EP3956710A1 - Microscope à fluorescence et procédé d'illustration d'un échantillon - Google Patents

Microscope à fluorescence et procédé d'illustration d'un échantillon

Info

Publication number
EP3956710A1
EP3956710A1 EP20723022.8A EP20723022A EP3956710A1 EP 3956710 A1 EP3956710 A1 EP 3956710A1 EP 20723022 A EP20723022 A EP 20723022A EP 3956710 A1 EP3956710 A1 EP 3956710A1
Authority
EP
European Patent Office
Prior art keywords
excitation light
light distribution
fluorescence
sample
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20723022.8A
Other languages
German (de)
English (en)
Inventor
Jonas FÖLLING
Lars Friedrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Publication of EP3956710A1 publication Critical patent/EP3956710A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • G02B21/0084Details of detection or image processing, including general computer control time-scale detection, e.g. strobed, ultra-fast, heterodyne detection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/58Optics for apodization or superresolution; Optical synthetic aperture systems

Definitions

  • the so-called STED method is often used for high-resolution imaging of a sample, in which the sample is illuminated with a light distribution that is generated from a superposition of excitation light and de-excitation light.
  • STED stands for "Stimulated Emission Depletion”.
  • the excitation light is designed to stimulate the fluorescent light present in the sample to spontaneously emit fluorescent light.
  • the de-excitation light whose wavelength is different from the wavelength of the excitation light, is used to de-excite the the excitation light excited fluorophores by way of a stimulated emission of fluorescent light.
  • the solution proposed here therefore provides for the generation of two sample images which differ from one another with regard to the detected arrival times of the fluorescence photons which are used to generate the respective sample image distinguish.
  • the claimed fluorescence scanning microscope thus makes use of the fact that the dwell time of the fluorophores in the excited state, which is also referred to below as the life of the fluorophores, depends on whether the respective fluorophore is in the area of the zero point of the de-excitation light distribution or not . In the area of the zero point of the de-excitation light distribution, the lifetime is determined solely by the rate of spontaneous emission of the fluorophore. In contrast, in areas in which the de-excitation light distribution is not equal to zero, the rate of the stimulated emission is added to the rate of spontaneous emission.
  • the comparison of the two sample images directly enables both the direction and the distance to be determined in which the de-excitation light distribution is to be moved relative to the excitation light distribution in order to compensate for the offset and thus to achieve an optimal superimposition of the light distributions .
  • the direction and distance of the offset can be determined algorithmically so that only a small number of iterations are required to remove the offset, possibly even only a single iteration. In this way, the disadvantages explained at the beginning and resulting from an incorrect adjustment, such as the reduction in image brightness and the emphasis on undesired secondary maxima in the excitation light distribution, can be avoided.
  • the spatial offset between the excitation and de-excitation light distribution can in particular be determined using two-dimensional sample images. However, it is also possible to detect the offset in all three spatial directions. In this case, a three-dimensional stack of images is recorded instead of a two-dimensional sample image. In all cases, the sample image or the image stack, which represents the early fluorescence photons, contains information about the location of the maximum of the excitation light distribution, while the sample image or the image stack, which represents the late fluorescence photons, contains information about the location of the zero point of the de-excitation light distribution includes.
  • the offset can be determined in such a way that the two sample images or image stacks are related to one another, for example via a cross-correlation.
  • the de-excitation light source can be designed as a continuous wave laser light source or also as a pulsed or modulated laser light source.
  • the design as a continuous wave laser light source has the advantage that such a source is significantly cheaper than a pulsed source, in particular if the latter is to work with high laser powers as in conventional STED applications.
  • a spherical aberration in the de-excitation beam path has a significantly more disadvantageous effect than in the excitation beam path.
  • the sample image generated by the excitation beam alone as a reference, e.g. as a reference for the image brightness. Due to the brightness comparison of the two sample images, it is not necessary to use a quality measure that is laborious to determine and on the basis of which it must first be assessed how well the correction of the spherical aberration has succeeded.
  • the correction is, as it were, inherent in a reference, which is not the case, for example, if the quality of the correction is to be assessed on the basis of a single image.
  • FIG. 6 shows diagrams with examples to explain how pulsed excitation light and pulsed de-excitation light are to be coordinated with one another over time.
  • the fluorescence scanning microscope 100 comprises an excitation light source 102 which is designed to generate an excitation light distribution E of the type shown in FIG. 1, which excites fluorophores present in a sample 104 to spontaneously emit fluorescent light.
  • the wavelength of the excitation light distribution E generated by the excitation light source 102 is thus designed for the fluorophores used in the specific application.
  • the fluorescence scanning microscope 100 further comprises a de-excitation light source 106 which is designed to generate a de-excitation light distribution D of the type shown in FIG. 1, which excites the fluorophores excited by the excitation light distribution in the sample 104 by stimulated emission of fluorescent light.
  • the sample 104 illuminated with the superimposed light distribution emits fluorescent light L3, which is returned to the raster device 120 via the objective 126.
  • so-called descanned detection of the fluorescent light L3 is provided.
  • the fluorescent light L3 then successively passes the two wavelength-selective beam splitters 118, 116 and falls on the detector 110, which detects the fluorescent light L3 and outputs a corresponding output signal S to the processor 112.
  • the example according to FIG. 3 represents a particularly simple type of evaluation of the fluorescence photons.
  • An evaluation that is expanded in comparison is illustrated in the illustration according to FIG.
  • the processor 112 evaluates the fluorescence photons detected in the respective illumination target point by, for example, adapting the model function specified above according to relationship (1) to the detected temporal distribution of the fluorescence photons and determining two fit parameters aO, al from this. On the basis of the two fit parameters aO, a1, the processor 112 then generates two image points related to the same illumination target point and then, using a large number of such image points, the two sample images from which the spatial offset dx is determined.
  • FIG. 4 shows, by way of example, the course of the two fit parameters a0 and al along the axis x assuming a spatial offset dx between the maximum M of the excitation light distribution E and the zero point N of the de-excitation light distribution D.
  • the solid line shows the course of the fit parameter a1 and the dashed line the course of the fit parameter aO.
  • the course of a1 is similar to the fluorescence signal P2 in FIG. 3, which is represented by the late photons.
  • the fit parameter al is a measure of the amount of long-lived fluorophores and only these fluorophores can generate late fluorescence photons.
  • the profile of the fit parameter aO is similar to the fluorescence signal PI in FIG.
  • the excitation light source 102 outputs the trigger signal T both to the processor 112 and to the delay unit 228.
  • the delay unit 228 generates a trigger signal T ′ that is delayed with respect to the trigger signal T.
  • the delay caused by processor 112 can be set.
  • the delayed trigger signal T is used to synchronize the light pulses of the de-excitation light source 106 with those of the excitation light source 102.
  • the delay unit 228 in FIG. 5 can be configured, for example, in such a way that the light pulse emitted by the de-excitation light source 106 reaches the sample 104 by a time interval dt later than the light pulse that the excitation light source 102 emits.
  • This solution is illustrated in Figure 6b.
  • the fluorescence photons are emitted according to the excitation light distribution E.
  • the stimulated emission then takes place by emitting the de-excitation light pulse.
  • Part of the fluorescence is quenched, so that fluorophores preferably emit photons in the area of the zero point N of the de-excitation light distribution D.
  • the pulse length of the de-excitation light pulse can be set in such a way that it is in the range of the mean lifetime of the excited state of the fluorophores, for example in a range from 0.1 to 6.0 ns.
  • the stimulated emission is distributed over the time range of the pulse length of the de-excitation light pulse or over the part of the de-excitation light pulse that reaches the sample 104 after the excitation light pulse.
  • the fluorescence scanning microscope 100, 200 can also work in an operating mode in which the excitation takes place by means of a continuous wave laser light source and the de-excitation takes place by means of a pulsed laser light source.
  • the arrival time of the fluorescence photons at the detector 110 is related to the pulse times of the de-excitation light D.
  • the fluorescence photons that are detected shortly after the de-excitation pulse then contain information about the position of the zero point N of the de-excitation light distribution D.
  • Computer system can interact so that one of the methods described herein is carried out.
  • Another embodiment according to the invention comprises an apparatus or a system that is configured to transmit (for example electronically or optically) a computer program for carrying out one of the methods described herein to a receiver.
  • the receiver can be, for example, a computer, a mobile device, a storage device, or the like.
  • a programmable logic device eg, a field programmable gate array, FPGA
  • FPGA field programmable gate array
  • a field programmable gate arrangement can cooperate with a microprocessor to perform any of the methods described herein. In general, the methods are preferably performed by any hardware device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention concerne un microscope à fluorescence comprenant une source de lumière d'excitation, laquelle est conçue de sorte à produire une répartition de la lumière d'excitation qui excite des fluorophores présents dans un échantillon à émettre spontanément des photons de fluorescence, une source de lumière de désexcitation qui est conçue de manière à produire une répartition de lumière de désexcitation qui désexcite les fluorophores excités dans l'échantillon par la répartition de lumière d'excitation par une émission stimulée de photons de fluorescence, une unité d'éclairage qui est conçue de sorte à concentrer la répartition de lumière d'excitation et la répartition de lumière de désexcitation afin qu'un maximum d'intensité de la répartition de lumière d'excitation et un minimum d'intensité de la répartition de lumière de désexcitation sont superposés dans l'espace en un point cible d'éclairage, un détecteur qui est conçu de sorte à détecter les photons de fluorescence émis de chaque point cible d'éclairage, en fonction de leurs temps d'arrivée, et un processeur. Le processeur est conçu de manière à évaluer les photons de fluorescence détectés dans chaque point cible d'éclairage en fonction de leurs temps d'arrivée, à générer sur la base de cette évaluation un premier point d'image et un second point d'image, lesquels représentent chaque point cible d'éclairage, à concentrer les premiers points d'image en une première image d'échantillon et à concentrer les seconds points d'image en une seconde image d'échantillon, et à déterminer sur la base des deux images d'échantillon un décalage spatial entre le maximum d'intensité de la répartition de lumière d'excitation et le minimum d'intensité de la répartition de lumière de désexcitation.
EP20723022.8A 2019-04-17 2020-04-17 Microscope à fluorescence et procédé d'illustration d'un échantillon Pending EP3956710A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019110157.3A DE102019110157B4 (de) 2019-04-17 2019-04-17 Fluoreszenz-Rastermikroskop und Verfahren zur Abbildung einer Probe
PCT/EP2020/060836 WO2020212563A1 (fr) 2019-04-17 2020-04-17 Microscope à fluorescence et procédé d'illustration d'un échantillon

Publications (1)

Publication Number Publication Date
EP3956710A1 true EP3956710A1 (fr) 2022-02-23

Family

ID=70480223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20723022.8A Pending EP3956710A1 (fr) 2019-04-17 2020-04-17 Microscope à fluorescence et procédé d'illustration d'un échantillon

Country Status (5)

Country Link
US (1) US11650158B2 (fr)
EP (1) EP3956710A1 (fr)
CN (1) CN113711101A (fr)
DE (1) DE102019110157B4 (fr)
WO (1) WO2020212563A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110160B4 (de) * 2019-04-17 2023-07-27 Leica Microsystems Cms Gmbh Fluoreszenzmikroskop und Verfahren zur Abbildung einer Probe
DE102020134797B3 (de) 2020-12-23 2022-06-09 Abberior Instruments Gmbh Verfahren zum Abbilden einer interessierenden Struktur einer Probe und Mikroskop mit Array-Detektor zu dessen Durchführung
DE102022112384B4 (de) 2022-05-17 2024-02-29 Abberior Instruments Gmbh Verfahren, lichtmikroskop und computerprogramm zum einstellen einer zeitverzögerung zwischen lichtpulsen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866911A (en) * 1994-07-15 1999-02-02 Baer; Stephen C. Method and apparatus for improving resolution in scanned optical system
DE102007011305A1 (de) 2007-03-06 2008-09-11 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur Strahljustage in einem optischen Strahlengang
DE102007025688A1 (de) 2007-06-01 2008-12-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Wellenlängen- oder polarisationssensitiver optischer Aufbau und dessen Verwendung
DE102009056250A1 (de) * 2009-12-01 2011-06-09 Leica Microsystems Cms Gmbh Phasenfilter für ein Rastermikroskop
DE102011000835C5 (de) * 2011-02-21 2019-08-22 Leica Microsystems Cms Gmbh Abtastmikroskop und Verfahren zur lichtmikroskopischen Abbildung eines Objektes
US9871948B2 (en) * 2012-03-29 2018-01-16 Ecole polytechnique fédérale de Lausanne (EPFL) Methods and apparatus for imaging with multimode optical fibers
GB201217171D0 (en) * 2012-08-23 2012-11-07 Isis Innovation Stimulated emission depletion microscopy
US9740166B2 (en) 2013-03-06 2017-08-22 Hamamatsu Photonics K.K. Fluorescence receiving apparatus and fluorescence receiving method
CN103344617B (zh) * 2013-06-17 2015-05-06 重庆大学 光激活单分子荧光生物化学反应动力学显微镜及试验方法
DE102013227107A1 (de) * 2013-09-03 2015-03-05 Leica Microsystems Cms Gmbh Mikroskop mit einem Element zum Verändern der Form des Beleuchtungslichtfokus
US20200088982A1 (en) * 2015-07-23 2020-03-19 University Of Technology Sydney A system and method for microscopy
CN105043988B (zh) * 2015-09-21 2017-10-13 哈尔滨工业大学 基于扫描振镜的单点去卷积显微系统与成像方法
CN105467572B (zh) * 2016-01-18 2018-06-01 北京大学 单波长实现多光子脉冲sted-spim显微系统
WO2018045014A1 (fr) * 2016-08-31 2018-03-08 Arizona Board Of Regents On Behalf Of The University Of Arizona Appareil, procédés et applications de microscopie à déperdition par émission stimulée à éclairage structuré non linéaire (sted-nsim)
EP3290983A1 (fr) 2016-09-05 2018-03-07 Abberior Instruments GmbH Procede d'ajustement d'un microscope a fluorescence a balayage laser et microscope a fluorescence a balayage laser comprenant un appareil d'ajustement automatique
FR3073050B1 (fr) * 2017-11-02 2023-06-30 Centre Nat Rech Scient Appareil et procede de microscopie a fluorescence a super-resolution et de mesure de temps de vie de fluorescence

Also Published As

Publication number Publication date
WO2020212563A1 (fr) 2020-10-22
DE102019110157A1 (de) 2020-10-22
US20220196554A1 (en) 2022-06-23
DE102019110157B4 (de) 2021-06-17
US11650158B2 (en) 2023-05-16
CN113711101A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
EP0801759B1 (fr) Dispositif et procede pour la mesure optique d'un point sur un echantillon, avec haute resolution locale
DE4416558C2 (de) Verfahren zum optischen Messen eines Probenpunkts einer Probe und Vorrichtung zur Durchführung des Verfahrens
EP3956710A1 (fr) Microscope à fluorescence et procédé d'illustration d'un échantillon
DE102012023024B4 (de) Lichtmikroskop und Mikroskopieverfahren
EP2235577B1 (fr) Microscope
EP3729162B1 (fr) Procédé destiné à représenter un échantillon au moyen d'un microscope à fluorescence à déplétion par émission stimulée
EP3525975B1 (fr) Procédé et dispositif pour la détermination et la régulation d'une position focale d'un faisceau d'usinage
EP3084500B1 (fr) Procédé de microscopie à balayage et microscope à balayage
EP3871030B1 (fr) Microscope optique et procédé de microscopie
EP1186882A2 (fr) Procédé et dispositif pour la détection de lumière fluorescente dans la microscopie confocale à balayage
WO2015022146A1 (fr) Microscopie de fluorescence 3d haute résolution
EP1870761B1 (fr) Microscope à balayage destiné à la mesure optique d'un objet
EP3345032B1 (fr) Procédé de détermination d'une position en hauteur d'un objet
EP3956651B1 (fr) Microscope à fluorescence et procédé d'illustration d'un échantillon
DE102011086230B4 (de) Verfahren und Vorrichtung zur Beleuchtung und Detektion in der RESOLFT-Mikroskopie
DE102011051086A1 (de) Verfahren und Vorrichtung zur Abbildung einer mit einem Fluoreszenzfarbstoff markierten Struktur in einer Probe
DE102017102604B4 (de) Verfahren zum Steuern eines Laserscanning-Mikroskops beim Abtasten einer Probe und Laserscanning-Mikroskop
DE102013208872A1 (de) Verfahren zur Erzeugung eines Bildes einer Probe
DE102023104335B3 (de) Beleuchtungsmodul, Mikroskop und Verfahren
DE102018100417B4 (de) Verfahren und Vorrichtung zur optischen Zielverfolgung von mit einem Hochenergielaser bestrahlbarem Zielobjekt
DE102018107710B4 (de) Intraoraler parallelkonfokaler Oberflächenscanner mit Störlichtsubtraktion
DE102022203632A1 (de) Bilderfassungsverfahren in der Lichtfeldmikroskopie und Lichtfeldmikroskop
AT516044B1 (de) Biegewinkel-Messvorrichtung
WO2021004850A1 (fr) Procédé et microscope comprenant un dispositif de correction pour corriger des défauts d'images dus aux aberrations
EP3704529A1 (fr) Procédé et dispositif de balayage d'un échantillon

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221103

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230414