EP3964602A1 - Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts - Google Patents

Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts Download PDF

Info

Publication number
EP3964602A1
EP3964602A1 EP20194103.6A EP20194103A EP3964602A1 EP 3964602 A1 EP3964602 A1 EP 3964602A1 EP 20194103 A EP20194103 A EP 20194103A EP 3964602 A1 EP3964602 A1 EP 3964602A1
Authority
EP
European Patent Office
Prior art keywords
steel
flat
product
corrosion coating
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20194103.6A
Other languages
English (en)
French (fr)
Inventor
Maria KÖYER
Manuela Ruthenberg
Janko Banik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP20194103.6A priority Critical patent/EP3964602A1/de
Priority to CN202180067892.5A priority patent/CN116249793A/zh
Priority to US18/024,126 priority patent/US20230366056A1/en
Priority to PCT/EP2021/073759 priority patent/WO2022049003A1/de
Publication of EP3964602A1 publication Critical patent/EP3964602A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Definitions

  • the invention relates to a method for producing a sheet metal component by hot forming a flat steel product, which is provided with an anti-corrosion coating in particular by hot-dip coating and which is given at least one section by flexible cold rolling, which has a different thickness than another section of the flat steel product adjoining it. the transition between the sections of the flat steel product having different thicknesses being abrupt.
  • Fiber steel products are understood here to mean rolled products whose length and width are each significantly greater than their thickness. These include, in particular, steel strips and steel sheets.
  • a process is known with which a component is formed from a hot-dip galvanized sheet steel intended for use at high temperatures of 450 - 650 °C with an aluminum-based anti-corrosion coating, which is said to have improved oxidation resistance at the high operating temperatures.
  • the anti-corrosion coating of the sheet consists of up to 13% by weight Si, 0.5 - 8% by weight Mg and, if necessary, one or more metals from the group "0.001 - 1% by weight Sr, 0.001 - 1 wt% Ca, 0.0001 - 0.1 wt% Be, 0.001 - 1 wt% Ba".
  • an alloy layer is formed between the steel substrate and the anti-corrosion coating of the flat steel product.
  • the Mg present in the anti-corrosion coating causes Mg or Mg oxides to accumulate on the exposed surfaces of the coating in the area of cracks that develop in the anti-corrosion coating.
  • up to 50% by volume of iron oxides can be found in a transitional layer between the anti-corrosion coating and the steel substrate.
  • fully killed 22MnB5 steel available on the market contains, in addition to iron and unavoidable impurities, in % by weight, 0.10 - 0.250% C, 1.0 - 1.4% Mn, 0.35 - 0.4% Si, up to 0.03% P, up to 0.01% S, up to 0.040% Al, up to 0.15% Ti, up to 0.1% Nb, in total up to 0.5% Cr + Mo, and up to 0.005% B.
  • the steel flat products are coated according to the known method with an anti-corrosion coating on Al -Base which contains effective amounts of 0.005 - 0.7% by weight of at least one alkaline earth metal or transition metal as an additional alloying component.
  • Si contents of 3-15% by weight and Fe contents of up to 5% by weight can also be present in the coating.
  • Mg in contents of 0.1-0.5% by weight is preferably used as the at least one alkaline earth metal or transition metal of the protective coating, with calcium, strontium, sodium or barium also being possible as a substitute or in addition.
  • the Al-based protective coating can be applied to the steel substrate by hot-dip coating, also known as "hot-dip aluminizing" in technical jargon, or by a gas deposition process, e.g. the well-known PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) process.
  • hot-dip coating also known as "hot-dip aluminizing” in technical jargon
  • gas deposition process e.g. the well-known PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) process.
  • “Flexible rolling” is a process for the production of metal strips with different strip thicknesses defined over their length.
  • the height of the roll gap provided between two work rolls of a roll stand, through which the flat steel product to be rolled has to pass is usually varied during rolling. In this way, sections of greater thickness (wider roll gap) and less thickness (narrower roll gap) can be produced on the flat steel product in succession over the length of the flat steel product.
  • flexible rolling is ideally suited for producing a flat steel product whose properties are adapted, for example, to the locally limited loads acting on it during use or to the requirements placed on its deformation behavior.
  • flexible rolling can be used to form flat steel products in such a way that a component obtained from such a flat steel product by forming has different sheet thicknesses at the required locations, which enable the component to withstand high loads while having a minimized weight.
  • the invention proposes that at least the method steps specified in claim 1 be completed during the flexible cold rolling of a flat steel product provided with an anti-corrosion coating.
  • a flat steel product which comprises an MnB steel substrate composed in a specific way and an Al-based anti-corrosion coating applied thereto, in particular by hot-dip coating.
  • hot-dip coating is carried out in a conventional manner for the purposes of the invention, the flat steel product is passed through a molten bath alloyed according to the invention and the coating layer thickness of the protective layer is adjusted from the flat steel product emerging from the molten bath by means of wiping nozzles. Air is used as the wiping medium.
  • the oxide layer on the anti-corrosion layer is "frozen", i.e. it cannot form according to the chemical equilibrium rules.
  • the anti-corrosion coating of the flat steel product contains at least one alkaline earth metal or transition metal or is wetted with a solution containing at least one such alkaline earth metal or transition metal in step b), which is carried out if necessary.
  • the solution used for this purpose according to the invention is preferably an aqueous solution whose solvent “water” is easily mastered in terms of process technology and is harmless with regard to the environment.
  • Step b) is carried out when the anti-corrosion coating contains too little of the at least one alkaline earth metal or transition metal.
  • wetting with the aqueous solution containing the at least one alkaline earth metal or transition metal also take place as a supplementary measure if the anti-corrosion coating contains a fundamentally sufficient amount of alkaline earth metal or transition metal, but other amounts of the at least alkaline earth metal or transition metal are on the surface of the Anti-corrosion coating are to be applied in order to ensure the occurrence of the effect used according to the invention of the presence of these metals in or on the anti-corrosion layer.
  • the alkaline earth metals and transition metals alloyed with the anti-corrosion coating and/or applied in the form of a solution to the surface of the anti-corrosion coating for the purposes of the invention include, in particular, magnesium (“Mg”) and calcium (“Ca”), but also beryllium (“Be”), strontium (“Sr”) and barium (“Ba”).
  • the application of the solution containing the at least one alkaline earth metal or transition metal can take place before or after the flexible rolling. It is essential that before heating to the hot-forming temperature, there is a sufficient quantity of the respective alkaline earth metal or transition metal in or on the anti-corrosion coating.
  • step c) the steel flat product provided and optionally coated with the layer containing at least one alkaline earth metal or transition metal is flexibly cold-rolled at room temperature in a conventional manner in order to give it sections of different thicknesses.
  • the steel flat product is rolled with rolling degrees W, which are 0.1 to 80%.
  • a degree of rolling W of 48.64% is required to produce a second section with a thickness X2 of 2.5 mm a rolling degree W of 10.00%, to produce a third section with a thickness X3 of 2.15 mm a rolling degree W of 27.90% and to produce a fourth section with a thickness X4 of 2.25 mm requires a degree of rolling W of 22.22%.
  • Particularly practical rolling degrees W are 0.1 - 60%, in particular 0.1 - 50%.
  • the degree of rolling W specifically set in each case depends on the desired extent of reduction in the thickness of the flat steel product compared to the initial state.
  • the range specified here for the degree of rolling W thus only defines the limits within which the degree of rolling set in each case is set according to the invention.
  • the thickness of the steel flat product is specifically reduced in limited length sections. Due to the constant volume, this reduction in thickness is inevitably accompanied by an elongation of the flat steel product.
  • the aluminum alloy of the anti-corrosion coating on a flat steel product processed according to the invention is so ductile that it can follow the deformation of the flat steel product occurring in the longitudinal and thickness direction, even in the border areas where the sections of different thickness meet.
  • the protective oxide layer on the anti-corrosion coating is much more brittle, with the result that it locally cracks due to the deformation of the steel flat product.
  • the resulting cracks are quickly closed again by newly forming oxides. Since this process takes place in the ambient atmosphere and without separate temperature supply or removal, the new oxide layer can form in such a way that it corresponds to the chemical equilibrium at the location of the crack, taking into account the respective ambient conditions. Damage to the oxide layer originally present during flexible rolling is closed by new oxides formed in the course of cold rolling, so that the finished flexibly rolled flat steel product has a tightly closed oxide layer again. This is characterized by areas where the original oxide layer has remained and areas where a new oxide layer has been formed.
  • the surface of a flat steel product that has been flexibly hot-rolled according to the invention is 80-90% covered with the original oxide layer formed before the flexible rolling, while the remaining surface is covered with the oxide layer formed in the course of the flexible rolling itself new oxide layer is covered.
  • the ratio of the Si and Al content of the oxide layer and the ratio of the Al, Si and Mg content of the oxide layer also depend on the values set by flexible rolling Degree of rolling W.
  • the original oxide layer present on the flat steel product processed according to the invention before flexible cold rolling typically consists of silicon, magnesium and aluminum oxides, the proportion of Si being significantly smaller than the proportion of Mg, which in turn is smaller than the proportion of Al.
  • the oxide layer contains 10-40% C, 30-60% O, 4-30% Al, 0-5% Si and 1-20% of at least one alkaline earth metal or transition metal, in particular mg, before
  • small amounts of Fe of up to 10 atom % can be present in the oxide layer. This applies in particular if the anti-corrosion coating has been applied by hot dip coating.
  • the thickness of the original oxide layer is typically 5-600 nm, in particular 5-300 nm, particularly preferably 5-150 nm.
  • the original oxide layer covers the surface of the anti-corrosion coating completely, ie 100%.
  • the oxide layer newly formed by the flexible cold rolling which can form in equilibrium, also essentially consists of oxides of silicon, magnesium and aluminum.
  • the quantity distribution of the Si, Mg and Al oxides corresponds to their distribution in the primary oxide layer.
  • the secondary oxide layer typically consists of, in atom %, 10 - 40 % C, 40-60% O, 20-30% Al, 0-5% Si and 1-20% of at least one alkaline earth metal or transition metal, in particular Mg, with small traces of iron of up to 10 atoms also in the secondary oxide layer -% may be included.
  • the thickness of the secondary oxide layer is 1-100 nm, in particular 1-80 nm or 1-50 nm, with thicknesses of up to 30 nm having turned out to be particularly favorable.
  • the percentage area F ox of the secondary oxide layer in the total oxide layer covering the anti-corrosion coating of the steel flat product processed according to the invention after flexible cold rolling is related to the degree of rolling W, where F ox ⁇ W.
  • compositions of the oxide layers can be determined using X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the sample of the steel flat product to be examined, for which the composition and thickness are to be determined is degreased with n-heptane, rinsed with propanol and blown off in air.
  • the sample is then attached to a sample carrier, introduced into the measuring chamber of the X-ray photoelectron spectroscope and examined in a high vacuum.
  • the boiler pressure is typically less than 5x10 8 mbar.
  • Argon is typically used as the bombardment gas.
  • the radiation was excited as Al K with a bombardment voltage of 2 or 4 kV. At least one measurement regarding the composition and oxide layer thickness is carried out on each sample.
  • composition and thickness determined in this way of the oxide layer present on the circuit board examined is therefore also referred to as "average composition” or "average thickness”.
  • the steel flat product is heated to a hot forming temperature, if necessary from that previously
  • a hot forming temperature if necessary from that previously
  • at least one is separated, which is then further processed according to the invention as a steel flat product.
  • composition of the anti-corrosion coating selected according to the invention and/or the additional application of the alkaline earth metal or transition metal to the anti-corrosion coating by means of the aqueous solution ensures that a primary oxide layer formed from the at least one alkaline earth metal or transition metal is formed as a result of the heat treatment carried out before hot forming of the anti-corrosion coating.
  • the invention is based on the finding that on a steel flat product that is provided with an aluminum-based (“Al-based”) anti-corrosion coating, which is doped with at least one alkaline earth metal or transition metal according to the invention, during the hot forming carried out heating on the anti-corrosion coating forms an oxide layer ("primary oxide layer"), which protects the underlying layers of the anti-corrosion coating and thus the steel substrate of the steel flat product against exposure to the ambient atmosphere.
  • the primary oxide layer in question is formed in such a way that it is in chemical equilibrium under the conditions prevailing during heating, in particular those determined by the respective hot-forming temperature. This process also continues during and after hot forming. Injuries to the oxide layer present before heating and hot forming are closed very quickly.
  • an oxide layer forms immediately as soon as the surface of the anti-corrosion layer is exposed to even the smallest amounts of oxygen.
  • the oxide layer present on the anti-corrosion coating covers the underlying aluminum of the anti-corrosion coating, so that contact of the Al with the ambient moisture and the associated elimination of larger amounts of hydrogen during heating to the hot-forming temperature or the hot forming itself can be prevented.
  • the penetration of relatively large amounts of hydrogen into the anti-corrosion coating and the steel substrate of a flat steel product processed according to the invention can thus be effectively suppressed.
  • the effects used by the invention occur particularly reliably when the alkaline earth metal or transition metal additionally present in the anti-corrosion coating or additionally applied to the anti-corrosion coating is magnesium ("Mg"), i.e. when Mg alone or in combination with others elements belonging to the group of alkaline earth metals or transition metals are present in the levels provided according to the invention in the anti-corrosion coating provided according to the invention of a flat steel product processed according to the invention or is additionally applied by means of the aqueous solution if the alkaline earth metal or transition metal content in the anti-corrosion coating is too low.
  • Mg magnesium
  • the method according to the invention is suitable for processing flat steel products with a wide range of thicknesses.
  • flat steel products can be processed with a thickness of 0.6-7 mm.
  • the flat steel product provided in step a) can be produced in any manner known from the prior art.
  • the method according to the invention is particularly suitable for processing flat steel products with a thickness of 0.8-4 mm, in particular 0.8-3 mm.
  • flat steel products can also be provided in step a), which are formed from a stack of metal sheets comprising, for example, three to five metal layers, which have been connected in a manner known per se, for example by roll cladding, to form a uniform flat steel product.
  • step a) for the method according to the invention in the manner of Taylored blanks from different sheet metal blanks welded to one another or similarly assembled flat steel products and steel strips, which are welded to one another and together form the flat steel product to be processed, can be provided for the process according to the invention.
  • the respective flat steel product provided according to the invention consists of a steel which has a composition typical of MnB steels. Such steels typically have yield strengths of 250 - 580 MPa and tensile strengths of 400 - 720 MPa in the as-delivered condition.
  • the steel substrate of which consists, in a manner known per se, of 0.07 - 0.4% by weight C, 1.0 - 2% by weight Mn, 0.06 - 0.4% by weight Si, up to 0 .03 wt% P, up to 0.01 wt% S, up to 0.1 wt% Al, up to 0.15 wt% Ti, up to 0.6 wt% Nb, up to 0.005% by weight B, up to 0.5% by weight Cr, up to 0.5% by weight Mo, the sum of the contents of Cr and Mo being at most 0.5% by weight is, the remainder consists of iron and unavoidable impurities.
  • the prerequisite for the effects achieved according to the invention is the presence of at least one alkaline earth metal or transition metal in or on the Al-based anti-corrosion coating provided according to the invention.
  • a sufficient amount of alkaline earth metal or transition metal can be alloyed with the anti-corrosion coating.
  • the minimum required alkaline earth metal or transition metal content in the anti-corrosion coating is 0.1% by weight and can reach up to 5% by weight.
  • Alkaline earth or transition metal contents of at least 0.11 wt permit. If the alkaline earth metal or transition metal content is more than 5% by weight, the Oxide layer and thus dust formation, which should be avoided.
  • the alkaline earth metal or transition metal content of the anti-corrosion coating applied in step a) can be limited to a total of at most 1.5% by weight, in particular at most 0.6% by weight. If the alloy of the anti-corrosion coating present on the steel substrate of a flat steel product processed according to the invention contains alkaline earth metals or transition metals that are sufficiently effective for the purposes according to the invention, these amounts to 0.1-5% by weight, in particular 0.11- 1.5% by weight or, especially, 0.11-0.6% by weight.
  • step b) The optional application of the solution containing the respective alkaline earth metal or transition metal (step b)) can take place directly after the application of the anti-corrosion layer inline by spraying and squeezing or by conventional coil coating.
  • salt solutions with up to 200 g/l are used for this purpose.
  • the alkaline earth or transition metals can be present as sulfates, phosphates and nitrates or in oxidic form as a dispersion of alkaline earth metal or transition metal oxide particles. Chlorides should not be used due to the potential for corrosive attack. Silicates can also find application. However, it should be noted here that these connections can impede further processing due to possible silicon connections. Fluorine compounds are not suitable because they can react to form hydrofluoric acid when heated to the hot forming temperature. Mixtures formed from compounds of the type discussed herein and/or different alkaline earth or transition metals can also be used.
  • the solution applied according to the invention, if necessary, to the surface of the anti-corrosion layer can additionally a network former such as bismuth nitrate and/or a wetting agent such as a surfactant.
  • drying A separate drying treatment ("baking") is not normally necessary.
  • the drying of the solution applied if necessary takes place by utilizing the process heat.
  • work step b) required according to the invention is to be carried out inline in a hot-dip coating system
  • the aqueous solution containing the at least one alkaline earth metal or transition metal can be applied at one point after the flat steel product has emerged from the molten bath and the coating thicknesses have been adjusted , at which the treated flat steel product is still warm enough for the solvent in the solution to evaporate quickly after contact with the surface of the flat steel product, i.e. the applied layer dries quickly.
  • the solution can also be applied in an additional process step on a conventional coil coating system.
  • a separate drying treatment can be useful if you want to ensure that the solution is dry before further processing. This applies in particular when water is used as the solvent.
  • either the flat steel product itself can be 100-250° C., in particular 100-180° C., warm when the at least one alkaline earth metal or transition metal-containing solution is applied, or it can be subjected to a drying treatment at these temperatures.
  • Typical drying times are 0-300 s, in particular 10-60 s. Drying times of "0 s" are achieved when the steel flat product or its surroundings are so hot when the solution is applied that the respective solvent when it hits the The surface of the anti-corrosion layer evaporates spontaneously, ie without waiting.
  • work step b) can also be carried out in the factory of the manufacturer of the flat steel product.
  • the flat steel product coated according to the invention is completely dry when it enters the furnace. Otherwise, the humidity brought into the oven by the water could lead to an excessive increase in the humidity of the oven atmosphere and thus to an unwanted Increase the dew point, which in turn would entail the risk of increased hydrogen absorption during the hot forming process.
  • the anti-corrosion coating of the flat steel product provided according to the invention can optionally contain silicon ("Si") in amounts of up to 15% by weight, in particular up to 11% by weight, in order to reduce the formation of an iron-aluminum phase.
  • Si contents of at least 3 wt. 11% by weight, specifically 8.5-11% by weight allow the positive influences of Si to be used particularly reliably in practice. With Si contents of at least 3% by weight, it is ensured that the alloy layer between the steel substrate and the anti-corrosion layer of a steel flat product according to the invention does not become too thick and optimal further processing properties are retained.
  • Fe can be present in the anti-corrosion coating provided on a flat steel product provided according to the invention in contents of up to 5% by weight, in particular up to 4% by weight, especially up to 3.5% by weight.
  • the Fe content is mainly due to the diffusion of Fe from the steel substrate and contributes to the optimal adhesion of the protective layer to the substrate.
  • Fe contents of at least 1 wt. 5% by weight the positive influences of the presence of Fe can be used particularly reliably in practice.
  • the anti-corrosion coating can be applied to the steel substrate of a flat steel product according to the invention in any known manner.
  • Hot-dip coating also known as "hot-dip aluminizing”
  • the respective flat steel product is a suitably heated molten bath composed in accordance with the provisions of the invention with regard to the composition of the anti-corrosion coating is passed.
  • Such a hot-dip coating is particularly suitable for strip-shaped flat steel products with a thickness of up to 3 mm.
  • one of the vapor deposition processes (PVD, CVD) already mentioned at the beginning can also have been used in order to apply the anti-corrosion coating.
  • the application weight of an anti-corrosion coating present on a flat steel product processed according to the invention is typically 30-100 g/m 2 , in particular 40-80 g/m 2 , per side of the flat steel product.
  • Mg in particular has proven to be suitable for the purposes according to the invention.
  • Mg can be present alone or in combination with other alkaline earth metals or transition metals, such as the elements beryllium, calcium, strontium and/or barium already mentioned, in the coating applied according to the invention in order to use the effects aimed at according to the invention.
  • the heating can be carried out in any suitable way. If a conventional continuous furnace is used for this purpose, in which the steel flat product or the blank is heated by radiant heat, the suitable holding time is typically 100-900 s, in particular 100-600 s or, particularly practical, 180-600 s If a hot forming temperature of 850 - 930 °C is selected, holding times of 180 - 600 s are usually sufficient in practice.
  • a pre-alloying of the anti-corrosion layer can be carried out before hot forming in combination with heating to the hot forming temperature or as a separate treatment step.
  • the flat steel product can be kept at temperatures of 650-1100° C. for a period of 10-240 s, in particular 30-90 s.
  • the flat steel product heated in the manner according to the invention is fed within a transfer time customary in practice to a hot-forming device in which the flat steel product is hot-formed into the component (step e)).
  • Steel sheets each had a thickness D and were provided with an Al-based anti-corrosion coating in a conventional manner by hot-dip coating.
  • Five variants Z1 - Z5 of such an anti-corrosion coating were used, the compositions of which are given in Table 2.
  • Each of the anti-corrosion coatings Z1-Z5 contained the Mg content shown in Table 2 as the alkaline earth metal or transition metal added in accordance with the provisions of the invention.
  • the steel sheets AF each provided with one of the anti-corrosion coatings Z1-Z5, have been flexibly cold-rolled in a conventional manner, with a rolling degree W being achieved in each case via this cold-rolling.
  • the steel sheets A - F, each provided with one of the anti-corrosion coatings Z1 - Z5, were heated in a conventional continuous furnace to a hot forming temperature of 850 - 930 °C in each case, with the holding time at the respective hot forming temperature being varied so that a sufficient amount of energy EE has been introduced into the respective sheet.
  • the heating was carried out in two stages in order to first bring about a pre-alloying of the anti-corrosion coating. All other tests V1 - V3, V5 and V7 - V9 were heated in one stage.
  • the sheet metal samples AF heated in this way to the respective hot forming temperature have been hot formed in a conventional manner in a tool provided for this purpose to form a sheet metal component.
  • the steel sheets obtained were cooled to room temperature at a cooling rate of 20-1000 K/s.
  • Table 3 shows the steel of the steel substrate of the steel sheet used in the tests V1 - V9, the respective coating applied to the steel sheet in question, the thickness D of the sheet metal samples examined, the coating weight of the coating before heating on the Hot forming temperature, the amount of heat introduced during heating to the hot forming temperature and the degree of rolling W achieved via flexible cold rolling are given.
  • the percentage of area %OB of the newly formed oxide layer OB which was formed in the course of flexible cold rolling on the anti-corrosion coating of the steel sheet processed in each case, is determined by means of XPS analysis on the oxide layer densely covering the surface of the steel sheet overall been.
  • the thicknesses D_OA of the original oxide layers OA present before the flexible rolling, the thicknesses D_OB of the oxide layers OB newly formed via the flexible rolling and present after the flexible rolling, and the thickness D_OP present after the hot forming are the same as the XPS measurement during heating the oxide layer formed on the hot-forming temperature and present on the component obtained after hot-forming has been determined.
  • the relevant measurement results are summarized in Table 4.
  • compositions of the oxide layer present on the anti-corrosion coating before flexible rolling, between flexible rolling and heating to the hot forming temperature and after hot forming were also determined on samples A - F using XPS measurements.
  • Table 1 stolen C si Mn P S Al Nb Ti B A 0.08 0.33 0.95 0.025 0.020 0.013 0.09 0.010 0.005 B 0.23 0.38 1.3 0.020 0.007 0.013 - 0.03 0.004 C 0.38 0.37 1.38 0.020 0.008 0.013 - 0.10 0.005 D 0.20 0.35 1.35 0.020 0.008 0.012 - 0.02 0.004 E 0.14 0.25 1.07 0.010 0.001 0.08 0.025 0.010 0.002 f 0.24 0.30 1.3 0.022 0.008 0.012 - 0.02 0.004 Data in % by weight, remainder Fe and unavoidable impurities Anti-corrosion coating before hot forming mg si feet Z1 0.3 9.5 3 Z2 0.5 8th 3.5 Z3 0.1 10 3 Z4 2 8th 2.0 Z5 0.8 8th 3 Data in % by weight, remainder Al and unavoidable impurities attempt stolen Thick D anti-corrosion coating Print run weight per page rolling grade W A

Abstract

Die Erfindung ermöglicht ohne die Gefahr des Eindringens von H2 die Herstellung eines Blechbauteils aus einem mit einer Korrosionsschutzbeschichtung versehenen Stahlflachprodukt, das Abschnitte unterschiedlicher Dicke aufweist, wobei der Übergang zwischen den Abschnitten sprungartig ist. Hierzu wird a) ein Stahlflachprodukt mit einem Stahlsubstrat aus einem Stahl bereitgestellt, der, in Gew.-%, aus 0,07 - 0,4 % C, 1,0 - 2,5 % Mn, 0,06 - 0,9 % Si, ≤ 0,03 % P, ≤ 0,01 % S, ≤ 0,1 % AI, ≤ 0,15 % Ti, ≤ 0,6 % Nb, ≤ 0,005 % B, ≤ 0,5 % Cr, ≤ 0,5 % Mo, wobei die Summe an Cr und Mo ≤ 0,5 % ist, und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht, und mit einer Korrosionsschutzbeschichtung aus, in Gew.-%, ≤ 15 % Si, ≤ 5 %, Fe, ≤ 5 % mindestens eines Erdalkali- oder Übergangsmetalls und als Rest aus AI und unvermeidbaren Verunreinigungen. Enthält die Korrosionsschutzbeschichtung ≤ 0,1 Gew.-% an dem Erdalkali- oder Übergangsmetall, wird b) eine mindestens ein Erdalkali- oder Übergangsmetall enthaltende Lösung auf die Korrosionsschutzbeschichtung des Stahlflachprodukts appliziert. Dann wird c) das Stahlflachprodukt zur Erzeugung der unterschiedlich dicken Abschnitte flexibel kaltgewalzt. Sodann wird es d) auf 800 - 1000 °C unter Atmosphäre mit > 15 Vol.-% O2 so lange erwärmt, bis eine Wärmeenergiemenge Js von > 44.000 kJs und ≤ 400.000 kJs eingebracht ist. Danach ist die Korrosionsschutzbeschichtung dicht mit einer aus einem primären Oxid des mindestens einen Erdalkali- oder Übergangsmetalls bestehenden Schicht belegt. Schließlich wird das Stahlflachprodukt zu dem Blechbauteil warmumgeformt,

