EP3966363B1 - Procédé de lissage de surfaces - Google Patents

Procédé de lissage de surfaces Download PDF

Info

Publication number
EP3966363B1
EP3966363B1 EP20724451.8A EP20724451A EP3966363B1 EP 3966363 B1 EP3966363 B1 EP 3966363B1 EP 20724451 A EP20724451 A EP 20724451A EP 3966363 B1 EP3966363 B1 EP 3966363B1
Authority
EP
European Patent Office
Prior art keywords
etching step
layer
ions
sacrificial layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20724451.8A
Other languages
German (de)
English (en)
Other versions
EP3966363A1 (fr
Inventor
Jens Bauer
Melanie ULITSCHKA
Thomas Arnold
Frank Frost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Oberflachenmodifizierung eV
Original Assignee
Leibniz Institut fuer Oberflachenmodifizierung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019111684.8A external-priority patent/DE102019111684A1/de
Priority claimed from DE102019111681.3A external-priority patent/DE102019111681A1/de
Application filed by Leibniz Institut fuer Oberflachenmodifizierung eV filed Critical Leibniz Institut fuer Oberflachenmodifizierung eV
Publication of EP3966363A1 publication Critical patent/EP3966363A1/fr
Application granted granted Critical
Publication of EP3966363B1 publication Critical patent/EP3966363B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00

Definitions

  • the present invention relates to a method for smoothing surfaces according to the preamble of claim 1.
  • the wet-chemical coating step and the subsequent annealing step are complex additional steps in order to enable the optical surface to be sufficiently polished for applications in the visible and UV spectral range.
  • the degree of reflection for nickel-phosphorus is well below that of aluminum, so that subsequent metallization is often necessary.
  • Such generated Mirror optics are used, for example, in laser technology or exposure technology as well as in the astronomy sector, where high demands are placed on the surface quality, ie shape accuracy and low roughness, and with regard to the thermal load on the optics.
  • the nickel-phosphorus coating leads to a deformation of the optical surface due to the bi-metal effect and can become brittle and flake off under continuous load.
  • the object of the present invention to provide a method for smoothing surfaces which eliminates at least one of the aforementioned disadvantages.
  • the method should preferably smooth surfaces of metallic, in particular aluminum-based, optics better than before.
  • the optical properties (refractive index and absorption coefficient) of surfaces smoothed in this way should preferably be essentially unimpaired.
  • the surfaces produced should have high long-term stability with regard to their geometric and/or optical properties.
  • the task set can be achieved in a surprising manner by combining two different ion beam etching processes.
  • a sacrificial layer is applied to the surface and this sacrificial layer is removed in an ion beam etching step.
  • a second etching process if necessary as part of direct ion beam smoothing ("direct smoothing" occurs when the sacrificial layer is already in the first ion beam Etching step was removed substantially and thus in the second etching step a direct interaction between the original surface and the ion beam), the surface micro-roughness >2.0 1/ ⁇ m can also be reduced.
  • the sacrificial layer is preferably adapted to the etching rate of the surface material in such a way that the form of the surface is transferred in a form-preserving manner under the selected etching parameters in the first etching process.
  • the method according to the invention for smoothing surfaces is characterized in that a sacrificial layer is applied to the surface and the surface coated with the sacrificial layer is treated by means of ion beam etching, with at least two different etching steps being used as part of the ion beam etching.
  • the surface contains at least one substance, for example aluminum if it is an aluminum-containing body that has a surface to be smoothed.
  • the surface roughness of the surface is filled out by the sacrificial layer, with the sacrificial layer having a very smooth surface which can be transferred to the original surface by the subsequent first etching step.
  • the fluorine ions can be provided, for example, via fluorine-containing compounds (eg trifluoromethane, tetrafluoromethane, nitrogen trifluoride).
  • fluorine-containing compounds eg trifluoromethane, tetrafluoromethane, nitrogen trifluoride.
  • oxygen ions and/or inert gas ions for example atomic noble gas ions or noble gas cluster ions (eg argon, neon)
  • oxides may form.
  • a surface layer comprising nitride and/or fluoride and possibly oxide is formed in situ , which allows very good smoothing.
  • a modified surface layer is formed on the surface by the first etching step, ie a layer which contains at least one of the substances contained in the original surface and has at least one further substance from the first etching step, preferably from a working gas of the first etching step. This protects the surface because this modified surface layer is passivating and itself amorphous. This creates a progressive etching front that prevents exposed surface parts from becoming rough again.
  • the sacrificial layer is completely removed by the first etching step.
  • “removed” also includes the complete chemical conversion of the sacrificial layer into a new layer.
  • a preferred method according to the invention is that a sacrificial layer is applied to the surface and this sacrificial layer is completely removed in the first ion beam etching step, while its smooth surface is converted into the original surface, so that its roughness has the improved properties of the sacrificial layer assumes
  • the ions in the first etching step have an energy greater than 10 eV per atomic component, preferably at least 800 eV, preferably at least 1000 eV, most preferably at least 1200 eV, in particular at least 1500 eV and moreover up to 5000 eV per atomic component.
  • the total ion energy usually does not exceed 5000 eV.
  • This forms a particularly homogeneous surface layer with a relatively large layer thickness.
  • "Energy per atomic component” means here that multi-atomic ions, such as CF4 ions or cluster ions, have a total energy that corresponds to the energy of the sum of the atomic components (here CF4 has one carbon atom and 4 fluorine atoms). Thus, if the CF4 ion has an energy of 2000 eV, the individual atomic components have an energy of 400 eV.
  • Cluster ions in turn, have 100 to a few 1000 atomic components.
  • the surface is coated at least twice with a sacrificial layer and is treated with the first etching step after the respective coating with the sacrificial layer.
  • the first two etching steps, which are used to remove the respective sacrificial layer can also differ from one another, in which case, for example, the energies, the geometry of the ion beams, the angles of incidence onto the surface and/or the ions used can be different.
  • the sacrificial layers can also differ from one another in terms of their chemical composition and/or thickness. A particularly good adjustment can thereby take place.
  • An advantageous development provides that there is at least a second etching step in which inert gas ions, fluorine ions and/or oxygen ions are used, the second etching step preferably taking place after one or more cycles of coating with the sacrificial layer and the subsequent first etching step.
  • the surface layer is effectively removed after the first etching step and the microroughness can be further reduced, giving the surface almost unchanged optical properties compared to an untreated aluminum surface with natural oxide.
  • oxygen the surface layer with components of the sacrificial layer that may still be contained therein is effectively removed.
  • the fluorine ions can in turn be provided, for example, via fluorine-containing compounds (e.g. trifluoromethane, tetrafluoromethane, nitrogen trifluoride).
  • fluorine-containing compounds e.g. trifluoromethane, tetrafluoromethane, nitrogen trifluoride.
  • Atomic noble gas ions or noble gas cluster ions e.g. argon, neon
  • inert gas ions e.g. argon, neon
  • inert gas ions, fluorine ions and/or oxygen ions can be used in the second etching step, whereby the nitride layer can be effectively removed and the micro-roughness can be further reduced.
  • inert gas ions and/or oxygen ions can be used in the second etching step, whereby the fluoride layer can be effectively removed and the micro-roughness can be further reduced.
  • the surface layer modified by the first etching step is completely removed by the second etching step.
  • the smoothing can be further improved.
  • the second etching step is carried out in such a way that the surface has a surface layer comprising oxide and/or fluoride. This creates a protective layer on the surface.
  • the second etching step is carried out in such a way that the surface has a surface layer with a layer thickness of at least 10 nm, preferably at least 12 nm, in particular at least 15 nm. While a natural oxide layer with a thickness of approx. 5 nm forms during normal contact of a surface with oxygen, a greater thickness is preferred here because it improves the long-term stability of the surface, especially in applications with thermal loads.
  • pure inert gas for example noble gas
  • an aluminum surface without a surface layer is formed, with subsequent contact with air forming an instantaneous natural oxide layer.
  • the ions in the second etching step have an energy greater than 10 eV per atomic component, preferably at least 800 eV, preferably at least 1000 eV, most preferably at least 1200 eV, in particular at least 1500 eV and moreover up to 5000 eV per atomic component.
  • the total ion energy usually does not exceed 5000 eV.
  • the nitride and/or fluoride layer is removed in a particularly gentle manner, in particular when inert gas (for example noble gas) is used as the process gas.
  • the ions of the second etching step have an energy greater than 10 eV per atomic component, preferably at most 700 eV, preferably at most 500 eV, at least initially, preferably at least until a surface layer formed by the first etching step is removed . Due to the reduced ion energy, the surface layer becomes very gentle and particularly thoroughly removed. It is subsequently provided in particular that the ions of the second etching step then have a higher energy of at least 750 eV, preferably at least 900 eV, in particular at least 1500 eV. The total ion energy usually does not exceed 5000 eV. If the second etching step is carried out using oxygen ions, then a surface layer comprising oxide with a relatively large thickness is thereby produced.
  • oxygen ions are used as part of a third etching step, which is carried out after the second etching step.
  • a third etching step which is carried out after the second etching step.
  • the ions of the third etching step have an energy of at least 750 eV, preferably at least 900 eV, in particular at least 1500 eV, a surface layer of oxide with a relatively large thickness is produced.
  • the ions of the third etching step at least initially, preferably at least until the surface layer formed by the second etching step is removed, can have an energy of more than 10 eV per atomic component, preferably of at most 700 eV, for a particularly gentle removal of the surface layer in the second etching step. preferably at most 500 eV.
  • the surface is the surface of a metal, preferably at least one metal from the group comprising aluminum and alloys thereof, in particular Al6061, Al905, Al501, Al708.
  • metals and alloys can preferably be present in a microcrystalline form or in a coarse-grain form.
  • the smoothing process according to the invention is particularly effective for such surfaces.
  • “metals” are understood to mean both individual compounds and alloys based on at least one individual metallic compound. Alternatively or additionally, the following substances can also be used: silicon carbide, tungsten carbide, steel, ceramics, elementary metals or alloys with copper, beryllium, gold, silver, titanium, magnesium.
  • the surface is subjected to a mechanical surface treatment step before the application of the sacrificial layer became.
  • the smoothing method of the present invention is particularly effective for smoothing surface roughness caused by mechanical surface processing.
  • the surface is part of an optical element, for example a mirror or a molding tool for the mass production of optical elements.
  • the smoothing method according to the invention is particularly effective for such optical elements.
  • the sacrificial layer is a polymer layer, preferably a photoresist.
  • Such polymer layers can be used particularly well as a sacrificial layer and their etching rates can be adapted to the etching rates of the surface.
  • oxides or amorphous materials can also be used as the sacrificial layer, but polymers are preferred.
  • the application of the sacrificial layer is preferably carried out using standard methods of microsystems technology such as spin coating, spray coating or dip coating; alternatively, physical and chemical deposition methods such as vapor deposition, cathode sputtering, chemical vapor deposition (thermal or plasma-enhanced) are used.
  • an optical element 10 for example a mirror
  • a surface 12 which has surface roughness has been coated with a polymer as a sacrificial layer 14, for example by means of spray coating.
  • a very even outer surface 16 forms, which levels the surface roughness of the surface 12 of the optical element 10 .
  • This outer surface 16 is now treated with an ion beam 18 .
  • Both the parameters of the ion beam 18 composition of the working gas, energy of the ion acceleration, geometry of the ion beam 18 and angle of incidence on the outer surface 16
  • the parameters of the sacrificial layer 14 are matched to one another and to the material of the optical element 10 in such a way that the Selectivity of the etching process is as close to 1 as possible. This selectivity is determined by the etch rate of the material of the optical element 10 in relation to the etch rate of the sacrificial layer 14.
  • aluminum of the Al905 type is used as the material of the optical element 10, which has a diameter of 50 mm and has been provided with a flat mirror surface 12 by means of diamond turning (single grain diamond turning technique).
  • a novolak-based photoresist was used as the sacrificial layer 14 .
  • nitrogen is used as the working gas with an energy of 1200 eV.
  • the shape of the outer surface 16 is transferred into the material of the optical element 10, with the sacrificial layer 14 being completely removed and an aluminum nitride layer 19 being formed, which acts as a dynamic progressive etching front, the surface structure of the outer surface 16 is largely retained by the chemical bond formation and the passivation property of the nitride layer 19.
  • the optical element 10 with a modified surface 20 is formed.
  • the modification consists, on the one hand, in a chemical change through the formation of a nitride layer 19 and, on the other hand, in a planarization.
  • This process of applying the sacrificial layer 14 and the subsequent ion beam etching 18 as the first etching step can then be repeated as often as desired with a further sacrificial layer 14a and a renewed ion beam etching 18a, with a single repetition being preferred, whereby a further modified surface 20a is formed.
  • the parameters of the ion beam etching 18a can be retained or changed, retention being preferred.
  • the sacrificial layer 14a has been completely removed and an aluminum nitride layer 19a having a thickness of 10 nm to 15 nm has formed.
  • the ion beam process 18b is then changed in such a way that oxygen is used as the process gas.
  • the nitride layer 19a is largely removed and an aluminum oxide layer 22 is formed.
  • This second etching step is preferably carried out in two parts in that first oxygen ions in the energy range from below 500 eV to a maximum of 700 eV are used, whereby the nitride layer 19a is removed very gently, and then, after the removal of the nitride layer 19a, oxygen ions in the energy range from a minimum of 750 eV to over 1500 eV can be used, whereby a very stable oxide layer 22 is formed.
  • the oxide layer 22 is formed with a thickness of 10 nm to 15 nm, which has excellent long-term stability even in applications under high thermal loads.
  • the resultant surface 24 of the optical element 10 that is created in this way has a significantly improved waviness and roughness with at least no deteriorated microroughness.
  • the waviness/roughness and the microroughness are compared for the untreated optical element 10 (unfinished), for the first pass of the Application of the photoresist sacrificial layer 14 and the ion beam etching 18 with nitrogen (after 1st planarization), the second pass of the application of the photoresist sacrificial layer 14a and the ion beam etching 18a with nitrogen (after 2nd planarization) and the second etching step 18b with oxygen (after O2 finishing).
  • AFM recordings for 35 ⁇ m and 3 ⁇ m edge lengths of the examined surfaces 12, 20, 20a, 24 are shown.
  • the waviness of the modified surface 20 after the first execution of the first etching step is reduced from 9.5 nm to 5.9 nm and the microroughness has increased from 2.2 nm to 3, 2 nm.
  • the maximum amplitude is reduced from 11.8 nm to 4.0 nm.
  • the waviness of the further modified surface 20a can be further reduced to 5.1 nm, while the micro-roughness remains about the same at 3.3 nm and the maximum amplitude is reduced to 2.2 nm.
  • the waviness of the resulting surface 24 remains approximately the same at 5.2 nm, while the microroughness can be lowered back to the original value of 2.2 and the maximum amplitude is approximately 3.3 nm .
  • the height profiling shown shows a significant reduction by a factor of 4 for the formation of grooves for the second execution of the first etching step (after 1st planarization) and the second etching step (after O2 finishing) compared to the untreated surface 12.
  • the turning groove structures with a period of 3 ⁇ m, ie at a spatial frequency of 0.33 ⁇ m- 1 , as well as the superstructures resulting from the special shape of the turning tool at 0.69 ⁇ m -1 , 1.0 ⁇ m -1 and 1.4 ⁇ m -1 spatial frequency can be reduced from the original maximum structure height of approx. 24 nm to approx. 7 nm.
  • FIG 5 and 6 are depth profiles of the chemical composition at the modified surface 20a and the resulting surface 24 for alumina (AlO), carbon (C) and aluminum nitride (AlN) determined by secondary ion mass spectroscopy in FIG figure 5 and for aluminum oxide (AIO) and the impurities nickel (Ni) and copper (Cu) in 6 shown.
  • AlO alumina
  • C carbon
  • AlN aluminum nitride
  • the nitrogen content in the resulting surface 24 is reduced by 2 orders of magnitude. Due to impurities in the second etching step, however, the carbon content was increased. For this, the impurities of nickel and copper have been reduced in the first 5 nm depth of the resulting surface 24 and the aluminum oxide layer 22 has a thickness of about 15 nm.
  • the second etching step with oxygen removed the nitride layer and built up an oxide layer, as a result of which the reflectivity again increased significantly over the entire measured spectral range, although it did not quite reach the values of the untreated initial surface 12 .
  • One reason for this is considered to be the introduction of carbon and the carbide formation possibly associated therewith during the oxygen etching, which should be prevented by suitable measures such as adapting the materials used in the ion source.
  • the periodic turning groove structures in the spatial frequency range from 0.2 ⁇ m -1 to 2.0 resulting from the upstream egg nkorndiamant turning technology can be reduced ⁇ m -1 can be efficiently leveled for the first time.
  • This enables the future use of aluminum optics 10 in the short-wave spectral range (UV/VIS), with the aluminum surface 24 itself being able to assume the function of the optically active surface. The topography of the surface 12 impressed on the optical element 10 is retained.
  • the second specific exemplary embodiment differs from the first specific exemplary embodiment only in that Al6061 is now used instead of Al905. All other process parameters were chosen to be identical, so that they will not be discussed again.
  • the waviness/roughness and microroughness are compared for the untreated optical element 10 (untreated), for the first pass of photoresist sacrificial layer 14 application and ion beam etching 18 with nitrogen (after 1st planarization), the second pass of applying the photoresist sacrificial layer 14a and the ion beam etching 18a with nitrogen (after 2nd planarization) and the second etch step 18b with oxygen (after O2 finish).
  • AFM recordings for 35 ⁇ m and 3 ⁇ m edge lengths of the examined surfaces 12, 20, 20a, 24 are shown.
  • the waviness of the modified surface 20 after the first execution of the first etching step is reduced from 4.7 nm to 4.2 nm and the microroughness has increased from 1.3 nm to 2, 6 nm.
  • the maximum amplitude is reduced from 1.5 nm to 0.9 nm.
  • the waviness of the further modified surface 20a can be further reduced to 3.2 nm, while the micro-roughness remains roughly the same at 2.5 nm and the maximum amplitude is reduced to below 0.5 nm.
  • the waviness of the resulting surface 24 remains approximately the same at 3.3 nm, while the microroughness can be lowered back to the original value of 1.4 and the maximum amplitude further below 0.5 nm amounts to.
  • the height profiling shown shows a significant reduction by a factor of 3 for the formation of grooves for the second execution of the first etching step (after 1st planarization) and the second etching step (after O2 finishing) compared to the untreated surface 12.
  • the turning groove structures with a period of 1.3 ⁇ m, ie at a spatial frequency of 0.8 ⁇ m -1 , as well as the superstructures resulting from the special shape of the turning tool at 1.4 ⁇ m -1 and 1.9 ⁇ m - 1 spatial frequency can be reduced from the original maximum structure height of approx. 3 nm to less than 1 nm.
  • the invention is not limited to this, but other materials can also be used, e.g. elemental metals or alloys with copper, beryllium , gold, silver, titanium, magnesium; silicon carbide; tungsten carbide; Steel; Ceramics, especially those with low thermal expansion, and other ions can be used.
  • elemental metals or alloys with copper, beryllium , gold, silver, titanium, magnesium; silicon carbide; tungsten carbide; Steel; Ceramics, especially those with low thermal expansion, and other ions can be used.
  • One advantage of the ion beam technology described is precisely the wide range of uses for different material systems, in particular for use in optics.
  • a method for surface smoothing is provided as a direct machining method with which surfaces 12 can be smoothed better than hitherto.
  • surfaces 12 of metallic optics 10, in particular those based on aluminum can be smoothed better than before.
  • the optical properties (refractive index and absorption coefficient) of such smoothed surfaces 24 remain essentially unchanged.
  • the smoothed surfaces 24 have high long-term stability with regard to their chemical and/or mechanical resistance and their geometric and/or optical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • ing And Chemical Polishing (AREA)
  • Laser Beam Processing (AREA)

Claims (14)

  1. Procédé de lissage de surfaces (12), caractérisé en ce qu'une couche sacrificielle (14, 14a) est appliquée sur la surface (12) et la surface (12) revêtue de la couche sacrificielle (14, 14a) est traitée au moyen d'un décapage par faisceau ionique (18, 18a, 18b), dans lequel au moins deux étapes de décapage (18, 18a, 18b) différentes sont utilisées dans le cadre du décapage par faisceau ionique (18, 18a, 18b), dans lequel la couche sacrificielle (14, 14a) est retirée par la première étape de décapage et une couche superficielle modifiée (19, 19a) est réalisée sur la surface (20, 20a), dans lequel la couche superficielle modifiée (19, 19a) est produite avec une épaisseur d'au moins 10 nm et contient au moins une des substances contenues dans la surface d'origine et présente au moins une autre substance issue de la première étape de décapage.
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins une première étape de décapage (18a, 18b) existe, dans laquelle des ions d'azote et/ou des ions de fluor et de manière préférée en supplément des ions d'oxygène et/ou des ions de gaz inerte sont utilisés.
  3. Procédé selon la revendication 2, caractérisé en ce que la couche superficielle modifiée (19, 19a) est une couche superficielle comprenant du nitrure (19, 19a) et/ou du fluorure et éventuellement de l'oxyde.
  4. Procédé selon la revendication 3, caractérisé en ce que la couche superficielle modifiée (19, 19a) est produite avec une épaisseur d'au moins 12 nm, en particulier d'au moins 15 nm.
  5. Procédé selon l'une quelconque des revendications 2 à 4, caractérisé en ce que les ions présentent dans la première étape de décapage une énergie supérieure à 10 eV par constituant atomique, de préférence une énergie d'au moins 800 eV, de manière préférée d'au moins 1000 eV, idéalement d'au moins 1200 eV, en particulier d'au moins 1500 eV et par ailleurs allant jusqu'à 5000 eV par constituant atomique.
  6. Procédé selon l'une quelconque des revendications 2 à 5, caractérisé en ce que la surface (12) est revêtue au moins à deux reprises d'une couche sacrificielle (14, 14a) et est traitée avec la première étape de décapage (18, 18a) après le revêtement respectif avec la couche sacrificielle (14, 14a).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une deuxième étape de décapage (18b) existe, dans laquelle des ions de gaz inerte, des ions de fluor et/ou des ions d'oxygène sont utilisés, dans lequel la deuxième étape de décapage (18b) est effectuée de manière préférée après un ou plusieurs cycles du revêtement avec la couche sacrificielle (14, 14a) et de la première étape de décapage (18, 18a) consécutive.
  8. Procédé selon la revendication 7 en lien avec la revendication 3 ou 4, caractérisé en ce que la couche superficielle (19, 19a) modifiée par la première étape de décapage est totalement retirée par la deuxième étape de décapage.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que la deuxième étape de décapage (18b) est exécutée de telle sorte
    i) que la surface (24) présente une couche superficielle comprenant de l'oxyde (2 2) et/ou du fluorure, et/ou
    ii) que la surface (24) présente une couche superficielle (22) avec au moins 10 nm, de manière préférée au moins 12 nm, en particulier au moins 15 nm d'épaisseur de couche, et/ou
    iii) que la surface ne présente aucune couche superficielle.
  10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les ions de la deuxième étape de décapage présentent une énergie supérieure à 10 eV par constituant atomique, de préférence une énergie d'au moins 800 eV, de manière préférée d'au moins 1000 eV, idéalement d'au moins 1200 eV, en particulier d'au moins 1500 eV, et par ailleurs pouvant aller jusqu'à 5000 eV par constituant atomique.
  11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que les ions de la deuxième étape de décapage (18b) présentent au moins au début, de préférence au moins jusqu'au retrait d'une couche superficielle (19, 19a) réalisée par la première étape de décapage (18, 18a), une énergie supérieure à 10 eV par constituant atomique, de préférence une énergie de 700 eV au maximum, de manière préférée de 500 eV au maximum, dans lequel il est prévu en particulier que les ions de la deuxième étape de décapage (18b) présentent ensuite une énergie plus élevée d'au moins 750 eV, de manière préférée d'au moins 900 eV, en particulier d'au moins 1500 eV.
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface (12) est la surface d'un métal, de manière préférée d'au moins un métal issu du groupe comprenant l'aluminium ainsi que des alliages, en particulier Al6061, Al905, Al501, Al708, de ceux-ci, dans lequel le métal peut être présent de préférence sous une forme microcristalline ou sous une forme de gros grains, et/ou que la surface (12) est la surface d'une substance issue du groupe : carbure de silicium, carbure de tungstène, acier, céramique, métaux élémentaires ou alliages avec du cuivre, du béryllium, de l'or, de l'argent, du titane, du magnésium.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce
    iv) que la surface (12) a été soumise à une étape de traitement de surface mécanique avant l'application de la couche sacrificielle (14, 14a), et/ou
    v) que la surface (12) fait partie d'un élément optique (10), par exemple d'un miroir, ou d'un outil de déformation pour la production en série d'éléments optiques.
  14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche sacrificielle (14, 14a) est une couche polymère, de manière préférée une laque photosensible.
EP20724451.8A 2019-05-06 2020-05-04 Procédé de lissage de surfaces Active EP3966363B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019111684.8A DE102019111684A1 (de) 2019-05-06 2019-05-06 Verfahren zum Glätten von Oberflächen
DE102019111681.3A DE102019111681A1 (de) 2019-05-06 2019-05-06 Verfahren zum Glätten von Oberflächen
PCT/EP2020/062348 WO2020225225A1 (fr) 2019-05-06 2020-05-04 Procédé de lissage de surfaces

Publications (2)

Publication Number Publication Date
EP3966363A1 EP3966363A1 (fr) 2022-03-16
EP3966363B1 true EP3966363B1 (fr) 2022-10-26

Family

ID=70613749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20724451.8A Active EP3966363B1 (fr) 2019-05-06 2020-05-04 Procédé de lissage de surfaces

Country Status (3)

Country Link
EP (1) EP3966363B1 (fr)
ES (1) ES2935471T3 (fr)
WO (1) WO2020225225A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906214B2 (ja) * 2000-03-10 2012-03-28 エフ イー アイ カンパニ 差分スパッタリング速度を減少する装置及び方法
US6863787B2 (en) * 2003-04-02 2005-03-08 Fei Company Dummy copper deprocessing
CN105922083B (zh) * 2016-04-28 2018-02-23 西安工业大学 磷酸二氢钾类晶体的表面抛光方法
CN106683998A (zh) * 2016-11-28 2017-05-17 中国电子科技集团公司第四十八研究所 一种柔性基底的预处理工艺
CN108385110B (zh) * 2018-04-04 2019-07-12 西安工业大学 一种利用原位溅射结合离子束刻蚀的抛光装置及抛光方法

Also Published As

Publication number Publication date
WO2020225225A1 (fr) 2020-11-12
ES2935471T3 (es) 2023-03-07
EP3966363A1 (fr) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2012028613A1 (fr) Substrat pour miroir pour la lithographie euv
EP1843984B1 (fr) Procédé de production d'un composant en verre de silice destiné a être utilisé dans la fabrication de semi-conducteurs et composant obtenu par ce procédé
DE102019006845B4 (de) Beschichtetes Schneidwerkzeug
DE10132788B4 (de) Qualitativ hochwertige optische Oberfläche und Verfahren zu ihrer Herstellung
DE69010293T2 (de) Mit Keramik überzogenes Sinterkarbidwerkzeug mit hoher Bruchbeständigkeit.
DE112008001108B4 (de) Wafer-Halterung, vertikales Wärmebehandlungsschiffchen, welches eine Wafer-Halterung einschliesst, sowie Verfahren für die Herstellung einer Wafer-Halterung
EP3172354B1 (fr) Cible de pulvérisation cathodique à base d'un alliage d'argent
DE102020207561A1 (de) Dressiertes und beschichtetes Stahlblech sowie Verfahren zu seiner Herstellung
EP3966363B1 (fr) Procédé de lissage de surfaces
EP3168325B1 (fr) Cible de pulverisation a base d'un alliage d'argent
EP0558485B1 (fr) Procèdè d'obtention d'un outil de coupe en carbure cementè revêtu
DE4307519C2 (de) Spiegel für Synchrotronstrahlung
EP2072641B1 (fr) Electrode de diamant et son procédé de fabrication
DE102019111681A1 (de) Verfahren zum Glätten von Oberflächen
DE102019111684A1 (de) Verfahren zum Glätten von Oberflächen
DE102020205512A1 (de) Beschichtetes Schneidwerkzeug
DE102009019523B4 (de) Verfahren zum Trimmen eines SAW Bauelements
DE102010014919B4 (de) Verfahren zur Herstellung einer dielektrischen Schicht auf einem Bauelement
EP3791218A1 (fr) Support de miroir pour un miroir optique composé d'un matériau composite et procédé de fabrication associé
EP3779526A1 (fr) Procédé de fabrication d'une couche d'aluminium et élément optique
DE4316114C2 (de) Röntgenstrahlen-Maske und Verfahren zu ihrer Herstellung
DE10326734A1 (de) Diamantfräswerkzeug und dessen Verwendung
DE102021112288A1 (de) Schichtsystem mit Antibeschlag- und Antireflex-Eigenschaften und Verfahren zur Herstellung eines Schichtsystems
WO1995013525A1 (fr) Procede permettant de realiser au moins un evidement dans la surface d'un substrat, dispositif permettant sa mise en oeuvre et utilisation du produit ainsi obtenu
DE102004002764A1 (de) Verfahren zur Herstellung von Multilayern und Multilayer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220609

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001897

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2935471

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001897

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230504

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240527

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240614

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240419

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 5