EP3985308B1 - Amplificateur de flamme destiné à la surveillance de flamme, ainsi que procédé associé - Google Patents

Amplificateur de flamme destiné à la surveillance de flamme, ainsi que procédé associé Download PDF

Info

Publication number
EP3985308B1
EP3985308B1 EP21195889.7A EP21195889A EP3985308B1 EP 3985308 B1 EP3985308 B1 EP 3985308B1 EP 21195889 A EP21195889 A EP 21195889A EP 3985308 B1 EP3985308 B1 EP 3985308B1
Authority
EP
European Patent Office
Prior art keywords
flame
signal
ionization voltage
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21195889.7A
Other languages
German (de)
English (en)
Other versions
EP3985308A1 (fr
Inventor
Volker Kleine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Landshut GmbH
Original Assignee
Ebm Papst Landshut GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Landshut GmbH filed Critical Ebm Papst Landshut GmbH
Publication of EP3985308A1 publication Critical patent/EP3985308A1/fr
Application granted granted Critical
Publication of EP3985308B1 publication Critical patent/EP3985308B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/12Integration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/06Flame sensors with periodical shutters; Modulation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/06Fail safe for flame failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/12Fail safe for ignition failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices

Definitions

  • the invention relates to a flame amplifier for flame monitoring in or on a burner and an associated method for flame monitoring of a flame in or on the burner.
  • Such devices or such flame amplifiers often use the rectifying effect of a flame to detect the presence or a state of combustion.
  • An AC voltage with the frequency of the mains voltage is usually used for this purpose via a flame amplifier to an electrode in contact with the flame.
  • a direct current flows through the flame, which is measured by the flame amplifier and is called the ionization current or flame current.
  • Such a flame amplifier is designed in such a way that only the direct current component is evaluated, a possible alternating current component, e.g. caused by contact resistance (moisture or soot), is filtered out.
  • a control unit evaluates the signal from the flame amplifier to monitor the burner flame or to control the quality of combustion.
  • mixture controls based on this so-called ionization principle are known on premixing gas burners. This exploits the effect that the ionization or flame current reaches its maximum when combustion is complete and the level of this signal can thus be used to record the quality of combustion.
  • Flame amplifiers can therefore not only detect the state of the flame as burning or extinguished, but also determine the quality of the combustion based on the level of the flame current.
  • flame amplifiers which obtain the supply voltage for an ionization flame amplifier from the mains voltage and correspondingly provide an ionization voltage as an alternating voltage with the frequency of the mains voltage. Since the flame acts like a rectifier, there is initially a mixed voltage or mixed current, from which only the direct current component can be taken into account.
  • the low-pass filters consist of a combination of an electrical one capacitor and a series resistor.
  • Such a flame arrestor or flame enhancer is known through scripture EP 2 154 430 A1 described.
  • the flame signal is amplified and smoothed as a low-pass filter using a resistor-capacitor combination. This smoothed signal is fed to evaluation electronics that use the level of this signal to evaluate the quality of the flame.
  • these simple low-pass filters have the disadvantage that the resistance and the capacitor of the low-pass filter must be dimensioned accordingly large in order to keep the residual ripple on the output side of the filtered signal as low as possible at the existing mains frequency, which means that the low-pass filters have a response time that depends on the depends on the level of the signal.
  • these low-pass filters must be dimensioned in such a way that they switch off sufficiently quickly if there is a maximum signal (flame current or the corresponding flame signal) and the lowest frequency (mains frequency).
  • the invention is therefore based on the object of overcoming the aforementioned disadvantages and providing a flame amplifier and an associated method for flame monitoring, which enables an almost constant response time regardless of the level of the flame current and minimizes disruptions caused by incorrect detection of a flame going out so that the flame amplifier or the method works reliably in a wide range of the flame current and the presence of the flame can be reliably detected within a specified reaction time.
  • a flame amplifier for flame monitoring in or on a burner is proposed, the flame amplifier also being able to be referred to as a flame monitor.
  • the burner is preferably a gas burner and the flame accordingly a gas flame, which has ionizing properties or properties that act as a rectifier.
  • the flame amplifier according to the invention has an ionization voltage generator for generating an alternating voltage as ionization voltage and an ionization electrode for applying the ionization voltage to a flame generated by or in the burner.
  • the flame which acts as a rectifier, uses the ionization voltage to generate a DC voltage as flame voltage, and a DC current flows across the flame as flame current.
  • the burner or a housing of the burner preferably serves as an opposite pole to the pole formed by the ionization electrode, so that the flame current, which can also be referred to as ionization current, flows through the flame between the ionization electrode and the burner or the housing of the burner flows.
  • the flame amplifier has a flame signal processor or a circuit arrangement for flame signal processor with a low-pass filter, which can also be referred to as a low-pass filter and correspondingly allows signal components of an input-side signal with frequencies below a predetermined limit frequency to pass approximately unattenuated.
  • a mixed voltage formed from the ionization voltage and the flame voltage and a mixed current with an alternating current component and a direct current component corresponding to the flame current are present on the input side of the low-pass filter. It is essential for the invention that the ionization voltage generator is designed to generate the ionization voltage as an AC voltage with a frequency of more than 60 Hz, ie with a frequency above and preferably significantly above the mains frequency.
  • the low-pass filter has a cut-off frequency corresponding to the frequency of the ionization voltage, so that the alternating current component of the mixed current or generally the alternating voltage and alternating current component of the signal applied to the low-pass filter on the input side is blocked and the low-pass filter has a time constant that corresponds to the frequency of the ionization voltage and consequently correspondingly dimensioned components, such as resistors and capacitors. From an unfiltered flame signal applied to the low-pass filter on the input side, the low-pass filter generates a flame signal that is filtered on the output side and continues to correspond to the flame current.
  • the inventive idea on which the described flame amplifier is based is that the low-pass filter through the frequency of the ionization voltage above the mains frequency, which is necessary to separate direct and alternating current and preferably consists of exactly one resistor and exactly one capacitor, is low-impedance or has a small resistance can be designed.
  • Such a low-impedance design limits the voltage at the low-pass filter capacitor to comparatively small values. If the flame fails, ie if the flame goes out, this small voltage or the correspondingly preferably small-sized capacitor can also be quickly discharged via a low-impedance input resistance of an amplifier that may be provided, so that the flame amplifier reacts more quickly overall to the flame failure.
  • the flame signal which corresponds to the flame current and corresponds to the DC component of the mixed current present at the low-pass filter or the output-side signal of the low-pass filter or allows conclusions to be drawn about it, with a sampling frequency and preferably corresponding to the frequency of the ionization voltage and thus with a can be sampled at a higher speed compared to sampling according to the mains voltage frequency, so that the flame signal on the output side of the low-pass filter and through the correspondingly dimensioned low-pass filter reacts quickly to a flame failure, so that this can be recorded and digitally evaluated with a very small time delay or essentially without a time delay. There is always a minimal time delay, which is, for example, in a maximum two-digit millisecond range.
  • a smoothing or filtering of the flame signal on the output side of the low-pass filter can be carried out digitally by evaluation electronics provided according to the invention and can therefore be parameterized in a targeted manner, for example via corresponding software of the evaluation electronics, and is therefore independent of the level of the flame signal.
  • the flame signal can be sampled in the evaluation electronics with a high sampling rate and preferably with the frequency of the ionization voltage. Due to the high scanning frequency, a large number of values can be generated in a short time, from which mean values can also be formed for smoothing the flame signal. The values or mean values can be observed due to the very fast reaction of the flame signal to the flame failure and due to the high sampling rate before extinguishing of the flame is recognized or reported, so that the error rate when recognizing an extinguished flame decreases.
  • mains hum coupled into the flame signal on a preferably high-impedance connected ionization line can be suppressed almost 100%.
  • a longer delay time can be used, for example by setting the software, than during burner operation, since the flame signal is often less stable directly after ignition and thus increasingly flickering of the flame signal.
  • the reaction time can also be increased to the maximum permitted value, which corresponds to reducing a delay time explained later, so that if the mean value recorded for evaluation falls below the switch-off threshold, the waiting time is shorter. before extinguishing of the flame is detected. This ensures trouble-free operation even with a comparatively small flame signal. If, for example, the flame signal is low or small due to low burner output, a short flickering caused by wind would immediately cause a lockout with conventional circuits. With the delay time implemented by the evaluation electronics, the evaluation electronics can wait during the permitted period of time defined by the delay time to see whether the flame signal has really gone out or is just flickering.
  • the evaluation electronics and/or the ionization voltage generator are/is designed to determine a mains frequency of a supply voltage supplying the ionization voltage generator and/or the evaluation electronics independently and preferably at regular intervals, so that based on this, parameters of the evaluation electronics and/or the ionization voltage generator can be adjusted if necessary, or the flame signal or scanned values of the flame signal can be corrected accordingly.
  • the state of the flame ie whether it is extinguished or burning, and the quality of the combustion can be determined and the state and the quality can be used to regulate the combustion and lockout when the flame goes out corresponding to a fault.
  • a level of the flame current or the flame signal corresponding thereto can allow conclusions to be drawn about the quality of the combustion, since the flame signal or the flame current reaches its maximum when combustion is complete.
  • the flame amplifier has evaluation electronics which are connected to an output of the low-pass filter in terms of signals.
  • the evaluation electronics are designed to evaluate the flame signal corresponding to the flame current and to determine a state of the flame, at least whether the flame is burning or has gone out, and optionally a combustion quality.
  • the evaluation is preferably based on the already mentioned scanning of the flame signal with a frequency preferably corresponding to the frequency of the ionization voltage and the subsequent further processing of the values recorded during the scanning.
  • the electronic evaluation system is preferably designed to sample the flame signal according to the frequency of the ionization voltage and to record values of the flame signal that follow each other over time to determine the flame current from the values that follow one another in time, and preferably to determine mean values and/or a smoothed progression of the flame current from two values that follow one another in time.
  • a mean value can also be determined from three or more values detected by scanning the flame signal, which can be set, for example, by software in the evaluation unit.
  • the rapid reaction of the flame signal on the output side of the low-pass filter to the actual state of the flame makes it possible to observe the flame signal for a longer period of time before it must be assumed that the flame has gone out within a predetermined time.
  • the evaluation electronics are formed in the flame amplifier according to the invention, values of the filtered flame signal and possibly amplified by an amplifier and/or formed by the evaluation electronics from the flame signal Compare mean values with a switch-off threshold. If a value or average value is lower than the switch-off threshold and/or if the switch-off threshold is undershot, i.e.
  • a delay time ⁇ is awaited and an extinguished flame is only detected if subsequent values and preferably all subsequent values are smaller than the switch-off threshold within the delay time ⁇ .
  • the delay time is preferably less than or equal to the maximum permissible time within which the flame amplifier must react, which can be specified, for example, by a standard.
  • the delay time and the switch-off threshold can be parameterized in the software, i.e. set.
  • the state of the flame is observed by the evaluation electronics within the delay time and the actual state of the flame is only deduced from the behavior within the delay time.
  • the state of the flame is understood to mean its presence, i.e. a burning flame, or its non-existence, i.e. an extinguished flame.
  • the flame current or the flame signal corresponding thereto or the mean values formed can be compared as an actual value with previously known setpoint values, which can be stored in the evaluation electronics, for example.
  • the flame signal corresponds to the flame current
  • the flame signal on the output side of the low-pass filter can be damped and/or temporally shifted relative to the low-pass signal on the input side, so that the flame signal on the output side of the low-pass filter can be slightly offset in time and damped compared to the flame current , but further conclusions about the flame storm allows.
  • the flame current can be calculated from the resulting course of the values or the mean values.
  • the ionization voltage generator is designed to generate the ionization voltage with a frequency of at least 100 Hz, preferably at least 500 Hz and more preferably at least 1000 Hz, with a higher frequency leading to a higher scanning frequency and a faster response time leads.
  • the frequency is theoretically and preferably not subject to an upper limit, i.e. any high, the low-pass filter only has to be dimensioned accordingly.
  • frequencies above 10 kHz are disadvantageous or unnecessarily high, since the flame signal present at the electrode is then significantly weakened by cable capacitances of the ionization line and the waveform of the flame signal is also severely distorted.
  • the ionization voltage generator is designed to generate the ionization voltage as a square-wave signal with symmetrical pulse widths.
  • the flame signal processing system preferably also has coupling electronics which are connected upstream of the low-pass filter on the input side and which are arranged electrically between the ionization voltage generator and the ionization electrode. As a result, these are electrically connected to one another via the coupling electronics, and the ionization voltage generated by the ionization voltage generator and an associated alternating current are applied to the ionization electrode or the flame and the low-pass filter via the coupling electronics.
  • This coupling electronics can be used in a simple case consist of a series resistor connected directly in front of the ionization electrode.
  • the low-pass filter is also designed such that its signal on the output side, ie the flame signal on the output side, has a defined residual ripple, which can be set by suitably selecting the components of the low-pass filter.
  • the flame signal processing has an amplifier which is connected downstream of the low-pass filter on the output side and upstream of the evaluation electronics.
  • the low-pass filter is also designed to amplify a flame signal from the low-pass filter on the output side, ie the proportion of the mixed voltage or mixed current that passes through the low-pass filter, to form an amplified flame signal and forward it to the evaluation electronics.
  • a method for flame monitoring of a flame in or on a burner with a flame amplifier is also proposed.
  • the ionization voltage generator generates an AC voltage, known as the ionization voltage, with a frequency of more than 60 Hz and applies the ionization voltage to the flame, so that the flame, acting as a rectifier, generates a DC voltage from the ionization voltage, known as the flame voltage, and this is applied via the flame direct current called flame current flows.
  • the low-pass filter generates a flame signal on the output side, which corresponds to the flame current, from a mixed voltage on the input side consisting of the ionization voltage and the flame voltage and the associated mixed current with the flame current as a direct current component.
  • the flame current or an output-side DC voltage can be a Have residual ripple, which is determined by the low-pass filter or the components selected for this and the frequency of the ionization voltage.
  • the flame signal, ie the signal of the low-pass filter on the output side and optionally amplified by an amplifier, is evaluated in evaluation electronics and a state of the flame and/or a combustion quality is determined from the flame signal.
  • an advantageous development of the method provides that the electronic evaluation system scans the flame signal according to the frequency of the ionization voltage and, in the process, detects chronologically consecutive values as scan points of the flame signal. Furthermore, the evaluation electronics determine average values or consecutive average values of the flame signal from values that follow each other in direct time and values determined by scanning or from preferably exactly two values that follow in direct time, so that the averaging results in a smoother and less error-prone course of the flame current or the flame signal corresponding to the flame current.
  • the evaluation electronics can compare the average values or one of the consecutive average values with a predetermined switch-off threshold, with an extinguished (extinguished) flame for an average value smaller than or below the switch-off threshold and for an average greater than or above the switch-off threshold, a burning (present) flame is detected, i.e. accepted or reported.
  • an advantageous variant of the method provides that the evaluation electronics compares the mean values or in each case a mean value of the mean values that follow one another over time with a predetermined switch-off threshold, with a mean value being smaller than the switch-off threshold and/or falling below the switch-off threshold, if the mean value was greater than or above the switch-off threshold immediately beforehand, a delay time is awaited and an extinguished flame is only detected, i.e. accepted or reported, if the subsequent mean values and preferably all subsequent mean values within the delay time are smaller than the switch-off threshold.
  • the supply voltage corresponding to the mains voltage of the ionization voltage generator, the evaluation electronics and/or the flame signal processing can also be faulty, so that, for example, interference or ripple voltage coupled into the ionization voltage via the ionization voltage generator can influence the flame signal and can falsify this.
  • Such sources of interference which are subject to a certain behavior, can be detected and compensated according to a further advantageous embodiment of the method, with the evaluation electronics for this purpose determining a change in the ionization voltage, preferably caused by interference, from a periodically recurring deviation in the temporally successive values of the signal voltage detected by the evaluation electronics and the mean values determined therefrom or the falsification of the flame signal caused by the disturbance and corrects or compensates the mean values on the basis of the detected change in the ionization voltage.
  • a respective mean value can be offset against a disturbance-related and recognized change in the form of a correction value.
  • FIG 1 a representation of a flame amplifier based on a control scheme is shown.
  • an ionization voltage generator 10 an AC voltage is generated as the ionization voltage, the frequency of which is significantly higher than the mains frequency, for example 1000 Hz.
  • the ionization voltage is preferably, but not limited to, generated as a square frequency with symmetrical pulse widths.
  • This ionization voltage is connected to an ionization electrode 2 via coupling electronics 4 . If a flame develops on the burner 1, a flame stream 3 flows through it. Since the flame acts as a rectifier, a pulsating direct current called flame current 3 flows through the flame, even if the ionization voltage is present as an alternating voltage.
  • the flame current 3 flowing through the flame is filtered through a low-pass filter 5 conducted to filter out the AC component caused by the ionization voltage. Since the synthetically generated ionization voltage of 1000 Hz is well above the mains frequency of approx. 50 - 60 Hz, the low-pass filter 5 can be used with a comparatively small time constant, resulting in a slight time delay of the output-side signal of the low-pass filter 5 compared to the input-side signal of the low-pass filter 5 follows. Due to the associated low resistance of the low-pass filter 5, a high level of immunity to electrical interference is also achieved.
  • the low-pass filter 5 is dimensioned in such a way that a defined residual ripple of the applied ionization voltage is retained.
  • This flame signal 6, which corresponds to the flame current 3 is amplified by an amplifier 7 connected downstream of the low-pass filter 5 and supplied as an amplified flame signal 8 to control and evaluation electronics 9.
  • This records the phase-synchronous successive values with a sampling rate corresponding to the frequency of the ionization voltage and forms an average value from two successive values in each case, so that a large number of temporally successive average values result, which correspondingly form a curve that corresponds to a smoothed and approximated curve of the Flame signal 6, 8 corresponds and corresponds to the flame current 3.
  • the mean value of two consecutive values or the mean values of the measured flame signal 6, 8 can then be converted into the flame current 3, so that this can be determined from the flame signal 6, 8 or the mean values.
  • the flame current 3 can then be used as an indicator of the quality of the combustion for controlling the combustion. Furthermore, upon detection of an extinguished flame, for example by falling below at least one of the mean values below a predetermined switch-off threshold 22, a safety switch-off 11 can be triggered.
  • Diagram 20 shown in section (a) shows the progression of flame signal 3 of burner 1 as a function of time t when combustion starts.
  • the ionization voltage generated by the ionization voltage generator 10 is present as a square-wave frequency with a frequency of 1000 Hz, which is thus well above the mains frequency of approximately 50 to 60 Hz.
  • the profile of the flame signal 8 amplified by the amplifier 7 after the low-pass filter 5 is sampled in the evaluation electronics 9, with the amplified flame signal 8 or the profile of the flame signal 8 being compared to increases and decreases slightly dampened by the actual course of the flame signal.
  • the values sampled by the evaluation electronics 9 (white dots) (e.g.
  • section (d) shows the progression of the mean values (black points) over the course of the amplified flame signal 8 (dashed line), with the switch-off threshold 22 being plotted for this, so that for the flame detection in section (e) the result or evaluation signal of the evaluation by the evaluation electronics for the safety shutdown 11 results.
  • Mean values that are above the switch-off threshold 22 mean that the presence of a flame can be reliably detected.
  • the time t2 reflects the delay between the actual occurrence of the flame current 3 and the detection of the flame.
  • this time t2 depends almost exclusively on the frequency of the ionization voltage.
  • the evaluation electronics 9 can scan faster and calculate the mean values.
  • the response time is 20 times shorter than the usual 50 Hz of the mains voltage.
  • This short reaction time is advantageous for regulating the combustion, since the regulation must react quickly to changing conditions in the flame signal or in the flame current 3, which reflects the quality of the combustion.
  • Diagram 30 shown in section (a) shows a spontaneous failure of flame current 3 or of the flame signal corresponding thereto.
  • the ionization voltage generated by the ionization voltage generator 10 shown in section (b) and the associated scanning of the flame signal 6, 8 in the evaluation electronics the values (white points) and mean values (black points) shown in section (c) result, where the mean values in section (c) partially superimpose the values.
  • Section (c) shows the course of the filtered and amplified flame signal 8 with recognizable damping through the low-pass filter 5, as well as the sampling points (white) and the mean values (black) resulting from two consecutive values, with the calculated mean values in section ( d) are plotted with the course of the amplified, damped flame signal 8 (dashed line) and the shutdown threshold 22, so that in section (e) of the diagram the result of the evaluation by the evaluation electronics 9 results as an evaluation signal for the safety shutdown 11.
  • the time t3 reflects the safety time allowed by the relevant regulations from the actual flame failure to the safety shutdown, which must therefore be observed in any case.
  • the associated mean value is below the switch-off threshold 22 after only two data points and a possible flame signal interruption is recognized by the evaluation electronics 9, it is possible to wait for a delay time ⁇ and continue to monitor the flame signal 8 until a fault switch-off occurs at must take place after the flame has actually gone out.
  • the extinguishing of the flame is not reported and the combustion process is thus continued if a flame is detected again within the delay time ⁇ , ie the mean value is again above the switch-off threshold 22 within the delay time ⁇ .
  • Diagram 40 shown in section (a) shows a strongly fluctuating flame current 3, which initially has a low level and then a high level.
  • the mean values are shown in simplified form in section (d) over the course of the amplified and damped flame signal (dashed line) and are entered together with the switch-off threshold 22 .
  • section (e) of the figure 4 the evaluation signal for the safety shutdown 11 based on this is shown, as it is output by the evaluation electronics 9 .
  • Section (d) in particular shows that the reaction time between falling below the switch-off threshold 22 in the case of small signals and until the associated mean value 21 is recorded is almost the same as when the signal level falls below the switch-off threshold 22 from a high signal level until the associated mean value 23 is recorded .Because the delay time ⁇ is identical in both cases, the total reaction time is also almost the same.
  • section (a) shows a constant increase in flame current 3 or the flame signal corresponding thereto. If the actually constant flame signal according to the in section (b) of figure 5 applied and generated by the ionization voltage generator 10 is sampled and the flame signal is disturbed by mains hum, the result is the curve shown in section (c) of the flame signal 8 affected by mains hum, with the sample points (white) and those from the values of the sample points again being shown calculated mean values (black) are shown.
  • a harmonic oscillation can be recognized by the evaluation electronics 9 and the values or mean values influenced thereby can be corrected or filtered out by the evaluation electronics 9 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (12)

  1. Amplificateur de flamme destiné à la surveillance de flamme dans un brûleur (1) comportant un générateur de tension d'ionisation (10) destiné à générer une tension alternative en tant que tension d'ionisation, une électrode d'ionisation (2) destinée à appliquer la tension d'ionisation à une flamme générée par le brûleur (1), de sorte qu'une tension continue est générée en tant que tension de flamme par la flamme agissant comme un redresseur à partir de la tension d'ionisation et un courant continu circule en tant que courant de flamme (3), et comportant un traitement du signal de flamme avec un filtre passe-bas (5), sur lequel sont présents côté entrée une tension mixte formée à partir de la tension d'ionisation et de la tension de flamme ainsi qu'un courant mixte avec une composante de courant alternatif et une composante de courant continu correspondant au courant de flamme (3),
    dans lequel le générateur de tension d'ionisation (10) est conçu pour générer la tension d'ionisation à une fréquence supérieure à 60 Hz,
    et dans lequel le filtre passe-bas (5) présente une fréquence limite correspondant à la fréquence de la tension d'ionisation, de sorte que la composante de courant alternatif du courant mixte est bloquée et le filtre passe-bas (5) présente une constante de temps qui correspond à la fréquence de la tension d'ionisation, de sorte qu'un signal de flamme (6, 8) filtré côté sortie et correspondant au courant de flamme (3) est généré à partir d'un signal de flamme non filtré présent côté entrée au niveau du filtre passe-bas (5),
    dans lequel l'amplificateur de flamme présente une électronique d'évaluation (9) qui est connectée en signaux à une sortie du filtre passe-bas (5) et qui est conçue pour évaluer le signal de flamme (6, 8) correspondant au courant de flamme (3) et pour déterminer un état de la flamme,
    caractérisé en ce que l'électronique d'évaluation (9) est conçue pour comparer des valeurs du signal de flamme filtré (6, 8) et/ou des valeurs moyennes formées par l'électronique d'évaluation (9) à partir du signal de flamme (6, 8) avec un seuil de coupure (22),
    dans lequel à une valeur inférieure au seuil de coupure (22) et/ou lorsque le seuil de coupure (22) est dépassé par le bas, une temporisation (τ) est déclenchée et une flamme éteinte n'est détectée comme état de la flamme que lorsque les valeurs suivantes au cours de la temporisation (τ) sont inférieures au seuil de coupure (22).
  2. Amplificateur de flamme selon la revendication 1,
    dans lequel l'électronique d'évaluation (9) est conçue pour échantillonner le signal de flamme (6, 8) en fonction de la fréquence de la tension d'ionisation et ainsi détecter des valeurs chronologiquement successives du signal de flamme (6, 8) et déterminer le courant de flamme (3), des valeurs moyennes et/ou un profil lissé du courant de flamme (3) à partir des valeurs chronologiquement successives.
  3. Amplificateur de flamme selon l'une des revendications précédentes,
    dans lequel le générateur de tension d'ionisation (10) est conçu pour générer la tension d'ionisation à une fréquence d'au moins 100 Hz, en particulier d'au moins 500 Hz et plus particulièrement d'au moins 1 000 Hz.
  4. Amplificateur de flamme selon l'une des revendications précédentes,
    dans lequel le générateur de tension d'ionisation (10) est conçu pour générer la tension d'ionisation sous la forme d'un signal rectangulaire avec des largeurs d'impulsions symétriques.
  5. Amplificateur de flamme selon l'une des revendications précédentes,
    dans lequel le traitement du signal de flamme présente une électronique de couplage (4) qui est montée en amont du filtre passe-bas (5) côté entrée et qui est disposée électriquement entre le générateur de tension d'ionisation (10) et l'électrode d'ionisation (2), de sorte que ceux-ci sont reliés électriquement via l'électronique de couplage (4) et que la tension d'ionisation générée par le générateur de tension d'ionisation (10) et un courant alternatif associé sont appliqués à l'électrode d'ionisation (2) et au filtre passe-bas (5) via l'électronique de couplage (4).
  6. Amplificateur de flamme selon l'une des revendications précédentes,
    dans lequel le filtre passe-bas (5) est conçu de sorte que son signal de flamme côté sortie (6) présente une ondulation résiduelle définie.
  7. Amplificateur de flamme selon l'une des précédentes,
    dans lequel le traitement du signal de flamme présente un amplificateur (7), qui est monté en aval du filtre passe-bas (5) côté sortie et en amont de l'électronique d'évaluation (9) et qui est conçu pour convertir le signal de flamme (6) du filtre passe-bas (5) côté sortie en un signal de flamme amplifié (8) et le transmettre à l'électronique d'évaluation (9).
  8. Procédé de surveillance de flamme d'une flamme dans un brûleur (1) avec un amplificateur de flamme selon l'une des revendications précédentes,
    dans lequel une tension d'ionisation à une fréquence supérieure à 60 Hz est générée par le générateur de tension d'ionisation (10) et la flamme est soumise à la tension d'ionisation, de sorte que la flamme, agissant comme un redresseur, génère une tension continue en tant que tension de flamme à partir de la tension d'ionisation et un courant continu circule en tant que courant de flamme (3) via la flamme,
    dans lequel un signal de flamme (6, 8) côté sortie, qui correspond au courant de flamme (3), est généré par le filtre passe-bas (5) à partir d'une tension mixte côté entrée constituée de la tension d'ionisation et de la tension de flamme et du courant mixte associé avec le courant de flamme (3) en tant que composante de courant continu,
    dans lequel le signal de flamme (6, 8) est évalué dans une électronique d'évaluation (9) et un état de la flamme, en particulier si la flamme brûle ou s'est éteinte, et/ou une qualité de combustion sont déterminés à partir du signal de flamme (6, 8) .
  9. Procédé selon la revendication précédente,
    dans lequel l'électronique d'évaluation (9) échantillonne le signal de flamme (6, 8) en fonction de la fréquence de la tension d'ionisation et détecte ainsi des valeurs chronologiquement successives du signal de flamme (6, 8),
    dans lequel l'électronique d'évaluation (9) détermine des valeurs moyennes chronologiquement successives du signal de flamme (6, 8) à partir de valeurs chronologiquement directement successives.
  10. Procédé selon la revendication précédente,
    dans lequel l'électronique d'évaluation (9) compare les valeurs moyennes à un seuil de coupure prédéterminé (22), dans lequel si une valeur moyenne est inférieure au seuil de coupure (22) une flamme éteinte est détectée et si une valeur moyenne est supérieure au seuil de coupure (22) une flamme brûlante est détectée.
  11. Procédé selon l'une des revendications précédentes 9,
    dans lequel l'électronique d'évaluation (9) compare les valeurs moyennes à un seuil de coupure prédéterminé (22), dans lequel une temporisation (τ) est déclenchée si une valeur moyenne est inférieure au seuil de coupure (22) et/ou si le seuil de coupure (22) est dépassé par le bas et une flamme éteinte n'est détectée que lorsque les valeurs moyennes suivantes au cours de la temporisation (τ) sont inférieures au seuil de coupure (22).
  12. Procédé selon l'une des revendications précédentes 8 à 11,
    dans lequel l'électronique d'évaluation (9) détecte une modification de la tension d'ionisation à partir d'un écart périodiquement récurrent dans les valeurs chronologiquement successives du signal de flamme (6, 8) détectées par l'électronique d'évaluation (9) et des valeurs moyennes déterminées à partir de celui-ci et corrige ou compense les valeurs moyennes sur la base de la modification détectée.
EP21195889.7A 2020-10-13 2021-09-10 Amplificateur de flamme destiné à la surveillance de flamme, ainsi que procédé associé Active EP3985308B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020126788.6A DE102020126788A1 (de) 2020-10-13 2020-10-13 Flammenverstärker zur Flammenüberwachung sowie zugehöriges Verfahren

Publications (2)

Publication Number Publication Date
EP3985308A1 EP3985308A1 (fr) 2022-04-20
EP3985308B1 true EP3985308B1 (fr) 2023-08-30

Family

ID=77710600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21195889.7A Active EP3985308B1 (fr) 2020-10-13 2021-09-10 Amplificateur de flamme destiné à la surveillance de flamme, ainsi que procédé associé

Country Status (2)

Country Link
EP (1) EP3985308B1 (fr)
DE (1) DE102020126788A1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472336A (en) * 1993-05-28 1995-12-05 Honeywell Inc. Flame rectification sensor employing pulsed excitation
DE19502901C2 (de) 1995-01-31 2000-02-24 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner
NL1024388C2 (nl) * 2003-09-26 2005-03-31 Betronic Design B V Vlambewakingssysteem.
US8085521B2 (en) * 2007-07-03 2011-12-27 Honeywell International Inc. Flame rod drive signal generator and system
WO2009110015A1 (fr) 2008-03-07 2009-09-11 Bertelli & Partners S.R.L. Procédé et dispositif perfectionnés pour détecter la flamme dans un brûleur fonctionnant avec un combustible solide, liquide ou gazeux
EP2154430B1 (fr) 2008-08-15 2015-09-30 Siemens Aktiengesellschaft Dispositif de commande pour un brûleur à gaz, et utilisation d'un tel dispositiv
TR201819327A2 (tr) 2018-12-13 2019-01-21 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Brülör ci̇hazi ve bi̇r brülör ci̇hazinin çaliştirilmasina yöneli̇k yöntem
DE102019119186A1 (de) 2019-01-29 2020-07-30 Vaillant Gmbh Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät

Also Published As

Publication number Publication date
EP3985308A1 (fr) 2022-04-20
DE102020126788A1 (de) 2022-04-14

Similar Documents

Publication Publication Date Title
EP1728263B1 (fr) Procédé de détection de décharge en arc et dispositif de détection de décharge en arc
DE4129557C2 (de) Stromversorgungsschaltung für eine Gasentladungslampe in einem Fahrzeug
DE3705222C2 (fr)
DE69627589T2 (de) Unterspannungsdetektion für mikrocontroller
WO2011017721A1 (fr) Procédé de détection d'arcs électriques dans des installations photovoltaïques et une telle installation photovoltaïque
DE10359225A1 (de) Treiberschaltung für eine Halbleitervorrichtung
DE112006004048T5 (de) Energieversorgungs-Steuervorrichtung für eine Bearbeitungsvorrichtung mit elektrischer Entladung
DE69721857T2 (de) Verfahren und Vorrichtung zum Steuern einer Pulslichtbogenschweissung mit einer verbrauchenden Elektrode
EP1021684A1 (fr) Procede et dispositif pour la surveillance d'une flamme
DE10205896A1 (de) Betriebsschaltung für Entladungslampe mit frequenzvariabler Zündung
DE19801132A1 (de) Stromversorgungsschaltung für eine Entladungslampe mit Leuchtzustandsdetektor
EP3985308B1 (fr) Amplificateur de flamme destiné à la surveillance de flamme, ainsi que procédé associé
DE4122636C2 (de) Vorrichtung und Verfahren zum Überwachen einer Flamme
EP3746707B1 (fr) Procédé pour la surveillance et le réglage d'une flamme de brûleur d'un brûleur d'appareil de chauffage
DE3044960C2 (de) Vorrichtung zum Verhindern des Klopfens einer Brennkraftmaschine
EP1843645B1 (fr) Circuit pour lampes à décharge haute pression
DE3401603C1 (de) Selbstueberwachender Flammenwaechter
EP1343359B1 (fr) EOL-détection avec une interrogation d'électrode intégrée
DE4222914A1 (de) Schaltanordnung zur Erzeugung einer drehzahlproportionalen Impulsfolge
EP3291411B1 (fr) Procede de commande d'une alimentation electrique secourue et installation pour une alimentation electrique secourue
DE2738198A1 (de) Vorrichtung zur erfassung der aenderung einer gewaehlten bedingung
DE4134842C2 (de) Kopierschutzvorrichtung für ein in einem Videobandaufnahmegerät verwendetes Software-Programm
DE2317256C3 (de) Steuer- und Regeleinrichtung für eine Anlage zum Abscheiden von Aerosolen mit einem Elektroabscheider
DE2809993B2 (de) Flammenwächterschaltung zur Überwachung einer Brennerflamme
EP0996315B1 (fr) Procédé et dispositif pour la génération d'un signal d'état représentant l'état de l'opération d'une lampe à décharge à haute pression dans un véhicule à moteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221017

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20230419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001375

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231117

Year of fee payment: 3

Ref country code: IT

Payment date: 20230930

Year of fee payment: 3

Ref country code: DE

Payment date: 20231127

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230910

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230910

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230830