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Blechbauteils durch Warmumformen eines Stahlflachprodukts, das insbesondere durch Schmelztauchbeschichten mit einer Korrosionsschutzbeschichtung versehen ist und das durch ein flexibles Kaltwalzen mindestens einen Abschnitt verliehen bekommt, der eine andere Dicke aufweist als ein an ihn angrenzender anderer Abschnitt des Stahlflachprodukts, wobei der Übergang zwischen den unterschiedlich dicken Abschnitten des Stahlflachprodukts sprungartig erfolgt.
  • Als "Stahlflachprodukte" werden hier Walzprodukte verstanden, deren Länge und Breite jeweils wesentlich größer sind als ihre Dicke. Hierzu zählen insbesondere Stahlbänder und Stahlbleche.
  • Im vorliegenden Text sind, soweit nicht explizit etwas anderes vermerkt ist, Angaben zu den Gehalten von Legierungsbestandteilen stets in Gew.-% gemacht.
  • Die Anteile von bestimmten Bestandteilen an einer Atmosphäre, insbesondere einer Glühatmosphäre, sind dagegen in Vol.-% angegeben, soweit nichts anderes vermerkt ist.
  • Aus der JP 2004-083988 A ist ein Verfahren bekannt, mit dem aus einem für einen Einsatz bei hohen Temperaturen von 450 - 650 °C bestimmten feuerverzinkten Stahlblech mit einer Korrosionsschutzbeschichtung auf AI-Basis ein Bauteil geformt wird, das bei den hohen Einsatztemperaturen eine verbesserte Oxidationsbeständigkeit aufweisen soll. Die Korrosionsschutzbeschichtung des Blechs besteht dazu aus bis zu 13 Gew.-% Si, 0,5 - 8 Gew.-% Mg und, falls erforderlich, aus einem oder mehreren Metallen aus der Gruppe "0,001 - 1 Gew.-% Sr, 0,001 - 1 Gew.-% Ca, 0,0001 - 0,1 Gew.-% Be, 0,001 - 1 Gew.-% Ba". Im Hochtemperatureinsatz der derart geformten Bauteile entsteht eine Legierungsschicht zwischen dem Stahlsubstrat und der Korrosionsschutzbeschichtung des Stahlflachprodukts. Das in der Korrosionsschutzbeschichtung vorhandene Mg bewirkt dabei, dass sich auf den im Bereich von Rissen, die in der Korrosionsschutzbeschichtung entstehen, freiliegenden Oberflächen der Beschichtung Mg oder Mg-Oxide ansammeln. Gleichzeitig finden sich in einer Übergangsschicht zwischen der Korrosionsschutzbeschichtung und dem Stahlsubstrat bis zu 50 Vol.-% Eisenoxide.
  • Aus der EP 2 993 248 A1 ist ein weiteres Verfahren bekannt, bei dem Stahlflachprodukte der hier in Rede stehenden Art warmgeformt werden. Als Ausgangsprodukt für dieses Verfahren wird ein Stahlflachprodukt eingesetzt, dessen Stahlsubstrat aus so genanntem "MnB-Stahl" besteht. Stähle dieser Art sind in der DIN EN 10083-3 genormt und besitzen eine gute Härtbarkeit. Dabei erlauben sie beim Warmpressen eine sichere Prozessführung, durch die es auf wirtschaftliche Weise möglich ist, im Zuge der Warmverformung eine Martensithärtung noch im Werkzeug ohne zusätzliche Kühlung zu bewirken. Ein typisches Beispiel für einen solchen Stahl ist der unter der Bezeichnung 22MnB5 bekannte Stahl, der im Stahlschlüssel 2004 unter der Werkstoffnummer 1.5528 zu finden ist. Typischerweise enthält auf dem Markt erhältlicher, vollberuhigter 22MnB5-Stahl neben Eisen und unvermeidbaren Verunreinigungen , in Gew.-%, 0,10 - 0,250 % C, 1,0 - 1,4 % Mn, 0,35 - 0,4 % Si, bis zu 0,03 % P, bis zu 0,01 % S, bis zu 0,040 % AI, bis zu 0,15 % Ti, bis zu 0,1 % Nb, in Summe bis zu 0,5 % Cr + Mo, sowie bis zu 0,005 % B. Um die aus derart zusammengesetztem Stahl bestehenden Stahlflachprodukte gegen korrosive Angriffe zu schützen und gleichzeitig die Gefahr einer Wasserstoffaufnahme bei der für ein Warmumformen erforderlichen Erwärmung zu minimieren, werden die Stahlflachprodukte gemäß dem bekannten Verfahren mit einem Korrosionsschutzüberzug auf Al-Basis versehen, der als zusätzlichen Legierungsbestandteil wirksame Gehalte von 0,005 - 0,7 Gew.-% an mindestens einem Erdalkali- oder Übergangsmetall enthält. Darüber hinaus können in dem Überzug auch Si-Gehalte von 3 - 15 Gew.-% und Fe-Gehalte von bis zu 5 Gew.-% vorhanden sein. Als das mindestens eine Erdalkali- oder Übergangsmetall des Schutzüberzugs wird dabei bevorzugt Mg in Gehalten von 0,1 - 0,5 Gew.-% eingesetzt, wobei ersatzweise oder ergänzend auch Kalzium, Strontium, Natrium oder Barium in Frage kommen. Der Al-basierte Schutzüberzug lässt sich durch Schmelztauchbeschichten, in der Fachsprache auch "Feueraluminieren" genannt, oder durch ein Gasabscheideverfahren, z.B. den bekannten PVD-(Physical Vapour Deposition) oder CVD-Verfahren (Chemical Vapour Deposition), auf das Stahlsubstrat aufbringen.
  • Besondere Anforderungen an die Art und Weise, in der der Korrosionsschutzüberzug auf das aus einem MnB-Stahl bestehende Stahlsubstrat aufgebracht wird, sind im voranstehend erläuterten Stand der Technik nicht erwähnt. Aufgrund der Anwesenheit des Erdalkali- oder Übergangsmetalls im Überzug kommt es bei einer in konventioneller Weise unter einer Normalatmosphäre über eine Dauer von 360 - 800 s auf eine Temperatur von 900 °C durchgeführten Erwärmung einer aus dem in der voranstehend erläuterten Weise beschichteten Platine allenfalls zu einer minimalen Sauerstoffaufnahme im Stahlsubstrat.
  • Beim "flexiblen Walzen" handelt es sich um ein Verfahren zur Herstellung von Metallbändern mit über ihrer Länge definiert unterschiedlichen Banddicken. Wie beispielsweise in der DE 198 46 900 A1 oder der DE 100 41 280 C2 erläutert, wird hierzu während des Walzens üblicherweise die Höhe des zwischen zwei Arbeitswalzen eines Walzgerüstes vorgesehenen Walzspalts variiert, den das zu walzende Stahlflachprodukt passieren muss. Auf diese Weise lassen sich an dem Stahlflachprodukt über die Länge des Stahlflachprodukts aufeinander folgend Abschnitte mit größerer Dicke (weiterer Walzspalt) und geringerer Dicke (engerer Walzspalt) erzeugen.
  • Aufgrund der Möglichkeit, gezielt bestimmte Dicken an einem Stahlflachprodukt zu erzeugen, ist das flexible Walzen bestens zur Erzeugung eines Stahlflachprodukts geeignet, dessen Eigenschaften beispielsweise an die im Gebrauch lokal begrenzt auf ihn wirkenden Belastungen oder die an sein Verformungsverhalten gestellten Anforderungen angepasst sind. So können durch flexibles Walzen Stahlflachprodukte so geformt werden, dass an einem aus einem solchen Stahlflachprodukt durch Umformen erhaltenen Bauteil an den erforderlichen Stellen unterschiedliche Blechdicken vorliegen, die das Bauteil bei minimiertem Gewicht zur Aufnahme hoher Belastungen ertüchtigen.
  • Sollen, wie bei der vorliegenden Erfindung, durch flexibles Kaltwalzen, also einem flexiblen Walzen, das an einem nicht gesondert vorgewärmten Stahlflachprodukt vorgenommen wird, Stahlflachprodukte prozessiert werden, die mit einer Korrosionsschutzbeschichtung versehen sind, kann es aufgrund der regelmäßig dabei auftretenden hohen Walzkräfte zu Schädigungen der Korrosionsschutzbeschichtung in Form von Ablösungen kommen. Durch die so in der Korrosionsschutzbeschichtung entstehenden Löcher kann diffusibler Wasserstoff in das Stahlflachprodukt gelangen, die durch Risse im Stahlsubstrat ausgelöst werden können. Um diese Gefahr zu vermeiden, werden in der heutigen betrieblichen Praxis die Walzgrade, d.h. die über einen Walzschritt erzielte relative Dickenreduzierung auf bestimmte Höchstwerte beschränkt, bei denen es erfahrungsgemäß nicht zur Schädigung der Korrosionsschutzbeschichtung kommt.
  • Vor diesem Hintergrund hat sich die Aufgabe ergeben, ein Verfahren anzugeben, das es ermöglicht, ein Stahlflachprodukt der voranstehend erläuterten Art mit hohen Walzgraden flexibel warmzuwalzen, ohne dass dafür die Gefahr des Eindringens von Wasserstoff in das Stahlsubstrat in Kauf genommen werden muss.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung vor, dass beim flexiblen Kaltwalzen eines mit einer Korrosionsschutzbeschichtung versehenen Stahlflachprodukts mindestens die in Anspruch 1 angegebenen Verfahrensschritte absolviert werden.
  • Es versteht sich dabei von selbst, dass bei der Durchführung des erfindungsgemäßen Verfahrens der Fachmann nicht nur die in den Ansprüchen erwähnten und hier erläuterten Verfahrensschritte absolviert, sondern auch alle sonstigen Schritte und Tätigkeiten ausführt, die bei der praktischen Umsetzung derartiger Verfahren im Stand der Technik regelmäßig durchgeführt werden, wenn sich hierzu die Notwendigkeit ergibt.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden wie der allgemeine Erfindungsgedanke nachfolgend im Einzelnen erläutert.
  • Gemäß der Erfindung werden also bei der Herstellung eines Blechbauteils durch Warmumformen eines Stahlflachprodukts, das mit einer Korrosionsschutzbeschichtung versehen ist und das durch ein flexibles Kaltwalzen mindestens einen Abschnitt verliehen bekommt, der eine andere Dicke aufweist als ein an ihn angrenzender anderer Abschnitt des Stahlflachprodukts, wobei der Übergang zwischen den unterschiedlich dicken Abschnitten des Stahlflachprodukts sprungartig erfolgt, folgende Arbeitsschritte absolviert:
    1. a) Bereitstellen eines Stahlflachprodukts, das ein Stahlsubstrat, das aus einem Stahl erzeugt ist, der, in Gew.-%, aus 0,07 - 0,4 % C, 1,0 - 2,5 % Mn, 0,06 - 0,9 % Si, bis zu 0,03 % P, bis zu 0,01 % S, bis zu 0,1 % Al, bis zu 0,15 % Ti, bis zu 0,6 % Nb, bis zu 0,005 % B, bis zu 0,5 % Cr, bis zu 0,5 % Mo, wobei die Summe der Gehalte an Cr und Mo höchstens 0,5 % beträgt, und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht, und eine auf das Stahlsubstrat applizierte Korrosionsschutzbeschichtung umfasst, die aus, in Gew.-%, bis zu 15 % Si, bis zu 5 % Fe, optional bis zu 5 Gew.-% mindestens eines Erdalkali- oder Übergangsmetalls und als Rest aus AI und unvermeidbaren Verunreinigungen gebildet ist, sodann
    2. b) im Fall, dass die Korrosionsschutzbeschichtung kein oder weniger als 0,1 Gew.-% an dem mindestens Erdalkali- oder Übergangsmetall enthält: Applizieren einer mindestens ein Erdalkali- oder Übergangsmetall enthaltenden Lösung auf die Korrosionsschutzbeschichtung des Stahlflachprodukts,
    3. c) flexibles Kaltwalzen des Stahlflachprodukts, um an dem Stahlflachprodukt die Abschnitte unterschiedlicher Dicke zu erzeugen, sodann
    4. d) Erwärmen des flexibel kaltgewalzten Stahlflachprodukts auf eine 800 - 1000 °C betragende Warmformtemperatur unter einer Atmosphäre, die mehr als 15 Vol.-% Sauerstoff enthält, über eine Haltedauer, die ausreicht, um in das Stahlflachprodukt eine Wärmeenergiemenge Js von mehr als 44.000 kJs und höchstens 400.000 kJs einzubringen, so dass nach dem Erwärmen die Oberfläche der Korrosionsschutzbeschichtung des Stahlflachprodukts dicht mit einer Schicht belegt ist, die aus einem primären Oxid des mindestens einen in der Korrosionsschutzschicht enthaltenen und/oder im Arbeitsschritt b) optional zusätzlich aufgetragenen Erdalkali- oder Übergangsmetalls besteht, sodann
    5. e) Warmumformen des Stahlflachprodukts zu dem Blechbauteil.
  • Gemäß der Erfindung wird also ein Stahlflachprodukt bereitgestellt, das ein in bestimmter Weise zusammengesetztes MnB-Stahlsubstrat und eine darauf, insbesondere durch Schmelztauchbeschichten, aufgebrachte Korrosionsschutzbeschichtung auf Al-Basis umfasst. Beim zu Zwecken der Erfindung in konventioneller Weise durchgeführten Schmelztauchbeschichten wird das Stahlflachprodukt durch ein nach Maßgabe der Erfindung legiertes Schmelzenbad geleitet und von dem aus dem Schmelzenbad austretenden Stahlflachprodukt mittels Abstreifdüsen die Auflagenschichtdicke der Schutzschicht eingestellt. Als Abstreifmedium wird dabei Luft verwendet. Durch die Beaufschlagung mit dem Luftstrahl und der damit einhergehenden rapiden Temperaturabsenkung wird die auf der Korrosionsschutzschicht vorhandene Oxidschicht "eingefroren", d.h. sie kann sich nicht nach den chemischen Gleichgewichtsregeln ausbilden.
  • Die Korrosionsschutzbeschichtung des Stahlflachprodukts weist dabei einen Gehalt an mindestens einem Erdalkali- oder Übergangsmetall auf oder wird im erforderlichenfalls durchgeführten Arbeitsschritt b) mit einer Lösung benetzt, die mindestens ein solches Erdalkali- oder Übergangsmetall enthält. Bei der hierzu erfindungsgemäß eingesetzten Lösung handelt es sich vorzugsweise um eine wässrige Lösung, deren Lösungsmittel "Wasser" prozesstechnisch einfach beherrscht und hinsichtlich der Umwelt unbedenklich ist.
  • Der Arbeitsschritt b) wird notwendig dann durchgeführt, wenn die Korrosionsschutzbeschichtung einen zu geringen Gehalt an dem mindestens einen Erdalkali- oder Übergangsmetall enthält. Jedoch kann die Benetzung mit der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenden wässrigen Lösung als ergänzende Maßnahme selbstverständlich auch dann erfolgen, wenn in der Korrosionsschutzbeschichtung zwar eine grundsätzlich ausreichende Menge an Erdalkali- oder Übergangsmetall vorhanden ist, jedoch weitere Mengen an dem mindestens Erdalkali- oder Übergangsmetall auf der Oberfläche der Korrosionsschutzbeschichtung aufgebracht werden sollen, um das Eintreten des erfindungsgemäß genutzten Effekts der Anwesenheit dieser Metalle in oder auf der Korrosionsschutzschicht sicherzustellen.
  • Zu den für die erfindungsgemäßen Zwecke dem Korrosionsschutzüberzug zulegierten und/oder in Form einer Lösung auf die Oberfläche des Korrosionsschutzüberzugs applizierten Erdalkali- und Übergangsmetallen gehören insbesondere Magnesium ("Mg") und Kalzium ("Ca") aber auch Beryllium ("Be"), Strontium ("Sr") und Barium ("Ba").
  • Die gegebenenfalls notwendig oder optional zusätzlich durchgeführte Applikation der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenden Lösung kann vor oder nach dem flexiblen Walzen erfolgen. Wesentlich ist, dass vor der Erwärmung auf die Warmformtemperatur in oder auf der Korrosionsschutzbeschichtung eine ausreichende Menge an dem oder den jeweiligen Erdalkali- oder Übergangsmetallen vorliegt.
  • Im Arbeitsschritt c) wird das bereitgestellte und gegebenenfalls mit der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenen Schicht beschichtete Stahlflachprodukt bei Raumtemperatur in konventioneller Weise flexibel kaltgewalzt, um ihm die Abschnitte unterschiedlicher Dicke zu verleihen.
  • Beim flexiblen Walzen wird das Stahlflachprodukt mit Walzgraden W, die 0,1 bis 80 % betragen, gewalzt. Der Walzgrad W wird gemäß der Formel W = ((U / Xn) - 1) 100 % bestimmt, in der mit "U" die Ausgangsdicke des jeweils gewalzten Abschnitts n vor der Walzung und mit Xn die Dicke des betreffenden Abschnitts n nach der Walzung bezeichnet sind. D.h., bei einer Ausgangsdicke U von jeweils 2,75 mm zur Erzeugung eines ersten Abschnitts mit einer bei einer Dicke X1 von 1,85 mm wird ein Walzgrad W von 48,64 %, zur Erzeugung eines zweiten Abschnitts mit einer bei einer Dicke X2 von 2,5 mm ein Walzgrad W von 10,00 %, zur Erzeugung eines dritten Abschnitts mit einer bei einer Dicke X3 von 2,15 mm ein Walzgrad W von 27,90 % und zur Erzeugung eines vierten Abschnitts mit einer bei einer Dicke X4 von 2,25 mm ein Walzgrad W von 22,22 % erforderlich. Besonders praxisgerechte Walzgrade W liegen bei 0,1 - 60 %, insbesondere 0,1 - 50 %. Indem die Walzgrade W in den genannten Bereichen variiert werden, werden die Abschnitte unterschiedlicher Dicke an dem Stahlflachprodukt erzeugt. Der jeweils konkret eingestellte Walzgrad W hängt dabei von dem jeweils gewünschten Umfang der Reduzierung der Dicke des Stahlflachprodukts gegenüber dem Ausgangszustand ab. Der hier für die Walzgrade W angegebene Bereich definiert somit lediglich die Grenzen, innerhalb der die jeweils eingestellten Walzgrade erfindungsgemäß eingestellt werden.
  • Durch das flexible Walzen wird die Dicke des Stahlflachprodukts in begrenzten Längenabschnitten gezielt reduziert. Wegen der Volumenkonstanz geht diese Dickenabnahme unweigerlich mit einer Längung des Stahlflachprodukts einher. Die Aluminiumlegierung der Korrosionsschutzbeschichtung auf einem erfindungsgemäß verarbeiteten Stahlflachprodukt ist dabei so duktil, dass sie diese der in Längs- und Dickenrichtung erfolgenden Verformung des Stahlflachprodukts auch in den Grenzbereichen, an denen die Abschnitte unterschiedlicher Dicke aufeinanderstoßen, folgen kann.
  • Jedoch ist die auf der Korrosionsschutzbeschichtung liegende schützende Oxidschicht wesentlich spröder mit der Folge, dass sie durch die Verformung des Stahlflachprodukts lokal aufreißt. Die so entstehenden Risse werden durch sich neu bildende Oxide schnell wieder geschlossen. Da dieser Vorgang unter Umgebungsatmosphäre und ohne gesonderte Temperaturzu- oder abfuhr stattfindet, kann sich die neue Oxidschicht so ausbilden, dass sie dem chemischen Gleichgewicht an dem Ort des Risses unter Berücksichtigung der jeweiligen Umgebungsbedingungen entspricht. Beim flexiblen Walzen auftretende Beschädigungen der ursprünglich vorhandenen Oxidschicht werden durch im Zuge des Kaltwalzens neu entstehende Oxide geschlossen, so dass am fertig flexibel gewalzten Stahlflachprodukt wieder eine dicht geschlossene Oxidschicht vorliegt. Diese ist durch Bereiche, in denen die ursprüngliche Oxidschicht verblieben ist, und Bereiche gekennzeichnet, in denen eine neue Oxidschicht gebildet worden ist.
  • Gemäß den Erkenntnissen der Erfindung besteht hier ein direkter Zusammenhang zwischen dem jeweils eingestellten Walzgrad W und den Anteilen, in denen das nach dem flexiblen Kaltwalzen erhaltene Stahlflachprodukt von ursprünglichen und neugebildeten Oxidschichten belegt ist. So lässt sich der prozentuale Flächenanteil A der von dem ursprünglichen Oxid belegt ist, mit einer Genauigkeit von ± 5 % gemäß der Formel A = 100 % - W abschätzen. Entsprechend beträgt der von dem neu gebildeten Oxid belegte prozentuale Flächenanteil B der Oberfläche des nach dem flexiblen Walzen erhaltenen Stahlflachprodukts B = 100 % - A ± 5 %. Ist beispielsweise mit einem Walzgrad W von 15 % gewalzt worden, ist demzufolge die Oberfläche eines erfindungsgemäß flexibel warmgewalzten Stahlflachprodukts zu 80 - 90 % mit der vor dem flexiblen Walzen gebildeten ursprünglichen Oxidschicht bedeckt, während die restliche Fläche mit der im Zuge des flexiblen Walzens selbst gebildeten neuen Oxidschicht bedeckt ist.
  • Bei einem in erfindungsgemäßer Weise flexibel gewalzten Stahlflachprodukt besteht zudem eine Abhängigkeit des Verhältnisses der Gehalte der Oxidschicht an Si und Al und des Verhältnisses der Gehalte der Oxidschicht an AI, Si und Mg von dem über das flexible Walzen jeweils eingestellten Walzgrad W. So gilt beispielsweise im Fall, das Mg als das mindestens eine Erdalkali- oder Übergangselement zu der Korrosionsschutzbeschichtung des erfindungsgemäß prozessierten Stahlflachprodukts zulegiert oder auf diese Korrosionsschutzbeschichtung aufgebracht worden ist, für die nach dem flexiblen Kaltwalzen insgesamt auf dem Stahlflachprodukt vorhandene Oxidschicht %Al/%Si ≥ 6,4 x W-0,1, während für das Verhältnis %Al/%Mg ≥ (2,66xW0,11) ± 1 gilt (mit %AI = Al-Gehalt der gesamten Oxidschicht in Atom-%, %Si = Si-Gehalt der gesamten Oxidschicht in Atom-%, %Mg = Mg-Gehalt der gesamten Oxidschicht in Atom-%).
  • Die vor dem flexiblen Kaltwalzen auf dem erfindungsgemäß verarbeiteten Stahlflachprodukt vorhandene ursprüngliche Oxidschicht besteht typischerweise aus Silizium-, Magnesium- und Aluminiumoxiden, wobei der Mengenanteil an Si wesentlich kleiner ist als der Mengenanteil an Mg, der wiederum kleiner ist als der Mengenanteil an AI. So liegen in der Oxidschicht typischerweise, angegeben in Atom-%, 10 - 40 % C, 30 - 60 % O, 4 - 30 % AI, 0 - 5 % Si und 1 - 20 % des mindestens einen Erdalkali- oder Übergangsmetalls, insbesondere Mg, vor. Zusätzlich können geringe Anteile an Fe von bis zu 10 Atom-% in der Oxidschicht vorhanden sein. Dies gilt insbesondere, wenn die Korrosionsschutzbeschichtung durch Schmelztauchbeschichten aufgebracht worden ist. Die Dicke der ursprünglichen Oxidschicht beträgt typischerweise 5 - 600 nm, insbesondere 5 - 300 nm, besonders bevorzugt 5 - 150 nm. Dabei bedeckt die ursprüngliche Oxidschicht die Oberfläche der Korrosionsschutzbeschichtung vollständig, also zu 100 %.
  • Die über das flexible Kaltwalzen neu gebildete Oxidschicht, die sich im Gleichgewicht bilden kann, besteht ebenfalls im Wesentlichen aus Oxiden von Silizium, Magnesium und Aluminium. Die Mengenverteilung der Si-, Mg- und Al-Oxide entspricht dabei ihrer Verteilung in der primären Oxidschicht. Dabei besteht die sekundäre Oxidschicht typischerweise aus, in Atom-%, 10 - 40 % C, 40 - 60 % O, 20 - 30 % AI, 0 - 5 % Si und 1 - 20 % des mindestens einen Erdalkali- oder Übergangsmetalls, insbesondere Mg, wobei auch in der sekundären Oxidschicht geringe Spuren von Eisen von bis zu 10 Atom-% enthalten sein können. Die Dicken der sekundären Oxidschicht betragen 1 - 100 nm, insbesondere 1 - 80 nm oder 1 - 50 nm, wobei sich Dicken von bis zu 30 nm als besonders günstig herausgestellt haben. Der prozentuale Flächenanteil Fox der sekundären Oxidschicht an der gesamten Oxidschicht, die die Korrosionsschutzbeschichtung des erfindungsgemäß prozessierten Stahlflachprodukts nach dem flexiblen Kaltwalzen bedeckt, steht im Zusammenhang mit dem Walzgrad W, wobei gilt Fox < W.
  • Die Zusammensetzungen der Oxidschichten lassen sich mittels Röntgenphotoelektronenspektroskopie (XPS) ermitteln. Hierzu wird die jeweils zu untersuchende Probe des Stahlflachprodukts, für das die Zusammensetzung und Dicke ermittelt werden sollen, mit n-Heptan entfettet, mit Propanol gespült und an Luft abgeblasen. Die Probe wird dann jeweils auf einem Probenträger befestigt, in die Messkammer des Röntgenphotoelektronenspektroskops eingeschleust und im Hochvakuum untersucht. Der Kesseldruck beträgt dabei typischerweise weniger als 5x108 mbar. Als Beschussgas wird typischerweise Argon verwendet. Die Strahlung wurde als Al K mit einer Beschussspannung von 2 oder 4 kV angeregt. An jeder Probe wird mindestens eine Messung bzgl. der Zusammensetzung und Oxidschichtdicke durchgeführt. Typischerweise werden mehrere Proben einer Platine untersucht und die Ergebnisse aller Proben der betreffenden Platine jeweils arithmetisch gemittelt. Die auf diese Weise ermittelte Zusammensetzung und Dicke der auf der jeweils untersuchten Platine vorhandenen Oxidschicht wird deshalb auch als "mittlere Zusammensetzung" oder "mittlere Dicke" bezeichnet.
  • Nach dem flexiblen Walzen wird das Stahlflachprodukt auf eine Warmformtemperatur erwärmt, wobei hierzu erforderlichenfalls von dem zuvor beispielsweise in Form eines Stahlbands oder größeren Blechs vorliegenden Stahlflachprodukt mindestens eine abgeteilt wird, die dann als Stahlflachprodukt erfindungsgemäß weiterverarbeitet wird.
  • Durch die erfindungsgemäß ausgewählte Zusammensetzung der Korrosionsschutzbeschichtung und/oder den zusätzlichen Auftrag des Erdalkali- oder Übergangsmetalls mittels der wässrigen Lösung auf die Korrosionsschutzbeschichtung wird erreicht, dass in Folge der vor der Warmformgebung durchgeführten Wärmebehandlung eine aus dem mindestens einen Erdalkali- oder Übergangsmetall gebildete primäre Oxidschicht auf der Korrosionsschutzbeschichtung entsteht.
  • Die Erfindung geht hier von der Erkenntnis aus, dass sich auf einem Stahlflachprodukt, das mit einer aluminiumbasierten ("Al-basierten") Korrosionsschutzbeschichtung versehen ist, die nach Maßgabe der Erfindung mit mindestens einem Erdalkali- oder Übergangsmetall dotiert ist, während der für die Warmumformung durchgeführten Erwärmung auf der Korrosionsschutzbeschichtung eine Oxidschicht ("primäre Oxidschicht") bildet, die die darunter liegenden Schichten der Korrosionsschutzbeschichtung und damit einhergehend das Stahlsubstrat des Stahlflachprodukts gegen eine Exposition an der Umgebungsatmosphäre schützt. Die betreffende primäre Oxidschicht bildet sich dabei so aus, dass sie unter den bei der Erwärmung herrschenden, insbesondere durch die jeweilige Warmformtemperatur bestimmten Bedingungen, im chemischen Gleichgewicht ist. Dieser Vorgang setzt sich auch noch während und nach der Warmumformung fort. Verletzungen der vor der Erwärmung und Warmumformung vorhandenen Oxidschicht werden so sehr schnell geschlossen. Aufgrund der Sauerstoffaffinität auch der Elemente AI, Mg und Si der Korrosionsschutzschicht bildet sich jeweils umgehend eine Oxidschicht, sobald die Oberfläche der Korrosionsschutzschicht auch nur geringsten Mengen von Sauerstoff ausgesetzt wird. Dabei garantiert die Reaktivität der erfindungsgemäß in und/oder auf der Korrosionsschutzschicht vorgesehenen Erdalkali- oder Übergangsmetalle, dass die Oxide der neu gebildeten Oxidschicht innerhalb so kurzer Zeit entstehen, dass ein Eindringen schädigender Stoffe aus der Umgebung sicher verhindert wird.
  • Auf diese Weise ist bei einem erfindungsgemäß auf die jeweilige Warmförmtemperatur erwärmten Stahlflachprodukt nicht nur dessen Stahlsubstrat allgemein gegen einen korrosiven Angriff geschützt. Die auf der Korrosionsschutzbeschichtung vorhandene, insbesondere aus den erfindungsgemäß vorgesehenen Erdalkali- oder Übergangsmetallen gebildete Oxidschicht deckt das darunter liegende Aluminium der Korrosionsschutzbeschichtung ab, so dass ein Kontakt des AI mit der Umgebungsfeuchtigkeit und damit einhergehend eine Abspaltung größerer Menge von Wasserstoff während der Erwärmung auf die Warmformtemperatur oder die Warmumformung selber verhindert werden. Das Eindringen von größeren Mengen an Wasserstoff in die Korrosionsschutzbeschichtung und das Stahlsubstrat eines erfindungsgemäß prozessierten Stahlflachprodukts kann so wirksam unterdrückt werden.
  • Besonders sicher treten die von der Erfindung genutzten Effekte dann ein, wenn es sich bei dem zusätzlich in der Korrosionsschutzbeschichtung vorhandenen oder zusätzlich auf der Korrosionsschutzbeschichtung applizierten Erdalkali- oder Übergangsmetall um Magnesium ("Mg") handelt, wenn also Mg alleine oder in Kombination mit weiteren zur Gruppe der Erdalkali- oder Übergangsmetalle gehörenden Elementen in den erfindungsgemäß vorgesehenen Gehalten in der erfindungsgemäß vorgesehenen Korrosionsschutzbeschichtung eines erfindungsgemäß prozessierten Stahlflachprodukts vorhanden ist oder mittels der wässrigen Lösung zusätzlich appliziert wird, wenn der Gehalt an Erdalkali- oder Übergangsmetall in der Korrosionsschutzbeschichtung zu gering ist.
  • Das erfindungsgemäße Verfahren eignet sich zur Verarbeitung von Stahlflachprodukten mit einem großen Dickenspektrum. So lassen sich mit dem erfindungsgemäßen Verfahren Stahlflachprodukte verarbeiten, deren Dicke 0,6 - 7 mm beträgt.
  • Die Erzeugung des im Arbeitsschritt a) jeweils bereitgestellten Stahlflachprodukts kann dabei in jeder beliebigen aus dem Stand der Technik bekannten Weise erfolgen. So eignet sich das erfindungsgemäße Verfahren insbesondere zur Verarbeitung von Stahlflachprodukten mit einer Dicke von 0,8 - 4 mm, insbesondere 0,8 - 3 mm.
  • Für das erfindungsgemäße Verfahren können im Arbeitsschritt a) auch Stahlflachprodukte bereitgestellt werden, die aus einem beispielsweise drei bis fünf Blechschichten umfassenden Stapel von Blechen gebildet sind, die in an sich bekannter Weise, beispielsweise nach Art des Walzplattierens, zu einem einheitlichen Stahlflachprodukt verbunden worden sind. Ebenso können im Arbeitsschritt a) für das erfindungsgemäße Verfahren nach Art von Taylored-Blanks aus miteinander verschweißten unterschiedlichen Blechzuschnitten oder desgleichen zusammengesetzte Stahlflachprodukte sowie Stahlbänder, die miteinander verschweißt sind und gemeinsam das zu verarbeitende Stahlflachprodukt bilden, für den erfindungsgemäßen Prozess bereitgestellt werden.
  • Das jeweils erfindungsgemäß bereitgestellte Stahlflachprodukt besteht aus einem Stahl, der eine für MnB-Stähle typische Zusammensetzung aufweist. Derartige Stähle weisen typischerweise im Anlieferungszustand Streckgrenzen von 250 - 580 MPa und Zugfestigkeiten von 400 - 720 MPa auf.
  • Aufgrund ihres Eigenschaftsprofils, insbesondere ihres Potenzials zur Entwicklung hoher Festigkeiten für die Praxis besonders interessant sind Stahlflachprodukte, deren Stahlsubstrat in an sich bekannter Weise aus 0,07 - 0,4 Gew.-% C, 1,0 - 2 Gew.-% Mn, 0,06 - 0,4 Gew.-% Si, bis zu 0,03 Gew.-% P, bis zu 0,01 Gew.-% S, bis zu 0,1 Gew.-% AI, bis zu 0,15 Gew.-% Ti, bis zu 0,6 Gew.-% Nb, bis zu 0,005 Gew.-% B, bis zu 0,5 Gew.-% Cr, bis zu 0,5 Gew.-% Mo, wobei die Summe der Gehalte an Cr und Mo höchstens 0,5 Gew.-% beträgt, Rest Eisen und unvermeidbaren Verunreinigungen bestehen.
  • Hierunter fallen bereits im Serieneinsatz befindliche Stähle, die aus 0,07 - 0,4 Gew.-% C, 1,0 - 1,5 Gew.-% Mn, 0,3 - 0,4 Gew.-% Si, bis zu 0,03 Gew.-% P, bis zu 0,01 Gew.-% S, bis zu 0,05 Gew.-% AI, bis zu 0,15 Gew.-% Ti, bis zu 0,6 Gew.-% Nb, bis zu 0,005 Gew.-% B, bis zu 0,5 Gew.-% Cr, bis zu 0,5 Gew.-% Mo, wobei die Summe der Gehalte an Cr und Mo höchstens 0,5 Gew.-% beträgt, und als Rest aus Eisen und unvermeidbaren Verunreinigungen bestehen. Derart zusammengesetzte Stähle erreichen nach der Warmformgebung und Abkühlung Zugfestigkeiten von bis zu 2000 MPa.
  • Die Voraussetzung für die erfindungsgemäß erzielten Effekte stellt die Anwesenheit mindestens eines Erdalkali- oder Übergangsmetalls in oder auf der erfindungsgemäß vorgesehenen, Al-basierten Korrosionsschutzbeschichtung dar. So kann der Korrosionsschutzbeschichtung eine ausreichende Menge an Erdalkali- oder Übergangsmetall zulegiert sein. Die hierfür mindestens erforderlichen Gehalte an Erdalkali- oder Übergangsmetall in der Korrosionsschutzbeschichtung betragen 0,1 Gew.-% und können bis zu 5 Gew.-% reichen. Dabei haben sich Erdalkali- oder Übergangsmetall-Gehalte der Korrosionsschutzbeschichtung von mindestens 0,11 Gew.-% als besonders günstig im Hinblick auf die Zuverlässigkeit erwiesen, mit der sich die positiven Effekte der Anwesenheit des mindestens einen Erdalkali- oder Übergangsmetalls im erfindungsgemäß applizierten Überzug nutzen lassen. Bei über 5 Gew.-% liegenden Erdalkali- oder Übergangsmetall-Gehalten kommt es zu einer Verdickung der Oxidschicht und damit zu einer Staubbildung, die vermieden werden sollte. Um diese Folge besonders sicher zu vermeiden, kann der Gehalt der im Arbeitsschritt a) applizierten Korrosionsschutzbeschichtung an Erdalkali- oder Übergangsmetall auf in Summe höchstens 1,5 Gew.-%, insbesondere höchstens 0,6 Gew.-%, beschränkt werden. Im Fall, dass für die erfindungsgemäßen Zwecke ausreichend wirksame Erdalkali- oder Übergangsmetall-Gehalte in der Legierung der auf dem Stahlsubstrat eines erfindungsgemäß verarbeiteten Stahlflachprodukts vorhandenen Korrosionsschutzbeschichtung enthalten sind, betragen diese somit 0,1 - 5 Gew.-%, insbesondere 0,11 - 1,5 Gew.-% oder, speziell, 0,11 - 0,6 Gew.-%.
  • Die optionale Applikation der das jeweilige Erdalkali- oder Übergangsmetall enthaltenden Lösung (Arbeitsschritt b)) kann direkt nach dem Auftrag der Korrosionsschutzschicht inline mittels Spritzen und Abquetschen oder auch per konventionellem Coil-Coating erfolgen. Dazu werden in der Praxis Salzlösungen mit bis zu 200 g/l verwendet.
  • Die Erdalkali- oder Übergangsmetalle können als Sulfate, Phosphate und Nitrate oder in oxidischer Form als Dispersion von Erdalkalimetall- oder Übergangsmetall-Oxid-Partikeln vorliegen. Chloride sollten aufgrund des möglichen korrosiven Angriffes nicht verwendet werden. Silikate können auch Anwendung finden. Hier ist jedoch zu beachten, dass diese Verbindungen aufgrund möglicher Siliziumverbindung den Weiterverarbeitungsprozess behindern können. Nicht geeignet sind Fluorverbindungen, da diese bei der Erwärmung auf die Warmformtemperatur zu Flusssäure reagieren können. Es können auch Mischungen verwendet werden, die aus Verbindungen der hier erläuterten Art und/oder unterschiedlichen Erdalkali- oder Übergangsmetallen gebildet sind. Um die Ausbildung der erfindungsgemäß zu erzeugenden Oxidschicht zu unterstützen, kann die erfindungsgemäß erforderlichenfalls auf die Oberfläche der Korrosionsschutzschicht aufgebrachte Lösung zusätzlich einen Netzwerkbildner, wie z.B. Bismutnitrat, und/oder ein Benetzungsmittel, wie z.B. ein Tensid, enthalten.
  • Eine gesondert durchgeführte Trocknungsbehandlung ("Einbrennen") ist im Normalfall nicht notwendig.
  • Vorzugsweise findet die Trocknung der erforderlichenfalls aufgebrachten Lösung durch Ausnutzung der Prozesswärme statt. Soll beispielsweise der erfindungsgemäß erforderlichenfalls vorgesehene Arbeitsschritt b) inline in einer Anlage zur Schmelztauchbeschichtung durchgeführt werden, so kann die Applikation der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenden wässrigen Lösung nach dem Austritt des Stahlflachprodukts aus dem Schmelzenbad und dem Einstellen der Auflagendicken an einer Stelle erfolgen, an der das jeweils behandelte Stahlflachprodukt noch so ausreichend warm ist, dass das Lösungsmittel der Lösung nach dem Kontakt mit der Oberfläche des Stahlflachprodukts schnell verdunstet, es also schnell zum Trocknen der aufgetragenen Schicht kommt.
  • Alternativ zu einem in den Prozess eingebundenen Auftrag kann die Applikation der Lösung auch in einem zusätzlichen Verfahrensschritt an einer konventionellen Bandbeschichtungsanlage erfolgen.
  • Eine separate Trocknungsbehandlung kann zweckmäßig sein, wenn sichergestellt sein soll, dass die Lösung vor der weiteren Verarbeitung getrocknet ist. Dies gilt insbesondere dann, wenn als Lösungsmittel Wasser verwendet wird.
  • Bei der Verwendung von Wasser als Lösungsmittel sollte vor einem Haspeln oder Stapeln des erfindungsgemäß behandelten Stahlflachprodukts dafür gesorgt sein, dass kein Restwasser auf der Oberfläche verbleibt. Restwasser könnte zum einen Korrosionsprozesse initiieren. Darüber hinaus bestünde die Gefahr, dass mit der Aluminiumoberfläche in intensiven Kontakt kommendes Wasser zu Sauerstoff und Wasserstoff aufgespalten wird, wodurch die Gefahr der Wasserstoffaufnahme gesteigert würde.
  • Um eine effektive Trocknung zu bewirken, kann entweder das Stahlflachprodukt selbst bei der Applikation der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenden Lösung 100 - 250 °C, insbesondere 100 -180 °C, warm sein oder einer Trocknungsbehandlung bei diesen Temperaturen unterzogen werden. Typische Trocknungszeiten liegen dabei bei 0 - 300 s, insbesondere 10 - 60 s. Trocknungszeiten von "0 s" werden dabei dann erreicht, wenn das Stahlflachprodukt oder seine Umgebung bei der Applikation der Lösung so heiß sind, dass das jeweilige Lösungsmittel beim Auftreffen auf die Oberfläche der Korrosionsschutzschicht spontan, d.h. ohne Wartezeit, verdampft.
  • In der Praxis wird es die Regel sein, dass mindestens die Arbeitsschritte a) und c) beim Erzeuger des Stahlflachprodukts und die Arbeitsschritte d) und e) des erfindungsgemäßen Verfahrens beim Endverarbeiter, d.h. dem Kunden des Erzeugers des Stahlflachprodukts, absolviert werden, wobei vor oder nach dem Arbeitsschritt c) auch der Arbeitsschritt b) im Werk des Herstellers des Stahlflachprodukts durchgeführt werden kann. Im Hinblick auf die Prozessökonomie kann es dabei zweckmäßig sein, die Applikation der das mindestens eine Erdalkali- oder Übergangsmetall enthaltenden Lösung unmittelbar vor Einlauf des Stahlflachprodukts in den für die Erwärmung auf die Warmformtemperatur vorgesehenen Ofen vorzunehmen. Bei dieser Variante sollte darauf geachtet werden, dass kein Lösungsmittel, insbesondere kein Wasser, in den Ofen gelangt. Es sollte somit sichergestellt werden, dass das erfindungsgemäß beschichtete Stahlflachprodukt vollständig trocken ist, wenn es in den Ofen einläuft. Andernfalls könnte die durch das Wasser in den Ofen eingetragene Feuchte zu einem zu starken Anstieg der Feuchtigkeit der Ofenatmosphäre und somit zu einer ungewollten Taupunktanhebung führen, die wiederum das Risiko einer erhöhten Wasserstoffaufnahme über den Warmumformprozess mit sich bringen würde.
  • Optional kann in der Korrosionsschutzbeschichtung des erfindungsgemäß bereitgestellten Stahlflachprodukts Silizium ("Si") in Gehalten von bis zu 15 Gew.-%, insbesondere bis zu 11 Gew.-%, vorhanden sein, um die Ausbildung einer Eisen-Aluminiumphase zu reduzieren. Dabei erweisen sich Si-Gehalte von mindestens 3 Gew.-%, insbesondere mindestens 8,5 Gew.-%, in dieser Hinsicht als besonders günstig, so dass sich bei Si-Gehalten von 3 - 15 Gew.-%, insbesondere 3 - 11 Gew.-%, speziell 8,5 - 11 Gew.-%, in der Praxis die positiven Einflüsse von Si besonders zuverlässig nutzen lassen. Bei Gehalten von mindestens 3 Gew.-% Si ist gewährleistet, dass die Legierungsschicht zwischen dem Stahlsubstrat und der Korrosionsschutzschicht eines erfindungsgemäßen Stahlflachprodukts nicht zu dick wird und optimale Weiterverarbeitungseigenschaften erhalten bleiben.
  • Ebenso optional kann in der auf einem erfindungsgemäß bereitgestellten Stahlflachprodukt vorgesehenen Korrosionsschutzbeschichtung Fe in Gehalten von bis zu 5 Gew.-%, insbesondere bis zu 4 Gew.-%, speziell bis zu 3,5 Gew.-%, vorhanden sein. Der Fe-Gehalt stellt sich im Wesentlichen durch Diffusion von Fe aus dem Stahlsubstrat ein und trägt zur optimalen Haftung der Schutzschicht auf dem Substrat bei. Dabei erweisen sich Fe-Gehalte von mindestens 1 Gew.-% in dieser Hinsicht als besonders günstig, so dass sich bei Fe-Gehalten von 1 - 5 Gew.-%, insbesondere 1 - 4 Gew.-%, speziell 1 - 3,5 Gew.-%, in der Praxis die positiven Einflüsse der Anwesenheit von Fe besonders zuverlässig nutzen lassen.
  • Die Korrosionsschutzbeschichtung kann in jeder bekannten Weise auf das Stahlsubstrat eines erfindungsgemäßen Stahlflachprodukts aufgebracht sein. Hierzu eignet sich insbesondere das Schmelztauchbeschichten, auch "Feueraluminieren" genannt, bei dem das jeweilige Stahlflachprodukt durch ein geeignet erwärmtes, den Maßgaben der Erfindung hinsichtlich der Zusammensetzung der Korrosionsschutzbeschichtung entsprechend zusammengesetztes Schmelzenbad geleitet wird. Eine solche Schmelztauchbeschichtung ist insbesondere für bandförmige Stahlflachprodukte mit einer Dicke von bis zu 3 mm geeignet. Bei größeren Dicken kann auch eines der eingangs schon erwähnten Dampfabscheideverfahren (PVD, CVD) eingesetzt worden sein, um die Korrosionsschutzbeschichtung zu applizieren.
  • Das Auflagengewicht einer auf einem erfindungsgemäß verarbeiteten Stahlflachprodukt vorhandenen Korrosionsschutzbeschichtung beträgt typischerweise pro Seite des Stahlflachprodukts 30 - 100 g/m2, insbesondere 40 - 80 g/m2.
  • Wie schon erwähnt, hat sich aus der Gruppe der Erdalkali- oder Übergangsmetalle besonders Mg als für die erfindungsgemäßen Zwecke geeignet herausgestellt. Mg kann dabei alleine oder in Kombination mit anderen Erdalkali- oder Übergangsmetallen, wie die ebenfalls schon erwähnten Elemente Beryllium, Kalzium, Strontium und / oder Barium, im erfindungsgemäß applizierten Überzug vorhanden sein, um die erfindungsgemäß angestrebten Effekte zu nutzen.
  • Das erfindungsgemäß bereitgestellte Stahlflachprodukt wird im Arbeitsschritt c) auf eine 800 - 1000 °C, insbesondere 850 - 950 °C, betragende Warmformtemperatur erwärmt und bei dieser Temperatur gehalten, bis eine ausreichende Wärmemenge in das Stahlflachprodukt oder eine davon abgeteilte Platine eingebracht ist. Warmformtemperaturen von 850 - 930 °C haben sich dabei als besonders günstig herausgestellt. Die jeweils konkret benötigte Haltedauer und Glühtemperatur lässt sich anhand der Maßgabe abschätzen, dass die im Arbeitsschritt c) in das Stahlflachprodukt oder die Platine eingebrachte Wärmeenergiemenge Js mehr als 40.000 kJs und höchstens 400.000 kJs betragen soll, wobei sich Js gemäß folgender bekannter Gleichung berechnen lässt: Js kJs = T 2 T 1 × c × t × m / 1000 ;
    Figure imgb0001
    mit
  • T2:
    Endtemperatur des Bauteils am Ende der Erwärmung in K
    T1:
    Starttemperatur des Bauteils zu Beginn der Erwärmung in K
    c:
    Wärmekapazität Stahl (typischerweise 460 J/kgK)
    t:
    Haltezeit des Stahlflachprodukts oder der Platine auf der Endtemperatur in s
    m:
    Masse des Stahlflachprodukts oder der Platine in kg
  • Die Erwärmung kann in jeder geeigneten Weise durchgeführt werden. Im Fall, dass hierzu ein konventioneller Durchlaufofen eingesetzt wird, in dem das Stahlflachprodukt oder die Platine durch Strahlungswärme erwärmt wird, beträgt die geeignete Haltedauer typischerweise 100 - 900 s, insbesondere 100 - 600 s oder, besonders praxisgerecht, 180 - 600 s. Gerade im Fall, dass eine Warmformtemperatur von 850 - 930 °C gewählt wird, erweisen sich in der Praxis auch Haltedauern von 180 - 600 s in der Regel als ausreichend.
  • Optional kann vor der Warmumformung in Kombination mit der Erwärmung auf die Warmformtemperatur oder als separater Behandlungsschritt eine Vorlegierung der Korrosionsschutzschicht durchgeführt werden. Hierzu kann das Stahlflachprodukt bei Temperaturen von 650 - 1100 °C über eine Dauer von 10 - 240 s, insbesondere 30 - 90 s, gehalten werden.
  • Das in der erfindungsgemäßen Weise erwärmte Stahlflachprodukt wird innerhalb einer in der Praxis üblichen Transferzeit einer Warmumformeinrichtung zugeführt, in der die Warmumformung des Stahlflachprodukts zu dem Bauteil erfolgt (Arbeitsschritt e)).
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen erläutert.
  • Für neun Versuche V1 - V9 wurden konventionell legierte MnB-Stahlbleche A - F zur Verfügung gestellt, deren Zusammensetzungen in Tabelle 1 angegeben sind.
  • Stahlbleche wiesen jeweils eine Dicke D auf und sind in konventioneller Weise durch Schmelztauchbeschichten mit einer Al-basierten Korrosionsschutzbeschichtung versehen worden. Dabei sind fünf Varianten Z1 - Z5 einer solchen Korrosionsschutzbeschichtung zum Einsatz gekommen, deren Zusammensetzungen in Tabelle 2 angegeben sind. Als den Maßgaben der Erfindung entsprechend zugegebenes Erdalkali- oder Übergangsmetall enthielt jede der Korrosionsschutzbeschichtung Z1 - Z5 den in Tabelle 2 ausgewiesenen Gehalt an Mg.
  • Die jeweils mit einer der Korrosionsschutzbeschichtungen Z1 - Z5 versehenen Stahlbleche A - F sind in konventioneller Weise flexibel kaltgewalzt worden, wobei über dieses Kaltwalzen jeweils ein Walzgrad W erreicht worden ist.
  • Nach dem flexiblen Walzen sind die jeweils mit einer der Korrosionsschutzbeschichtungen Z1 - Z5 versehenen Stahlbleche A - F in einem konventionellen Durchlaufofen auf eine Warmformtemperatur von jeweils 850 - 930 °C erwärmt worden, wobei die Haltedauer bei der jeweiligen Warmformtemperatur so variiert worden ist, dass eine ausreichende Energiemenge EE in das jeweilige Blech eingebracht worden ist. Bei den Versuchen V4 und V6 ist die Erwärmung in zwei Stufen durchgeführt worden, um zunächst eine Vorlegierung der Korrosionsschutzbeschichtung zu bewirken. Bei allen anderen Versuchen V1 - V3, V5 und V7 - V9 ist einstufig erwärmt worden.
  • Die derart auf die jeweilige Warmformtemperatur erwärmten Blechproben A - F sind in konventioneller Weise in einem hierzu vorgesehenen Werkzeug zu einem Blechbauteil warmumgeformt worden.
  • Nach der Warmumformung sind die erhaltenen Stahlbleche mit einer Abkühlgeschwindigkeit von 20 - 1000 K/s auf Raumtemperatur abgekühlt worden.
  • In Tabelle 3 sind zu den Versuchen V1 - V9 der Stahl des Stahlsubstrats des bei den Versuchen V1 - V9 jeweils eingesetzten Stahlblechs, der jeweils auf das betreffende Stahlblech applizierte Überzug, die Dicke D der untersuchten Blechproben, das Auflagengewicht des Überzugs vor der Erwärmung auf die Warmformtemperatur, die bei der Erwärmung auf die Warmformtemperatur eingebrachte Wärmemenge und der über das flexible Kaltwalzen erzielte Walzgrad W angegeben.
  • An den nach dem flexiblen Kaltwalzen erhaltenen Stahlblechen ist der Flächenanteil %OB der neu gebildeten Oxidschicht OB, die im Zuge des flexiblen Kaltwalzens auf der Korrosionsschutzbeschichtung des jeweils verarbeiteten Stahlblechs entstanden ist, an der die Oberfläche des Stahlblechs insgesamt dicht bedeckenden Oxidschicht mittels XPS-Analyse ermittelt worden. Die übrige auf den Proben vorhandene Oxidschicht bestand jeweils aus der bereits vor dem flexiblen Kaltwalzen vorhandenen ursprünglichen Oxidschicht OA, deren Flächenanteil %OA an der gesamten von der Oxidschicht dicht abgedeckten Oberfläche der Proben A - F somit %OA = 100 % - %OB betrug.
  • Ebenso sind jeweils per XPS-Messung die vor dem flexiblen Walzen vorhandenen Dicken D_OA der ursprünglichen Oxidschichten OA, die Dicken D_OB der über das flexible Walzen neu gebildeten, nach dem flexiblen Walzen vorhandenen Oxidschichten OB und die nach der Warmumformung vorhandene Dicke D_OP der bei der Erwärmung auf die Warmumformtemperatur gebildeten und nach der Warmumformung auf dem jeweils erhaltenen Bauteil vorhandenen Oxidschicht bestimmt worden. Die betreffenden Messergebnisse sind in Tabelle 4 zusammengefasst.
  • Ebenso sind an den Proben A - F jeweils per XPS-Messung die Zusammensetzungen der auf der Korrosionsschutzbeschichtung vorhandenen Oxidschicht vor dem flexiblen Walzen, zwischen dem flexiblen Walzen und der Erwärmung auf die Warmformtemperatur und nach dem Warmumformen vorhandenen Oxidschichten bestimmt worden.
  • Schließlich ist ebenfalls per XPS-Analyse noch die Zunahme des Gehalts an Wasserstoff, der im Zuge der Erwärmung und des Kaltwalzens in das Stahlblech gelangt ist, bestimmt worden.
  • Die Ergebnisse dieser Untersuchungen sind in Tabelle 5 zusammengefasst. Die geringe Zunahme des Gehalts an diffusiblem Wasserstoff belegt die Wirksamkeit der Oxidschicht, die sich in Folge der erfindungsgemäß vorgesehenen Dotierung der Al-basierten Korrosionsschutzbeschichtung mit Mg einerseits beim flexiblen Walzen und andererseits mit der Erwärmung auf die Warmformtemperatur einstellt und Schadstellen, die sich durch das flexible Walzen oder die Warmumformung ergeben, durch sofortige erneute Reaktion des Mg mit dem Umgebungssauerstoff innerhalb kürzester Zeit wieder schließen, so dass allenfalls minimale Mengen an Wasserstoff in die Korrosionsschutzbeschichtung eindringen können. Tabelle 1
    Stahl C Si Mn P S Al Nb Ti B
    A 0,08 0,33 0,95 0,025 0,020 0,013 0,09 0,010 0,005
    B 0,23 0,38 1,3 0,020 0,007 0,013 - 0,03 0,004
    C 0,38 0,37 1,38 0,020 0,008 0,013 - 0,10 0,005
    D 0,20 0,35 1,35 0,020 0,008 0,012 - 0,02 0,004
    E 0,14 0,25 1,07 0,010 0,001 0,08 0,025 0,010 0,002
    F 0,24 0,30 1,3 0,022 0,008 0,012 - 0,02 0,004
    Angaben in Gew.-%, Rest Fe und unvermeidbare Verunreinigungen
    Tabelle 2
    Korrosionsschutzbeschichtung vor der Warmumformung Mg Si Fe
    Z1 0,3 9,5 3
    Z2 0,5 8 3,5
    Z3 0,1 10 3
    Z4 2 8 2,0
    Z5 0,8 8 3
    Angaben in Gew.-%, Rest Al und unvermeidbare Verunreinigungen
    Tabelle 3
    Versuch Stahl Dicke D Korrosionsschutzbeschichtung Auflagengewicht je Seite Walzgrad W Eingebrachte Energiemenge EE
    [mm] [g/m2]* [%] [kJs/kg]
    V1 A 2,95 Z3 69 30 74.106
    V2 B 1,5 Z2 70 30 123.510
    V3 C 2,95 Z3 75 50 247.020
    V4 D 1,5 Z5 65 30 79.350 + 49680
    V5 E 1,5 Z1 70 50 74.106
    V6 F 2,95 Z4 71 30 262.200 + 40.365
    V7 B 2,95 Z1 65 50 247.020
    V8 B 1,5 Z3 72 50 123.510
    V9 D 1,5 Z2 71 30 123.510
    Tabelle 4
    Versuch D_OA D_OB D_OP %OB
    [nm] [%]
    V1 280 10 12 15
    V2 300 20 22 10
    V3 150 7 8 24
    V4 130 9 10 17
    V5 150 8 9 27
    V6 130 8 9 21
    V7 250 18 20 21
    V8 130 7 8 27
    V9 130 9 10 22
    Tabelle 4
    Versuch Zusammensetzung der Oxidschicht vor dem flexiblen Walzen Zusammensetzung der Oxidschicht zwischen dem flexiblen Walzen und der Erwärmung auf die Warmformtemperatur Zusammensetzung der Oxidschicht nach der Warmumformung Zunahme diffusibler Wasserstoff
    O Al Si Mg C O Al Si Mg C O Al Si Mg C Diffusibler Wasserstoff
    [Atom-%] [Atom-%] [Atom-%] [ppm]
    V1 35 18,40 4 5 Rest 35 21 4,5 4,0 Rest 49 28 8,0 1,0 Rest 0,22
    V2 38 16,10 3,5 4 38 25 4,9 4,7 50 26 9,0 0,5 0,28
    V3 45 12,00 2,7 3 45 23 4,8 4,5 51 25 8,5 2,0 0,27
    V4 55 14,50 3,1 4 55 29 6,0 6,2 45 30 10,0 1,0 0,21
    V5 54 17,90 4,1 4 54 27 4,7 5,4 44 31 10,0 1,0 0,31
    V6 37 7,50 1,5 2 37 28 4,9 5,8 51 27 8,0 1,5 0,24
    V7 41 14,80 3,3 4 41 29 5,0 5,1 49 28 8,0 0,5 0,31
    V8 38 21,40 4,9 5 38 22 4,8 4,2 48 29 7,0 2,0 0,29
    V9 40 10,00 2,1 3 40 21 4,1 3,8 53 24 8,0 1,0 0,24

Claims (12)

  1. Verfahren zum Herstellen eines Blechbauteils durch Warmumformen eines Stahlflachprodukts, das mit einer Korrosionsschutzbeschichtung versehen ist und das durch ein flexibles Kaltwalzen mindestens einen Abschnitt verliehen bekommt, der eine andere Dicke aufweist als ein an ihn angrenzender anderer Abschnitt des Stahlflachprodukts, wobei der Übergang zwischen den unterschiedlich dicken Abschnitten des Stahlflachprodukts sprungartig erfolgt, umfassend folgende Arbeitsschritte:
    a) Bereitstellen eines Stahlflachprodukts, das ein Stahlsubstrat, das aus einem Stahl erzeugt ist, der, in Gew.-%, aus 0,07 - 0,4 % C, 1,0 - 2,5 % Mn, 0,06 - 0,9 % Si, bis zu 0,03 % P, bis zu 0,01 % S, bis zu 0,1 % Al, bis zu 0,15 % Ti, bis zu 0,6 % Nb, bis zu 0,005 % B, bis zu 0,5 % Cr, bis zu 0,5 % Mo, wobei die Summe der Gehalte an Cr und Mo höchstens 0,5 % beträgt, und als Rest aus Eisen und unvermeidbaren Verunreinigungen besteht, und eine auf das Stahlsubstrat applizierte Korrosionsschutzbeschichtung umfasst, die aus, in Gew.-%, bis zu 15 % Si, bis zu 5 % Fe, optional bis zu 5 % mindestens eines Erdalkali- oder Übergangsmetalls und als Rest aus AI und unvermeidbaren Verunreinigungen gebildet ist, sodann
    b) im Fall, dass die Korrosionsschutzbeschichtung kein oder weniger als 0,1 Gew.-% an dem mindestens Erdalkali- oder Übergangsmetall enthält: Applizieren einer mindestens ein Erdalkali- oder Übergangsmetall enthaltenden Lösung auf die Korrosionsschutzbeschichtung des Stahlflachprodukts,
    c) flexibles Kaltwalzen des Stahlflachprodukts, um an dem Stahlflachprodukt die Abschnitte unterschiedlicher Dicke zu erzeugen, sodann
    d) Erwärmen des flexibel kaltgewalzten Stahlflachprodukts auf eine 800 - 1000 °C betragende Warmformtemperatur unter einer Atmosphäre, die mehr als 15 Vol.-% Sauerstoff enthält, über eine Haltedauer, die ausreicht, um in das Stahlflachprodukt eine Wärmeenergiemenge Js von mehr als 44.000 kJs und höchstens 400.000 kJs einzubringen, so dass nach dem Erwärmen die Oberfläche der Korrosionsschutzbeschichtung des Stahlflachprodukts dicht mit einer Schicht belegt ist, die aus einem primären Oxid des mindestens einen in der Korrosionsschutzschicht enthaltenen und/oder im Arbeitsschritt b) optional zusätzlich aufgetragenen Erdalkali- oder Übergangsmetalls besteht, sodann
    e) Warmumformen des Stahlflachprodukts zu dem Blechbauteil.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Dicke des im Arbeitsschritt a) bereitgestellten Stahlflachprodukts 0,6 - 7 mm beträgt.
  3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Si-Gehalt der Korrosionsschutzbeschichtung des Stahlflachprodukts mindestens 3 Gew.-% beträgt.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Fe-Gehalt der Korrosionsschutzbeschichtung des Stahlflachprodukts mindestens 1 Gew.-% beträgt.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung des Stahlflachprodukts einen Gehalt von in Summe mindestens 0,1 Gew.-% an Erdalkali- oder Übergangsmetallen enthält.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung des Stahlflachprodukts einen Gehalt von in Summe mindestens 0,11 Gew.-% an Erdalkali- oder Übergangsmetallen enthält.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung des Stahlflachprodukts einen Gehalt von in Summe höchstens 1,5 Gew.-% an Erdalkali- oder Übergangsmetallen enthält.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung des Stahlflachprodukts einen Gehalt von in Summe höchstens 0,6 Gew.-% an Erdalkali- oder Übergangsmetallen enthält.
  9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung des Stahlflachprodukts oder die gemäß Arbeitsschritt b) applizierte Lösung als das mindestens eine Erdalkali- oder Übergangsmetall Magnesium enthält.
  10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Auflagengewicht der Korrosionsschutzbeschichtung des Stahlflachprodukts 30 - 100 g/m2 pro beschichteter Seite des Stahlflachprodukts beträgt.
  11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Korrosionsschutzbeschichtung durch Schmelztauchbeschichten auf das Stahlsubstrat des Stahlflachprodukts aufgebracht ist.
  12. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Erwärmung des Stahlflachprodukts im Arbeitsschritt c) in einem Durchlaufofen durch Strahlungswärme erfolgt und die Haltedauer 100 - 900 s beträgt.
EP20194103.6A 2020-09-02 2020-09-02 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts Pending EP3964602A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20194103.6A EP3964602A1 (de) 2020-09-02 2020-09-02 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts
CN202180067892.5A CN116249793A (zh) 2020-09-02 2021-08-27 通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法
US18/024,126 US20230366056A1 (en) 2020-09-02 2021-08-27 Method for Producing a Sheet Metal Component by Hot-Forming a Flat Steel Product Provided with an Anti-Corrosion Coating
PCT/EP2021/073759 WO2022049003A1 (de) 2020-09-02 2021-08-27 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20194103.6A EP3964602A1 (de) 2020-09-02 2020-09-02 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts

Publications (1)

Publication Number Publication Date
EP3964602A1 true EP3964602A1 (de) 2022-03-09

Family

ID=72340287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20194103.6A Pending EP3964602A1 (de) 2020-09-02 2020-09-02 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts

Country Status (4)

Country Link
US (1) US20230366056A1 (de)
EP (1) EP3964602A1 (de)
CN (1) CN116249793A (de)
WO (1) WO2022049003A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846900A1 (de) 1998-10-12 2000-04-27 Thyssenkrupp Stahl Ag Verfahren und Vorrichtung zum Herstellen eines Metallbandes für abzulängende Tailored Blanks
DE10041280C2 (de) 2000-08-22 2003-03-06 Muhr & Bender Kg Verfahren und Vorrichtung zum flexiblen Walzen eines Metallbandes
JP2004083988A (ja) 2002-08-26 2004-03-18 Nisshin Steel Co Ltd 加工部耐酸化性に優れた耐熱用溶融Al基めっき鋼板加工材および耐高温酸化被覆構造
EP2993248A1 (de) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit einer Al-Beschichtung, Verfahren zu seiner Herstellung, Stahlbauteil und Verfahren zu dessen Herstellung
WO2019076720A1 (de) * 2017-10-19 2019-04-25 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils
DE102018118015A1 (de) * 2018-07-25 2020-01-30 Muhr Und Bender Kg Verfahren zur Herstellung eines gehärteten Stahlprodukts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846900A1 (de) 1998-10-12 2000-04-27 Thyssenkrupp Stahl Ag Verfahren und Vorrichtung zum Herstellen eines Metallbandes für abzulängende Tailored Blanks
DE10041280C2 (de) 2000-08-22 2003-03-06 Muhr & Bender Kg Verfahren und Vorrichtung zum flexiblen Walzen eines Metallbandes
JP2004083988A (ja) 2002-08-26 2004-03-18 Nisshin Steel Co Ltd 加工部耐酸化性に優れた耐熱用溶融Al基めっき鋼板加工材および耐高温酸化被覆構造
EP2993248A1 (de) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit einer Al-Beschichtung, Verfahren zu seiner Herstellung, Stahlbauteil und Verfahren zu dessen Herstellung
WO2019076720A1 (de) * 2017-10-19 2019-04-25 Thyssenkrupp Steel Europe Ag Verfahren zur herstellung eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils
DE102018118015A1 (de) * 2018-07-25 2020-01-30 Muhr Und Bender Kg Verfahren zur Herstellung eines gehärteten Stahlprodukts

Also Published As

Publication number Publication date
US20230366056A1 (en) 2023-11-16
WO2022049003A1 (de) 2022-03-10
CN116249793A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
EP3189174B1 (de) Stahlflachprodukt mit einer al-beschichtung, verfahren zu seiner herstellung, und verfahren zur herstellung eines warmgeformten bauteils
EP2054536B1 (de) Verfahren zum beschichten eines 6 - 30 gew.-% mn enthaltenden warm- oder kaltgewalzten stahlbands mit einer metallischen schutzschicht
EP2235229B9 (de) Verfahren zum beschichten eines 6 - 30 gew. % mn enthaltenden warm- oder kaltgewalzten stahlflachprodukts mit einer metallischen schutzschicht
EP2924141B1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP2227574B1 (de) Stahl für hochfeste bauteile aus bändern, blechen oder rohren mit ausgezeichneter umformbarkeit und besonderer eignung für hochtemperatur-beschichtungsverfahren
WO2022048990A1 (de) Durch warmumformen eines stahlflachprodukts hergestelltes stahlbauteil, stahlflachprodukt und verfahren zur herstellung eines stahlbauteils
DE102017211076A1 (de) Verfahren zum Herstellen eines mit einem Überzug versehenen Stahlbauteils und Stahlbauteil
WO2019192703A1 (de) Verfahren zum herstellen eines mit einem überzug versehenen stahlbauteils aus einem stahlflachprodukt, stahlflachprodukt und stahlbauteil
EP1865086B1 (de) Verwendung eines aus einem Mangan-Bor-Stahl hergestellten Flachproduktes und Verfahren zu dessen Herstellung
EP3877555B1 (de) Verfahren zum herstellen eines blechbauteils aus einem mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukt
DE102018128131A1 (de) Gehärtetes Bauteil umfassend ein Stahlsubstrat und eine Korrosionsschutzbeschichtung, entsprechendes Bauteil zur Herstellung des gehärteten Bauteils sowie Herstellverfahren und Verwendung
DE112020006255T5 (de) Heissgeprägtes teil und verfahren zum herstellen desselben
EP3783119A1 (de) Stahlflachprodukt mit ausgezeichneter oxidations- und heissgas-korrosionsbeständigkeit sowie verfahren zur herstellung eines solchen stahlflachprodukts
EP3964602A1 (de) Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts
EP4045314B1 (de) Verfahren zum herstellen eines stahlflachprodukts und verfahren zum herstellen eines bauteils daraus
EP3872206B1 (de) Verfahren zur herstellung eines nachbehandelten, kaltgewalzten stahlflachprodukts und nachbehandeltes, kaltgewalztes stahlflachprodukt
EP3415646B1 (de) Hochfestes stahlblech mit verbesserter umformbarkeit
EP3913105A1 (de) Stahlflachprodukt und verfahren zu dessen herstellung
DE102020204356A1 (de) Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung
DE102020214293B4 (de) Stahlflachprodukt mit verbesserter Zinkbeschichtung
DE102020203421A1 (de) Stahlflachprodukt mit einem ZnCu-Schichtsystem
WO2021148312A1 (de) Stahlbauteil mit einer manganhaltigen korrosionsschutzschicht
DE102024104377A1 (de) Blechformteil mit verbessertem kathodischem Korrosionsschutz
EP4339324A1 (de) Stahlflachprodukt mit einer aktivierungsschicht für die warmumformung
DE102022115400A1 (de) Blechformteil mit verbesserten Schweißeigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220905

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR