EP3972795B1 - Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom - Google Patents

Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom Download PDF

Info

Publication number
EP3972795B1
EP3972795B1 EP21720408.0A EP21720408A EP3972795B1 EP 3972795 B1 EP3972795 B1 EP 3972795B1 EP 21720408 A EP21720408 A EP 21720408A EP 3972795 B1 EP3972795 B1 EP 3972795B1
Authority
EP
European Patent Office
Prior art keywords
particles
plastic
stream
separation
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21720408.0A
Other languages
English (en)
French (fr)
Other versions
EP3972795C0 (de
EP3972795A1 (de
Inventor
Rainer Brandsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3972795A1 publication Critical patent/EP3972795A1/de
Application granted granted Critical
Publication of EP3972795C0 publication Critical patent/EP3972795C0/de
Publication of EP3972795B1 publication Critical patent/EP3972795B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0262Specific separating techniques using electrical caracteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0262Specific separating techniques using electrical caracteristics
    • B29B2017/0265Electrostatic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0279Optical identification, e.g. cameras or spectroscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0282Specific separating techniques using information associated with the materials, e.g. labels on products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/66Recycling the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a method for sorting the recovery of predeterminable plastic parts of a specific plastic material or a specific plastic composition from an unsorted recyclable material flow according to the preamble of claim 1.
  • plastics are produced on the one hand by chemical synthesis processes from finite, natural raw materials such as crude oil, coal, natural gas or also from renewable plants, and on the other hand they are usually no longer absorbed by nature due to biological degradation processes and can cause lasting damage, it is necessary and sensible to filter out valuable recyclable materials from an unsorted waste stream and feed them into a material cycle for reuse instead of thermally recycling the recyclable materials in waste incineration plants or dumping them on landfills.
  • Plastic materials with very similar properties cannot be separated from one another, or only with difficulty.
  • plastics recovered from packaging by type are contaminated by a wide variety of low-molecular substances - e.g. by the products packaged in them such as mineral oil products, cleaning agents, cosmetics, pharmaceuticals or food. Reuse of contaminated plastics for purposes other than the previous ones is either not possible or prohibited by law. Before reusing the recovered plastics for the production of e.g The contaminants must be removed from food packaging to such an extent that no substances are contained in quantities that conflict with the applicable legal requirements.
  • a known solution for cleaning recycled polyolefins consists, for example, in swelling the polyolefins with a suitable solvent in a swelling reactor for a few hours in order to be able to remove the impurities contained more easily, with long swelling times representing a significant disadvantage.
  • Such a method is for example in the WO 2018 091 356 A1 described.
  • Another approach is to filter plastics based on their usage history.
  • the DE 10 2017 118 601 A1 proposed the marking of plastics with spectroscopically active substances for the purpose of spectroscopic separation.
  • the DE 4 401 207 A1 shows a similar procedure.
  • the selective detection and sorting out of the plastics marked in this way using spectroscopic methods is complex.
  • Another approach to separating predeterminable recyclable fractions from a waste stream is the addition of magnetic particles to the starting materials of the waste stream, so that these starting materials can be isolated by magnetic separation processes.
  • Such a procedure is in WO 2004/012 920 A2 described.
  • the proposed amount for use of magnetic particles is about 0.1 to 5% by weight, which enables direct magnetic separation but leads to an undesired, dark coloring of the starting material, particularly in the case of packaging.
  • WO 2019 180 438 A2 shows the marking of bottles and other plastic containers during production using optical markers according to the plastic used, with these bottles being collected after use and split into partial flows using the markers, with each partial flow then being crushed and extruded in an extruder to form single-variety plastic pellets is further processed.
  • a further object is to specify a method with which composite materials can be recovered sorted.
  • Composite materials are to be understood as meaning materials that comprise several materials and can be arranged, for example, in matrix-like or multi-layer structures.
  • Composite materials include, among other things, multi-layer composites such as plastic films laminated to one another or coated plastic films.
  • a further object is to specify a method with which recycled plastic materials can be made available in a single type and in a quality similar to that of newly produced plastics ('closed loop recycling' instead of 'downcycling').
  • a method for sorting the recovery of predeterminable plastic parts of a specific plastic material or a specific plastic composition from an unsorted recyclable material flow, the predeterminable plastic parts of other plastic parts of the same plastic material or the same plastic composition using at least one primary marker introduced during production and/or use of the plastic have been made distinguishable and the method comprises at least a first separation step, in which the recyclable material flow is separated on the basis of a first separation criterion into a first recyclate flow comprising the predeterminable plastic fraction and a first partial flow, with the separation criterion using properties of the primary marker.
  • This is a flow of recyclable materials that includes thermoplastics or at least essentially consists of thermoplastics.
  • the stream of valuable materials is extruded before the first separation step by melt extrusion to form thermoplastic strands or films, preferably with a predetermined cross-sectional shape the strands or films are then comminuted into particles, preferably with a predetermined size, in particular a predetermined maximum length, and in particular into strand sections or film sections. Thereafter, the particles are fluidized by being placed in a flowing fluidizing medium.
  • the particles preferably all have at least essentially the same shape (geometry). This enables a homogeneous distribution of the particles in a laminar flow fluidization medium.
  • melt extrusion to form strand sections or film sections makes it possible, in particular, to separate materials that are mechanically firmly connected to one another, e.g. matrix or multilayer or multilayer composites, due to microphase separation in the melt.
  • Fluidization means the introduction of solids (here: the crushed particles) into a flowing fluidization medium, e.g. by producing a mixture of solids with a liquid or a gas.
  • the particles are introduced into a flowing fluidization medium with a laminar flow and transported, the fluidization medium containing the particles then being formed in particular as a suspended bed or as a fluidized bed.
  • the solids do not form a solid and compact layer, but are prevented from agglomerating by the fluid due to the flow resistance.
  • a fluidized bed a bed of solid particles in a fluid is brought into a fluidized state by an upward flow.
  • the stream of valuable material can be made flowable in the method according to the invention.
  • the crushed particles can be transported with the flowing fluidizing agent, in particular in the laminar fluid flow of the fluidizing agent.
  • a two-dimensional material flow can thus be converted into a three-dimensional material flow by means of the fluidization.
  • a three-dimensional material flow has a controllable cross-sectional profile, for example a circular cross-sectional profile, in addition to a longitudinal extent (transport direction). Due to the fluidization, the components of the flow of recyclables gain mobility compared to a non-fluidized flow of solids, such as a flow of solids on a conveyor belt.
  • the comminution or division of the extruded strands or films can be done, for example, mechanically, e.g. by a cutting device, by an air jet or by a water jet.
  • the predetermined cross-sectional shape of the extruded strands or films can be chosen advantageously by selecting an appropriately shaped extrusion die, such as circular (for forming strands) or rectangular (for forming films), or with other geometries.
  • the fluidizing agent can be a liquid or a gas.
  • Water, a solvent, air, an inert or noble gas and/or a mixture thereof can be used particularly advantageously as the fluidizing agent.
  • Water as a fluidizing agent is inert, inexpensive and easily available, but has a high intrinsic weight, so that the circulation of water is energy-intensive compared to gaseous fluidizing agents. Due to the good availability of water, there is no need to reuse the fluidizing agent at the end of the recovery of the predeterminable plastic fractions. However, it can also be reused, for example after the water used has been cleaned with a sieve or filter.
  • solvents as fluidization agents if necessary only partially, can have an advantageous effect on the fluidization of the particles and the subsequent extraction step.
  • Air, inert or noble gases have the advantage that they are light and react quickly, so that only small amounts of energy are required to circulate the fluidizing agent.
  • the fluidizing agent is preferably reused at the end of the recovery of the predeterminable plastic fractions, for example by filtering, so that the fluidizing agent is used in a closed circuit. As a result, the need for fluidizing agent can be kept low.
  • the extruded strands or films are comminuted or micronized into particles with a defined shape before the predeterminable plastic fractions are separated, with at least one dimension having a maximum extent of less than 1000 ⁇ m, preferably less than 500 ⁇ m.
  • the particles After the comminution, the particles can have dimensions of less than 1000 ⁇ m in several dimensions or even in only one dimension.
  • the particles have a cross-sectional shape in at least one cross-sectional dimension (in the case of sheet-like extrudate and division into platelets or film sections) or also in two cross-sectional dimensions (in the case of e.g. strand-like extrudate and division into filaments or strand sections). Dimensions less than 1000 microns, preferably less than 500 microns.
  • the flow properties of the particles in the fluidizing agent can be improved by crushing.
  • the chemical properties or the reactivity of the particles can also be advantageously influenced by comminution. In particular, a high surface-to-volume ratio can reduce reaction times in physical or chemical processes, especially in an extraction process.
  • Micronization is understood to mean comminution to particle sizes with a defined shape with a maximum extent in one dimension, in particular with regard to a longitudinal extent and/or a maximum cross-sectional diameter of less than 1000 ⁇ m, in particular less than 500 ⁇ m. Due to a reduction in size, the individual particles in the recyclable material flow have only small masses and thus achieve very good controllability, i.e. the direction of movement and/or speed of the particles can be changed by small external forces.
  • the longitudinal extension of the particles can be defined along the extrusion direction in which the extruded strands or films leave the extrusion die.
  • All particles are preferably comminuted during the comminution to a comparable size, for example all particles to longitudinal and/or cross-sectional dimensions between 400-800 ⁇ m, to longitudinal and/or cross-sectional dimensions between 200-400 ⁇ m or to longitudinal and /or cross-sectional dimensions between 50-300 ⁇ m or advantageously between 1-50 ⁇ m.
  • the particles in the stream of useful material are present in a Gaussian particle size distribution of the particles, which depends on the comminution process, and have an average particle diameter or volume. The smaller the scatter of the dimensions of the particles (that is, the mean particle diameter or volume), the more similar the behavior of the individual particles and the easier it is to control the particles in the fluidizing agent.
  • the preferred particle size can vary depending on the nature of the flow of valuable materials or the components contained therein.
  • the strands or films are preferably extruded and comminuted to give particles with an anisotropic geometry, in particular with a longitudinal extension that differs from a cross-sectional extension. Due to an anisotropic geometry, the particles receive a preferred direction during fluidization, according to which the particles can align themselves in the fluidization medium in a predictable manner. As a result, turbulence in the fluidizing agent is avoided or reduced, so that an essentially laminar flow field is formed in the flowing fluidizing agent. In a laminar flow field, the particles in the valuable material flow can be better controlled. The particles are distributed homogeneously in the fluidizing agent.
  • An anisotropic form can expediently be expressed or set via the form factor as “aspect ratio” or aspect ratio A R .
  • the normalized aspect ratio A R varies from nearly zero for a very elongated particle to near unity for an equiaxed particle.
  • the aspect ratio is preferably chosen to be less than 0.8, preferably less than 0.7 or particularly preferably less than 0.5.
  • an anisotropic geometry of the particles can be expressed or set using the Wadell sphericity. It is advantageous for the particles to be shaped in such a way that the Wadell sphericity is less than 0.8, preferably less than 0.75 and particularly preferably less than 0.7.
  • x V 6 V ⁇ 3
  • x S S ⁇ , where S is the surface area and V is the volume of the particle.
  • a cylindrical particle whose height is 2.5 times the diameter, for example, has a Wadell sphericity of 0.804574.
  • the extrusion of the strands or films, their comminution into particles and/or their fluidization in the fluidizing agent can be carried out continuously in a particularly advantageous manner.
  • a continuous process allows high mass throughputs to be achieved.
  • marker particles are introduced into the predeterminable plastic parts during production and/or use of the plastic, or marker particles are connected to the predeterminable plastic parts, so that the predeterminable plastic parts are in a force field compared to similar plastic parts without marker particles based on the material properties , in particular the density properties and/or electrical charge properties and/or magnetic properties and/or electromagnetic, esp. Optical, properties are distinguishable.
  • Particles with excellent, i.e. strongly deviating material properties compared to the specific plastic material can be used as marker particles, such as magnetite for marking via magnetic properties or bentonite for marking via electrostatic properties.
  • marker particles such as magnetite for marking via magnetic properties or bentonite for marking via electrostatic properties.
  • Other marker particles are possible, as is the use of multiple markers in combination.
  • the size of the introduced marker particles is preferably smaller than the size of the smallest particles into which the stream of valuable material was comminuted. This ensures an even distribution of the markers in the shredded material flow.
  • the predeterminable plastic parts can advantageously include at least one secondary marker and/or other markers.
  • the predeterminable plastic parts can advantageously include at least one secondary marker and/or other markers.
  • a primary marker can be used to filter out thermoplastic materials with a defined composition and/or usage history, e.g. food packaging, from an undefined material flow, while a secondary marker can be used to separate individual material fractions ( e.g. different types of plastic).
  • Particles used as markers can have a surface modification, i.e. they have a deliberately formed or designed surface. This allows marker properties to be strengthened or new properties to be added. For example, a flow resistance or a wettability of a particle marked with the marker particle can be specifically influenced by a surface modification. In particular, the fluidization behavior and the flow behavior of a marked particle can be adjusted in a targeted manner.
  • the different plastic parts can be marked with the same marker in different quantities.
  • a first plastic portion can have twice as many marker particles as a different plastic portion.
  • the stream of valuable material is a thermoplastic stream of valuable material, i.e. the stream of valuable material contains essentially only thermoplastic material.
  • a flow of valuable thermoplastic materials can optionally be made available after or by pre-sorting an initially unsorted flow of valuable materials.
  • a thermoplastic material flow has the advantage of being (completely) meltable. As a result, new process steps and treatment options, especially melt extrusion, become available.
  • the comminution of the extruded strands or films simultaneously also includes or causes a micro-separation of the types of plastic present in the recyclable material flow.
  • This can be done by extruding the valuable material stream into strands with a predetermined diameter and then comminuting the strands by cutting them to a predetermined (maximum) length, with the diameter of the strands preferably being below a size of immiscible polymers or plastic types present as single-type phase islands during melting in the melt.
  • the strands are each of a single type across the cross section. Extrusion and the subsequent comminution result in unmixed strand sections with different types of plastic, with the immiscible polymers being easy to separate at the boundary surfaces of the strand sections. Microseparation can in particular avoid or at least reduce contamination of particles of one type of plastic with another type of plastic.
  • Extrusion of the melted flow of recyclable material into films with a predetermined layer thickness which is preferably below the size of the phase islands present as a single type, can also be used for microseparation. In the sense of the invention, this has the same effect as the extrusion in strands with a predetermined diameter below a size of immiscible polymers or plastic types present as homogeneous phase islands when melted in the melt.
  • the process according to the invention can comprise a plurality of identical or different separation steps carried out in succession for separating the stream of valuable materials on the basis of specific separation criteria. Additional separating steps allow further raw materials to be recovered or separated from the recyclable material flow. Additional separation steps can also be used to increase the rate of separation of a predeterminable proportion of plastic from the stream of valuable materials.
  • the flow of valuable materials can also run through one or more separation steps several times. As a result, the number of devices to be kept available for a separation step can be reduced and the separation rate of a given plastic fraction can be increased at the same time.
  • the method according to the invention for sorted recovery can in particular comprise a second separation step in which a recyclate flow is separated into a second recyclate flow and a second partial flow using a second separation criterion, the separation step (also) using properties of a secondary marker as a separation criterion.
  • a second separation step in which a recyclate flow is separated into a second recyclate flow and a second partial flow using a second separation criterion, the separation step (also) using properties of a secondary marker as a separation criterion.
  • the method according to the invention can further comprise a third separation step, in which a recyclate flow is separated into a third recyclate flow and a third partial flow using a third separation criterion, the separation step (also) using a naturally adhering or inherent property of the plastic components as a separation criterion.
  • Properties of the primary marker and/or of the secondary marker or also the properties naturally adhering to the predeterminable plastic component, that is to say inherently present, or a combination of such properties can preferably be used as a separation criterion.
  • a separation criterion enables a particularly efficient process management, because in this case, in a separation step in which the flow of valuable materials is separated, the predeterminable proportion of plastic from the flow of valuable materials is identified and separated at the same time, which is why no separate step for Identification of the plastic parts provided with a marker and thus specified is necessary.
  • the comminuted and fluidized flow of recyclable material is preferably exposed to at least one force field in order to separate the predeterminable plastic fractions.
  • Force fields have the advantage that they work without contact. In a force field, particles dissolved in a fluidizing agent can therefore be separated from one another in a very simple manner on the basis of their force field properties.
  • the force field for separating the definable plastic parts can in particular be a gravitational field, a magnetic field, an electrostatic field or an electromagnetic field.
  • the comminuted and fluidized stream of valuable material can in particular be introduced into a force field that is preferably aligned perpendicularly or parallel to a flow direction of the fluidized stream of valuable material.
  • the force field can also be aligned in a different way, for example at an angle to the direction of flow of the fluidized valuable material flow.
  • a force field aligned parallel to the direction of flow can influence the speed of the particles in the direction of flow.
  • the velocity of the particles can be influenced in a vertical direction to the flow direction.
  • several force fields can also be used or combined in one separation step.
  • several force fields can be superimposed on one another. This enables a multifactorial separation in just one separation step.
  • Superimposed force fields can also be arranged one behind the other.
  • a gravitational field can be applied perpendicularly to the direction of flow, while at the same time an electric field is applied parallel to the direction of flow.
  • particles with more charge carriers are accelerated more strongly in the direction of flow and, with a defined flow time, cover a longer path than those particles with fewer charge carriers, i.e. there is a spatial separation over the path length.
  • the fluidized particles are spatially separated perpendicular to the direction of flow. In this way, a selective separation of predeterminable plastic fractions can take place by branching off partial or recyclate flows of the fluidized recyclable material flow at different cross-sectional positions and path lengths.
  • the method for sorting the recovery of predeterminable plastic parts includes a processing step in which marker particles and/or other undesired contaminations are separated from the particles of the predeterminable plastic parts of a recyclate stream. Separation can take place, for example, by extraction and/or emission, in which case the fluidizing agent can also serve as an extraction agent.
  • extraction agent During extraction, unwanted plastic parts are bound by or in an extraction agent.
  • water, alcohols or supercritical CO 2 are suitable as extraction agents.
  • the Steam distillation can be used as an extraction process.
  • the extraction agent is partially absorbed by the plastic particles and must be removed again after extraction by emission or further extraction (e.g. drying with hot air or steam distillation).
  • the particles of the valuable material or recyclate stream are advantageously swollen by a swelling agent before extraction. Due to the swelling, the separation can be accelerated and the process time for the extraction can be shortened.
  • the extraction agent preferably has good solubility for the substances to be extracted.
  • the polarity of the extraction agent expressed as the octanol/water distribution coefficient K OW , is preferably in a range between or close to the polarity of the plastic type of the predeterminable plastic fractions and the polarity of the substances to be extracted. This allows a high extraction rate to be achieved without the plastic being partially dissolved and sticking together during extraction.
  • the software EPI-Suite of the US Environmental Protection Agency can be used to calculate the octanol/water partition coefficient K OW .
  • the SMILES notation is generated from a chemical structure and transferred to the EPI-Suite software. This then calculates the corresponding octanol/water partition coefficient K OW .
  • the calculated octanol/water partition coefficients K OW are normalized to a molecular weight of 1000 g/mol.
  • the octanol/water partition coefficient K OW of polymers is calculated from a chain segment with a molecular weight closest to 1000 g/mol.
  • This distribution coefficient K P,M is preferably in the range of ⁇ 1 for the substances to be extracted.
  • the distance between the logarithm log(P P O/W ) and the logarithm log (P OM O/W ) is also preferably >5 a high extraction quality can be achieved with short extraction times.
  • thermoplastic recyclable material flow W from thermoplastic plastic materials for the recovery of specified plastic components from the valuable material flow W, which is first melted in a melting and extrusion device 1 for this purpose.
  • the recyclable material flow includes various thermoplastic, immiscible plastics a, b, c, d. In the molten state, these are phase-separated in phase islands 2a, 2b, 2c, 2d. The dimensions of the phase islands 2a, 2b, 2c, 2d result essentially from the size and composition of the individual components of the supplied flow of valuable materials W.
  • phase islands 2a, 2b, 2c, 2d are larger, e.g from mm.
  • the phase islands are correspondingly smaller.
  • the dimensions of the phase islands in this example are no less than 100 ⁇ m.
  • the molten material flow W is extruded through an extruder screw (not shown) into a continuous strand 3, the diameter of the strand 3 being smaller than the smallest dimensions of the individual phase islands 2a-2d. Since it is in the example of 1 is a thermoplastic material flow W whose composition is not known in detail, the selected extrusion cross section is expediently a circular one Cross-section with a diameter of e.g. 20 ⁇ m. Depending on requirements, other extrusion cross sections and/or diameters can also be selected.
  • the cross-sectional shape can be polygonal, for example, in particular rectangular ( Figure 5a and Fig. 5k), triangular ( Figure 5b ), honeycomb or hexagonal with equilateral edges ( Figure 5c ) or edges of different lengths ( Figure 5e ) or rectangular with edges of different lengths ( Figure 5d ) to be chosen.
  • the cross sections could also be circular ( Fig. 5g ), oval ( Fig. 5f ) or hollow-cylindrical ( Figure 5h ) to be chosen.
  • the cross-sectional shape can also be designed as a combination or connection of several basic shapes, such as a connection of four circular cross-sections according to FIG Figure 5i or as a connection between two circular shapes with a bridge in between ( Fig.5j ).
  • the extruded strand 3 comprises individual strand sections 4a, 4b, 4c, 4d of different types of plastic. During or after cooling, the strand 3 is divided into individual strand sections or filaments 6a, 6b, 6d to a predetermined length by a mechanical separation device 5 and thereby comminuted.
  • the mechanical separation device 5 can be, for example, a rapidly rotating or oscillating knife.
  • the filaments 6a, 6b, 6d have, for example, an average length of 80 ⁇ m.
  • the extruded strand 3 preferably breaks at the phase boundaries or the front-side boundary surfaces of the plastic strand sections, since a phase boundary represents a natural predetermined breaking point.
  • the separated filaments 6a - 6d are then brought into a fluidization device 7 .
  • the separated filaments preferably fall directly into the fluidization device 7.
  • the filaments 6a - 6d are introduced into a fluid serving as a fluidization agent, in particular into a laminar flow of liquid or gas, for example an air flow sucked in from the environment by a blower. introduced and thereby fluidized. Since the filaments 6a-6d are thread-like and therefore anisotropic, they align themselves in the flow field of the fluid in their preferred direction, ie along their longitudinal axis according to the flow direction of the fluid flow. The flow field of the flowing fluid remains essentially laminar.
  • the filaments 6a - 6d are transported with the fluid flow into a first separation device for carrying out a first separation step.
  • a first separation device which in figure 1 is not shown, it can be, for example, a separation device 10, as in 2 shown.
  • FIG 2a shows an advantageous separation device 10 for carrying out the (first) separation step of the method according to the invention in a longitudinal section.
  • the separation device 10 of figure 2 comprises an annular or tubular reaction chamber 12 surrounded by a force field generator 11 embodied here as an electromagnet 1 described fluidized stream S introduced.
  • the material flow S contains the filaments 6, 6′ of the same type of plastic fluidized in the fluidizing means, for example a gas flow, with the filaments 6′ having magnetic marker particles, here magnetite, and the filaments 6 being free of such markers.
  • the filaments 6 ′ are separated from the filaments 6 in the separating device 10 .
  • the filaments 6 ′ are therefore the predetermined or specifiable plastic parts of the valuable material flow W, which differ from the other (plastic) parts of the valuable material flow W due to the presence of marker particles.
  • the material flow S moves in the plane of the sheet Figure 2a horizontally from left to right.
  • the reaction chamber 12 has a larger diameter than the feed pipe 13 with, for example, a circular cross section.
  • the force field generator 11 configured as an electromagnet generates a magnetic force field whose field lines are directed essentially perpendicularly to the flow direction of the material flow S and in which the magnetic field strength increases radially.
  • the filaments 6 and 6′ in the material flow S migrate outwards to a greater or lesser extent.
  • the filaments 6' which can be magnetized due to the magnetic marker particles, migrate radially outwards due to the magnetic field and thus collect on the outer peripheral area of the reaction chamber 12.
  • the non-magnetic or hardly magnetic filaments 6 do not change their cross-sectional position and remain within the cross-section of the feed pipe and thus in the radially inner area of the reaction chamber 12.
  • the inner discharge tube 14a can also be understood as an (annular) orifice.
  • FIG. 2c In the cross-sectional view of the Figure 2c is the material flow S divided into a recyclate flow R and a partial flow T after or upon exit from the reaction chamber 12, here at the level of section BB in Figure 2a shown.
  • the filaments 6′ with markers are located radially on the outside with respect to their cross-sectional position (recyclate stream R).
  • the filaments 6 without markers are compared to Figure 2b essentially in an unchanged cross-sectional position (partial flow T).
  • the material flow S shown may previously have already been subjected to one or more separating steps in order to separate the filaments 6, 6' of the desired type of plastic from the filaments of other types of plastic.
  • the outflowing (inner) partial flow T can be subjected to further separation steps in order to achieve the greatest possible separation of the filaments 6' with a marker and the filaments 6 without a marker.
  • step V101 shows a first flowchart of an embodiment according to a method according to the invention.
  • a starting material such as polypropylene (PP) for food packaging
  • PP polypropylene
  • the starting material is combined with primary marker particles, here for example in the form of magnetite (Fe 3 O 4 ), which have a diameter of ⁇ 10 ⁇ m and an amount used of 0.1% by weight, step V102.
  • the source material can also (in the 3 not shown) with secondary marker particles in the form of bentonite with a diameter of ⁇ 10 ⁇ m and an amount of 0.1% by weight.
  • the starting material will then processed into packaging for food, here a mono-material tray by injection molding, step V103.
  • the used packaging material is combined with other components of a material flow S to form an undefined waste or valuable material flow W, step V104.
  • the flow of waste or recyclable materials is, for example, the plastic waste from the yellow sack.
  • the undefined flow of valuable materials W can first be pre-sorted, for example in order to separate out non-thermoplastic components, step V105, so that a thermoplastic valuable material flow of pure thermoplastics is obtained.
  • the flow of recyclable materials pre-sorted in this way is then roughly mechanically shredded, for example using a shredder system, step V106.
  • the thermoplastic resource stream W is micronized and microseparated in the form of thread-like filaments with an average diameter of, for example, 80 ⁇ m by periodically cutting off or scraping off at an extruder outlet, step V107. Instead of scraping, separation using a water jet is also possible.
  • the filaments are then made flowable in a fluidizing agent, here water, step V108.
  • the fluidized stream of valuable material is then subjected to a separation step in a separation device, here separation in or by a magnetic field, step V109.
  • the recyclable material stream W is thereby divided into two material streams, namely a first recyclate stream R1 and a first partial stream T1, such as in 2 described.
  • the first recyclate stream R1 contains the polypropylene marked via the primary marker particles.
  • the first partial flow T1 contains all the other components of the original valuable material flow and in particular does not include any components with primary marker particles.
  • the first partial flow T1 can be supplied to a further treatment or use that is not detailed here. In particular, if the first partial flow T1 still contains recyclable materials, these can be filtered out using further separation steps.
  • the first recyclate stream R1 is then subjected to a processing step designed as an extraction, step V110. During this process, the primary marker particles associated with the PP and other contaminants are removed from the PP.
  • the extraction time for typical contaminants from recovered PP with 80 ⁇ m diameter filaments at 100°C is typically a few minutes. Specifically, steam distillation is used here at 100°C for 10 minutes.
  • the first recyclate stream R1 is divided into a second recyclate stream R2 and a second partial stream T2.
  • the PP processed in this way can be filtered out of the fluidizing agent from the second recyclate stream R2 and then reused as food packaging.
  • the fluidizing agent can also be reused.
  • the second partial flow T2 can also be processed further.
  • FIG. 4 shows a second flowchart of an embodiment of the method according to the invention.
  • Several starting materials here polyethylene (PE) and polyamide (PA6), which were provided in steps V1001 and V1002, were connected by lamination to form a composite material PA6/PE.
  • a composite material is used, for example, as a cover film for food trays.
  • the starting materials polyethylene (PE) and polyamide PA6 should be recovered after their intended use and (can) be processed for the same purpose.
  • the PA6 is mixed with primary particles (in 4 not shown) and PE provided with primary marker particles and secondary marker particles, steps V1003 and V1004.
  • Magnetite is used here as the primary marker particle in an amount of 0.1% by weight and a diameter of ⁇ 5 ⁇ m.
  • Organically modified bentonite with a diameter of ⁇ 5 ⁇ m is used as the secondary marker particle in an amount of 0.1% by weight.
  • the dual tagged PE is then bonded to the single tagged PA6 to form a composite material for packaging purposes, step V1005.
  • the composite material used is combined with other components of a material flow S to form an undefined waste or valuable material flow W, step V1006.
  • the undefined resource flow W can also be pre-sorted here again, for example to separate out all non-thermoplastic components and provide a purely thermoplastic resource flow, step V1007.
  • the flow of recyclable materials pre-sorted in this way is then roughly mechanically comminuted into flakes, step V1008.
  • the thermoplastic resource stream W is micronized into thread-like filaments with a diameter of 80 ⁇ m by melt extrusion and subsequent comminution of the extruded strands, step V1009.
  • the original associated types of plastic are separated from each other at the same time, so that there are unmixed filaments made of PA6 and unmixed filaments made of PE in addition to other filaments.
  • the filaments are fluidized in water, step V1010.
  • the fluidized valuable material flow is subjected to a separation step based on the properties of the primary marker particles, in this case the separation in a magnetic field applied perpendicularly to the direction of flow, step V1011.
  • the recyclable material flow W is divided into a first recyclate flow R1 and a first partial flow T1, with two concentric discharge pipes or an annular diaphragm as below 2 described, is used.
  • the first recyclate stream R1 contains the plastic parts to be recovered, here the marked PE and PA6.
  • the first partial flow T1 contains all other components of the original valuable material flow.
  • the first partial flow T1 can be subjected to further treatment or recycled.
  • the first partial flow T1 also contains other valuable materials, it can be subjected to further process steps for recycling the valuable materials.
  • the first recyclate stream R1 is subjected to a processing step designed as an extraction, step V1012.
  • the primary marker particles bound in the PE and PA6 and/or the contaminants (e.g. printing ink components) contained in the original intended use (food packaging) are removed. This is done, for example, by extraction using supercritical CO 2 .
  • the extraction time is typically around 10 minutes.
  • the treatment step divides the first recyclate stream R1 into a second recyclate stream R2 and a second partial stream T2.
  • the second recyclate stream R2 is subjected to a second separation step.
  • the second separation step V1013 involves separation via a gravitational field.
  • the second recyclate stream R2 is fed into a centrifuge so that the PA6 filaments are divided by the PE filaments into a third recyclate stream R3 and a third partial stream T3 due to the different densities of the filaments of PA6 and PE.
  • the PE contained in the third recyclate stream R3 can be filtered out and reused.
  • the PA6 contained in the partial flow T3 can be filtered out of the partial flow T3 and reused.
  • the fluidizing agent can advantageously be reused to conserve resources, for example by filtering the liquid or the gas.
  • the embodiments described above are merely illustrative examples of the method according to the invention. A combination of these or similar features of the described embodiments can be combined to form more complex methods without departing from the scope of the invention.
  • the method according to the invention makes it possible in general to filter out predeterminable components from undefined valuable material streams. By repeating the process steps of the method according to the invention on an unsorted or pre-sorted flow of valuable materials or partial flows thereof, the method can also be used to separate and recover a large number of predeterminable components from the flow of valuable materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur sortenreinen Wiedergewinnung von vorgebbaren Kunststoffanteilen eines bestimmten Kunststoffmaterials oder einer bestimmten Kunststoffzusammensetzung aus einem unsortierten Wertstoffstrom nach dem Oberbegriff des Anspruchs 1.
  • Weil Kunststoffe einerseits durch chemische Syntheseverfahren aus endlichen, natürlichen Rohstoffen wie Erdöl, Kohle, Erdgas oder auch aus nachwachsenden Pflanzen hergestellt werden, andererseits in der Regel durch biologische Abbauprozesse von der Natur nicht mehr aufgenommen werden und diese nachhaltig schädigen können, ist es notwendig und sinnvoll, werthaltige Wertstoffe aus einem unsortierten Abfallstrom herauszufiltern und einem Stoffkreislauf zur erneuten Verwendung zuzuführen, anstatt die Wertstoffe in Abfallverbrennungsanlagen thermisch zu verwerten oder auf Müllhalden zu deponieren. Dies betrifft insbesondere Kunststoffe aus Verpackungsmaterialien und v.a. Verpackungsmaterialien aus thermoplastischen Kunststoffen.
  • Aus dem Stand der Technik sind Verfahren bekannt, um aus einem Stoffstrom mit unbekannter Zusammensetzung die Anteile abzutrennen und herauszufiltern, die ein spezifisches Kunststoffmaterial aufweisen. Eine Abtrennung erfolgt dabei typischerweise anhand von diesem Kunststoffmaterial originär anhaftenden Eigenschaften, d.h. inhärenten Eigenschaften wie z.B. Dichteunterschieden, optischen Eigenschaften, etc., wobei die Abtrennung besser wird, je unterschiedlicher sich diese Eigenschaften von denen anderer Kunststoffmaterialien unterscheiden. Kunststoffmaterialien mit sehr ähnlichen Eigenschaften können dabei nicht bzw. nur schlecht voneinander getrennt werden.
  • Sortenrein zurückgewonnene Kunststoffe aus Verpackungen sind je nach Verwendungshistorie durch unterschiedlichste niedermolekulare Stoffe kontaminiert - z.B. durch die darin verpackten Produkte wie Mineralölprodukte, Reinigungsmittel, Kosmetika, Pharmazeutika, oder Lebensmittel. Eine Wiederverwendung von kontaminierten Kunststoffen für andere als bisherige Verwendungszwecke ist nicht möglich oder durch gesetzliche Vorgaben verboten. Vor einer Wiederverwendung der wiedergewonnenen Kunststoffe für die Herstellung von z.B. Lebensmittelverpackungen müssen die Verunreinigungen soweit entfernt werden, so dass keine Stoffe in Mengen enthalten sind, die im Widerspruch zu den geltenden rechtlichen Anforderungen stehen.
  • Ein bekannter Lösungsansatz zur Reinigung von recycelten Polyolefinen besteht zum Beispiel darin, die Polyolefine mit einem geeigneten Lösemittel in einem Quellungs-Reaktor über wenige Stunden anzuquellen, um die enthaltenen Verunreinigungen leichter entfernen zu können, wobei lange Quellzeiten einen wesentlichen Nachteil darstellen. Ein solches Verfahren ist z.B. in der WO 2018 091 356 A1 beschrieben.
  • Ein weiterer Lösungsansatz besteht darin, Kunststoffe anhand ihrer Verwendungshistorie zu filtern. Hierzu schlägt die DE 10 2017 118 601 A1 die Markierung von Kunststoffen mit spektroskopisch aktiven Stoffen zwecks spektroskopischer Trennung vor. Die DE 4 401 207 A1 zeigt ein ähnliches Verfahren. Die selektive Erkennung und Aussortierung der so markierten Kunststoffe durch spektroskopische Verfahren ist allerdings aufwendig.
  • Ein weiterer Lösungsansatz zur Trennung vorgebbarer Wertstoffanteile aus einem Abfallstrom ist die Zugabe von magnetischen Partikeln zu den Ausgangsmaterialien des Abfallstroms, so dass diese Ausgangsmaterialien durch magnetische Trennverfahren isoliert werden können. Ein solches Verfahren ist in der WO 2004/012 920 A2 beschrieben. Dabei wird als Einsatzmenge für magnetische Partikel ca. 0,1 bis 5 Gew.-% vorgeschlagen, was eine direkte magnetische Abtrennung ermöglicht, jedoch zu einer - insbesondere bei Verpackungen - ungewünschten, dunklen Einfärbung des Ausgangsmaterials führt.
  • Die Zugabe von Additiven zu Kunststoffen zwecks Erhöhung ihrer Dichte für eine gravimetrische Trennung ist in der WO 2001/07 166 A1 beschrieben.
  • Stand der Technik bildet weiterhin die WO 2019 180 438 A2 , die die Markierung von Flaschen und anderen Kunststoffbehältern bei der Herstellung über optische Marker gemäß des verwendeten Kunststoffs zeigt, wobei diese Flaschen nach Verwendung eingesammelt, und anhand der Marker in Teilströme aufgespalten werden, wobei jeder Teilstrom anschließend zerkleinert und in einem Extruder extrudiert zu sortenreinen Kunststoffpellets weiterverarbeitet wird.
  • Des Weiteren ist die Trennung von Kunststoffen im Hochspannungsfeld aufgrund von unterschiedlicher elektrostatischer Ladung von Kunststoff-Flocken durch Reibung bekannt.
  • Vor dem Hintergrund des oben genannten Standes der Technik ist es Aufgabe der Erfindung, ein Verfahren zur sortenreinen Wiedergewinnung von vorgebbaren Kunststoffanteilen eines bestimmten Kunststoffmaterials anzugeben, mit welchem hohe Massendurchsätze bei ausreichender Selektivität bzw. Trennschärfe bewältigt werden können.
  • Eine weitere Aufgabe ist es, ein Verfahren anzugeben, mit welchem Verbundmaterialien sortenrein wiedergewonnen werden können. Unter Verbundmaterialien sind Materialien zu verstehen, die mehrere Materialien umfassen und z.B. in matrixartigen oder mehrlagigen Strukturen angeordnet sein können. Zu Verbundmaterialien zählen u.a. Mehrschichtverbunde wie miteinander kaschierte Kunststofffolien oder beschichtete Kunststofffolien.
  • Eine weitere Aufgabe ist es, ein Verfahren anzugeben, mit welchem recycelte Kunststoffmaterialien sortenrein und in ähnlicher Qualität wie neu hergestellte Kunststoffe ('closed loop recycling' anstelle von 'downcycling') bereitgestellt werden können.
  • Diese Aufgaben werden gelöst durch ein Verfahren nach Anspruch 1.
  • Erfindungsgemäß wird ein Verfahren zur sortenreinen Wiedergewinnung von vorgebbaren Kunststoffanteilen eines bestimmten Kunststoffmaterials oder einer bestimmten Kunststoffzusammensetzung aus einem unsortierten Wertstoffstrom angegeben, wobei die vorgebbaren Kunststoffanteile von anderen Kunststoffanteilen desselben Kunststoffmaterials bzw. derselben Kunststoffzusammensetzung anhand zumindest eines bei der Herstellung und/oder Verwendung des Kunststoffs eingebrachten Primärmarkers unterscheidbar gemacht worden sind und wobei das Verfahren zumindest einen ersten Trennschritt umfasst, bei dem der Wertstoffstrom anhand eines ersten Trennungskriteriums aufgetrennt wird in einen, den vorgebbaren Kunststoffanteil umfassenden ersten Recyclat-Strom und einen ersten Teilstrom, wobei das Trennungskriterium Eigenschaften des Primärmarkers nutzt. Dabei handelt es sich um einen Wertstoffstrom, der thermoplastische Kunststoffe umfasst oder zumindest im Wesentlichen aus thermoplastischen Kunststoffen besteht. Erfindungsgemäß wird der Wertstoffstrom vor dem ersten Trennschritt durch Schmelzextrusion zu thermoplastischen Strängen oder Filmen vorzugsweise mit einer vorgegebenen Querschnittsform, extrudiert und die Stränge oder Filme werden anschließend zu Teilchen, vorzugsweise mit einer vorgegebenen Größe, insbesondere einer vorgegebenen maximalen Länge und insbesondere zu Strangabschnitten bzw. Filmabschnitten zerkleinert. Danach werden die Teilchen durch Einbringung in ein strömendes Fluidisierungsmittel fluidisiert. Bevorzugt weisen die Teilchen dabei alle zumindest im Wesentlichen die gleiche Form (Geometrie) auf. Dies ermöglicht eine homogene Verteilung der Teilchen in einem laminar strömenden Fluidisierungsmittel.
  • Durch die Schmelzextrusion zu Strangabschnitten bzw. Filmabschnitten ist insbesondere eine Trennung von mechanisch fest miteinander verbundenen Materialien, z.B. Matrix- oder Mehrschicht- bzw. Mehrlagen-Verbundstoffen aufgrund von Microphasenseparation in der Schmelze möglich.
  • Unter Fluidisierung wird das Einbringen von Feststoffen (hier: der zerkleinerten Teilchen) in ein strömendes Fluidisierungsmittel verstanden, z.B. durch Herstellung eines Gemischs aus Feststoffen mit einer Flüssigkeit oder einem Gas. Die Teilchen werden in ein strömendes Fluidisierungsmittel mit laminarer Strömung eingebracht und transportiert, wobei das die Teilchen enthaltende Fluidisierungsmittel anschließend insbesondere als Schwebebett oder als Wirbelschicht, ausgebildet wird. In einem Schwebebett bilden die Feststoffe keine feste und kompakte Schicht, sondern werden von dem Fluid durch den Strömungswiderstand an einer Agglomeration gehindert. In einer Wirbelschicht wird eine Schüttung von Feststoffpartikeln in einem Fluid durch eine aufwärtsgerichtete Strömung in einen fluidisierten Zustand versetzt.
  • Durch die Zerkleinerung und Fluidisierung der Teilchen kann der Wertstoffstrom in dem erfindungsgemäßen Verfahren fließfähig gemacht werden. Die zerkleinerten Teilchen können mit dem strömenden Fluidisierungsmittel, insbesondere in der laminaren Fluidströmung des Fluidisierungsmittel, transportiert werden. Durch die Fluidisierung kann damit ein zweidimensionaler Stoffstrom in einen dreidimensionalen Stoffstrom überführt werden. Ein dreidimensionaler Stoffstrom weist neben einer Längserstreckung (Transportrichtung) ein kontrollierbares Querschnittsprofil, z.B. ein kreisförmiges Querschnittsprofil, auf. Durch die Fluidisierung gewinnen die Bestandteile des Wertstoffstroms an Beweglichkeit gegenüber einem nicht-fluidisierten Festkörperstrom, wie beispielsweise einem Festkörperstrom auf einem Transportband.
  • Die Zerkleinerung bzw. Zerteilung der extrudierten Stränge oder Filme kann bspw. mechanisch, z.B. durch eine Schneidevorrichtung, durch einen Luftstrahl oder durch einen Wasserstrahl erfolgen.
  • Die vorgegebene Querschnittsform der extrudierten Stränge oder Filme kann vorteilhaft durch Auswahl einer entsprechend geformten Extrusionsdüse gewählt werden, etwa kreisförmig (zur Ausbildung von Strängen) oder rechteckig (zur Ausbildung von Filmen) oder mit anderen Geometrien.
  • Das Fluidisierungsmittel kann eine Flüssigkeit oder ein Gas sein. Besonders vorteilhaft kann als Fluidisierungsmittel Wasser, ein Lösemittel, Luft, ein Inert- oder Edelgas und/oder eine Mischung davon verwendet werden. Wasser als Fluidisierungsmittel ist reaktionsträge, kostengünstig erhältlich und einfach verfügbar, weist jedoch ein hohes Eigengewicht auf, so dass die Umwälzung von Wasser energieintensiv gegenüber gasförmigen Fluidisierungsmitteln ist. Aufgrund der guten Verfügbarkeit von Wasser kann auf eine Wiederverwendung des Fluidisierungsmittels am Ende der Wiedergewinnung der vorgebaren Kunststoffanteile verzichtet werden. Es kann jedoch auch eine Wiederverwendung erfolgen, bspw. nach einer Sieb- oder Filterreinigung des verwendeten Wassers. Der Einsatz von Lösemitteln als Fluidisierungsmittel, ggf. auch nur anteilig, kann sich vorteilhaft auf die Fluidisierung der Partikel sowie den abschließenden Extraktionsschritt auswirken.
  • Luft, Inert- oder Edelgase weisen dagegen den Vorteil auf, dass sie leicht und reaktionsschnell sind, so dass nur geringe Energiemengen zur Umwälzung des Fluidisierungsmittels notwendig sind. Vorzugsweise wird das Fluidisierungsmittel am Ende der Wiedergewinnung der vorgebbaren Kunststoffanteile wiederverwendet, bspw. durch eine Filterung, so dass das Fluidisierungsmittel in einem geschlossenen Kreislauf eingesetzt wird. Dadurch kann der Bedarf an Fluidisierungsmittel gering gehalten werden.
  • Vorteilhaft werden die extrudierten Stränge oder Filme vor der Abtrennung der vorgebbaren Kunststoffanteile in Teilchen mit definierter Form zerkleinert bzw. micronisiert wobei sie mindestens in einer Dimension eine maximale Erstreckung kleiner als 1000 µm, bevorzugt kleiner als 500 µm aufweisen.
  • Dabei können die Teilchen nach der Zerkleinerung in mehreren, oder auch nur in einer Dimension Abmessungen kleiner als 1000 µm aufweisen.
  • Vorzugsweise weisen die Teilchen bezüglich der Querschnittsform in wenigstens einer Querschnitts-Dimension (im Falle von folienartigem Extrudat und Zerteilung in Plättchen oder Filmabschnitten) oder auch in zwei Querschnitts-Dimensionen (im Falle von z.B. strangartigem Extrudat und Zerteilung in Fäden bzw. Strangabschnitten) Querschnitts-Abmessungen kleiner als 1000 µm, bevorzugt kleiner 500 µm, auf. Durch eine Zerkleinerung können die Fließeigenschaften der Teilchen im Fluidisierungsmittel verbessert werden. Durch eine Zerkleinerung können weiterhin die chemischen Eigenschaften bzw. die Reaktionsfreudigkeit der Teilchen vorteilhaft beeinflusst werden. Insbesondere kann ein hohes Oberflächen-zu-Volumen-Verhältnis Reaktionszeiten bei physikalischen oder chemischen Prozessen, insbesondere in einem Extraktionsverfahren, herabsetzen.
  • Unter Micronisierung ist eine Zerkleinerung auf Teilchengrößen mit definierter Form mit einer maximalen Erstreckung in eine Dimension , insbesondere bzgl. einer Längserstreckung und/oder einem maximalen Querschnittsdurchmesser von kleiner 1000 µm, insbesondere weniger als 500 µm, zu verstehen. Durch eine Verkleinerung weisen die einzelnen Teilchen des Wertstoffstroms nur geringe Massen auf und erlangen dadurch eine sehr gute Steuerbarkeit, d.h. die Bewegungsrichtung und/oder Geschwindigkeit der Teilchen lässt sich durch geringe äußere Kräfte verändern. Die Längserstreckung der Teilchen kann dabei entlang der Extrusionsrichtung, mit der die extrudierten Stränge oder Filme die Extrusionsdüse verlassen, definiert werden.
  • Bevorzugt werden bei der Zerkleinerung alle Teilchen auf eine vergleichbare Größenordnung zerkleinert, z.B. alle Teilchen auf Längs- und/oder Querschnitts-Abmessungen zwischen 400-800 µm, auf Längs- und/oder Querschnitts-Abmessungen zwischen 200-400 µm oder auf Längs- und/oder Querschnitts-Abmessungen zwischen 50-300 µm oder vorteilhaft zwischen 1-50 µm. In der Regel liegen die Teilchen des Wertstoffstroms nach der Zerkleinerung der Teilchen in einer vom Zerkleinerungsverfahren abhängigen, gaußförmigen Partikelgrößenverteilung der Teilchen mit einem mittleren Partikeldurchmesser oder -volumen vor. Je geringer die Streuung der Abmessungen der Teilchen (also des mittleren Partikeldurchmessers oder -volumens) ist, desto ähnlicher ist das Verhalten der einzelnen Teilchen und desto besser steuerbar sind die Teilchen in dem Fluidisierungsmittel. Die vorzugswürdige Teilchengröße kann je nach Eigenart des Wertstoffstroms bzw. der darin enthaltenen Bestandteile variieren.
  • Bevorzugt werden die Stränge oder Filme zu Teilchen mit anisotroper Geometrie extrudiert und zerkleinert, insbesondere mit einer Längserstreckung verschieden von einer Querschnittserstreckung. Durch eine anisotrope Geometrie erhalten die Teilchen bei der Fluidisierung eine Vorzugsrichtung, nach welcher sich die Teilchen in dem Fluidisierungsmittel auf vorhersehbare Weise ausrichten können. Dadurch werden Verwirbelungen in dem Fluidisierungsmittel vermieden bzw. verringert, so dass sich im strömenden Fluidisierungsmittel ein im Wesentlichen laminares Strömungsfeld ausbildet. In einem laminaren Strömungsfeld sind die Teilchen des Wertstoffstroms besser steuerbar. Die Teilchen sind dabei homogen in dem Fluidisierungsmittel verteilt.
  • Eine anisotrope Form kann zweckmäßig über den Formfaktor als "aspect ratio" oder Seitenverhältnis AR ausgedrückt bzw. eingestellt werden. Das Seitenverhältnis AR ist eine Funktion des größten Durchmessers dmax und des kleinsten Durchmessers dmin orthogonal dazu, d.h. A R = d min / d max .
    Figure imgb0001
  • Das normalisierte Seitenverhältnis AR variiert von annähernd Null für ein sehr längliches Teilchen bis nahe Eins für ein gleichachsiges Teilchen.
  • Das Seitenverhältnis wird vorzugsweise kleiner 0,8, bevorzugt kleiner 0,7 oder besonders bevorzugt kleiner 0,5 gewählt.
  • Zusätzlich oder alternativ zur Verwendung des Seitenverhältnisses AR kann eine anisotrope Geometrie der Teilchen mittels der Wadell-Sphärizität ausgedrückt bzw. eingestellt werden. Vorteilhaft ist die Formgebung der Teilchen derart, dass eine Wadell-Sphärizität von kleiner 0,8 vorliegt, bevorzugt von kleiner 0,75 und besonders bevorzugt von kleiner 0,7.
  • Die Wadell-Sphärizität ist dabei definiert als Ψ = x V 2 x S 2
    Figure imgb0002
    , wobei xS den oberflächenäquivalenten Durchmesser und xV den volumenäquivalenten Durchmesser des Teilchens bzgl. einer äquivalenten Kugel darstellt. Es gilt: x V = 6 V π 3 und x S = S π ,
    Figure imgb0003
    wobei S die Oberfläche und V das Volumen des Teilchens sind. Für ein zylindrisches Teilchen, dessen Höhe das 2,5fache des Durchmessers ist, ergibt sich z.B. eine Sphärizität nach Wadell von 0,804574.
  • Besonders vorteilhaft kann die Extrusion der Stränge oder Filme, deren Zerkleinerung zu Teilchen und/oder deren Fluidisierung im Fluidisierungsmittel kontinuierlich erfolgen. Durch ein kontinuierliches Verfahren lassen sich hohe Massendurchsätze realisieren.
  • Zur Markierung bzw. Kennzeichnung der vorgebbaren Kunststoffanteile werden in die vorgebbaren Kunststoffanteile bei der Herstellung und/oder Verwendung des Kunststoffs Markerpartikel eingebracht oder es werden Markerpartikel mit den vorgebbaren Kunststoffanteilen verbunden, so dass die vorgebbaren Kunststoffanteile gegenüber gleichartigen Kunststoffanteilen ohne Markerpartikel anhand der Materialeigenschaften in einem Kraftfeld, insbesondere der Dichte-Eigenschaften und/oder elektrischer Ladungseigenschaften und/oder magnetischer Eigenschaften und/oder elektromagnetischer, insb. optischer, Eigenschaften unterscheidbar sind.
  • Als Markerpartikel können Partikel mit gegenüber dem bestimmten Kunststoffmaterial ausgezeichneten, d.h. stark abweichenden Materialeigenschaften eingesetzt werden wie z.B. Magnetit zur Kennzeichnung via magnetischer Eigenschaft oder Bentonit zur Kennzeichnung via elektrostatischer Eigenschaft. Andere Markerpartikel sind möglich, ebenso wie der Einsatz von mehreren Markern in Kombination.
  • Die Größe der eingebrachten Markerpartikel ist dabei vorzugsweise kleiner als die Größe der kleinsten Teilchen, in welche der Wertstoffstrom zerkleinert wurde. Dies stellt eine gleichmäßige Verteilung der Marker in dem zerkleinerten Wertstoffstrom sicher.
  • Vorteilhaft können die vorgebbaren Kunststoffanteile neben einem Primärmarker mindestens einen Sekundärmarker und/oder weitere Marker umfassen. Durch die Verwendung von mehreren Markern kann eine tiefergestaffelte Unterscheidung von z.B. gleichartigen Kunststoffanteilen mit mehreren Verwendungshistorien erfolgen oder ein Wertstoffstrom gleichzeitig in unterschiedliche Fraktionen, insbesondere mit unterschiedlichen Kunststoffmaterialien bzw. -sorten und/oder nach Materialien mit unterschiedlicher Verwendungshistorie getrennt werden.
  • Beispielsweise kann ein Primärmarker dafür eingesetzt werden, thermoplastische Materialien mit definierter Zusammensetzung und/oder Verwendungshistorie, z.B. Lebensmittelverpackungen, aus einem undefinierten Wertstoffstrom herauszufiltern, während ein Sekundärmarker eingesetzt werden kann, um aus den herausgefilterten thermoplastischen Materialien mit definierter Zusammensetzung und/oder Verwendungshistorie einzelne Materialfraktionen (z.B. unterschiedliche Kunststoffsorten) herauszutrennen.
  • Als Marker eingesetzte Partikel können eine Oberflächenmodifikation aufweisen, d.h. sie weisen eine bewusst gestaltete bzw. designte Oberfläche auf. Dadurch können Markereigenschaften verstärkt oder neue Eigenschaften hinzugefügt werden. Durch eine Oberflächenmodifikation kann z.B. ein Strömungswiderstand oder eine Benetzungsfähigkeit eines mit dem Markerpartikel markierten Teilchens gezielt beeinflusst werden. Insbesondere kann damit das Fluidisierungsverhalten und das Fließverhalten eines markierten Teilchens gezielt eingestellt werden.
  • Zur Trennung verschiedener Kunststoffanteile aus einem un- oder vorsortierten Wertstoffstrom mit demselben Marker können die verschiedenen Kunststoffanteile mit demselben Marker in unterschiedlicher Menge markiert werden. Beispielsweise kann ein erster Kunststoffanteil doppelt so viele Markerpartikel aufweisen wie ein davon verschiedener Kunststoffanteil.
  • In einer bevorzugten Ausführung des Verfahrens ist der Wertstoffstrom ein thermoplastischer Wertstoffstrom, d.h., dass der Wertstoffstrom im Wesentlichen nur thermoplastisches Material enthält. Ein thermoplastischer Wertstoffstrom kann gegebenenfalls nach bzw. durch eine Vorsortierung eines anfänglich unsortierten Wertstoffstroms bereitgestellt werden. Ein thermoplastischer Wertstoffstrom weist den Vorteil der (vollständigen) Einschmelzbarkeit auf. Dadurch werden neue Verfahrensschritte bzw. Behandlungsoptionen, insbesondere die Schmelzextrusion, verfügbar.
  • Bevorzugt umfasst bzw. bewirkt die Zerkleinerung der extrudierten Stränge oder Filme gleichzeitig auch eine Microseparierung der im Wertstoffstrom vorhandenen Kunststoffsorten. Dies kann dadurch erfolgen, dass der Wertstoffstrom zu Strängen mit einem vorgegebenen Durchmesser extrudiert und die Stränge danach durch Zuschneiden auf eine vorgegebene (maximale) Länge zerkleinert werden, wobei der Durchmesser der Stränge bevorzugt unterhalb einer Größe von beim Aufschmelzen in der Schmelze als sortenrein vorliegenden Phaseninseln nicht mischbarer Polymere bzw. Kunststoffsorten liegt.
  • Durch den so gewählten Durchmesser der Stränge sind die Stränge über den Querschnitt jeweils sortenrein. So entstehen bei der Extrusion und durch die anschließende Zerkleinerung sortenreine Strangabschnitte mit unterschiedlichen Kunststoffsorten, wobei die nicht mischbaren Polymere an den Grenzflächen der Strangabschnitte einfach auftrennbar sind. Durch eine Microseparierung können insbesondere Verunreinigungen von Teilchen einer Kunststoffsorte mit einer anderen Kunststoffsorte vermieden oder zumindest reduziert werden.
  • Eine Extrusion des aufgeschmolzenen Wertstoffstroms zu Folien mit einer vorgegebenen Schichtdicke, die bevorzugt unterhalb der Größe der sortenrein vorliegenden Phaseninseln liegt, kann ebenfalls zur Microseparation eingesetzt werden. Diese ist im Sinne der Erfindung gleichwirkend mit der Extrusion in Strängen mit einem vorgegebenen Durchmesser unterhalb einer Größe von beim Aufschmelzen in der Schmelze als sortenrein vorliegenden Phaseninseln nicht mischbarer Polymere bzw. Kunststoffsorten.
  • Das erfindungsgemäße Verfahren kann mehrere gleichartige oder unterschiedliche, nacheinander ausgeführte Trennschritte zur Auftrennung des Wertstoffstroms anhand bestimmter Trennkriterien umfassen. Durch zusätzliche Trennschritte lassen sich weitere Rohstoffe aus dem Wertstoffstrom wiedergewinnen bzw. abscheiden. Durch zusätzliche Trennschritte kann auch die Abscheidungsrate eines vorgebbaren Kunststoffanteils aus dem Wertstoffstrom erhöht werden.
  • Der Wertstoffstrom kann auch einen oder mehrere Trennschritte mehrfach durchlaufen. Dadurch kann die Zahl der für einen Trennschritt vorzuhaltenden Apparaturen gesenkt und die die Abscheidungsrate eines vorgegebenen Kunststoffanteils gleichzeitig erhöht werden.
  • Das erfindungsgemäße Verfahren zur sortenreinen Wiedergewinnung kann insbesondere einen zweiten Trennschritt umfassen, bei dem ein Recyclatstrom anhand eines zweiten Trennungskriteriums in einen zweiten Recyclat-Strom und einen zweiten Teilstrom aufgetrennt wird, wobei der Trennschritt als Trennungskriterium (auch) Eigenschaften eines Sekundärmarkers nutzt. Dadurch lassen sich sehr ähnliche Kunststoffsorten mit hoher Selektivität voneinander trennen.
  • Das erfindungsgemäße Verfahren kann weiterhin einen dritten Trennschritt umfassen, bei dem ein Recyclatstrom anhand eines dritten Trennungskriteriums aufgetrennt wird in einen dritten Recyclat-Strom und einen dritten Teilstrom, wobei der Trennschritt als Trennungskriterium (auch) eine den Kunststoffanteilen natürlich anhaftende bzw. inhärente Eigenschaft nutzt.
  • Durch die vorgenannten weiteren Trennschritte lassen sich weitere Bestandteile des WertstoffStroms gezielt abscheiden.
  • Als Trennungskriterium können bevorzugt Eigenschaften des Primärmarkers und/oder des Sekundärmarkers oder auch dem vorgebbaren Kunststoffanteil natürlich anhaftende, also inhärent vorhandene Eigenschaften oder eine Kombination solcher Eigenschaften genutzt werden. Dadurch lässt sich eine weitreichende Trennbarkeit von unterschiedlichen Kunststoffanteilen realisieren. Die Verwendung der Eigenschaften des Primärmarkers und/oder des Sekundärmarkers als Trennungskriterium ermöglicht eine besonders effiziente Verfahrensführung, weil hierbei in einem Trennschritt, in dem der Wertstoffstrom aufgetrennt wird, gleichzeitig eine Identifizierung und Separierung des vorgebbaren Kunststoffanteils aus dem Wertstoffstrom erfolgt, weshalb kein gesonderter Schritt zur Identifizierung der mit einem Marker versehenen und dadurch vorgegebenen Kunststoffanteile notwendig ist.
  • Bevorzugt wird der zerkleinerte und fluidisierte Wertstoffstrom zur Abtrennung der vorgebbaren Kunststoffanteile zumindest einem Kraftfeld ausgesetzt. Kraftfelder haben den Vorteil, dass Sie berührungslos wirken. In einem Kraftfeld können in einem Fluidisierungsmittel gelöste Teilchen daher auf sehr einfache Art und Weise anhand ihrer Kraftfeldeigenschaften voneinander getrennt werden.
  • Das Kraftfeld zur Abtrennung der vorgebbaren Kunststoffanteile kann insbesondere ein Gravitationsfeld, ein magnetisches Feld, ein elektrostatisches Feld oder ein elektromagnetisches Feld sein.
  • Der zerkleinerte und fluidisierte Wertstoffstrom kann insbesondere in ein zu einer Strömungsrichtung des fluidisierten Wertstoffstroms bevorzugt senkrecht oder parallel ausgerichtetes Kraftfeld eingebracht werden. Das Kraftfeld kann auch auf andere Art ausgerichtet sein, z.B. schräg zur Strömungsrichtung des fluidisierten Wertstoffstroms. In einem parallel zur Strömungsrichtung ausgerichteten Kraftfeld kann die Geschwindigkeit der Teilchen in Strömungsrichtung beeinflusst werden. In einem senkrecht zur Strömungsrichtung ausgerichteten Kraftfeld kann die Geschwindigkeit der Teilchen in einer Vertikalen zur Strömungsrichtung beeinflusst werden. Durch selektive Geschwindigkeits- und/oder Ortsveränderung der Teilchen können Teilchen selektiv aus dem Wertstoffstrom herausgefiltert werden.
  • Vorteilhaft können in einem Trennungsschritt auch mehrere, Kraftfelder eingesetzt bzw. kombiniert werden. Insbesondere können mehrere Kraftfelder miteinander überlagert werden. Dadurch ist eine multifaktorielle Trennung in nur einem Trennungsschritt möglich. Es ist jedoch auch möglich, den Wertstoffstrom nacheinander einer Mehrzahl von hintereinander angeordneten Kraftfeldern auszusetzen. Dabei können auch überlagerte Kraftfelder hintereinander angeordnet sein.
  • Beispielsweise kann senkrecht zur Fließrichtung ein Gravitationsfeld angelegt sein, während gleichzeitig parallel zur Fließrichtung ein elektrisches Feld angelegt ist. Bei gleichem hydrodynamischen Querschnitt (z.B. gleichem Durchmesser von zylindrischen Filamenten) werden Teilchen mit mehr Ladungsträgern in Fließrichtung stärker beschleunigt und legen bei einer definierten Fließzeit einen längeren Weg zurück als diejenigen Teilchen mit weniger Ladungsträgern, d.h. es erfolgt eine räumliche Separation über die Weglänge. Gleichzeitig erfolgt bei einem gegebenen Dichteunterschied eine räumliche Separation der fluidisierten Teilchen senkrecht zur Fließrichtung. Damit kann eine selektive Trennung von vorgebbaren Kunststoffanteilen durch Abzweigung von Teil- bzw. Recyclatströmen des fluidisierten Wertstoffstroms bei unterschiedlichen Querschnittspositionen und Weglängen erfolgen.
  • Vorteilhaft umfasst das Verfahren zur sortenreinen Wiedergewinnung von vorgebbaren Kunststoffanteilen einen Aufbereitungsschritt, bei welchem Markerpartikel und/oder andere, unerwünschte Kontaminierungen aus den Teilchen der vorgebbaren Kunststoffanteile eines Recyclat-Stroms ausgesondert werden. Die Aussonderung kann z.B. durch Extraktion und/oder Emission erfolgen, wobei das Fluidisierungsmittel auch als Extraktionsmittel dienen kann.
  • Bei der Extraktion werden unerwünschte Kunststoffanteile durch bzw. in einem Extraktionsmittel gebunden. Als Extraktionsmittel eignen sich je nach Anwendungsfall z.B. Wasser, Alkohole oder überkritisches CO2. Als Extraktionsverfahren kann z.B. die Wasserdampfdestillation eingesetzt werden. Dabei wird das Extraktionsmittel von den Kunststoffpartikeln zum Teil aufgenommen und muss im Anschluss an die Extraktion durch Emission oder weitere Extraktion (z.B. Trocknung mit heißer Luft oder Wasserdampfdestillation) wieder entfernt werden.
  • Vorteilhaft werden die Teilchen des Wertstoff- oder Recyclatstroms vor der Extraktion durch ein Quellmittel angequollen. Durch die Quellung kann die Aussonderung beschleunigt und dadurch die Verfahrensdauer für die Extraktion verkürzt werden.
  • Das Extraktionsmittel weist vorzugsweise eine gute Löslichkeit für die zu extrahierenden Stoffe auf. Vorzugsweise liegt die Polarität des Extraktionsmittels dabei, ausgedrückt als Oktanol/Wasser-Verteilungskoeffizient KOW, in einem Bereich zwischen oder nahe an der Polarität der Kunststoffsorte der vorgebbaren Kunststoffanteile und der Polarität der zu extrahierenden Stoffe. Dadurch kann eine hohe Extraktionsrate erreicht werden, ohne dass der Kunststoff angelöst wird und beim Extrahieren verklebt.
  • Für die Berechnung des Oktanol/Wasser-Verteilungskoeffizienten KOW kann z.B. die Software EPI-Suite der US Environmental Protection Agency (www.epa.gov) verwendet werden. Aus einer chemischen Struktur wird die SMILES Notation generiert und an die EPI-Suite Software übergeben. Diese berechnet dann den entsprechenden Oktanol/Wasser-Verteilungskoeffizienten KOW. Die berechneten Oktanol/Wasser-Verteilungskoeffizienten KOW werden abschließend auf ein Molekulargewicht von 1000 g/mol genormt. Der Oktanol/Wasser-Verteilungskoeffizient KOW von Polymeren berechnet sich aus einem Kettensegment mit einem Molekulargewicht, das dem Wert von 1000 g/mol am nächsten ist.
  • Aus der Polarität des Extraktionsmittels (OM), der Polarität der Teilchen des aufzubereitenden Kunststoffs (P) und zu der Polarität er zu extrahierenden Stoffe (M) lässt sich ein Verteilungskoeffizient KP,M bestimmen wie folgt: K P , M = logP O / W P logP O / W OM 2 logP O / W OM logP O / W M 2
    Figure imgb0004
    wobei das Zeichen P für die Polarität des entsprechenden Stoffes P bzw. OM bzw. M ausgedrückt als Oktanol/Wasser-Verteilungskoeffizienten steht.
  • Dieser Verteilungskoeffizient KP,M liegt vorzugsweise für die zu extrahierenden Stoffe im Bereich von < 1. Vorzugsweise liegt auch der Abstand zwischen dem Logarithmus log(PP O/W) und dem Logarithmus log (POM O/W) > 5. Dadurch lässt sich eine hohe Extraktionsgüte bei geringen Extraktionszeiten erreichen.
  • Die Extraktionszeit tex von niedermolekularen Stoffen aus mikronisierten Teilchen von einem Kunststoff bei einem Referenz-Molekulargewicht der niedermolekularen Fraktion von 200 g/mol ergibt sich beispielsweise aus der kleinsten Teilchendimension (d in cm2) und dem Diffusionskoeffizienten DP, der sich aus dem Polymertyp, beschrieben durch dessen Glasübergangstemperatur (Tg in °C), der Temperatur (T in K) und dem Molekulargewicht ergibt wie folgt: t ex = 1 / 6 * d / 2 2 / D P
    Figure imgb0005
    und D P = 10 4 * EXP 0,06 * T g + 2 0,1351 * 200 2 / 3 + 0,003 * 200 10545 / T in cm 2 / s .
    Figure imgb0006
  • Damit beträgt die Extraktionszeit für typische Kontaminanten aus recycelten Polypropylen-Teilchen (zylindrische Filamente) mit 80 µm Durchmesser z.B. bei einer Glasübergangstemperatur von TG,PP = -40°C und dem Molekulargewicht von MW = 200 Dalton sowie Extraktionstemperatur T = 373K (100°C) mit dem Zwischenschritt D P = 10 4 * EXP 0.06 * 40 + 2 0.1351 * 200 2 / 3 + 0.003 * 200 10545 / 373 in cm 2 / s = 7,7 e 9 cm 2 / s ,
    Figure imgb0007
    also t EX , PP d = 80 μm = 1 / 6 * 0,004 2 / 7,7 e 9 = 5,8 Minuten .
    Figure imgb0008
  • Je kleiner die durchschnittlichen Teilchengrößen sind, desto kürzer können die Extraktionszeiten gewählt werden.
  • Weitere Details und vorteilhafte Ausprägungen der Erfindung ergeben sich aus der folgenden Figurenbeschreibung.
  • Dabei zeigen
  • Fig. 1
    schematische Darstellung der Verfahrensschritte Extrusion, Zerkleinerung und Fluidisierung eines thermoplastischen Wertstoffstroms gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens;
    Fig. 2
    bildliche Erläuterung eines Trennschritts zur Trennung vorgebbarer Kunststoffanteile aus einem zerkleinerten und fluidisierten Wertstoffstrom mithilfe eines senkrecht angelegten Kraftfeldes, wobei Figur 2a eine Trennungsvorrichtung im Längsschnitt und die Figuren 2b und 2c jeweils einen Querschnitt des in Fig. 2a angegebenen Trennschritts entlang der Schnitte A-A bzw. B-B zeigen;
    Fig. 3
    ein erstes Ablaufschema eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens;
    Fig. 4
    ein zweites Ablaufschema eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens sowie
    Fig. 5
    beispielhafte Querschnitte extrudierter Stränge oder Filme.
  • Fig. 1 zeigt schematisch die Verarbeitung eines thermoplastischen Wertstoffstrom W aus thermoplastischen Kunststoffmaterialien zur Wiedergewinnung von vorgegebenen Kunststoffanteilen aus dem Wertstoffstrom W, der hierfür zunächst in einer Schmelz- und Extrusionsvorrichtung 1 aufgeschmolzen wird. Der Wertstoffstrom umfasst in dem dargestellten Beispiel verschiedene thermoplastische, nicht mischbare Kunststoffe a, b, c, d. Diese liegen in aufgeschmolzenem Zustand phasensepariert in Phaseninseln 2a, 2b, 2c, 2d vor. Die Ausmessungen der Phaseninseln 2a, 2b, 2c, 2d ergeben sich im Wesentlichen aus der Größe und Zusammensetzung der einzelnen Bestandteile des zugeführten Wertstoffstroms W. Bei vorwiegend großteiligen Bestandteilen des Wertstoffstroms W sind die Phaseninseln 2a, 2b, 2c, 2d größer, z.B. im Bereich von mm. Bei kleinteiligen Bestandteilen, insbesondere bei z.B. Mehrschicht-Folien mit geringen Schichtstärken von wenigen µ sind die Phaseninseln entsprechend kleiner. Die Ausmessungen der Phaseninseln in diesem Beispiel unterschreitet 100 µm nicht.
  • Der aufgeschmolzene Wertstoffstrom W wird durch eine nicht näher dargestellte Extruderschnecke zu einem durchgehenden Strang 3 extrudiert, wobei der Durchmesser des Strangs 3 kleiner ist als die kleinsten Abmessungen der einzelnen Phaseninseln 2a - 2d. Da es sich im Beispiel der Fig. 1 um einen thermoplastischen Wertstoffstrom W nicht näher bekannter Zusammensetzung handelt, ist der gewählte Extrusionsquerschnitt zweckmäßig ein kreisrunder Querschnitt mit einem Durchmesser von bspw. 20 µm. Es können je nach Bedarf auch andere Extrusionsquerschnitte und/oder Durchmesser gewählt werden.
  • Vorteilhafte Querschnittsformen könnten z.B. gemäß den Fig. 5 a) bis k) ausgestaltet sein. Die Querschnittsform kann beispielsweise polygonal, insbesondere rechteckig (Fig. 5a und Fig. 5k), dreieckig (Fig. 5b), wabenförmig bzw. hexagonal mit gleichseitigen Kanten (Fig. 5c) oder unterschiedlich langen Kanten (Fig. 5e) oder rechteckig mit unterschiedlich langen Kanten (Fig. 5d) gewählt sein. Die Querschnitte könnten auch kreisrund (Fig. 5g), oval (Fig. 5f) oder hohlzylindrisch (Fig. 5h) gewählt sein. Die Querschnittsform kann auch als Kombination bzw. Verbindung von mehreren Grundformen ausgestaltet sein wie z.B. als Verbindung von vier Kreisquerschnitten gemäß Fig. 5i oder als Verbindung zweier Kreisformen mit einem dazwischen befindlichen Steg (Fig.5j).
  • Der extrudierte Strang 3 umfasst einzelne Strangabschnitte 4a, 4b, 4c, 4d unterschiedlicher Kunststoffsorten. Der Strang 3 wird bei oder nach Erkalten durch eine mechanische Trennungsvorrichtung 5 in einzelne Strangabschnitte bzw. Filamente 6a, 6b, 6d auf eine vorgegebene Länge geteilt und dadurch zerkleinert. Bei der mechanischen Trennungsvorrichtung 5 kann es sich z.B. um ein schnell rotierendes oder oszillierendes Messer handeln. Die Filamente 6a, 6b, 6d haben bspw. eine durchschnittliche Länge von 80 µm. Bei der mechanischen Trennung bricht der extrudierte Strang 3 bevorzugt an den Phasengrenzen bzw. den stirnseitigen Grenzflächen der Kunststoffstrangabschnitte, da eine Phasengrenze eine natürliche Sollbruchstelle darstellt.
  • Die abgetrennten Filamente 6a - 6d werden danach in eine Fluidisierungsvorrichtung 7 gebracht. Bevorzugt fallen die abgetrennten Filamente direkt in die Fluidisierungsvorrichtung 7. In der Fluidisierungsvorrichtung 7 werden die Filamente 6a - 6d in ein als Fluidisierungsmittel dienendes Fluid, insbesondere in einen laminar strömenden Flüssigkeits- oder Gasstrom, bspw. einem aus der Umgebung durch ein Gebläse angesaugten Luftstrom, eingebracht und dadurch fluidisiert. Da die Filamente 6a - 6d fadenförmig und damit anisotrop ausgebildet sind, richten sie sich im Strömungsfeld des Fluids in ihrer Vorzugsrichtung, d.h. entlang ihrer Längsachse nach der Strömungsrichtung des Fluidstroms aus. Das Strömungsfeld des strömenden Fluids bleibt dabei im Wesentlichen laminar.
  • Die Filamente 6a - 6d werden mit dem Fluidstrom in eine erste Trennungsvorrichtung zur Durchführung eines ersten Trennschrittes transportiert. Bei der ersten Trennungsvorrichtung, die in Figur 1 nicht gezeigt ist, kann es sich z.B. um eine Trennungsvorrichtung 10 handeln, wie in Fig. 2 gezeigt.
  • Fig. 2a zeigt eine vorteilhafte Trennungsvorrichtung 10 zur Durchführung des (ersten) Trennschrittes des erfindungsgemäßen Verfahrens in einem Längsschnitt. Die Trennungsvorrichtung 10 der Figur 2 umfasst eine von einem hier als Elektromagnet ausgebildeten Kraftfelderzeuger 11 umgebene ring- bzw. rohrförmige Reaktionskammer 12. Über ein Zuleitungsrohr 13 wird ein wie in Fig. 1 beschriebener fluidisierter Stoffstrom S eingebracht. Der Stoffstrom S enthält die in dem Fluidisierungsmittel, bspw. einem Gasstrom, fluidisierten Filamente 6, 6' derselben Kunststoffsorte, wobei die Filamente 6' magnetische Markerpartikel, hier Magnetit, aufweisen und die Filamente 6 frei von solchen Markern sind. In der Trennungsvorrichtung 10 werden die Filamente 6' von den Filamenten 6 getrennt. Bei den Filamenten 6' handelt es sich daher um die vorgegebenen bzw. vorgebbaren Kunststoffanteile des Wertstoffstroms W, welche sich von den übrigen (Kunststoff-)Anteilen des Wertstoffstroms W durch die vorhanden Markerpartikel unterscheiden.
  • Der Stoffstrom S bewegt sich in der Blattebene der Fig. 2a horizontal von links nach rechts. Die Reaktionskammer 12 weist einen gegenüber dem Zuleitungsrohr 13 größeren Durchmesser mit bspw. kreisrundem Querschnitt auf. Der als Elektromagnet eingerichtete Kraftfelderzeuger 11 erzeugt in diesem Fall ein magnetisches Kraftfeld, dessen Feldlinien im Wesentlichen senkrecht zur Strömungsrichtung des Stoffstromes S gerichtet sind und in welchem die magnetische Feldstärke radial ansteigt. In Abhängigkeit ihrer magnetischen Eigenschaften wandern die im Stoffstrom S befindlichen Filamente 6 und 6' stärker oder weniger stark nach außen. Die aufgrund der magnetischen Markerpartikel magnetisierbaren Filamente 6' wandern aufgrund des Magnetfeldes nach radial außen und sammeln sich dadurch am äußeren Umfangsbereich der Reaktionskammer 12. Die nicht magnetischen bzw. kaum magnetischen Filamente 6 verändern ihre Querschnitts-Lage nicht und verbleiben innerhalb des Querschnitts des Zuleitungsrohrs und damit im radial inneren Bereich der Reaktionskammer 12.
  • Nach der bzgl. der Querschnittslage selektiven Ortsveränderung der Filamente 6 und 6' können diese über zwei konzentrisch angeordnete Ableitungsrohre 14a und 14b abgeführt und als zwei voneinander separierte Stoffströme, nämlich einem die vorgebbaren Kunststoffanteile bzw. Filamente 6' umfassenden Recyclatstrom R sowie einen die übrigen Stoffstromanteile umfassenden Teilstrom T, abtransportiert und gegebenenfalls weiteren Verfahrensschritten unterzogen werden. Das innere Ableitungsrohr 14a kann dabei auch als (Ring-)blende verstanden werden.
  • In der Querschnittsdarstellung der Fig. 2b ist der Stoffstrom S vor Eintritt in die Reaktionskammer, hier auf Höhe des Schnitts A-A in Fig. 2a zu sehen. Die Filamente 6' mit Marker und die Filamente 6 ohne Marker liegen dabei zufällig gemischt vor.
  • In der Querschnittsdarstellung der Fig. 2c ist der in einen Recyclatstrom R und einen Teilstrom T aufgeteilte Stoffstrom S nach bzw. bei Austritt aus der Reaktionskammer 12, hier auf Höhe des Schnitts B-B in Fig. 2a gezeigt. Die Filamente 6' mit Marker liegen bzgl. ihrer Querschnittslage radial außen vor (Recyclatstrom R). Die Filamente 6 ohne Marker liegen im Vergleich zu Fig. 2b im Wesentlichen in unveränderter Querschnittslage vor (Teilstrom T).
  • Der in den Figuren 2, 2a und 2b dargestellte Stoffstrom S kann zuvor bereits einem oder mehreren Trennschritten unterworfen worden sein, um die Filamente 6, 6' der gewünschten Kunststoffsorte von den Filamenten anderer Kunststoffsorten zu trennen. Ebenso kann der ausströmende (innere) Teilstrom T weiteren Trennschritten unterzogen werden, um eine möglichst weitgehende Separierung der Filamente 6' mit Marker und der Filamente 6 ohne Marker zu erzielen.
  • Fig. 3 zeigt ein erstes Ablaufschema eines Ausführungsbeispiels gemäß einem erfindungsgemäßen Verfahren. Dabei wird ein Ausgangsmaterial, wie hier z.B. Polypropylen (PP) für Nahrungsmittelverpackungen, bereitgestellt Schritt V101. Dieses Ausgangsmaterial soll nach bestimmungsgemäßem Gebrauch als Nahrungsmittelverpackung wiedergewonnen und zum gleichen Einsatzzweck verarbeitet werden.
  • Das Ausgangsmaterial wird dazu mit Primärmarkerpartikeln, hier bspw. in Form von Magnetit (Fe3O4), das mit einem Durchmesser <10µm und einer Einsatzmenge von 0,1 Gew.-% verbunden, Schritt V102. Das Ausgangsmaterial kann darüber hinaus ebenfalls (in der Fig. 3 nicht dargestellt) mit Sekundärmarkerpartikeln in Form von Bentonit mit einem Durchmesser <10µm und einer Einsatzmenge von 0,1 Gew.-% markiert werden. Das Ausgangsmaterial wird dann zu einer Verpackung für Lebensmittel, hier einer Monomaterial-Schale im Spritzguss, verarbeitet, Schritt V103. Nach dem bestimmungsgemäßen Gebrauch wird das verbrauchte Verpackungsmaterial zusammen mit anderen Bestandteilen eines Stoffstroms S zu einem undefinierten Abfall- bzw. Wertstoffstrom W zusammengeführt, Schritt V104. Bei dem Abfall- bzw. Wertstoffstrom handelt es sich z.B. um den Kunststoffabfall des gelben Sacks. Der undefinierte Wertstoffstrom W kann zunächst vorsortiert werden, um bspw. nichtthermoplastische Bestandteile herauszutrennen, Schritt V105, so dass ein thermoplastischer Wertstoffstrom aus reinen thermoplastischen Kunststoffen erhalten wird. Anschließend wird der so vorsortierte Wertstoffstrom z.B. über eine Schredderanlage mechanisch grob zerkleinert, Schritt V106. Durch Schmelzextrusion und anschließendes Zerkleinern der extrudierten Stränge oder Filme wird der thermoplastische Wertstoff-Strom W in Form von fadenförmigen Filamenten mit einem durchschnittlichen Durchmesser von bspw. 80 µm durch periodisches Abschneiden bzw. Abschaben an einem Extruder-Auslass micronisiert und microsepariert, Schritt V107. Anstelle des Abschabens ist auch eine Trennung mittels Wasserstrahl möglich. Die Filamente werden anschließend in einem Fluidisierungsmittel, hier Wasser, fließfähig gemacht, Schritt V108. Der fluidisierte Wertstoffstrom wird dann einem Trennschritt in einer Trennungsvorrichtung unterzogen, hier der Trennung in einem bzw. durch ein Magnetfeld, Schritt V109. Der Wertstoffstrom W wird dadurch in zwei Stoffströme geteilt, nämlich einen ersten Recyclatstrom R1 und einen ersten Teilstrom T1, wie z.B. in Fig. 2 beschrieben. Der erste Recyclatstrom R1 enthält das über die Primärmarkerpartikel markierte Polypropylen. Der erste Teilstrom T1 enthält alle übrigen Bestandteile des ursprünglichen Wertstoffstroms und umfasst insbesondere keine Bestandteile mit Primärmarkerpartikeln.
  • Der erste Teilstrom T1 kann einer hier nicht näher ausgeführten, weiteren Behandlung oder Verwendung zugeführt werden. Insbesondere wenn der erste Teilstrom T1 noch Wertstoffe enthält, können diese über weitere Trennschritte herausgefiltert werden.
  • Der erste Recyclat-Strom R1 wird sodann einem als Extraktion ausgebildeten Aufbereitungsschritt unterzogen, Schritt V110. Dabei werden die mit dem PP verbundenen Primärmarkerpartikel und andere Kontaminanten aus dem PP entfernt. Dabei liegt die Extraktionszeit für typische Kontaminanten von wiedergewonnenem PP mit Filamenten mit einem Durchmesser von 80 µm Durchmesser bei 100°C typischerweise bei wenigen Minuten. Konkret wird hier eine Wasserdampfdestillation bei 100°C für 10 Minuten angewandt. Durch den Aufbereitungsschritt wird der erste Recyclatstrom R1 in einen zweiten Recyclatstrom R2 und einen zweiten Teilstrom T2 aufgeteilt.
  • Aus dem zweiten Recyclatstrom R2 kann das so aufbereitete PP aus dem Fluidisierungsmittel herausgefiltert werden und dann einer erneuten Verwendung als Lebensmittelverpackung zugeführt werden. Auch das Fluidisierungsmittel kann wiederverwendet werden. Auch der zweite Teilstrom T2 kann weiterbehandelt werden.
  • Fig. 4 zeigt ein zweites Ablaufschema eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens. Dabei wurden mehrere Ausgangsmaterialien, hier Polyethylen (PE) und Polyamid (PA6), die mit Schritten V1001 und V1002 bereitgestellt wurden, durch Kaschieren zu einem Verbundmaterial PA6/PE verbunden. Ein solches Verbundmaterial findet z.B. Einsatz als Deckelfolie für Schalen von Lebensmitteln. Die Ausgangsmaterialien Polyethylen (PE) und Polyamid PA6 soll nach bestimmungsgemäßem Gebrauch wiedergewonnen und zum gleichen Einsatzzweck verarbeitet werden (können).
  • Während oder vor der Verbindung zu einem Verbundmaterial wird das PA6 mit Primärpartikeln (in Fig. 4 nicht dargestellt) und PE mit Primärmarkerpartikeln und Sekundärmarkerpartikeln versehen, Schritte V1003 und V1004. Als Primärmarkerpartikel wird hier Magnetit mit einer Einsatzmenge von 0,1 Gew.-% und einem Durchmesser <5 µm verwendet. Als Sekundärmarkerpartikel wird organisch modifiziertes Bentonit mit einem Durchmesser < 5 µm bei einer Einsatzmenge von 0,1 Gew.-% verwendet.
  • Das zweifach markierte PE wird dann mit dem einfach markierten PA6 zu einem Verbundmaterial für Verpackungszwecke verbunden, Schritt V1005. Nach dem bestimmungsgemäßen Gebrauch wird das benutzte Verbundmaterial zusammen mit weiteren Bestandteilen eines Stoffstroms S zu einem undefinierten Abfall- bzw. Wertstoffstrom W zusammengeführt, Schritt V1006. Der undefinierte Wertstoffstrom W kann auch hier wieder vorsortiert werden, um bspw. alle nicht-thermoplastischen Bestandteile herauszutrennen und einen rein thermoplastischen Wertstoffstrom bereitzustellen, Schritt V1007. Anschließend wird der so vorsortierte Wertstoffstrom mechanisch grob in Flocken (Flakes) zerkleinert, Schritt V1008. Durch Schmelzextrusion und anschließendes Zerkleinern der extrudierten Stränge wird der thermoplastische Wertstoff-Strom W zu fadenförmigen Filamenten mit einem Durchmesser von 80 µm micronisiert, Schritt V1009. Bei diesem Vorgang werden die ursprünglich verbundenen Kunststoffsorten gleichzeitig voneinander separiert, so dass neben sonstigen Filamenten sortenreine Filamente aus PA6 und sortenreine Filamente aus PE vorliegen. Die Filamente werden in Wasser fluidisiert, Schritt V1010.
  • Der fluidisierte Wertstoffstrom wird in einer Trennungsvorrichtung einem Trennschritt anhand der Eigenschaften der Primärmarkerpartikel unterzogen, hier also der Trennung in einem senkrecht zur Strömungsrichtung angelegten Magnetfeld, Schritt V1011. Dadurch wird der Wertstoffstrom W in einen ersten Recyclatstrom R1 und einen ersten Teilstrom T1 geteilt, wobei zwei konzentrische Ableitungsrohre bzw. eine Ringblende wie unter Fig. 2 beschrieben, zum Einsatz kommt.
  • Der erste Recyclatstrom R1 enthält die wiederzugewinnenden Kunststoffanteile, hier das gekennzeichnete PE und PA6. Der erste Teilstrom T1 enthält alle übrigen Bestandteile des ursprünglichen Wertstoffstroms.
  • Der erste Teilstrom T1 kann einer weiteren Behandlung unterzogen oder einer Wiederverwertung zugeführt werden. Insbesondere wenn der erste Teilstrom T1 noch weitere Wertstoffe enthält, kann dieser weiteren Verfahrensschritten zum Recyceln der Wertstoffe unterzogen werden.
  • Der erste Recyclat-Strom R1 wird einem als Extraktion ausgebildeten Aufbereitungsschritt unterzogen, Schritt V1012. Dabei werden die im PE und PA6 gebundenen Primärmarkerpartikel und/oder die durch den ursprünglichen Verwendungszweck (Lebensmittelverpackung) enthaltenen Kontaminanten (z.B. Druckfarbenbestandteile) entfernt. Dies erfolgt bspw. durch Extraktion mit Hilfe von superkritischem CO2. Die Extraktionsdauer beträgt dabei typischerweise ca. 10 Minuten. Durch den Aufbereitungsschritt wird der erste Recyclat-Strom R1 in einen zweiten Recyclatstrom R2 und einen zweiten Teilstrom T2 aufgeteilt.
  • Der zweite Recyclatstrom R2 wird einem zweiten Trennungsschritt unterzogen. Der zweite Trennungsschritt V1013 umfasst die Trennung über ein Gravitationsfeld. Dabei wird der zweite Recyclatstrom R2 in eine Zentrifuge gegeben, so dass die PA6-Filamente von den PE-Filamenten aufgrund der unterschiedlichen Dichten der Filamente von PA6 und PE in einen dritten Recyclatstrom R3 und einen dritten Teilstrom T3 aufgeteilt werden.
  • Aus dem dritten Recyclatstrom R3 kann das darin enthaltene PE herausgefiltert und einer erneuten Verwendung zugeführt werden. Ebenso kann das im Teilstrom T3 enthalten PA6 aus dem Teilstrom T3 herausgefiltert werden und einer erneuten Verwendung zugeführt werden. Das Fluidisierungsmittel kann dabei vorteilhaft zur Ressourcenschonung wiederverwendet werden, indem die Flüssigkeit oder das Gas bspw. gefiltert wird.
  • Die vorbeschriebenen Ausführungsformen geben lediglich erläuternde Beispiele des erfindungsgemäßen Verfahrens wieder. Eine Kombination dieser oder ähnlicher Merkmale der beschriebenen Ausführungsformen können zu komplexeren Verfahren kombiniert werden, ohne den Rahmen der Erfindung zu verlassen. Durch das erfindungsgemäße Verfahren ist es ganz allgemein möglich, vorgebbare Bestandteile aus undefinierten Wertstoffströmen herauszufiltern. Durch wiederholten Einsatz der Verfahrensschritte des erfindungsgemäßen Verfahrens auf einen un- oder vorsortierten Wertstoffstrom oder Teilströme davon kann das Verfahren auch eingesetzt werden, um eine Vielzahl von vorgebbaren Bestandteilen aus dem Wertstoffstrom abzutrennen und wiederzugewinnen.
  • Bezugszeichenliste:
  • W
    Wertstoffstrom
    R(1,2,3)
    Recyclat-Strom (1,2,3)
    S
    Stoffstrom (Abfallstrom oder Wertstoffstrom oder Recyclat-Strom)
    T(1,2,3)
    Teilstrom (1,2,3)
    1
    Schmelz- und Extrusionsvorrichtung
    2(a-d)
    Phaseninseln einer Kunststoffsorte a,b,c,d
    3
    Kunststoffstrang
    4(a-d)
    Kunststoffstrangabschnitte (einer Kunststoffsorte a,b,c,d)
    4`
    mit Markern markierte Kunststoffstrangabschnitte
    5
    Trennungsvorrichtung
    6(a-d)
    Filamente (einer Kunststoffsorte a,b,c,d)
    6'
    mit Markern markierte Filamente
    7
    Fluidisierungsvorrichtung
    10
    Trennungsvorrichtung
    11
    Kraftfelderzeuger
    12
    Reaktionskammer
    13
    Zuleitungsrohr
    14a
    erstes Ableitungsrohr
    14b
    zweites Ableitungsrohr
    V101, V102, V103,
    Verfahrensschritte 101,102,103...

Claims (15)

  1. Verfahren zur sortenreinen Wiedergewinnung von vorgebbaren Kunststoffanteilen eines bestimmten Kunststoffmaterials oder einer bestimmten Kunststoffzusammensetzung aus einem un- oder vorsortierten Wertstoffstrom (W), wobei die vorgebbaren Kunststoffanteile von anderen Kunststoffanteilen desselben Kunststoffmaterials bzw. derselben Kunststoffzusammensetzung anhand zumindest eines bei der Herstellung und/oder Verwendung des Kunststoffs eingebrachten Primärmarkers unterscheidbar gemacht worden sind (V102; V1003) und wobei das Verfahren zumindest einen Trennschritt (V109; V1011) umfasst, bei dem der Wertstoffstrom (W) anhand eines ersten Trennungskriteriums aufgetrennt wird in einen ersten, den vorgebbaren Kunststoffanteil umfassenden Recyclat-Strom (R1) und einen ersten Teilstrom (T1), wobei das Trennungskriterium zumindest teilweise auf Eigenschaften des Primärmarkers basiert, und der Wertstoffstrom (W) thermoplastische Kunststoffe umfasst oder bevorzugt zumindest im Wesentlichen aus thermoplastischen Kunststoffen besteht und durch Schmelzextrusion zu thermoplastischen Strängen (3) oder Filmen extrudiert und die Stränge oder Filme zu Teilchen, insbesondere Strangabschnitten bzw. Filmabschnitten, zerkleinert (V107; V1009) werden, dadurch gekennzeichnet, dass das Extrudieren und Zerkleinern (V107; V1009) vor dem ersten Trennschritt erfolgt, und die Teilchen im Anschluss an das Extrudieren und Zerkleinern (V107; V1009) durch Einbringung in ein strömendes Fluidisierungsmittel fluidisiert (V108; V1010) werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wertstoffstrom (W) vor dem Trennschritt (V109; V1011, V1013) durch Schmelzextrusion zu thermoplastischen Strängen oder Filmen mit einer vorgegebenen Form, insbesondere einer vorgegebenen Querschnittsform, extrudiert und die extrudierten Stränge (3) oder Filme zu Teilchen mit einer vorgegebenen Länge, insbesondere zu Strangabschnitten oder Filmabschnitten, zerkleinert (V107; V1009) werden.
  3. Verfahren nach Anspruch 2, wobei die Teilchen bevorzugt und zumindest im Wesentlichen gleichförmig sind.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen in ein strömendes Fluidisierungsmittel mit laminarer Strömung eingebracht und transportiert werden (V108; V1010), wobei das Fluidisierungsmittel anschließend insbesondere als Schwebebett oder als Wirbelschicht, ausgebildet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fluidisierungsmittel Wasser, ein Lösemittel, Luft, ein Inert- oder Edelgas und/oder eine Mischung davon umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen in mindestens einer Dimension eine maximale Erstreckung kleiner als 1000 µm aufweisen.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen eine anisotrope Geometrie aufweisen, insbesondere mit einer Wadell-Sphärizität von kleiner 0,8, bevorzugt kleiner 0,75 oder besonders bevorzugt kleiner 0,7 und/oder einem Seitenverhältnis von kleiner 0,8, bevorzugt kleiner 0,7 oder besonders bevorzugt kleiner 0,5.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Extrusion der Stränge oder Filme und/oder deren Zerkleinerung (V107; V1009) zu Teilchen und/oder deren Fluidisierung (V108; V1010) in dem Fluidisierungsmittel kontinuierlich erfolgt.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen nach ihrer Fluidisierung homogen in dem Fluidisierungsmittel verteilt sind.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in die vorgebbaren Kunststoffanteile bei der Herstellung und/oder Verwendung des Kunststoffs Markerpartikel eingebracht werden (V102; V1003; V1004), so dass die vorgebbaren Kunststoffanteile gegenüber gleichartigen Kunststoffanteilen ohne Markerpartikel anhand der Materialeigenschaften in einem Kraftfeld, insbesondere der Dichte-Eigenschaften und/oder elektrischer Ladungseigenschaften und/oder magnetischer Eigenschaften und/oder elektromagnetischer, insbesondere optischer, Eigenschaften unterscheidbar sind.
  11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vorgebbaren Kunststoffanteile einen Sekundärmarker und ggf. weitere Marker umfassen und/oder dass das erste oder wenigstens ein weiteres Trennungskriterium auf Eigenschaften der Primärmarker und/oder der Sekundärmarker und/oder dem Kunststoffanteil natürlich anhaftender Eigenschaften basiert.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kunststoffmaterialien oder Kunststoffzusammensetzungen des Wertstoffstroms (W) bei der Schmelzextrusion und/oder der anschließenden Zerkleinerung zu Teilchen microsepariert (V107; V1009) werden, wobei die Microseparierung bevorzugt durch das Extrudieren des Wertstoffstroms (W) zu Strängen oder Filmen mit einem vorgegebenen Durchmesser oder einer vorgegebenen Dicke erfolgt, wobei der Durchmesser oder die Dicke unterhalb einer Größe von beim Aufschmelzen in der Schmelze als sortenrein vorliegenden Phaseninseln nicht mischbarer Polymere liegt.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einen Aufbereitungsschritt (V110; V1012) umfasst, bei welchem Markerpartikel und/oder andere Partikel, insbesondere unerwünschte Kontaminierungen, aus den extrudierten Teilchen ausgesondert werden, insbesondere durch Extraktion oder Emission, wobei das Fluidisierungsmittel bevorzugt auch als Extraktionsmittel dient und/oder das Verfahren mehrere gleichartige oder unterschiedliche, nacheinander ausgeführte Trennschritte zur Auftrennung des Wertstoffstroms (W) anhand bestimmter Trennkriterien umfasst und/oder dass der Wertstoffstrom (W) einen oder mehrere Trennschritte (V109; V1011; V1013) mehrfach durchläuft.
  14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren mindestens einen weiteren Trennschritt (V1013) umfasst, bei dem ein Recyclatstrom (R1) anhand eines zweiten Trennungskriteriums in einen zweiten Recyclat-Strom (R2) und einen zweiten Teilstrom (T2) aufgetrennt wird, wobei der weitere Trennschritt (V1013) als Trennungskriterium Eigenschaften eines Sekundärmarkers und/oder den Kunststoffanteilen inhärente Eigenschaften nutzt.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die fluidisierten Teilchen zur Abtrennung der vorgebbaren Kunststoffanteile zumindest einem Kraftfeld ausgesetzt werden (V109; V1011; V1013), wobei das Kraftfeld insbesondere ein Gravitationsfeld, ein magnetisches Feld, ein elektrostatisches Feld und/oder ein elektromagnetisches Feld ist, wobei bevorzugt mehrere Kraftfelder miteinander kombiniert, insbesondere überlagert und/oder hintereinander angeordnet sind und eine Strömungsrichtung des Fluidisierungsmittels mit den darin fluidisierten Teilchen bevorzugt senkrecht oder parallel zum Kraftfeld ausgerichtet wird.
EP21720408.0A 2020-04-17 2021-04-16 Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom Active EP3972795B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020110506.1A DE102020110506B4 (de) 2020-04-17 2020-04-17 Sortenreine Wiedergewinnung von vorgebbaren Kunststoffanteilen aus einem unsortierten Wertstoffstrom
PCT/EP2021/059862 WO2021209583A1 (de) 2020-04-17 2021-04-16 Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom

Publications (3)

Publication Number Publication Date
EP3972795A1 EP3972795A1 (de) 2022-03-30
EP3972795C0 EP3972795C0 (de) 2023-06-07
EP3972795B1 true EP3972795B1 (de) 2023-06-07

Family

ID=75625542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21720408.0A Active EP3972795B1 (de) 2020-04-17 2021-04-16 Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom

Country Status (3)

Country Link
EP (1) EP3972795B1 (de)
DE (1) DE102020110506B4 (de)
WO (1) WO2021209583A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2211882A1 (de) * 1972-03-11 1973-09-20 Max Schmidt Vorrichtung und verfahren zur aufbereitung von kunststoffabfaellen, insbesondere in gestalt von behaeltnissen od.dgl. und rueckgewinnung zu werkstoffen fuer deren weiterverarbeitung
DE4401207A1 (de) 1994-01-18 1995-07-20 Tobias Fey Kunststoffidentifizierung von Kunststoffverpackungen
DE19934259A1 (de) 1999-07-27 2001-02-08 Fraunhofer Ges Forschung Verfahren zur selektiven Abtrennung von vorgebbaren Stoffen aus Stoffgemischen
US6920982B2 (en) 2002-08-06 2005-07-26 Eriez Magnetics Plastic material having enhanced magnetic susceptibility, method of making and method of separating
DE102011116046B4 (de) 2011-10-17 2017-08-03 Johnson Controls Autobatterie Gmbh & Co. Kgaa Recycling von Produkten sowie Recyclinganlage
DE102012005542A1 (de) 2012-03-21 2013-09-26 Polysecure Gmbh Material mit Marker und Verfahren zum Sortieren einer Mischung von Materialien
US10487422B2 (en) * 2012-05-31 2019-11-26 Aladdin Manufacturing Corporation Methods for manufacturing bulked continuous filament from colored recycled pet
US8597553B1 (en) * 2012-05-31 2013-12-03 Mohawk Industries, Inc. Systems and methods for manufacturing bulked continuous filament
DE102016116742A1 (de) * 2016-09-07 2018-03-08 Der Grüne Punkt - Duales System Deutschland GmbH Verfahren zur Herstellung von Polyolefin-Rezyklaten
CH713184A1 (de) 2016-11-17 2018-05-31 Alpla Werke Alwin Lehner Gmbh & Co Kg Anlage und Verfahren für das Recycling verunreinigter Polyolefine.
PL421008A1 (pl) * 2017-03-27 2018-10-08 Ergis Spółka Akcyjna Materiał powłokowy do znakowania tworzyw sztucznych, sposób znakowania tworzyw sztucznych, sposób identyfikacji znakowanych tworzyw sztucznych oraz ich zastosowanie do sortowania odpadów z tworzyw sztucznych
DE102017118601A1 (de) 2017-08-15 2019-02-21 Tailorlux Gmbh Sortierverfahren für Verpackungsmaterialien
GB2572183A (en) * 2018-03-21 2019-09-25 Sutton Philip Recycling method and taggant for a recyclable product

Also Published As

Publication number Publication date
EP3972795C0 (de) 2023-06-07
DE102020110506B4 (de) 2022-11-03
WO2021209583A1 (de) 2021-10-21
EP3972795A1 (de) 2022-03-30
DE102020110506A1 (de) 2021-10-21

Similar Documents

Publication Publication Date Title
EP2364246B1 (de) Verfahren und vorrichtung zum abtrennen einzelner wertstoffe aus gemischtem, insbesondere zerkleinertem, kunstoffabfall
EP2823945B1 (de) Verfahren und Vorrichtung zur Aufbereitung von Kunststoffabfällen
EP2700456B1 (de) Anordnung und Verfahren zur Sortierung von Kunststoffmaterial
WO1998018607A1 (de) Verfahren zum aufschluss von abfällen, die wenigstens teilweise wiederverwertbare anteile enthalten
EP3541592A1 (de) Anlage und verfahren für das recycling verunreinigter polyolefine
DE102016015198A1 (de) Lösungsmittel sowie Verfahren zum Lösen eines Kunststoffes von einem Feststoff innerhalb einer Suspension
DE102016015199A1 (de) Lösungsmittel sowie Verfahren zum Lösen wenigstens zweier Kunststoffe von einem Feststoff innerhalb einer Suspension
DE19651571A1 (de) Recyclingverfahren
EP3558542A1 (de) Gasdichte zentrifuge zur feststoffabtrennung aus einer polymerlösung sowie verfahren zur feststoffabtrennung aus einer polymerlösung
EP3972795B1 (de) Verfahren zur sortenreinen wiedergewinnung von vorgebbaren kunststoffanteilen aus einem unsortierten wertstoffstrom
WO1998001276A1 (de) Verfahren und anlage zur aufbereitung von mischkunststoffen
DE102007055765A1 (de) Verfahren zur elektrostatischen Trennung von Kunststoffgemischen
DE19509808A1 (de) Verfahren und Vorrichtung zum Behandeln von Verbundelementen
DE4415905C2 (de) Verfahren und Anlage zur Aufbereitung von bei Zerkleinerungsprozessen entstehenden heterogenen Stoffgemischen
DE19629473C2 (de) Verfahren und Vorrichtung zur Aufbereitung eines Kunststoffgemisches
DE3921630A1 (de) Extraktionsverfahren
DE202020102137U1 (de) Sortenreine Wiedergewinnung von vorgebbaren Kunststoffanteilen aus einem unsortierten Wertstoffstrom
DE102014220330B4 (de) Verfahren zur Aufbereitung von Kunststoffen und Vorrichtung
DE4304726C2 (de) Verfahren zur Trennung verschiedener Kunststoffsorten und Kunststofftypen aus dem Gemenge durch Schwimm-Sink-Scheidung im Gravitations- oder Zentrifugalfeld
DE19629470C2 (de) Verfahren und Anlage zur Aufbereitung von Mischkunststoffen
DD249370A3 (de) Verfahren zum trennen metallbeschichteter kunststoffe oder papiere
WO2016059071A2 (de) Verfahren zur herstellung von zielpolymerprodukten aus kunststoffhaltigen materialien und nach diesem verfahren erhältliche körnige oder pulverförmige zielpolymerprodukte
DE4220665C2 (de) Verfahren zur Gewinnung von thermoplastischen Schaumstoffanteilen aus einem Kunststoffabfälle enthaltenden Gemenge
EP4291379A1 (de) Kunststoffrecyclingverfahren zur aufbereitung von kunststoffabfällen
AT526713A1 (de) Kontinuierliches Trennen eines Kunststoffgemisches

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20230127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1573685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000844

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230615

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230622

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000844

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240308

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240430