CN116249793A - 通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法 - Google Patents

通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法 Download PDF

Info

Publication number
CN116249793A
CN116249793A CN202180067892.5A CN202180067892A CN116249793A CN 116249793 A CN116249793 A CN 116249793A CN 202180067892 A CN202180067892 A CN 202180067892A CN 116249793 A CN116249793 A CN 116249793A
Authority
CN
China
Prior art keywords
equal
less
flat
product
flat steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180067892.5A
Other languages
English (en)
Inventor
马里亚·科耶尔
曼努埃拉·鲁滕贝里
扬科·巴尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of CN116249793A publication Critical patent/CN116249793A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明实现了在没有H2渗透的危险的情况下,由设置有防腐蚀涂层的扁钢产品生产金属板部件,该扁钢产品具有厚度不同的区段,其中各区段之间的过渡是突然的。为此,a)提供一种具有钢基材和防腐蚀涂层的扁钢产品,该钢基材由以重量%计的组成如下的钢制成:0.07‑0.4%C,1.0‑2.5%Mn,0.06‑0.9%Si,≤0.03%P,≤0.01%S,≤0.1%Al,≤0.15%Ti,≤0.6%Nb,≤0.005%B,≤0.5%Cr,50.5%的Mo,其中Cr和Mo之和为≤0.5%,其余为Fe和不可避免的杂质,该防腐蚀涂层以重量%计的组成为:≤15%的Si,≤5%的Fe,≤5%的至少一种碱土金属或过渡金属,其余为Al和不可避免的杂质。如果防腐蚀涂层含有≤0.1重量%的碱土金属或过渡金属,b)将含有至少一种碱土金属或过渡金属的溶液施加在扁钢产品的防腐蚀涂层上。然后,c)扁平钢产品被灵活冷轧(flexibel kaltgewalzt),以产生厚度不同的区段。然后,d)在含有>15体积%O2的气氛中,将其加热到800‑1000℃,直到引入>44000kJs和≤400000kJs的热量。然后为防腐蚀涂层致密地覆盖由至少一种碱土金属或过渡金属的初级氧化物组成的层。最后,将扁钢产品热成型为金属板部件。

Description

通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件 的方法
技术领域
本发明涉及一种通过热成型扁钢产品来生产金属板部件的方法,该扁钢产品尤其是通过热浸镀设置有防腐蚀涂层,并且通过灵活冷轧获得至少一个厚度与和扁钢产品的与其临接的其他区段不同的区段,其中扁钢产品的厚度不同区段之间的过渡是突然的。
背景技术
“扁钢产品”在这里被理解为长度和宽度分别大大超过其厚度的轧制产品。这些产品尤其包括钢带和钢板。
在本文中,除非另有明确说明,有关合金成分含量的数据总是以重量%提供。
除非另有说明,特定成分在气氛中的比例,尤其是在退火气氛中的比例,都是以体积%来表示的。
从JP 2004-083988 A中,已知一种方法,通过这种方法,由设定用于在450至650℃的高温下使用的、具有铝基防腐蚀涂层的热浸镀锌钢板形成部件,该部件在高工作温度下应具有更好的抗氧化性。金属板的防腐蚀涂层为此由最多13重量%的Si、0.5-8重量%的Mg以及必要时由来自“0.001-1重量%的Sr、0.001-1重量%的Ca、0.0001-0.1重量%的Be、0.001-1重量%的Ba”的组中的一种或多种金属组成。在以这种方式形成的部件的高温使用中,在扁钢产品的钢基材和防腐蚀涂层之间形成了合金层。防腐蚀涂层中存在的Mg会导致Mg或Mg氧化物在出现在防腐蚀涂层中的裂缝的区域中裸露的涂层表面上积聚。同时,在防腐蚀涂层和钢基材之间的过渡层中可以发现最多50体积%的铁氧化物。
由EP 2 993 248 A1已知另一种方法,在这种方法中,这里讨论的类型的扁钢产品被热成型。使用其钢基材包括所谓的“MnB钢”的扁钢产品用作该方法的起始材料。这种类型的钢在DIN EN 10083-3中标准化,并且具有良好的可硬化性。在热压时,它们允许可靠的过程控制,通过这种过程控制,可以以经济的方式在热成型期间在工具中就实现马氏体硬化,而无需额外的冷却。这种钢的一个典型例子是以名称22MnB5已知的钢,在Stahlschlüssel2004中可以找到,材料编号为1.5528。通常情况下,除了铁和不可避免的杂质外,市售的完全镇静的22MnB5钢以重量%计含有0.10-0.250%C、1.0-1.4%Mn、0.35-0.4%Si、最多0.03%P、最多0.01%S、最多0.040%Al、最多0.15%Ti、最多0.1%Nb,总和最多0.5%Cr+Mo,以及最多0.005%B。为了保护由具有这种组成的钢制成的扁钢产品免受腐蚀侵蚀,同时最小化在热成型所需的加热过程中吸氢的风险,根据已知方法的扁钢产品设置有铝基防腐蚀覆层,作为附加合金成分,其含有有效含量为0.005-0.7重量%的至少一种碱土金属或过渡金属。此外,覆层中还可以存在3-15重量%的Si含量和最多5重量%的Fe含量。作为保护覆层的至少一种碱土金属或过渡金属,优选使用含量为0.1-0.5重量%的镁,其中钙、锶、钠或钡也可以作为替代或补充使用。铝基保护覆层可以通过热浸镀层,在技术术语中也称为“热浸镀铝”,或通过气体分离方法,例如已知的PVD(物理气相沉积)或CVD(化学气相沉积)方法施加在钢基材上。
在上述现有技术中,没有提到在由MnB钢组成的钢基材上施加防腐蚀涂层的方式的特殊要求。由于覆层中存在碱土金属或过渡金属,当以上述方式涂覆的板坯在常规气氛中以常规方式加热360至800秒至900℃的温度时,钢基材中最多只会出现最小的氧吸收。
“灵活轧制”是一种以在其长度上经设定不同的带材厚度生产金属带材的方法。例如在DE 198 46 900 A1或DE 100 41 280 C2中解释的,在轧制过程中,在轧制机架的两个工作辊之间设置的轧制间隙的高度为此通常是变化的,要轧制的扁钢产品必须通过该间隙。通过这种方式,可以在扁钢产品的长度上生产出具有较大厚度(较宽的轧制间隙)和较小厚度(较窄的轧制间隙)的相继的区段。
由于可以在扁钢产品上目的性生产特定的厚度,灵活轧制非常适合于生产这样的扁钢产品,即,其特性例如匹配于在使用过程中局部限定作用于其上的负载或对其变形行为提出的要求。因此,可以通过灵活轧制的方式成型扁钢产品,使得在由这种扁钢产品通过成形获得的部件上,在所需位置上有不同的金属板厚度,所述的金属板厚度使部件在其重量最小化的情况下得以优化,以吸收高负荷。
如果像本发明的情况一样,通过灵活冷轧,也就是说在没有单独预热的扁钢产品上进行的灵活轧制来加工具有防腐蚀涂层的扁钢产品,那么由于在这个过程中经常出现的高轧制力,会导致对防腐蚀涂层以脱落形式的损害。由于在防腐蚀涂层中形成的孔洞,可扩散的氢会进入扁钢产品,该孔洞可能是由钢基材中的裂缝引发的。为了避免这种风险,在今天的工作实践中,轧制程度,即通过轧制步骤实现的相对厚度减少,被限制在一定的最大值,根据经验,在该最大值下,防腐蚀涂层不会被损坏。
发明内容
在此背景下,本发明的目的是给出一种方法,其实现了以高轧制度灵活热轧上述类型的扁钢产品,而不必承受氢渗入钢基材的风险。
为了实现该目的,本发明提出,在对设置有防腐蚀涂层的扁钢产品进行灵活冷轧时至少进行权利要求1中给出的方法步骤。
不言而喻,在执行根据本发明的方法时,本领域技术人员不仅要执行权利要求中提到的和在此解释的方法步骤,而且还要执行所有其他在实际实施此类方法时在现有技术中经常进行的步骤和操作,如果有此必要的话。
本发明的有利设计方案在从属权利要求中给出,并在下文中与一般的发明概念一起详细解释。
根据本发明,通过热成型扁钢产品生产金属板部件,其中该扁钢产品设置有防腐蚀涂层,并且通过灵活冷轧,其有至少一个厚度与该扁钢产品的与其临接的另一区段的厚度不同的区段,其中扁钢产品的不同厚度的区段之间的过渡是突然的,在此过程中完成以下步骤:
a)提供一种具有钢基材和施加在该钢基材上的防腐蚀涂层的扁钢产品,该钢基材由以重量%计的组成如下的钢制成:0.07-0.4%C,1.0-2.5%Mn,0.06-0.9%Si,≤0.03%P,≤0.01%S,≤0.1%Al,≤0.15%Ti,≤0.6%Nb,≤0.005%B,≤0.5%Cr,≤0.5%Mo,其中Cr和Mo之和为≤0.5%,其余为Fe和不可避免的杂质,该防腐蚀涂层以重量%计的组成为:≤15%的Si,≤5%的Fe,选择性≤5%的至少一种碱土金属或过渡金属,其余为Al和不可避免的杂质,
b)如果防腐蚀涂层不含或含有≤0.1重量%的至少一种碱土金属或过渡金属,将含有至少一种碱土金属或过渡金属的溶液施加在扁钢产品的防腐蚀涂层上,
c)将扁钢产品灵活冷轧,以在扁钢产品上产生厚度不同的区段,然后,
d)在含有>15体积%O2的气氛中,将经过灵活冷轧的扁钢产品加热到800-1000℃的热成型温度,直到向扁钢产品中引入>44000kJs和≤400000kJs的热量,使得在加热之后为扁钢产品的防腐蚀涂层表面致密地覆盖由至少一种碱土金属或过渡金属的初级氧化物组成的层,该碱土金属或过渡金属包含在防腐蚀涂层中和/或在工作步骤b)中选择性额外施加,然后
e)将扁钢产品热成型为金属板部件。
根据本发明,因此提供了一种扁钢产品,它包括以特定方式组成的MnB钢基材和尤其通过热浸镀涂层施加在其上的A1基防腐蚀涂层。在为本发明的目的以常规方式进行的热浸镀层中,将扁钢产品引导通过按照本发明合金化的熔池,从熔池中出来的扁钢产品通过剥离喷嘴来调整保护层的厚度。空气被用作剥离介质。通过应用空气射束和由此产生的快速温度降低,存在于防腐蚀涂层上的氧化层被“冻结”,即其不能按照化学平衡规则形成。
扁钢产品的防腐蚀涂层在此具有至少一种碱土金属或过渡金属的含量,或者在必要时进行的步骤b)中,用含有至少一种这种碱土金属或过渡金属的溶液润湿。根据本发明用于此目的的溶液优选是水溶液,其溶剂“水”在工艺技术方面是简单的,并且对环境无害。
如果防腐蚀涂层中的至少一种碱土金属或过渡金属的含量过低,则必须进行步骤b)。然而,如果虽然防腐蚀涂层中存在基本足够量的碱土金属或过渡金属,但为了确保出现根据本发明所利用的这些金属在防腐蚀涂层中或在防腐蚀涂层上存在的效果,需要在防腐蚀涂层的表面施加进一步含量的至少一种碱土金属或过渡金属,那么用含有至少一种碱土金属或过渡金属的水溶液进行润湿当然也可以作为一种补充措施进行。
为了本发明的目的,合金到防腐蚀涂层和/或以溶液形式施加到防腐蚀涂层表面的碱土金属和过渡金属尤其包括镁(“Mg”)和钙(“Ca”),也包括铍(“Be”)、锶(“Sr”)和钡(“Ba”)。
可能必要的或者选择性额外进行的含有至少一种碱土金属或过渡金属的溶液的施加,可以在灵活轧制之前或之后进行。重要的是,在加热到热成型温度之前,防腐蚀涂层中或其上存在足够量的相应碱土金属或过渡金属。
在步骤c)中,以传统方式在室温下对所提供的、并必要时涂有含至少一种碱土金属或过渡金属的层的扁钢产品进行灵活冷轧,以使其具有不同厚度的区段。
在灵活轧制中,扁钢产品以0.1至80%的轧制度W进行轧制。轧制度W根据公式W=((U/Xn)-1)*100%确定,其中“U”表示分别进行轧制的区段n在轧制前的起始厚度,Xn表示轧制后相关区段n的厚度。也就是说,在分别为2.75mm起始厚度U下,需要48.64%的轧制度W来制造厚度X1为1.85mm的第一区段,需要1 0.00%的轧制度W来生产厚度X2为2.5mm的第二区段,需要27.90%的轧制度W来生产厚度X3为2.15mm的第三区段,以及需要22.22%的轧制度W来生产厚度X4为2.25mm的第四区段。在实践中特别适合的轧制度W是0.1-60%,尤其是0.1-50%。通过在上述范围内改变轧制度W,可以在扁钢产品上产生厚度不同的区段。分别具体设置的轧制度W取决于与初始状态相比,扁钢产品的厚度减少的分别所期望的程度。因此,这里指出的轧制度W的范围只定义了根据本发明分别设置所设轧制度的界限。
通过灵活轧制以有针对性的方式在有限的长度区段中减少扁钢产品的厚度。由于体积不变,这种厚度的减少不可避免地伴随着扁钢产品的伸长。根据本发明加工的扁钢产品上的防腐蚀涂层的铝合金具有的延展性使得其可以跟随扁钢产品在纵向和厚度方向上发生的这种变形,也包括在不同厚度的区段相互接触的边界区域中。
然而,防腐蚀涂层上的保护性氧化层要脆得多,其结果是由于扁钢产品的变形而局部撕裂。由此产生的裂缝通过新形成的氧化物迅速再次闭合。由于这个过程是在环境气氛中进行的,没有单独的温度供应或移除,新的氧化层可以形成,使其在考虑到各自相应的环境条件的情况下与裂缝位置的化学平衡相对应。在灵活轧制过程中发生的对原始存在的氧化层的破坏,被冷轧过程中出现的新的氧化物所封闭,使得在灵活轧制完成的扁钢产品上又出现了紧密封闭的氧化层。其特点是存在保留原始氧化层的区域和形成新氧化层的区域。
根据本发明的研究结果,在分别设定的轧制度W和灵活冷轧后得到的扁钢产品被原始和新形成的氧化层所覆盖的比例之间有直接关系。因此,根据公式A=100%-W,原始氧化层的面积百分比A可以以±5%的精度估算出来。相应地,灵活轧制后得到的扁钢产品的表面被新形成的氧化层覆盖的面积百分比B是B=100%-A±5%。例如,如果以15%的轧制度W进行轧制,根据本发明灵活热轧的扁钢产品的表面80-90%被灵活轧制前形成的原始氧化层所覆盖,而剩余的表面被灵活轧制过程中形成的新氧化层所覆盖。
在按照根据本发明的方式进行灵活轧制的扁钢产品中,也存在着氧化层的Si和Al含量的比例以及氧化层的Al、Si和Mg含量的比例与通过灵活轧制分别设置的轧制度W的依赖性。因此,在例如Mg作为至少一种碱土元素或过渡元素被合金化到根据本发明加工的扁钢产品的防腐蚀涂层中或被施加在所述防腐蚀涂层上的情况下,对于灵活冷轧后扁钢产品上总共存在的氧化层适用%Al/%Si≥6.4×W-0.1,同时该比例适用于%Al/%Mg≥(2.66xW0.11)±1(其中%Al=总氧化层的以原子%计的Al含量,%Si=总氧化层的以原子%计的Si含量,%Mg=总氧化层的以原子%计的Mg含量)。
在灵活冷轧之前,根据本发明加工的扁钢产品上存在的原始氧化层通常由硅氧化物、镁氧化物和铝氧化物组成,其中Si的比例显著小于Mg的比例,而Mg的比例又小于Al的比例。因此,以原子%为单位,氧化层中通常存在有10-40%的C、30-60%的0、4-30%的Al、0-5%的Si和1-20%的至少一种碱土金属或过渡金属,尤其是Mg。此外,在氧化层中可以存在最多10原子%的小比例的铁。这尤其适用于通过热浸镀层的方式施加防腐蚀涂层的情况。原始氧化层的厚度通常为5-600nm,尤其是5-300nm,特别优选5-150nm。在这种情况下,原始氧化层完全覆盖了防腐蚀涂层的表面,也就是说100%。
通过灵活冷轧新形成的、可以在平衡状态下形成的氧化层同样主要由硅氧化物、镁氧化物和铝氧化物组成。在此,硅氧化物、镁氧化物和铝氧化物的量分布与它们在初级氧化层中的分布相对应。二次氧化层通常由按原子%计10-40%的C、40-60%的0、20-30%的Al、0-5%的Si和1-20%的至少一种碱土金属或过渡金属,尤其是Mg组成,其中二次氧化层中还可以含有最多10原子%的痕量的铁。二次氧化层的厚度为1-100nm,尤其是1-80nm或1-50nm,其中最多30nm的厚度被证明是特别有利的。二次氧化层在总氧化层中的面积百分比Fox与轧制度W有关,其中Fox<W,总氧化层在灵活冷轧后覆盖了根据本发明加工的扁钢产品的防腐蚀涂层。
氧化层的组成可以通过X射线光电子能谱(XPS)来确定。为此,要确定组成和厚度的扁钢产品的分别待研究的样品用正庚烷脱脂,用丙醇冲洗并在空气中吹干。然后将样品分别固定在样品载体上,引入X射线光电子能谱仪的测量室,并在高真空下进行研究。容器压力通常低于5×108mbar。通常使用氩气作为轰击气体。射束利用2或4kV的轰击电压被激发为AlK。在每个样品上至少进行一次关于组成和氧化层厚度的测量。通常情况下,对一个板坯的多个样品进行研究,并且分别对相关板坯的所有样品的结果进行算术平均。因此,这样确定的存在于分别进行研究的板坯上的氧化层的组成和厚度也被称为“平均组成”或“平均厚度”。
在灵活轧制之后,扁钢产品被加热到热成型温度,其中,在必要时从先前例如以钢带或较大的金属板的形式存在的扁钢产品中分割出至少一个板坯,然后根据本发明将其作为扁钢产品进行进一步加工。
通过根据本发明选择的防腐蚀涂层的组成和/或借助于水溶液将碱土金属或过渡金属额外施加于防腐蚀涂层,确保作为在热成型之前进行的热处理的结果,在防腐蚀涂层上产生由至少一种碱土金属或过渡金属形成的初级氧化层。
本发明基于以下认知,即,在设置有根据本发明掺有至少一种碱土金属或过渡金属的铝基(“A1基”)防腐蚀涂层的扁钢产品上,在为热成型而进行的加热过程中,在防腐蚀涂层上形成了氧化层(“初级氧化层”),其保护位于下方的防腐蚀涂层的层,从而保护扁钢产品的钢基材不暴露于环境气氛。相应的初级氧化层是以这样的方式形成的,即其在加热过程中普遍存在的条件下,尤其是由各个相应的热成型温度确定的条件下处于化学平衡。该过程在热成型过程中和之后也都还在继续。因此,对在加热和热成型之前存在的氧化层的任何损伤都会很快封闭。由于防腐蚀涂层的A1、Mg和S i元素与氧气的亲和性,只要防腐蚀涂层的表面暴露在哪怕是最少量的氧气中,就会分别立即形成氧化层。在这种情况下,根据本发明设置在防腐蚀涂层中和/或其上的碱土金属或过渡金属的反应性保证了新形成的氧化层的氧化物在如此短的时间内产生,从而可靠地防止了来自周围环境的有害物质的渗透。
通过这种方式,在根据本发明加热到相应的热成型温度的扁钢产品中,一般不只是其钢基材得到保护免受腐蚀侵蚀。存在于防腐蚀涂层上、尤其是由根据本发明设置的碱土金属或过渡金属形成的氧化层,覆盖了防腐蚀涂层的位于下方的铝,使得在加热到热成型温度或热成型本身的过程中,防止了铝与环境中的水分接触,从而防止分离出大量的氢气。由此可以有效地抑制大量的氢气渗透到根据本发明加工的扁钢产品的防腐蚀涂层和钢基材中。
当额外存在于防腐蚀涂层中或额外施加于防腐蚀涂层上的碱土金属或过渡金属是镁(“Mg”)时,本发明利用的效果特别可靠地出现,即在Mg单独或与属于碱土金属或过渡金属组的其他元素一起以根据本发明设定的含量存在于根据本发明加工的扁钢产品的根据本发明设置的防腐蚀涂层中,或者当防腐蚀涂层中的碱土金属或过渡金属含量太少时而通过水溶液额外将其施加时。
根据本发明的方法适用于加工具有大厚度谱的扁钢产品。因此,可以用根据本发明的方法加工厚度为0.6-7mm的扁钢产品。
分别在步骤a)中提供的扁钢产品的制造可以用现有技术中已知的任何方式进行。因此,根据本发明的方法尤其适用于加工厚度为0.8至4mm,尤其是0.8至3mm的扁钢产品。
对于根据本发明的方法,在步骤a)中也可以提供由包括例如三到五个金属板层的金属板堆叠形成的扁钢产品,这些金属板以本身已知的方式,例如以辊轧包层的方式连接成均一的扁钢产品。同样,在根据本发明的方法的步骤a)中,可以以拼焊板的形式为根据本发明的工艺提供由彼此焊接的不同的金属板裁切件或类似组成的扁钢产品和钢带,这些扁钢产品和钢带彼此焊接在一起,并共同形成待加工的扁钢产品。
根据本发明分别提供的扁钢产品由具有典型的MnB钢组成的钢材组成。这类钢在交付状态下的屈服极限通常为250-580MPa,抗拉强度为400-720MPa。
由于其特性,特别是其发展高强度的潜力,在实践中特别感兴趣的是这样的扁钢产品,其钢基材以本身已知的方式由0.07-0.4重量%C,1.0-2重量%Mn,0.06-0.4重量%的Si,最多0.03重量%的P,最多0.01重量%的S,最多0.1重量%的Al,最多0.15重量%的Ti,最多0.6重量%的Nb,最多0.005重量%的B,最多0.5重量%的Cr,最多0.5重量%的Mo,其中Cr和Mo的含量之和最高为0.5重量%,剩余的铁和不可避免的杂质组成。
这包括已经批量使用的钢,其由0.07-0.4重量%C,1.0-1.5重量%Mn,0.3-0.4重量%Si,最多0.03重量%P,最多0.01重量%S,最多0.05重量%Al,最多0.15重量%Ti,最多0.6重量%Nb,最多0.005重量%B,最多0.5重量%Cr,最多0.5重量%Mo,其中Cr和Mo的含量之和最多为0.5重量%,其余部分的铁和不可避免的杂质组成。这样组成的钢在热成型和冷却后的抗拉强度可达2000MPa。
根据本发明实现的效果的前提条件是在根据本发明设置的铝基防腐蚀涂层中或其上存在至少一种碱土金属或过渡金属。因此,足够量的碱土金属或过渡金属可以被合金化到防腐蚀涂层中。为此目的,防腐蚀涂层中碱土金属或过渡金属的所需最低含量为0.1重量%,并且最多可达5重量%。在这种情况下,防腐蚀涂层中的碱土或过渡金属至少为0.11重量%的含量被证明是特别有利的,因为根据本发明施加的涂层中存在至少一种碱土金属或过渡金属的积极作用可以被可靠利用。如果碱土金属或过渡金属的含量超过5重量%,氧化层就会变厚并形成灰尘,这是应该避免的。为了特别可靠地避免这种结果,在步骤a)中施加的防腐蚀涂层中的碱土金属或过渡金属的含量可以总共限制在最高1.5重量%,尤其是最高0.6重量%。在存在于根据本发明加工的扁钢产品的钢基材上的防腐蚀涂层的合金中含有为了本发明的目的而言足够有效的碱土金属含量或过渡金属含量的情况下,该含量为0.1-5重量%,尤其是0.11-1.5重量%,或者特别是0.11-0.6重量%。
含有相应碱土金属或过渡金属的溶液的选择性施加(步骤b))可以在通过喷涂和挤压或通过传统的带卷涂层施加防腐层后直接进行。为此,实践中使用了最高200g/l的盐溶液。
碱土金属或过渡金属可以以硫酸盐、磷酸盐和硝酸盐的形式,或以氧化形式作为碱土金属或过渡金属氧化物颗粒的分散体存在。由于有可能发生腐蚀,所以不应使用氯化物。也可以使用硅酸盐。然而,这里应该注意的是,这些化合物由于可能存在硅的结合,会阻碍进一步加工工艺。氟化物不适合,因为当它们被加热到热成型温度时,会反应形成氢氟酸。也可以使用由本发明所述类型的化合物和/或不同的碱土金属或过渡金属形成的混合物。为了促进根据本发明要生产的氧化层的形成,根据本发明在必要时施加于防腐蚀涂层表面的溶液可以另外含有网络形成剂,例如硝酸铋,和/或润湿剂,例如表面活性剂。
通常不需要单独进行干燥处理(“烘烤”)。
如果有必要的话,施加的溶液优选通过利用过程热量进行干燥。例如,如果根据本发明必要时设置的步骤b)要在用于热浸镀层的设备中在线进行,那么含有至少一种碱土金属或过渡金属的水溶液的施加可以在扁钢产品离开熔池和涂层厚度设定后在这样的位置处进行,在该位置处,分别经处理的扁钢产品仍然足够热,使得溶液的溶剂在与扁钢产品的表面接触后迅速蒸发,即所施加的层快速干燥。
作为与工艺相结合的施加的替代,该溶液也可以在额外的方法步骤中在传统的卷材涂层设备上施加。
如果要确保溶液在进一步加工前被干燥,单独的干燥处理可以是有利的。当水被用作溶剂时,情况尤其如此。
当使用水作为溶剂时,在卷绕或堆放根据本发明处理的扁钢产品之前,应确保表面没有残留的水。首先,残留的水可能会引发腐蚀过程。此外,与铝表面紧密接触的水有可能被分裂成氧气和氢气,从而增加吸收氢的风险。
为了实现有效的干燥,在施加含有至少一种碱土金属或过渡金属的溶液时,扁钢产品本身可以具有100-250℃,尤其具有100一180℃的温度,或者可以在这些温度下进行干燥处理。这里典型的干燥时间是0-300秒,尤其是10-60秒。如果扁钢产品或其周围环境在施加溶液时非常热,以至于相应的溶剂在触及防腐蚀涂层表面时自发蒸发,即不需要等待时间,则达到了“0s”的干燥时间。
在实践中规则是,至少步骤a)和c)由扁钢产品的生产者完成,并且根据本发明的方法的步骤d)和e)由最终处理者,即扁钢产品生产者的客户完成,其中在步骤c)之前或之后,步骤b)也可以在扁钢产品制造商的工厂中进行。就工艺经济性而言,在这种情况下,在扁钢产品进入用于加热到热成型温度的炉子之前,直接施加含有至少一种碱土金属或过渡金属的溶液是有利的。在这种变体方案中,应注意确保没有溶剂,尤其是没有水进入炉内。因此,应确保根据本发明进行涂层的扁钢产品在进入炉子时是完全干燥的。否则,由水引入炉内的湿气可能导致炉内气氛的湿度急剧增加,从而导致露点的不希望的增加,这反过来又会带来增加通过热成型过程吸收氢的风险。
选择性地,硅(“Si”)可以以最高15重量%,尤其是最高为11重量%的含量存在于根据本发明提供的扁钢产品的防腐蚀涂层中,以减少铁铝相的形成。在这方面,至少为3重量%,尤其是至少8.5重量%的Si含量证明是特别有利的,因此在Si含量为3-15重量%,尤其是3-11重量%,特别是8.5-11重量%的情况下,Si的积极影响在实践中可以特别可靠地得到利用。在至少为3重量%的Si含量下,可以确保根据本发明的扁钢产品的钢基材和防腐蚀涂层之间的合金层不会变得太厚,并且可以保持最佳的进一步加工性能。
同样选择性地,铁可以以高达5重量%,特别是高达4重量%,尤其是高达3.5重量%的含量存在于根据本发明提供的扁钢产品的防腐蚀涂层中。铁的含量基本上是通过铁从钢基材中扩散而出现的,并有助于保护层在基材上的最佳附着。在这方面,至少1重量%的铁含量证明是特别有利的,因此,在铁含量为1-5重量%,尤其是1-4重量%,特别是1-3.5重量%的情况下,铁的存在所带来的积极影响在实践中可以特别可靠地得到利用。
防腐蚀涂层可以用任何已知的方式施加在根据本发明的扁钢产品的钢基材上。为此,热浸镀层,也称为“热浸镀铝”,是特别合适的,其中各个相应的扁钢产品通过适当加热的熔池,该熔池对应于本发明有关防腐蚀涂层成分的要求组成。这种热浸镀层尤其适用于厚度不超过3mm的带状扁钢产品。对于更大的厚度,也可以使用开头已经提及的蒸汽沉积方法之一(PVD,CVD),以便施加防腐蚀涂层。
存在于根据本发明加工的扁钢产品上的防腐蚀涂层的重量通常为扁钢产品的每一面30-100g/m2,特别是40-80g/m2
如前所述,在碱土金属或过渡金属组中,特别是Mg证明特别适合本发明的目的。在这方面,Mg可以单独或与其他碱土金属或过渡金属,如上面也提到的元素铍、钙、锶和/或钡一起存在于根据本发明施加的覆层中,以利用本发明所要达到的效果。
根据本发明提供的扁钢产品在步骤d)中被加热到800-1000℃,尤其是850-950℃的热成型温度,并保持在这个温度,直到有足够的热量引入到扁钢产品或从其分离出来的板坯中。在这种情况下,850-930℃的热成型温度已被发现是特别有利的。分别具体需要的保持时间和退火温度可以根据以下要求来估计,即在工作步骤d)中引入扁钢产品或板坯的热能Js应大于40000kJs,最高400000kJs,其中Js可根据以下已知公式计算:
Js[kJs]=[(T2-T1)×c×t×m]/1000;
其中T2:加热结束时部件的最终温度,单位为K
T1:加热开始时部件的起始温度,单位为K
c:钢的热容(通常为460J/kgK)
t:扁钢产品或板坯在最终温度下的保持时间,单位为s
m:扁钢产品或板坯的质量,单位为kg。
可以用任何合适的方式进行加热。如果为此目的使用传统的、其中扁钢产品或板坯通过辐射加热的连续炉,则适当的保持时间通常为100-900s,尤其是100-600s,或者特别实用为180-600s。正好在选择850-930℃的成型温度的情况下,实践中证明180-600s的保持时间通常也是足够的。
选择性地可以在热成型之前,结合至热成型温度的加热或作为单独的处理步骤,对防腐蚀涂层进行预合金化。为此,扁钢产品可以在650-1100℃的温度下保持10-240s,尤其是30-90s的持续时间。
将按照本发明的方式加热的扁钢产品在实践中惯用的传送时间内送入热成型装置,其中将扁钢产品热成型为部件(工作步骤e))。
具体实施方式
下面将参照实施例对本发明进行更详细的解释。
为九个试验V1-V9提供了常规合金化的MnB钢板A-F,其组成在表1中给出。
每块钢板分别具有厚度D,并以常规方式通过热浸镀层设置铝基防腐蚀涂层。在此,应用了这种防腐蚀涂层的五种变体Z1-Z5,其组成在表2中给出。作为根据本发明的要求添加的碱土金属或过渡金属,每一种防腐蚀涂层Z1-Z5都含有表2中显示的Mg含量。
分别设置有防腐蚀涂层Z1-Z5之一的钢板A-F以常规方式进行灵活冷轧,其中通过这种冷轧分别达到轧制度W。
在灵活轧制之后,分别设置有防腐蚀涂层Z1-Z5之一的钢板A-F在传统的连续炉中被加热到分别为850-930℃的热成型温度,其中在各个相应的热成型温度下的保持时间是不同的,以便将足够的能量EE引入各个相应的钢板。在试验V4和V6中,加热分两个阶段进行,以便首先实现防腐蚀涂层的预合金化。在所有其他试验V1-V3、V5和V7-V9中,加热是在一个阶段进行的。
以这种方式加热到各个相应的热成型温度的金属板样品A-F,在为此提供的工具中以常规方式热成型为金属板部件。
热成型后,得到的钢板以20-1000K/s的冷却速度冷却到室温。
对于试验V1-V9,表3给出了分别用于试验V1-V9的钢板的钢基材的钢材、分别施加在各自钢板的覆层、进行研究的金属板样品的厚度D、加热到热成型温度之前的覆层施加重量、加热到热成型温度期间引入的热量以及通过灵活冷轧实现的轧制度W。
在灵活冷轧后得到的钢板上,通过XPS分析确定新形成的氧化层0B占整体致密地覆盖钢板表面的氧化层的面积比%0B,该新形成的氧化层在灵活冷轧过程中在分别进行加工的钢板的防腐蚀涂层上产生。存在于样品上的剩余氧化层分别由在灵活冷轧之前已经存在的原始氧化层OA组成,因此其占样品A-F被氧化层致密地覆盖的整个表面的面积比%OA=100%-%OB。
同样,分别通过XPS测量确定在灵活轧制前存在的原始氧化层OA的厚度D_OA,通过灵活轧制新形成的、在灵活轧制后存在的氧化层0B的厚度D_OB,以及在加热到热成型温度期间形成的、在热成型后存在于分别所获得的部件上的氧化层在热成型后存在的厚度D_OP。相关的测量结果在表4中进行了总结。
同样,在样品A-F上分别通过XPS测量确定在灵活轧制之前、灵活轧制和加热至热成型温度之间以及热成型之后存在于防腐蚀涂层上的氧化层的组成。
最后,同样通过XPS分析确定在加热和冷轧过程中进入钢板的氢气含量的增加。
这些研究结果总结在表5中。扩散氢含量的少量增加证明了氧化层的有效性,该氧化层由于在根据本发明设置的铝基防腐蚀涂层中掺入了镁,一方面在灵活轧制过程中产生,另一方面在加热到热成型温度时产生,并且由于灵活轧制或热成型产生的损伤点由于镁与环境中的氧气立即重新反应而在很短的时间内再次封闭,使得只有最少量的氢可以渗入防腐蚀涂层。
C Si Mn P S Al Nb Ti B
A 0.08 0.33 0.95 0.025 0.020 0.013 0.09 0.010 0.005
B 0.23 0.38 1.3 0.020 0.007 0.013 - 0.03 0.004
C 0.38 0.37 1.38 0.020 0.008 0.013 - 0.10 0.005
D 0.20 0.35 1.35 0.020 0.008 0.012 - 0.02 0.004
E 0.14 0.25 1.07 0.010 0.001 0.08 0.025 0.010 0.002
F 0.24 0.30 1.3 0.022 0.008 0.012 - 0.02 0.004
数据以重量%给出,其余为铁和不可避免的杂质
表1
热成型之前的防腐蚀涂层 Mg Si Fe
Z1 0.3 9.5 3
Z2 0.5 8 3.5
Z3 0.1 10 3
Z4 2 8 2.0
Z5 0.8 8 3
数据以重量%给出,其余为Al和不可避免的杂质
表2
Figure BDA0004158611340000151
Figure BDA0004158611340000161
表3
Figure BDA0004158611340000162
表4
Figure BDA0004158611340000171

Claims (12)

1.用于通过热成型扁钢产品生产金属板部件的方法,其中所述扁钢产品设置有防腐蚀涂层,并且通过灵活冷轧,其有至少一个区段的厚度与所述扁钢产品的与其临接的另一区段的厚度不同,其中扁钢产品的不同厚度的区段之间的过渡是突然的,所述方法包括以下工作步骤:
a)提供一种具有钢基材和施加在所述钢基材上的防腐蚀涂层的扁钢产品,所述钢基材由以重量%计的组成如下的钢制成:0.07-0.4%C,1.0-2.5%Mn,0.06-0.9%Si,≤0.03%P,≤0.01%S,≤0.1%Al,≤0.15%Ti,≤0.6%Nb,≤0.005%B,≤0.5%Cr,≤0.5%的Mo,其中Cr和Mo之和为≤0.5%,其余为Fe和不可避免的杂质,所述防腐蚀涂层以重量%计的组成为:≤15%的Si,≤5%的Fe,≤5%的任选至少一种碱土金属或过渡金属,其余为Al和不可避免的杂质,
b)如果防腐蚀涂层不含或含有≤0.1重量%的至少一种碱土金属或过渡金属,将含有至少一种碱土金属或过渡金属的溶液施加在扁钢产品的防腐蚀涂层上,
c)将扁钢产品灵活冷轧,以产生厚度不同的区段,然后,
d)在含有>15体积%O2的气氛中,将经灵活冷轧的扁钢产品在一定保持时间上加热到800-1000℃的热成型温度,直到向扁钢产品中引入>44000kJs和≤400000kJs的热量,使得在加热之后为扁钢产品的防腐蚀涂层表面致密地覆盖由至少一种碱土金属或过渡金属的初级氧化物组成的层,所述碱土金属或过渡金属包含在防腐蚀涂层中和/或在工作步骤b)中选择性额外施加,然后
e)将扁钢产品热成型为金属板部件。
2.根据权利要求1所述的方法,其特征在于,步骤a)中提供的扁钢产品的厚度为0.6–7mm。
3.根据前述权利要求中任意一项所述的方法,其特征在于,扁钢产品的防腐蚀涂层的Si含量至少为3重量%。
4.根据前述权利要求中任意一项所述的方法,其特征在于,扁钢产品的防腐蚀涂层中的Fe含量至少为1重量%。
5.根据前述权利要求中任意一项所述的方法,其特征在于,扁钢产品的防腐蚀涂层含有含量总和至少为0.1重量%的碱土金属或过渡金属。
6.根据权利要求5所述的方法,其特征在于,扁钢产品的防腐蚀涂层含有含量总和至少为0.11重量%的碱土金属或过渡金属。
7.根据权利要求6所述的方法,其特征在于,扁钢产品的防腐蚀涂层含有含量总和最高为1.5重量%的碱土金属或过渡金属。
8.根据权利要求7所述的方法,其特征在于,扁钢产品的防腐蚀涂层含有含量总和最高为0.6重量%的碱土金属或过渡金属。
9.根据前述权利要求中任意一项所述的方法,其特征在于,扁钢产品的防腐蚀涂层或根据步骤b)施加的溶液含有镁作为至少一种的碱土金属或过渡金属。
10.根据前述权利要求中任意一项所述的方法,其特征在于,扁钢产品的防腐蚀涂层的施加重量为扁钢产品的每个经涂层的面30-100g/m2
11.根据前述权利要求中任意一项所述的方法,其特征在于,所述防腐蚀涂层通过热浸镀层施加在扁钢产品的钢基材上。
12.根据前述权利要求中任意一项所述的方法,其特征在于,步骤c)中扁钢产品的加热在连续炉中通过辐射热进行,并且保持时间为100-900s。
CN202180067892.5A 2020-09-02 2021-08-27 通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法 Pending CN116249793A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20194103.6A EP3964602A1 (de) 2020-09-02 2020-09-02 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts
EP20194103.6 2020-09-02
PCT/EP2021/073759 WO2022049003A1 (de) 2020-09-02 2021-08-27 Verfahren zum herstellen eines blechbauteils durch warmumformen eines mit einer korrosionsschutzbeschichtung versehenen stahlflachprodukts

Publications (1)

Publication Number Publication Date
CN116249793A true CN116249793A (zh) 2023-06-09

Family

ID=72340287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180067892.5A Pending CN116249793A (zh) 2020-09-02 2021-08-27 通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法

Country Status (4)

Country Link
US (1) US20230366056A1 (zh)
EP (1) EP3964602A1 (zh)
CN (1) CN116249793A (zh)
WO (1) WO2022049003A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19846900C2 (de) 1998-10-12 2000-08-10 Thyssenkrupp Stahl Ag Verfahren und Vorrichtung zum Herstellen eines Metallbandes für abzulängende Tailored Blanks
DE10041280C2 (de) 2000-08-22 2003-03-06 Muhr & Bender Kg Verfahren und Vorrichtung zum flexiblen Walzen eines Metallbandes
JP2004083988A (ja) 2002-08-26 2004-03-18 Nisshin Steel Co Ltd 加工部耐酸化性に優れた耐熱用溶融Al基めっき鋼板加工材および耐高温酸化被覆構造
EP2993248B1 (de) 2014-09-05 2020-06-24 ThyssenKrupp Steel Europe AG Stahlflachprodukt mit einer Al-Beschichtung, Verfahren zu seiner Herstellung, und Verfahren zur Herstellung eines warmgeformten Bauteils
DE102017218704A1 (de) * 2017-10-19 2019-04-25 Thyssenkrupp Ag Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils
DE102018118015A1 (de) * 2018-07-25 2020-01-30 Muhr Und Bender Kg Verfahren zur Herstellung eines gehärteten Stahlprodukts

Also Published As

Publication number Publication date
WO2022049003A1 (de) 2022-03-10
US20230366056A1 (en) 2023-11-16
EP3964602A1 (de) 2022-03-09

Similar Documents

Publication Publication Date Title
CN106795613B (zh) 具有Al涂层的扁钢产品及其制造方法和钢部件及其制造方法
CN110352260B (zh) 用于制备热成形的涂覆的钢产物的方法
JP5390104B2 (ja) 鋼ストリップをコーティングする方法及び前記コーティングを付与された鋼ストリップ
EP2956296B1 (en) Coated steel suitable for hot-dip galvanising
EP2518181B1 (en) High-strength cold rolled steel sheet and method for producing same
US9932659B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
EP2980262A1 (en) Plated steel sheet for hot pressing, process for hot-pressing plated steel sheet and automobile part
EP3045559B1 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
KR101692179B1 (ko) 고강도 강판 및 그 제조 방법
EP3103892B1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
EP3578679B1 (en) High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
US20240133014A1 (en) Method for Manufacturing a Sheet Metal Component from a Flat Steel Product Provided With a Corrosion Protection Coating
CN114717502A (zh) 设置有提供牺牲阴极保护的含镧涂层的钢板
CN115885052A (zh) 用于生产具有铝基防腐蚀覆层的扁钢产品的方法和具有铝基防腐蚀覆层的扁钢产品
EP2759617B1 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating
CN115667571A (zh) 热压部件
CN111936659B (zh) 高强度合金化熔融镀锌钢板及其制造方法
CN116249793A (zh) 通过热成型设置有防腐蚀涂层的扁钢产品来生产金属板部件的方法
CN114761602B (zh) 加工性和耐蚀性优异的铝基合金镀覆钢板及其制造方法
EP3476957A1 (en) High strength galvannealed steel sheet and production method therefor
KR102010076B1 (ko) 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법
JP3464289B2 (ja) 耐食性に優れた耐火構造用溶融Zn−Al合金めっき鋼板の製造方法
KR102714164B1 (ko) 핫 스탬핑 부품 및 이의 제조 방법
WO2024028640A1 (en) Steel sheet with variable thickness having a reduced risk of delayed fracture after press hardening, a press hardening method, a press hardened coated steel part
RU2403315C2 (ru) Способ покрытия стального плоского проката из высокопрочной стали

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination