal with in input voltage of 110 to 240 V and a frequency of 50 to 60 Hz.
- the rectified AC supply signal is smoothened by a filter unit, in particular a DC capacitor.
- a DC pulse may have a pulse length between 5ms and 20 ms, in particular between 8ms and 10ms.
- the heating power is an effective heating power and/or an average heating power, in particular averaged over one, at least one, two, at least two, ten or at least ten periods of an AC supply signal and/or averaged over a period of 20ms, at least 20ms, 40ms, at least 40ms, 100ms, at least 100ms, 200ms or at least 200ms, more in particular dependent on the AC supply signal frequency.
- the heating power is or can be an effective heating power and/or an average heating power, in particular averaged over a period of 1 to 10 DC pulses.
- 1 to 10 more in particular, 2 to 9, DC pulses over a period of 10 DC pulses contribute or can contribute to the average of power.
- one or more (1 to 10) DC pulses over a period of 10 DC pulses contribute or at least can contribute to the average of power, in particular to the effective heating power and/or the average heating power.
- the DC pulse duration depends on the AC voltage frequency.
- the AC voltage frequency is 50Hz or 60Hz.
- the period is 20ms and a DC pulse duration is 10ms, so that when the heating power is an effective heating power and/or an average heating power averaged over five periods, it is averaged over 100ms.
- the period is about 16.6ms and a DC pulse duration is about 8.3ms, so that when the heating power is an effective heating power and/or an average heating power averaged over five periods, it is averaged over about 83ms.
- the actual heating power or instantaneous heating power can vary, for example due to the oscillation of the AC supply signal.
- the minimum duration for measuring an effective heating power can especially be at least one period or at least two periods, in particular 1 to 10 periods of the AC supply signal.
- the heating power is in particular an electrical power consumed by the induction heating unit and/or at least essentially transferred to a cooking vessel.
- the heating power can vary in a predetermined range between a predetermined minimum variation and a predetermined maximum variation.
- the actual or instantaneous heating power varies between a predetermined power, in particular a minimum continuous heating power during the first subsequence and at least essentially a zero power during the second subsequence as a power difference.
- the minimum continuous heating power is the minimum continuous heating power where the losses, in particular thermal losses in the induction heating unit, more in particular in the switching element, are below a predetermined value, in particular below 20%.
- the switching element is or at least can be a switching unit.
- the resonant tank in particular has a resonance frequency which is determined by the capacitive element and the inductive element which is also influenced by the coupling with a cooking vessel arranged on the induction heating unit.
- the first subsequence with first alternating signals starts at a first starting time of a first DC pulse and ends at a second starting time of an, in particular subsequent, second DC pulse, with a first subsequence duration, a first drive frequency, a first duty cycle and/or a first Ton time.
- Ton time can also be expressed as an ON time.
- a Ton time is preferably the pulse duration of a signal or the duration in which a signal is active.
- the switching element is closed and/or in a closed state during the ON time or Ton time.
- the switching element is opened and/or in an opened state during the OFF time or Toff time.
- a Toff time can also be expressed as an OFF time.
- a Toff time is preferably the duration between two pulses of a signal or the duration in which a signal is inactive.
- the first subsequence duration is determined by or at least essentially equal to the duration of the first DC pulse or determined by or at least essentially equal to the added duration of multiple DC pulses.
- the second subsequence with non-alternating signals starts at the second starting time of the/a second DC pulse and ends at an activation start time, at a third subsequence duration before a third starting time of a third DC pulse, in particular at a third subsequence duration between the second starting time of a second DC pulse and the third starting time of the DC third pulse, with a second subsequence duration, a second drive frequency of at least essentially zero, a second duty cycle of at least essentially zero and/or a second Ton time of at least essentially zero.
- the second subsequence duration is preferably determined by the duration of the second DC pulse or equal to the added duration of multiple DC pulses, minus the third subsequence duration.
- the third subsequence with second alternating signals starts at an activation start time, a third subsequence duration before the third starting time of a third DC pulse, between a second starting time of a second DC pulse and a third starting time of the DC third pulse, and ends at the starting time of the third DC pulse, with a third drive frequency as well as duty cycles and/or a Ton time increasing from the third duty cycle or third Ton time to the first duty cycle or first Ton time.
- the third subsequence duration is less than 30%, in particular less than 20%, more in particular equal to 10% or less than 10% of the DC pulse duration.
- the first alternating signal is a pulse wave and/or comprises a, in particular constant, first drive pulse length, in particular Ton time and/or Toff time and/or a first duty cycle and/or first frequency, wherein the first alternating signal generates the predetermined power, that could be in particular the minimum continuous heating power by means of the resonant tank.
- the first duty cycle causes an activation of the resonant tank with a predetermined heating power, for example a minimum continuous heating power, by generating an oscillation of the resonant tank.
- a predetermined heating power for example a minimum continuous heating power
- the switching losses are increased, as the switching is performed in the so called hard switching region, wherein an at least relatively large voltage is switched together with at least relatively large current.
- the duty cycle is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30%.
- the pulse length is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30% of the wavelength at the resonance frequency.
- the switching element is in a closed state only between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30% of the wavelength at the resonance frequency.
- the at least essentially non-alternating signal with a second pulse length, a second duty cycle and a second frequency at least essentially deactivates or shuts off the resonant tank.
- the non-alternating signal is or can be a constant signal, which is more in particular constantly zero.
- the second duty cycle causes a deactivation of the resonant tank, as due to the zero or at least short opening time based on the zero or at least short pulse length, a charging or discharging of the capacitive element and hence an activation of the resonant tank does not occur.
- the second duty cycle is or can be between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100.
- the switching element is in a closed state only between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100 of each switching period.
- the pulse length is between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100 of the wavelength at the resonance frequency.
- the switching element is in a closed state only between 1/1000 and 1/10, more in particular between 1/1000 and 1/100, more in particular between 2/1000 and 20/1000 of the wavelength at the resonance frequency.
- the period or wavelength of the driving signal is or can be 50ns.
- the pulse length and/or the duration wherein the switching element is in a closed state, in particular during the second duty cycle is or can be between 0ns and 5ns.
- the switching element is in an opened state between 45ns and 50ns.
- the switching element is or can be not driven into the closed state at all during the second duty cycle.
- the wavelength at the resonance frequency is the inverse value of the resonance frequency.
- the second alternating signal comprises increasing third drive pulse lengths, in particular increasing third Ton times, increasing third duty cycles and/or an, in particular at least essentially constant, third drive frequency and/or generates a heating power starting from less than to at least essentially equal to the minimum continuous power in the resonant tank.
- the third drive pulse lengths and/or third duty cycles and/or an Ton times are in particular increasing linearly and/or stepwise from a first third drive pulse length and/or a first third duty cycle and/or a first third drive Ton time on the one hand to a second third drive pulse length and/or a second third duty cycle and/or a second third drive Ton time.
- the second third duty cycle or second third Ton time is at least essentially identical to the first duty cycle or the first Ton time.
- the first and/or third drive frequency is/are or can be different from the resonance frequency of the resonant tank.
- the drive frequency depends on the power request and/or on the requested power. More in particular, at minimum continuous power or at minimum not pulsed power, the drive frequency is not at resonance and/or the drive frequency is not the resonance frequency of the resonant tank.
- a resonance detection means detects an oscillation duration of the resonance tank, in particular by determining a dropping of the voltage in the resonance tank.
- a Toff time of a signal is obtained by the difference of the oscillation duration or oscillation period and/or of the inverse of the drive frequency of the signal on the one hand and of the Ton time of the signal on the other hand.
- the first duty cycle and/or the first Ton time generate the minimum continuous heating power, wherein the losses, in particular thermal losses in the induction heating unit, more in particular in the switching element, are below a predetermined value, in particular below 20%.
- first drive frequency and/or the second third drive frequency at least essentially are the same during the first subsequence and/or at the end of the third subsequence.
- the third duty cycles and the third Ton times generate a heating power starting from smaller than to at least essentially equal to the minimum continuous heating power, in particular from less than 1/10 of the minimum possible heating power to at least essentially the minimum possible heating power.
- the third duty cycles cause a gentle activation of the resonant tank with starting from less than to equal to the minimum continuous drive pulse length, by generating an oscillation of the resonant tank.
- the first duty cycle is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 35%.
- the third duty cycles are increasing from at least 1% to below 50%, more in particular from 2% to below 40%, more in particular from 3% to below 35%.
- the third drive pulse lengths increase stepwise within the third subsequence duration as predetermined switch-on time from the first third drive pulse length as start fraction of the minimum drive pulse length to the first drive pulse length as minimum drive pulse length.
- the third drive pulse lengths might increase from 1 ⁇ s to 11 ⁇ s by 0.5 ⁇ s every 100 ⁇ s, so that, after 2ms, a minimum continuous drive pulse length is obtained.
- the switching element is preferably in a closed state from below 10% to 100% of the minimum pulse length.
- the third drive pulse lengths increase from at least 9% to 100% of the minimum pulse length.
- the switching element is in a closed state from starting form at least 9% to 100% of the minimum pulse length.
- a DC pulse detection means detects the minimum of the DC pulses and hence a DC pulse duration.
- the activation start time is a switch-on time start time for the third duty cycles which is determined based on the end of the previous DC pulse and the difference of the DC pulse duration and the third subsequence duration as switch-on time or activation time.
- a sequence duration detection means detects a sequence duration as a number of sequence DC pulses by stepwise increasing a number of DC pulses until the variation of the heating power during a sequence is in the predetermined range.
- a sequence duration setting means sets a sequence duration such that the variation of the heating power is in the predetermined range.
- the number of DC pulses in a sequence determines the sequence duration, wherein the number of DC pulses in the first subsequence determines the first subsequence duration, wherein the number of DC pulses in the second subsequence determines the second subsequence duration.
- the first subsequence duration and the second subsequence duration are determined such that a required power is obtained as heating power.
- the number of DC pulses in the first subsequence and the number of DC pulses in the second subsequence are determined such that a required power is obtained.
- the number of DC pulses in the first subsequence is obtained by multiplying the number of DC pulses in the sequence with the quotient of the requested power and the minimum continuous power with, and, in particular, rounding up or down the result.
- the heating unit comprises a power driving control unit for determining the ratio between the first and the second subsequence duration and/or for determining the first and the second subsequence duration determined based on a requested power level.
- the predetermined power is the minimum continuous power and the requested power is lower than the predetermined power.
- the minimum continuous power is or can be the minimum power, preferably in continuous operation, for which the switching losses for generating the heating power and/or the thermal losses for generating the heating power do not exceed a predetermined value.
- the switching element is a quasi-resonant switching element.
- the resonant tank is in particular a quasi-resonant oscillation circuit or quasi-resonant tank.
- a quasi-resonant oscillation circuit is in particular an oscillation circuit wherein the oscillation circuit can, for excitation, only be switchably connected to one of the voltage nodes.
- the oscillation circuit can, for excitation, only be switchably connected to one of the voltage nodes.
- the resonant tank comprises or can comprise a capacitive and an inductive element, in particular for oscillating the resonant tank.
- the resonant tank is switched off, if the pulse length is much smaller than the resonance pulse length, in particular if it is smaller than 1/100 of the resonance pulse length.
- the invention also relates to an induction heating device, comprising
- the invention also relates to method for operating an induction heating unit, in particular according to the invention and/or in at least one operating mode, the method comprising
- the method for operating an induction heating unit further comprises by a power driving control unit, determining the ratio between the first and the second duration and/or determining the first and the second duration determined based on a requested power level, wherein in particular the predetermined power is the minimum continuous power and the requested power is lower than the predetermined power (PM).
- a power driving control unit determining the ratio between the first and the second duration and/or determining the first and the second duration determined based on a requested power level, wherein in particular the predetermined power is the minimum continuous power and the requested power is lower than the predetermined power (PM).
- FIG. 1 shows an induction heating unit 1 according to an embodiment of the present invention.
- the induction heating unit 1 comprises a resonant tank 30 with an induction heating element 32, 33.
- the induction heating unit 1 further comprises a power requesting unit 60 for requesting a power PR of the induction heating element 32.
- the induction heating unit 1 further comprises a driving unit 52 for driving the resonant tank 30, by oscillating the resonant tank 30 by means of a switching element 35, by a driving signal comprising a series of subsequent sequences for generating a heating power PH, in particular in at least one operating mode.
- Each sequence comprises
- the heating power PH is generated corresponding to the requested power PR.
- the driving signal 38 toggles between at least one first driving state resulting in an closed state or gradually closed state of the switching element and at least one second driving state resulting in an opened state of the switching element.
- the first driving state is determined by a first driving signal parameter, preferably by a first driving signal voltage or by a first driving signal current.
- the second driving state is determined by a second driving signal parameter, preferably by a second driving signal voltage or by a second driving signal current.
- the first driving state and/or the second driving state vary between the first, the second and the third subsequence.
- the first driving state and/or the second driving state of the third subsequence vary compared to the first driving states and/or the second driving states of the first subsequence and/or the second subsequence.
- the first driving signal parameter and/or the second driving signal parameter of the third subsequence vary compared to the first driving signal parameters and/or the second driving signal parameters of the first subsequence and/or the second subsequence.
- the first driving signal voltage and/or the second driving signal voltage of the third subsequence is lower or higher than the first driving signal voltage and/or the second driving signal voltage of the first subsequence and the second subsequence.
- the first driving signal voltage of the third subsequence is lower than the first driving signal voltage of the first subsequence and of the second subsequence.
- the first driving signal voltage and the second driving signal voltage are (or: correspond to) gate voltages of the switching element.
- the switching element is or comprises a transistor, in particular an insulated gate bipolar transistor, IGBT.
- the switching element is or can be gradually closed by gradually, preferably linearly or at least essentially linearly, increasing the first driving signal voltage, preferably from a predetermined first voltage value to a predetermined second voltage value.
- a first subsequence duration D1 and a second subsequence duration D2 are selected such that a variation of the heating power PH is in a predetermined range.
- the variation of the power PH in relation to the requested power PR is more than a predetermined minimum variation and less than a predetermined maximum variation.
- the minimum variation is, in an embodiment, 3%, in particular 5%.
- the maximum variation is, in an embodiment, 30%, in particular 20%, more in particular 10%.
- the minimum reduction of the heating power can be 3%, corresponding to a power reduction of at least 30W, i. e. to a power of 970W or less, whereas the maximum reduction of the heating power can be 30%, corresponding to a power reduction of 300W or less, i. e. to a power of 700W or more.
- the reduction of the power will or can result in a power value between 700W and 1000W.
- a subsequent sequence is a sequence which immediately follows a previous sequence.
- the first sequence is immediately followed by the second sequence
- the second sequence is immediately followed by the third sequence
- the third sequence is immediately followed by the first sequence.
- the resonant tank 30 is supplied with power by a pulsed supply signal, in particular a pulsed DC supply signal, more in particular a pulsed DC bus supply signal 21, 22.
- a pulsed DC supply signal comprises DC pulses, wherein a DC pulse is a rectified half-period of an external AC supply signal, in particular of an AC supply signal with in input voltage of 110 to 240 V and a frequency of 50 to 60 Hz, wherein in particular the rectified AC supply signal is smoothened by a filter unit, in particular a DC capacitor.
- the heating power PH is an effective heating power and/or an average heating power, in particular averaged over one, at least one, two, at least two, ten or at least ten periods of an AC supply signal and/or averaged over a period of 20ms, at least 20ms, 40ms, at least 40ms, 100ms, at least 100ms, 200ms or at least 200ms, more in particular dependent on the AC supply signal frequency.
- the heating power is or can be an effective heating power and/or an average heating power, in particular averaged over a period of 1 to 10 DC pulses.
- 1 to 10 more in particular, 2 to 9, DC pulses over a period of 10 DC pulses contribute or can contribute to the average of power.
- one or more (1 to 10) DC pulses over a period of 10 DC pulses contribute or at least can contribute to the average of power, in particular to the effective heating power and/or the average heating power.
- the DC pulse duration depends on the AC voltage frequency of the AC supply signal.
- the AC voltage frequency is 50Hz or 60Hz.
- the period is 20ms and a DC pulse duration is 10ms, so that when the heating power is an effective heating power and/or an average heating power averaged over five periods, it is averaged over 100ms.
- the period is about 16.6ms and a DC pulse duration is about 8.3ms, so that when the heating power is an effective heating power and/or an average heating power averaged over five periods, it is averaged over about 83ms.
- the actual heating power or instantaneous heating power varies, for example due to the oscillation of the AC supply signal.
- the minimum duration for measuring an effective heating power is at least one period or at least two periods of the AC supply signal.
- the heating power PH is an electrical power consumed by the induction heating unit and/or at least essentially transferred to a cooking vessel.
- the heating power varies in a predetermined range between a predetermined minimum variation and a predetermined maximum variation.
- the actual or instantaneous heating power varies between a predetermined power, in particular a minimum continuous heating power PM during the first subsequence and at least essentially a zero power during the second subsequence by a power difference.
- the minimum continuous heating power is the minimum continuous heating power where the losses, in particular thermal losses in the induction heating unit, more in particular in the switching element, are below a predetermined value, in particular below 20%.
- the resonant tank has a resonance frequency which is determined by the capacitive element and the inductive element which is also influenced by the coupling with a cooking vessel arranged on the induction heating unit.
- the first subsequence S1 with first alternating signals starts at a first starting time T1 of a first DC pulse P1 and ends at a second starting time T2 of an, in particular subsequent, second DC pulse P2, with a first subsequence duration D1, a first drive frequency, a first duty cycle C1 and/or a first Ton time.
- the first subsequence duration D1 is determined by the duration of the first DC pulse P1 or determined by the added duration of multiple DC pulses.
- the second subsequence S2 with non-alternating signals starts at the second starting time T2 of the second DC pulse P2 and ends at an activation start time T2a, at a third subsequence duration D3 before a third starting time T3 of the third DC pulse P3, in particular at a third subsequence duration D3 between the second starting time T2 of a second DC pulse P2 and the third starting time T3 of the DC third pulse P3.
- the second subsequence S2 has a second subsequence duration D2, a second drive frequency of at least essentially zero, a second duty cycle of at least essentially zero C2 and a first Ton time of at least essentially zero.
- the second subsequence duration D2 is determined by the duration of the second DC pulse P2 or equal to the added duration of multiple DC pulses, minus the third subsequence duration D3.
- the third subsequence S3 with second alternating signals starts at an activation start time T2a, a third subsequence duration D3 before the third starting time T3 of a third DC pulse P3, between a second starting time T2 of a second DC pulse P2 and a third starting time T3 of the DC third pulse P3, and ends at the starting time T3 of the third DC pulse P3, with a third drive frequency as well as duty cycles and/or a Ton time increasing from the second duty cycle or second Ton time to the third duty cycle C3 or third Ton time.
- the third subsequence duration D3 is less than 30%, in particular less than 20%, more in particular equal to 10% or less than 10% of the DC pulse duration.
- the first alternating signal C1 is a pulse wave and/or comprises a, in particular constant, first drive pulse length, in particular Ton time and/or Toff time and/or a first duty cycle and/or first frequency.
- the first alternating signal generates the predetermined power, in particular the minimum continuous heating power by means of the resonant tank 30.
- the first duty cycle C1 causes an activation of the resonant tank 30 with a predetermined minimum continuous heating power PM, by generating an oscillation of the resonant tank 30.
- the switching losses are increased, as the switching is performed in the so called hard switching region, wherein an at least relatively large voltage is switched together with at least relatively large current.
- the first duty cycle is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30%.
- the first pulse length is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30% of the wavelength 2*pi*sqrt(L*C) at the resonance frequency 1/(2*pi*sqrt(L*C)).
- the switching element 35 is in a closed state only between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 30% of the wavelength 2*pi*sqrt(L*C) at the resonance frequency 1/(2*pi*sqrt(L*C)).
- the at least essentially non-alternating signal C2 with a second pulse length, a second duty cycle and a second frequency at least essentially deactivates or shuts off the resonant tank.
- the non-alternating signal C2 is a constant signal, which is more in particular constantly zero.
- the second duty cycle C2 causes a deactivation of the resonant tank 30, as due to the zero or at least short opening time based on the zero or at least short pulse length, a charging for a series resonant tank or discharging for a parallel resonant tank of the capacitive element and hence an activation of the resonant tank does not occur.
- the second duty cycle is between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100.
- the switching element 35 is in a closed state only between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100 of each switching period.
- the pulse length is between 0 and 1/10, more in particular between 0 and 1/30, more in particular between 0 and 1/100 of the wavelength pi*sqrt(L*C) at the resonance frequency pi*sqrt(L*C).
- the switching element 35 is in a closed state only between 1/1000 and 1/10, more in particular between 1/1000 and 1/100, more in particular between 2/1000 and 20/1000 of the wavelength 2*pi*sqrt(L*C) at the resonance frequency 1/(2*pi*sqrt(L*C)).
- the wavelength at the resonance frequency is the inverse value of the resonance frequency.
- the second alternating signal C3 comprises increasing third drive pulse lengths, in particular increasing third Ton times, increasing third duty cycles and/or an, in particular at least essentially constant, third drive frequency.
- the second alternating signal C3 generates a heating power starting from less than to at least essentially equal to the minimum continuous power in the resonant tank 30.
- the third drive pulse lengths and/or third duty cycles and/or a Ton times are in particular increasing linearly and/or stepwise from a first third drive pulse length, a first third duty cycle and a first third drive Ton time on the one hand to a second third drive pulse length, a second third duty cycle and a second third drive Ton time.
- the second third duty cycle C2 or second third Ton time is at least essentially identical to the first duty cycle C1 or the first Ton time.
- the first and third drive frequency are at least essentially the resonance frequency of the resonant tank.
- a resonance detection means detects an oscillation duration of the resonance tank, in particular by determining a dropping of the voltage in the resonance tank.
- a Toff time is obtained by the difference of oscillation duration and/or the inverse of the drive frequency and the Ton time.
- the first duty cycle C1 and the first Ton time generate the minimum continuous heating power, wherein the losses, in particular thermal losses in the induction heating unit, more in particular in the switching element, are below a predetermined value, in particular below 20%.
- the first drive frequency and the second third drive frequency at least essentially are the same during the first subsequence and at the end of the third subsequence.
- the third duty cycles C3 and the third Ton times generate a heating power starting from smaller than to at least essentially equal to the minimum continuous heating power, in particular from less than 1/10 of the minimum possible heating power to at least essentially the minimum possible heating power.
- the third duty cycles C3 cause a gentle activation of the resonant tank 30 with starting from less than to equal to the minimum continuous drive pulse length PM, by generating an oscillation of the resonant tank 30.
- the first duty cycle C1 is between 15% and 50%, more in particular between 20% and 40%, more in particular between 25% and 35%.
- the third duty cycles C3 are increasing from at least 1% to below 50%, more in particular from 2% to below 40%, more in particular from 3% to below 35%.
- the third drive pulse lengths increase stepwise within the third subsequence duration D3 as predetermined switch-on time from the first third drive pulse length as start fraction of the minimum drive pulse length to the first drive pulse length as minimum drive pulse length.
- the third drive pulse lengths might increase from 1 ⁇ s to 11 ⁇ s by 0.5 ⁇ s every 100 ⁇ s, so that, after 2ms, a minimum continuous drive pulse length is obtained.
- the switching element 35 is in a closed state from below 10% to 100% of the minimum pulse length.
- the third drive pulse lengths increase from at least 9% to 100% of the minimum pulse length.
- the switching element 35 is in a closed state from starting form at least 9% to 100% of the minimum pulse length.
- a DC pulse detection means detects the minimum of the DC pulses and hence a DC pulse duration.
- the activation start time T2a is a switch-on time start time for the third duty cycles which is determined based on the end of the previous DC pulse and the difference of the DC pulse duration and the third subsequence duration D3 as switch-on time or activation time.
- a sequence duration detection means detects a sequence duration as a number of sequence DC pulses by stepwise increasing a number of DC pulses until the variation of the heating power during a sequence is in the predetermined range.
- a sequence duration setting means sets a sequence duration such that the variation and/or reduction of the heating power is in the predetermined range.
- a sequence duration of 5, 8 or 10 DC pulses may be required. This can also be evaluated stepwise, by stepwise increasing the number of DC pulses.
- the number of DC pulses in a sequence determines the sequence duration, wherein the number of DC pulses in the first subsequence determines the first subsequence duration, wherein the number of DC pulses in the second subsequence determines the second subsequence duration.
- the first subsequence duration and the second subsequence duration are determined such that a required power is obtained as heating power.
- the number of DC pulses in the first subsequence and the number of DC pulses in the second subsequence are determined such that a required power is obtained.
- the number of DC pulses in the first subsequence is obtained by multiplying the number of DC pulses in the sequence with the quotient of the requested power and the minimum continuous power with, and, in particular, rounding up or down the result.
- the heating unit 2 comprises a power driving control unit 51 for determining the ratio between the first and the second duration and/or for determining the first and the second duration determined based on a requested power level.
- the predetermined power PM is the minimum continuous power and the requested power PR is lower than the predetermined power PM.
- PM is the minimum continuous power.
- the switching element 35 is a quasi-resonant switching element.
- the resonant tank 30 comprises a capacitive element 31 and an inductive element 32.
- the resonant tank 30 is switched off, if the pulse length is much smaller than the resonance pulse length, in particular if it is smaller than 1/100 of the resonance pulse length.
- the induction heating device 1 comprises at least one, two, at least two, four, at least four, six or at least six induction heating units 2.
- the induction heating device 1 further comprises a rectifying means 10 for rectifying an external AC power supply signal into a pulsed bus DC supply signal comprising a series of DC pulses for supplying at least one, two, at least two, four, at least four, six or at least six induction heating units 2.
- the induction heating device 1 comprises a power level defining unit 60, in particular a user interface, for determining at least one requested power level of the induction heating device 1.
- the induction heating device 1 comprises at least one detecting unit for detecting starting times of the DC pulses.
- FIG. 2 and 3 show an induction cooking appliance 1, in particular domestic induction cooking appliance and/or induction hob, comprising one, at least one, two, at least two, four, at least four, six or at least six oscillation circuits.
- the induction cooking appliance 1 comprises a user interface 60 for requesting a power for the quasi-resonant oscillation circuit.
- the induction cooking appliance 1 comprises a voltage supply unit 10 for supplying voltage to the power supply connector of the oscillation circuits.
- the induction hob 1 comprises four oscillation circuits, which each comprise an inductor, as well as a user interface 60 for requesting power from each of the inductors.
- a domestic induction cooking appliance is in particular an induction cooking appliance which is specifically designed for use in household and/or at home. Such devices have considerably different requirements compared to professional cooking appliances, for example cost and/or usability and/or space requirements.
- a domestic induction cooking appliance is in particular not an induction cooking appliance which is specifically designed for professional use, for example in canteen kitchens, restaurants or in general for commercial cooking.
- the voltage supply unit 10 comprises a bridge rectifier and/or a bus capacitor 11.
- the voltage supply unit 10 is in particular, more in particular only, supplied with power by a one-phase power supply, which in particular means that the voltage supply unit 10 is supplied with power by a phase connector and neutral connector, which in particular supply power from an AC power supply with a frequency of about 50 to 60 Hz and a voltage of about 100 to 240 V.
- FIG 3 shows four oscillation units 2 according to the invention, wherein a first power supply 10 supplies power from a first voltage phase to two oscillation units 2 by means of a first DC bus.
- a second power supply 10 supplies power from a second voltage phase to two oscillation units 2 by means of a second DC bus.
- a first power supply 10 supplies power from a first voltage phase to at least two oscillation units 2, for example by means of a first DC bus.
- a second power supply 10 supplies power from a second voltage phase to at least two oscillation units 2, for example by means of a second DC bus.
- the switching element 35 is closed and current flows through it, accumulating power in the inductor 32.
- the voltage VCE across the switching element 35 is short-circuited to ground 22 so its value is 0.
- the switching element 35 is open so that current and voltage resonate in the resonant tank 30.
- the switching element 35 is or at least can be an IGBT (insulated gate bipolar transistor), and preferably the transistor 36 and the diode 37 are operated in parallel.
- IGBT insulated gate bipolar transistor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20207654.3A EP4002955B1 (fr) | 2020-11-13 | 2020-11-13 | Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20207654.3A EP4002955B1 (fr) | 2020-11-13 | 2020-11-13 | Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4002955A1 true EP4002955A1 (fr) | 2022-05-25 |
EP4002955B1 EP4002955B1 (fr) | 2023-09-06 |
Family
ID=73448992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20207654.3A Active EP4002955B1 (fr) | 2020-11-13 | 2020-11-13 | Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP4002955B1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1951003A1 (fr) * | 2007-01-23 | 2008-07-30 | Whirlpool Corporation | Procédé de commande d'induction d'une plaque de cuisson et d'induction d'une plaque de cuisson adaptée à un tel procédé |
EP2445306A2 (fr) * | 2010-10-21 | 2012-04-25 | FagorBrandt SAS | Procédé de commande en fonctionnement d'une table de cuisson à induction et table de cuisson à induction utilisant ce procédé |
EP3291643A1 (fr) * | 2016-09-01 | 2018-03-07 | Samsung Electronics Co., Ltd. | Appareil de cuisson et son procédé de commande |
-
2020
- 2020-11-13 EP EP20207654.3A patent/EP4002955B1/fr active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1951003A1 (fr) * | 2007-01-23 | 2008-07-30 | Whirlpool Corporation | Procédé de commande d'induction d'une plaque de cuisson et d'induction d'une plaque de cuisson adaptée à un tel procédé |
EP2445306A2 (fr) * | 2010-10-21 | 2012-04-25 | FagorBrandt SAS | Procédé de commande en fonctionnement d'une table de cuisson à induction et table de cuisson à induction utilisant ce procédé |
EP3291643A1 (fr) * | 2016-09-01 | 2018-03-07 | Samsung Electronics Co., Ltd. | Appareil de cuisson et son procédé de commande |
Non-Patent Citations (1)
Title |
---|
IZAKI K ET AL: "NEW CONSTANT-FREQUENCY VARIABLE POWERED QUASIRESONANT INVERTER TOPOLOGY USING SOFT-SWITCHED TYPE IGBTS FOR INDUCTION-HEATED COOKING APPLIANCE WITH ACTIVE POWER FILTER", EPE '95: 6TH. EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS. SEVILLA, SEPT. 19 - 21, 1995; [EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS], BRUSSELS, EPE ASSOCIATION, B, vol. 2, 19 September 1995 (1995-09-19), pages 2.129 - 2.134, XP000537734 * |
Also Published As
Publication number | Publication date |
---|---|
EP4002955B1 (fr) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103931272B (zh) | 感应加热装置 | |
CN101326856B (zh) | 感应加热装置及其相应操作和烹饪器具检测方法 | |
KR102031875B1 (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
WO2006135056A1 (fr) | Appareil de chauffage par induction | |
WO1997034446A1 (fr) | Onduleur a haute frequence et dispositif de cuisson l'utilisant | |
US11064573B2 (en) | Determining resonant frequency for quasi-resonant induction cooking devices | |
US20190261466A1 (en) | Domestic appliance | |
EP4002955B1 (fr) | Unité de chauffage par induction, dispositif de cuisson par induction et procédé de fonctionnement d'une unité de chauffage par induction | |
CN110505726B (zh) | 磁控管驱动电源及其控制方法和微波烹饪设备 | |
CN110324921B (zh) | 感应加热装置及其驱动控制方法 | |
JP4383942B2 (ja) | 誘導加熱調理器 | |
KR102175634B1 (ko) | 동작 안정성을 향상한 조리 기기 및 그 동작방법 | |
JP4752159B2 (ja) | 高周波電源装置 | |
CN112888100B (zh) | 半桥电磁器具的电磁加热控制方法和半桥电磁器具 | |
KR20200045796A (ko) | 안정성이 강화된 전자 조리 기기 | |
JPH02270293A (ja) | 誘導加熱調理器 | |
EP4240106A1 (fr) | Procédé de commande d'un convertisseur quasi résonant et plaque de cuisson à induction associée | |
EP4240107A1 (fr) | Procédé de commande d'un convertisseur de commutation et plaque de cuisson à induction associée | |
CN112888099B (zh) | 半桥电磁器具的igbt控制方法和半桥电磁加热器具 | |
JP2004171934A (ja) | 誘導加熱装置 | |
CN115278961A (zh) | 加热控制方法、装置和电磁加热烹饪器具 | |
KR101757976B1 (ko) | 전자 유도 가열 조리기 및 이의 구동 방법 | |
CN115278960A (zh) | 加热控制方法、装置和电磁加热烹饪器具 | |
CN115278964A (zh) | 加热控制方法、装置和电磁加热烹饪器具 | |
KR880001980Y1 (ko) | 100v/200v 겸용 전자 조리기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221125 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230412 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020017137 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230901 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231206 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231130 Year of fee payment: 4 Ref country code: DE Payment date: 20231127 Year of fee payment: 4 Ref country code: FR Payment date: 20231123 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1610264 Country of ref document: AT Kind code of ref document: T Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240106 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020017137 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
26N | No opposition filed |
Effective date: 20240607 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |