EP3953077B1 - Messvorrichtung zur bestimmung des biegewinkels - Google Patents

Messvorrichtung zur bestimmung des biegewinkels Download PDF

Info

Publication number
EP3953077B1
EP3953077B1 EP20730962.6A EP20730962A EP3953077B1 EP 3953077 B1 EP3953077 B1 EP 3953077B1 EP 20730962 A EP20730962 A EP 20730962A EP 3953077 B1 EP3953077 B1 EP 3953077B1
Authority
EP
European Patent Office
Prior art keywords
bending
camera
exit opening
light
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20730962.6A
Other languages
English (en)
French (fr)
Other versions
EP3953077A1 (de
Inventor
Gerhard Sperrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Maschinen Austria GmbH and Co KG
Original Assignee
Trumpf Maschinen Austria GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Maschinen Austria GmbH and Co KG filed Critical Trumpf Maschinen Austria GmbH and Co KG
Publication of EP3953077A1 publication Critical patent/EP3953077A1/de
Application granted granted Critical
Publication of EP3953077B1 publication Critical patent/EP3953077B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0209Tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/006Bending sheet metal along straight lines, e.g. to form simple curves combined with measuring of bends
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the invention relates to a bending device for producing a component by forming a workpiece made of sheet metal with a measuring device for determining a bending angle of the workpiece.
  • measuring methods or measuring devices are known in which a light pattern is directed onto the sheet metal to be formed and this light pattern is recorded by an image capture device or a camera.
  • a measuring device is, for example, from WO 2016/058020 A1 known.
  • the lighting device and the camera are arranged at a distance from one another in the direction of the bending axis, so that an angle results between the light rays incident on the workpiece and the main detection direction or the optical axis of the camera.
  • the lighting device or the light pattern is designed in such a way that a line of light appears on the workpiece surface due to the light incident on the workpiece.
  • a straight guide is also provided for attaching the bending angle measuring device to the press table of the bending machine.
  • This straight guide is aligned parallel to the longitudinal extent of the press table or parallel to the bending axis and can therefore move the bending angle measuring device to different points on the press table Press table or the workpiece to be bent can be moved.
  • the disadvantage of the known solution is that in the case of processing workpieces with a complex structure, the field of view of the camera can be shadowed by parts of the workpiece during some bending processes, such that the laser line can no longer be detected by the camera.
  • the document JP S59197813 A relates to a method for inspecting welds and shows a device for measuring the angles on the flanks of a V-seam.
  • Two light lines (8a, 8b) are projected onto the workpiece in the area of the flanks of the weld seam.
  • the exit openings of the light lines from two light sources are arranged at a distance from each other, symmetrically to the left and right of the lens of a camera.
  • the document US 5531087 A shows another bending machine with a measuring device for the bending angle using two light lines and a camera. Two lines of light are projected onto the sheet metal using two light sources that are offset in a direction parallel to the bending axis. A camera is arranged between the exit openings of the light sources and takes an image of the two light lines, from whose relative position to one another the angle can be determined.
  • the object according to the invention is achieved by a bending device for producing a component by forming a workpiece made of sheet metal with two press beams aligned parallel to one another and bending tools attached thereto, with a control device and with a measuring device for determining a bending angle of the workpiece with respect to a bending axis, the measuring device being a Illumination device for generating a line of light on the workpiece and a camera for recording an image of the line of light.
  • the camera and a first exit opening of the lighting device are arranged at a distance from one another in the parallel direction with respect to the bending axis and the control device is designed with an image recognition program, so that a value of the bending angle can be determined from a change in the image of the light line in images from the camera.
  • the lighting device comprises a second exit opening for generating a second light line on the workpiece, wherein the first exit opening and the second exit opening of the lighting device are arranged at a distance from one another in the parallel direction with respect to the bending axis, and wherein the camera is arranged between the first exit opening and the second exit opening .
  • the lighting device comprises a light source and a deflection device for light from the light source and the deflection device is designed to direct the light from the light source either through a first illumination beam path and the first exit opening or through a second illumination beam path and the second exit opening respectively.
  • the advantage here is that with such a measuring device, measurements can be carried out either using the first outlet opening or using the second outlet opening, even for complex components in which several forming processes have to be carried out on workpieces.
  • the measuring device can thereby be constructed with a smaller number of components.
  • the one from the document JP S59197813 A Known prior art also forms the basis for the preamble of claim 1.
  • the measuring device comprises a window for the camera, the first outlet opening and the second outlet opening being arranged symmetrically with respect to the window.
  • the spatial geometry of the arrangement of the light line on the workpiece and the direction of the camera's field of view can thus be made mirror-symmetrical, which means that the same algorithms for determining the bending angle can advantageously be used.
  • the measuring device comprises a rotating frame
  • the deflection device for the light from the light source is attached to the rotating frame and can be pivoted about an axis with it, has the advantage that a sufficiently high measurement accuracy can be achieved when determining the bending angle .
  • deflection device comprises a plane mirror or if the deflection device comprises a prism.
  • the design of the device according to which the camera is attached to the rotating frame and can be pivoted about the axis with it, the axis being aligned perpendicular to the bending axis, has the advantage that when changing the measuring fields, both changes, i.e. the change in the orientation of the camera and the change between the illumination beam paths to the first or the second exit opening can only be carried out by actuating the rotating frame.
  • the design according to which a direction of a beam path of the camera and the plane of the light line enclose an acute angle, has the advantage that a sufficiently high measurement sensitivity can be achieved.
  • the camera comprises a wide-angle lens and is arranged in a fixed manner, with a direction of a beam path of the camera being aligned parallel to the plane of the light line, is that there is less susceptibility to errors when aligning the camera.
  • the design of the bending device is also advantageous, with a straight guide being included and the measuring device for the bending angle on the straight guide being adjustable in a direction parallel to the bending axis. This means that measurements can be carried out at different points along the longitudinal extent of the table beam and with different bending deformations using one and the same measuring device.
  • the Fig. 1 shows part of a bending device 1 based on a side view of an arrangement of bending tools with a die 2 and a punch 3 for bending a workpiece 4 inserted between the bending tools.
  • the die 2 is attached to a lower press beam or a fixed table beam 5.
  • a bending deformation is effected on it.
  • one leg of the workpiece 4 protrudes laterally and these legs are pivoted upwards by an angle 7, 8 to form a bending edge 6, as shown in FIG Fig. 1
  • Workpiece 4 shown in dashed lines can be seen.
  • a bending angle measuring device 9, 10 is attached to the table beam 5 on both sides of the table beam 5. With the bending angle measuring devices 9, 10, the deformation angles 7, 8 can be determined without contact and on the basis of optical or geometric laws.
  • the arrangement of a bending angle measuring device 9, 10 on both sides of the table beam 5 is solely due to the fact that the exemplary embodiment of the bending device 1 described is one for free bending, in which the legs of the workpiece 4 are also changed in their spatial position and orientation on both sides during the forming. If the bending device 1 is designed, for example, by a device for swivel bending, in which one leg of the workpiece 4 is held in its spatial position, the arrangement of a single bending angle measuring device 9, 10 is of course sufficient. Furthermore, it can also be provided that the bending angle measuring device 9, 10 can be displaced in the direction parallel to the longitudinal extension 11 of the table beam 5 or parallel to the arrangement of the bending tools. For this purpose, a straight guide 12, 13 is arranged on the table beam 5, on which the bending angle measuring device 9, 10 can be fixed at different points along the longitudinal extension 11 ( Fig. 2 ).
  • the Fig. 2 shows the bending device 1 according to Fig. 1 shown in perspective.
  • the bending angle measuring device 9, which is attached to the table beam 5 - on the left side as shown - has a first outlet opening 14 of a lighting device 15 on a side facing the workpiece 4 or the arrangement of the bending tools ( Fig. 4 ) on. Through this first exit opening 14, light from a light source 16 ( Fig. 4 ) of the lighting device 15 can be directed at the underside of the left leg of the workpiece 4 so that a light line 17 appears on it.
  • the bending angle measuring device 9 also has a second outlet opening 19 of the lighting device 15, which is offset from the first outlet opening 14 by a distance 18 in the direction parallel to the longitudinal extension 11 of the table beam 5.
  • a window 20 of a camera 21 is formed between the first outlet opening 14 and the second outlet opening 19 of the bending angle measuring device 9.
  • the camera 21 or a field of view 22 of the camera 21 is aligned in such a way that the light line 17 appearing on the workpiece 4 can be detected.
  • the first and second exit openings 14, 19 of the lighting device 15 are thus arranged symmetrically with respect to the window 20 of the camera 21.
  • the first outlet opening 14 and the second outlet opening 19 can be used to generate the light line 17 or an alternative light line offset in the longitudinal direction (not shown).
  • the light rays directed onto the light line 17 and an optical axis 24 of the field of view 22 or the camera 21 form an acute angle relative to one another. If a bending deformation is now carried out on the workpiece 4 by pressing the punch 3 and the die 2 together, the spatial position of the light line 17 also changes due to the resulting pivoting of the corresponding leg of the workpiece 4. This appears in images recorded by the camera 21 spatial change of the light line 17 as a change in the position and orientation of the image of the light line 17. On the basis of these changes in the image of the light line 17, the bending angle 7 can finally be determined.
  • the bending angle measuring device 9 preferably also includes a control device 23, in which an evaluation unit for the images recorded by the camera 21 is formed.
  • the evaluation unit of the control device 23 the change in position and direction of the image of the light line 17 is determined, preferably using image recognition software, and the bending angle 7 is calculated from this.
  • the light rays emitted from the first outlet opening 14 onto the workpiece 4 are shaped as a fan-like, narrow light bundle, so that a plane 25 is determined by this, which is preferably directed perpendicularly relative to the longitudinal extent 11 of the table beam 5 or the bending axis of the workpiece 4 ( Fig. 4 ).
  • a measurement of the bending angle 7 can be carried out with the bending angle measuring device 9 according to the invention at two different locations on the workpiece 4.
  • the bending angle 7 is measured using the first outlet opening 14 or using the second outlet opening 19.
  • the measurements can be carried out in the same way using the first outlet opening 14 or the second outlet opening 19, without the bending angle - Measuring device 9 must be moved for this.
  • the bending angle measuring device 9 proves to be particularly advantageous in the case of bending deformations of the workpiece 4, in which a bending edge 6 is only generated in sections, that is to say only over partial areas of the longitudinal direction 11.
  • the Fig. 3 shows the bending device 1 during the execution of the bending forming in an alternative application, shown in perspective.
  • the situation shown shows a bending deformation on a workpiece 4 on which a cut directed from one edge towards the center has already been made in a previous processing step.
  • the workpiece 4 is inserted between the die 2 and the punch 3 in such a way that a bending edge 6 that only extends over a partial area is produced, while a part of the workpiece 4 that extends beyond the length of the bending edge 6 retains its undeformed, flat shape.
  • the leg of the workpiece 4 - located behind the punch 3 in the illustration - is pivoted completely upwards by the bending process, while this is only the case for the leg of the workpiece 4 located in front of the bending tool arrangement (in the foreground of the picture). Fig. 3 located), part of the workpiece 4 protruding from the bending edge 6 applies.
  • the light line 17 could also be generated using the second exit opening 19, it turns out that for this purpose the measuring device 9 has to be moved into a position on the straight guide 12 of the table beam 5 would have to, in which the window 20 of the camera 21 would be covered by the downwardly pivoted portion of the workpiece 4. In such a situation, the light line 17 could no longer be captured in the field of view 22 of the camera 21.
  • the Fig. 4 shows a cross section of the bending angle measuring device 9 according to Fig. 1 .
  • the one used to generate the light line 17 ( Fig. 2 , 3 ) provided outlet openings 14, 19 are arranged offset by the distance 18 in the direction parallel to the longitudinal extent 11 of the table beam 5.
  • the light from the light source 16 of the lighting device 15 can be directed onto the workpiece 4 either via a first illumination beam path 26 through the first exit opening 14 or via a second illumination beam path 27 through the second exit opening 19.
  • This means that the lighting device 15 has a switchable beam guide, whereby it is possible to switch between a first measuring field located in front of the first outlet opening 14 and a second measuring field located in front of the second outlet opening 19.
  • the lighting device 15 includes a pivotably mounted deflection prism 28, with which the light coming from the light source 16 can be deflected selectively into one of the workpiece-side beam path sections, that is, either into the first, workpiece-side illumination beam path 26 or into the second illumination beam path 27.
  • the light from the light source 16 is emitted onto the workpiece 4 via the second illumination beam path 27 through the second exit opening 19 (as shown through the right of the two exit openings 14, 19).
  • the camera 21 is also aligned with its optical axis 24 towards the corresponding spatial area of the light line 17 (to the right as shown).
  • a laser is preferably used as the light source 16. This is particularly suitable for forming a fan-like, narrow beam of light, which - directed onto the surface of the workpiece 4 - produces the desired line of light 17.
  • the narrow beam of light directed onto the workpiece 4 through one of the two exit openings 14, 19 approximately corresponds to the plane 25. This narrow beam of light or the plane 25 corresponding to it is aligned vertically with respect to the bending axis or vertically with respect to the longitudinal extent 11 of the table beam 5.
  • the deflection prism 28 and the camera 21 are attached to a common rotating frame 29.
  • This rotating frame 29 is pivotally mounted with respect to an axis 30 perpendicular to the longitudinal extent 11 of the table beam 5. Changing the orientation of the deflection prism 28 and the camera 21 can therefore be done simultaneously by pivoting the rotating frame 29 through 180°.
  • Pivoting the rotating frame 29 through 180° therefore changes the position and orientation of the camera 21 to the position shown by dashed lines and directs the light coming from the light source 16 into the first, workpiece-side illumination beam path 26 towards the first exit opening 14.
  • a further and possibly independent embodiment of the bending angle measuring device 9 or the bending device 1 is shown, with the same reference numbers or component names as in the previous ones for the same parts Fig. 1 to 4 be used.
  • the Fig. 5 shows an alternative embodiment of the bending angle measuring device 9 of the bending device 1, also shown as a cross section, as in Fig. 1 displayed.
  • the camera 21 is aligned coaxially with the axis 30 of the rotating frame 29 and is mounted in a stationary manner.
  • a second deflection prism 31 is also arranged on the rotating frame 29.
  • the second deflection prism 31 is placed in front of the camera 21 and is positioned so that a beam path 32 of the camera 21 or the field of view 22 is inclined at an angle 33 relative to the axis 30.
  • the Fig. 6 shows another alternative embodiment of the bending angle measuring device 9.
  • the camera 21 is arranged in a fixed manner under the window 20, with its optical axis 24 aligned with the axis 30.
  • the camera 21 according to this exemplary embodiment includes a wide-angle lens, so that its field of view 22 can capture the light line 17 in both measuring situations, that is, when using the exit opening 14 and when using the exit opening 19 to generate the light line 17.
  • only the deflection prism 28 needs to be attached to the rotating frame 29 and pivotable with it.
  • All information on value ranges in this description should be understood to include any and all sub-ranges, e.g. the information 1 to 10 should be understood to include all sub-ranges, starting from the lower limit 1 and the upper limit 10 , i.e. all subranges start with a lower limit of 1 or greater and end with an upper limit of 10 or less, e.g. 1 to 1.7, or 3.2 to 8.1, or 5.5 to 10.
  • Bending device 31 Deflecting prism 2 die 32 beam path 3 Rubber stamp 33 angle 4 workpiece 5 Table beams 6 bending edge 7 angle 8th angle 9 Bending angle measuring device 10 Bending angle measuring device 11 Longitudinal direction 12 Straight guidance 13 Straight guidance 14 Exit opening 15 lighting device 16 light source 17 Line of light 18 Distance 19 Exit opening 20 Window 21 camera 22 field of view 23 Control device 24 optical axis 25 level 26 Illumination beam path 27 Illumination beam path 28 Deflecting prism 29 Swivel frame 30 axis

Description

  • Die Erfindung betrifft eine Biegevorrichtung zur Herstellung eines Bauteils durch Umformung eines Werkstücks aus Blech mit einer Messvorrichtung zur Bestimmung eines Biegewinkels des Werkstücks.
  • Zur optischen Messung eines Biegewinkels an einem Werkstück während dessen Verformung in einer Biegemaschine sind Messverfahren bzw. Messvorrichtungen bekannt, bei denen ein Lichtmuster auf das umzuformende Blech gelenkt wird und dieses Lichtmuster von einer Bilderfassungsvorrichtung bzw. einer Kamera aufgezeichnet wird. Eine solche Messvorrichtung ist beispielsweise aus der WO 2016/058020 A1 bekannt. Die Beleuchtungsvorrichtung und die Kamera sind dabei in Richtung der Biegeachse voneinander distanziert angeordnet, sodass sich zwischen den auf das Werkstück einfallenden Lichtstrahlen und der Haupterfassungsrichtung bzw. der optischen Achse der Kamera ein Winkel ergibt. Die Beleuchtungsvorrichtung bzw. das Lichtmuster ist derart ausgebildet, dass durch das auf das Werkstück einfallende Licht eine Lichtlinie auf der Werkstückoberfläche erscheint. Durch das Gegeneinanderpressen der Biegewerkzeuge wird an dem Werkstück eine Biegekante ausgebildet und ändert sich dabei dementsprechend auch die räumliche Lage der an die Biegekante anschließenden Teile des Werkstücks. Damit ändert sich gleichzeitig auch die räumliche Lage der auf den Werkstücksteilen erscheinenden Lichtlinien. Und dementsprechend ergibt sich auch eine Änderung der Lage der Lichtlinie in dem Sehfeld der Kamera und in den von der Kamera aufgezeichneten Bildern. Die Verformung des Werkstücks geht also mit einer Änderung der Richtung der Lichtlinie in den Bildern bzw. in dem Sehfeld der Kamera einher. Mit einem entsprechenden Analyse- bzw. Auswerteprogramm der Steuervorrichtung der Biegemaschine können aus diesen Änderungen der Ausrichtung der Lichtlinie in den Bildern der Kamera die Winkeländerungen des entsprechenden Werkstückschenkels bzw. insgesamt der gesamte Biegewinkel an der Biegekante berechnet werden.
  • Bei der bekannten Biegemaschine ist außerdem eine Geradführung zur Befestigung der Biegewinkel-Messvorrichtung an dem Pressentisch der Biegemaschine vorgesehen. Diese Geradführung ist parallel zur Längserstreckung des Pressentisches bzw. parallel zu der Biegeachse ausgerichtet und kann die Biegewinkelmessvorrichtung damit an unterschiedliche Stellen des Presstisches bzw. des zu biegenden Werkstücks verschoben werden. Nachteilig an der bekannten Lösung ist, dass es im Falle der Bearbeitung von Werkstücken mit einer komplexen Struktur bei manchen Biegevorgängen zu einer Abschattung des Sehfelds der Kamera durch Werkstückteile kommen kann, derart, dass die Laserlinie von der Kamera nicht mehr erfasst werden kann.
  • Das Dokument JP S59197813 A betrifft eine Methode zur Prüfung von Schweißnähten und zeigt eine Vorrichtung zum Messen der Winkel an den Flanken einer V-Naht. Dabei werden zwei Lichtlinien (8a, 8b) auf das Werkstück im Bereich der Flanken der Schweißnaht projiziert. Die Austrittsöffnungen der Lichtlinien von zwei Lichtquellen sind voneinander distanziert angeordnet, und zwar symmetrisch links und rechts der Linse einer Kamera.
  • Das Dokument US 5531087 A zeigt eine weitere Biegemaschine mit einer Messvorrichtung für den Biegewinkel mittels zweier Lichtlinien und einer Kamera. Dabei werden zwei Lichtlinien auf das Blech projiziert und zwar durch zwei Lichtquellen, die in einer Richtung parallel zur Biegeachse versetzt angeordnet sind. Eine Kamera ist zwischen den Austrittsöffnungen der Lichtquellen angeordnet und nimmt ein Bild der beiden Lichtlinien auf, aus deren relativer Stellung zueinander der Winkel bestimmet werden kann.
  • In den Dokumenten US4564765A und JP2017225983A werden Messvorrichtungen für den Biegewinkel mit einer optoelektronischen und im Dokument JP2013116480A eine solche mit einer mechanischen Abtastung der Schenkel des Werkstücks beschrieben.
  • Es ist die Aufgabe der Erfindung, eine Biegewinkel-Messvorrichtung zu schaffen, die in unterschiedlichen Fällen der Biegebearbeitung von Werkstücken an Biegevorrichtungen flexibel und mit höherer Zuverlässigkeit eingesetzt werden kann.
  • Die erfindungsgemäße Aufgabe wird gelöst durch eine Biegevorrichtung zur Herstellung eines Bauteils durch Umformung eines Werkstücks aus Blech mit zwei parallel zueinander ausgerichteten Pressbalken und daran befestigten Biegewerkzeugen, mit einer Steuervorrichtung und mit einer Messvorrichtung zur Bestimmung eines Biegewinkels des Werkstücks bezüglich einer Biegeachse, wobei die Messvorrichtung eine Beleuchtungsvorrichtung zur Erzeugung einer Lichtlinie auf dem Werkstück und eine Kamera zum Aufzeichnen eines Bildes der Lichtlinie umfasst. Die Kamera und eine erste Austrittsöffnung der Beleuchtungsvorrichtung sind in Richtung parallel bezüglich der Biegeachse voneinander distanziert angeordnet und die Steuervorrichtung ist mit einem Bilderkennungsprogramm ausgebildet, sodass aus einer Änderung des Bildes der Lichtlinie in Bildern der Kamera ein Wert des Biegewinkels bestimmbar ist. Die Beleuchtungsvorrichtung umfasst eine zweite Austrittsöffnung zur Erzeugung einer zweiten Lichtlinie auf dem Werkstück, wobei die erste Austrittsöffnung und die zweite Austrittsöffnung der Beleuchtungsvorrichtung in Richtung parallel bezüglich der Biegeachse voneinander distanziert angeordnet sind, und wobei die Kamera zwischen der ersten Austrittsöffnung und der zweiten Austrittsöffnung angeordnet ist. Weiters ist vorgesehen, dass die Beleuchtungsvorrichtung eine Lichtquelle und eine Umlenkvorrichtung für Licht der Lichtquelle umfasst und die Umlenkvorrichtung dazu ausgebildet ist, das Licht der Lichtquelle wahlweise durch einen ersten Beleuchtungs-Strahlengang und die erste Austrittsöffnung oder durch einen zweiten Beleuchtungs-Strahlengang und die zweite Austrittsöffnung zu führen. Von Vorteil ist dabei, dass mit einer solchen Messvorrichtung auch bei komplexen Bauteilen, bei denen an Werkstücken mehrere Umformvorgänge ausgeführt werden müssen, Messungen entweder unter Verwendung der ersten Austrittsöffnung oder unter Verwendung der zweiten Austrittsöffnung durchgeführt werden können. Außerdem kann die Messvorrichtung dadurch mit einer geringeren Anzahl von Bauteilen aufgebaut werden. Der aus dem Dokument JP S59197813 A bekannte Stand der Technik bildet im Übrigen die Grundlage für die Präambel des Anspruchs 1.
  • Vorteilhaft ist auch eine Ausführung, wobei die Messvorrichtung ein Fenster für die Kamera umfasst, wobei die erste Austrittsöffnung und die zweite Austrittsöffnung symmetrisch bezüglich des Fensters angeordnet sind. Die räumliche Geometrie der Anordnung der Lichtlinie auf dem Werkstück und der Richtung des Sehfelds der Kamera kann somit spiegelsymmetrisch gestaltet werden, womit vorteilhafterweise die gleichen Algorithmen zur Bestimmung der Biegewinkel anwendbar sind.
  • Die Weiterbildung, wonach durch die Austrittsöffnung der Beleuchtungsvorrichtung und die Lichtlinie eine Ebene bestimmt ist, die senkrecht bezüglich der Biegeachse ausgerichtet ist, hat den Vorteil einer einfacheren Auswertung zur Bestimmung der Verformungswinkel.
  • Durch die Weiterbildung, wonach die Messvorrichtung einen Drehrahmen umfasst, wobei die Umlenkvorrichtung für das Licht der Lichtquelle an dem Drehrahmen befestigt und mit diesem um eine Achse verschwenkbar ist, hat den Vorteil, dass damit eine ausreichend hohe Messgenauigkeit bei der Bestimmung der Biegewinkel erreicht werden kann.
  • Vorteilhaft ist auch eine Ausführung, wobei die Umlenkvorrichtung einen Planspiegel umfasst oder, wenn die Umlenkvorrichtung ein Prisma umfasst.
  • Die Ausbildung der Vorrichtung, wonach die Kamera an dem Drehrahmen befestigt und mit diesem um die Achse verschwenkbar ist, wobei die Achse senkrecht bezüglich der Biegeachse ausgerichtet ist, hat den Vorteil, dass zum Wechsel der Messfelder beide Wechsel, d.h. der Wechsel der Ausrichtung der Kamera und der Wechsel zwischen den Beleuchtungsstrahlengängen zu der ersten oder der zweiten Austrittsöffnung, gemeinsam nur durch Betätigen des Drehrahmens durchgeführt werden kann.
  • Die Weiterbildung der Vorrichtung, wonach ein Umlenkprisma zur Umlenkung des Strahlengangs der Kamera an dem Drehrahmen befestigt ist und die Kamera koaxial zu der Achse des Drehrahmens ausgerichtet ist, hat den Vorteil, dass ein Wechsel zwischen den beiden zur Verfügung stehenden Messfeldern vor den beiden Austrittsöffnungen für die Lichtlinie durch Betätigen eines einzigen Bauteils, nämlich des Drehrahmens, durchgeführt werden kann.
  • Die Ausbildung, wonach eine Richtung eines Strahlengangs der Kamera und die Ebene der Lichtlinie einen spitzen Winkel einschließen, hat den Vorteil, dass damit eine ausreichend hohe Messempfindlichkeit erreicht werden kann.
  • Der Vorteil der Weiterbildung, wobei die Kamera ein Weitwinkelobjektiv umfasst und feststehend angeordnet ist, wobei eine Richtung eines Strahlengangs der Kamera parallel zu der Ebene der Lichtlinie ausgerichtet ist, besteht darin, dass eine geringere Fehleranfälligkeit bei der Ausrichtung der Kamera gegeben ist.
  • Vorteilhaft ist auch die Ausbildung der Biegevorrichtung, wobei eine Geradführung umfasst ist und die Messvorrichtung für den Biegewinkel an der Geradführung in einer Richtung parallel zu der Biegeachse verstellbar ist. Damit sind unter Verwendung ein und derselben Messvorrichtung Messungen an unterschiedlichsten Stellen der Längserstreckung des Tischbalkens und bei unterschiedlichen Biegeumformungen durchführbar.
  • Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.
  • Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:
  • Fig. 1
    einen Teil einer Biegevorrichtung in einer Seitenansicht;
    Fig. 2
    die Biegevorrichtung gemäß Fig. 1, perspektivisch dargestellt;
    Fig. 3
    die Biegevorrichtung bei Ausführung einer Biegeumformung in einem alternativen Anwendungsfall, perspektivisch dargestellt;
    Fig. 4
    einen Querschnitt der Biegewinkelmessvorrichtung gemäß Fig. 1;
    Fig. 5
    ein alternatives Ausführungsbeispiel der Biegewinkelmessvorrichtung der Biegevorrichtung, dargestellt als Querschnitt;
    Fig. 6
    ein weiteres alternatives Ausführungsbeispiel der Biegewinkelmessvorrichtung.
  • Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.
  • Die Fig. 1 zeigt einen Teil einer Biegevorrichtung 1 anhand einer Seitenansicht auf eine Anordnung von Biegewerkzeugen mit einer Matrize 2 und einem Stempel 3 zum Freibiegen eines zwischen den Biegewerkzeugen eingelegten Werkstücks 4. Die Matrize 2 ist dazu an einem unteren Pressbalken bzw. einem feststehenden Tischbalken 5 befestigt. Durch Andrücken des Stempels 3 gegen das Werkstück 4 wird an diesem eine Biegeumformung bewirkt. Zu beiden Seiten der durch die Matrize 2 und den Stempel 3 gebildeten Biegewerkzeuganordnung steht jeweils ein Schenkel des Werkstücks 4 seitlich ab und werden diese Schenkel unter Ausbildung einer Biegekante 6 um einen Winkel 7, 8 nach oben verschwenkt, wie an dem in Fig. 1 strichliert eingezeichneten Werkstück 4 zu erkennen ist. Zur Bestimmung von Werten der Biegewinkel 7, 8 bezüglich einer der Biegekante 6 entsprechenden Biegeachse der entsprechenden Schenkel des Werkstücks 4 sind zu beiden Seiten des Tischbalkens 5 jeweils eine Biegewinkel-Messvorrichtung 9, 10 an dem Tischbalken 5 befestigt. Mit den Biegewinkel-Messvorrichtungen 9, 10 können die Verformungswinkel 7, 8 berührungslos und auf Grundlage optischer bzw. geometrischer Gesetzmäßigkeiten bestimmt werden.
  • Nur der Vollständigkeit halber sei an dieser Stelle angemerkt, dass die Anordnung jeweils einer Biegewinkel-Messvorrichtung 9, 10 zu beiden Seiten des Tischbalkens 5 alleine der Tatsache geschuldet ist, das es sich bei dem beschriebenen Ausführungsbeispiel der Biegevorrichtung 1 um eine solche zum Freibiegen handelt, bei dem die Schenkel des Werkstücks 4 während der Umformung auch zu beiden Seiten in ihrer räumlichen Lage und Ausrichtung verändert werden. Im Falle einer Ausbildung der Biegevorrichtung 1 beispielsweise durch eine Vorrichtung zum Schwenkbiegen, bei der ein Schenkel des Werkstücks 4 in seiner räumlichen Lage festgehalten wird, ist selbstverständlich die Anordnung einer einzigen Biegewinkel-Messvorrichtung 9, 10 ausreichend. Im Übrigen kann auch vorgesehen sein, dass die Biegewinkel-Messvorrichtung 9, 10 in Richtung parallel zur Längserstreckung 11 des Tischbalkens 5 bzw. parallel zu der Anordnung der Biegewerkzeuge verschiebbar ist. Dazu ist an dem Tischbalkens 5 eine Geradführung 12, 13 angeordnet, an der die Biegewinkel-Messvorrichtung 9, 10 an unterschiedlichen Stellen entlang der Längserstreckung 11 fixiert werden kann (Fig. 2).
  • Die Fig. 2 zeigt die Biegevorrichtung 1 gemäß Fig. 1 perspektivisch dargestellt. Die - gemäß Darstellung linksseitig - am Tischbalken 5 befestigte Biegewinkel-Messvorrichtung 9 weist an einer dem Werkstück 4 bzw. der Anordnung der Biegewerkzeuge zugewandten Seite eine erste Austrittsöffnung 14 einer Beleuchtungsvorrichtung 15 (Fig. 4) auf. Durch diese erste Austrittsöffnung 14 kann Licht einer Lichtquelle 16 (Fig. 4) der Beleuchtungsvorrichtung 15 auf die Unterseite des linken Schenkels des Werkstücks 4 gerichtet werden, dass auf diesem eine Lichtlinie 17 erscheint. Die Biegewinkel-Messvorrichtung 9 weist außerdem noch eine zweite Austrittsöffnung 19 der Beleuchtungsvorrichtung 15 auf, die in Richtung parallel zu der Längserstreckung 11 des Tischbalkens 5 um einen Abstand 18 gegenüber der ersten Austrittsöffnung 14 versetzt ist. Schließlich ist zwischen der ersten Austrittsöffnung 14 und der zweiten Austrittsöffnung 19 der Biegewinkel-Messvorrichtung 9 ein Fenster 20 einer Kamera 21 ausgebildet. Die Kamera 21 bzw. ein Sehfeld 22 der Kamera 21 ist dabei derart ausgerichtet, dass die auf dem Werkstück 4 erscheinende Lichtlinie 17 erfasst werden kann. Die erste und die zweite Austrittsöffnung 14, 19 der Beleuchtungsvorrichtung 15 sind somit symmetrisch bezüglich dem Fenster 20 der Kamera 21 angeordnet. Zur Messung des Biegewinkels 7 des linken Schenkels des Werkstücks 4 können die erste Austrittsöffnung 14 und die zweite Austrittsöffnung 19 zur Erzeugung der Lichtlinie 17 bzw. einer in Längsrichtung versetzten alternativen Lichtlinie (nicht dargestellt) wahlweise benutzt werden.
  • Entsprechend der Versetzung der beiden Austrittsöffnungen 14, 19 relativ zu dem Fenster 20 der Kamera 21 schließen die auf die Lichtlinie 17 gerichteten Lichtstrahlen und eine optische Achse 24 des Sehfelds 22 bzw. der Kamera 21 einen spitzen Winkel relativ zueinander ein. Wird nun eine Biegeumformung an dem Werkstück 4 durch Zusammendrücken des Stempels 3 und der Matrize 2 ausgeführt, so ändert sich wegen des dabei erfolgenden Verschwenkens des entsprechenden Schenkels des Werkstücks 4 auch die räumliche Lage der Lichtlinie 17. In von der Kamera 21 aufgezeichneten Bildern erscheint diese räumliche Änderung der Lichtlinie 17 als eine Veränderung der Lage und Ausrichtung des Bildes der Lichtlinie 17. Auf der Grundalge dieser Veränderungen des Bildes der Lichtlinie 17 kann schließlich der Biegewinkel 7 bestimmt werden. Die Biegewinkel-Messvorrichtung 9 umfasst vorzugsweise auch eine Steuervorrichtung 23, in der eine Auswerteeinheit für die von der Kamera 21 aufgezeichneten Bilder ausgebildet ist. In der Auswerteeinheit der Steuervorrichtung 23 wird, vorzugsweise unter Verwendung einer Bilderkennungssoftware, die Lage- und Richtungsänderung des Bildes der Lichtlinie 17 bestimmt und wird daraus der Biegewinkel 7 berechnet.
  • Die aus der ersten Austrittsöffnung 14 auf das Werkstück 4 hin ausgesandten Lichtstrahlen sind als fächerartiges, schmales Lichtbündel geformt, sodass durch dieses eine Ebene 25 bestimmt ist, die vorzugsweise senkrecht relativ zu der Längserstreckung 11 des Tischbalkens 5 bzw. der Biegeachse des Werkstücks 4 gerichtet ist (Fig. 4).
  • In dem Anwendungsfall einer Biegeumformung, wie sie anhand des Werkstücks 4 in Fig. 2 dargestellt ist, kann mit der erfindungsgemäßen Biegewinkel-Messvorrichtung 9 an zwei voneinander unterschiedlichen Stellen des Werkstücks 4 eine Messung des Biegewinkels 7 durchgeführt werden. Dazu wird der Biegewinkel 7 unter Verwendung der ersten Austrittsöffnung 14 oder unter Verwendung der zweiten Austrittsöffnung 19 gemessen. Bei der Biegeumformung des Werkstücks 4, wie in Fig. 2 dargestellt, bei der eine sich über die gesamte Breite (in Richtung der Längsrichtung 11 des Tischbalkens 5) erstreckende Biegekante 6 gebildet wird, sind die Messungen unter Verwendung der ersten Austrittsöffnung 14 oder der zweiten Austrittsöffnung 19 in gleicher Weise durchführbar, ohne dass die Biegewinkel-Messvorrichtung 9 dazu verschoben werden muss.
  • Als besonders vorteilhaft erweist sich die Biegewinkel-Messvorrichtung 9 im Falle von Biegeumformungen des Werkstücks 4, bei denen nur abschnittsweise, das heißt nur über Teilbereiche der Längsrichtung 11, eine Biegekante 6 erzeugt wird.
  • Die Fig. 3 zeigt die Biegevorrichtung 1 bei der Ausführung der Biegeumformung in einem alternativen Anwendungsfall, perspektivisch dargestellt. Die dargestellte Situation zeigt eine Biegeumformung an einem Werkstück 4, an dem in einem vorangegangenen Bearbeitungsschritt bereits ein von einem Rand zur Mitte hin gerichteter Schnitt ausgeführt worden ist. Das Werkstück 4 ist derart zwischen Matrize 2 und Stempel 3 eingelegt, dass nun eine sich nur über einen Teilbereich erstreckende Biegekante 6 erzeugt wird, während ein sich über die Länge der Biegekante 6 hinaus erstreckender Teil des Werkstücks 4 seine unverformte, ebene Gestalt behält. Der - in der Darstellung - hinter dem Stempel 3 befindliche Schenkel des Werkstücks 4 wird durch den Biegevorgang zur Gänze nach oben hin verschwenkt, während dies bei dem vor der Biegewerkzeuganordnung befindlichen Schenkel des Werkstücks 4 nur für den vorderen (im Bildvordergrund der Fig. 3 befindlichen), von der Biegekante 6 abstehenden Teil des Werkstücks 4 zutrifft. Zwar könnte die Lichtlinie 17 auch unter Verwendung der zweiten Austrittsöffnung 19 erzeugt werden, es zeigt sich aber, dass dazu die Messvorrichtung 9 an der Geradführung 12 des Tischbalkens 5 in eine Position verschoben werden müsste, in der das Fenster 20 der Kamera 21 von dem nach unten verschwenkten Teilbereich des Werkstücks 4 verdeckt werden würde. Die Lichtlinie 17 könnte in einer solchen Situation nicht mehr in dem Sehfeld 22 der Kamera 21 erfasst werden. In diesem Anwendungsfall einer Biegeumformung ist es daher von Vorteil, dass wahlweise zwischen der Verwendung der ersten Austrittsöffnung 14 und der zweiten Austrittsöffnung 19 zur Erzeugung der Lichtlinie 17 gewechselt werden kann. Bei der dargestellten Positionierung der Biegewinkelmessvorrichtung 9 kann die Messung des Biegewinkels 7 durch die erste Austrittsöffnung 14 und die Kamera 21 ungehindert erfolgen.
  • Die Fig. 4 zeigt einen Querschnitt der Biegewinkelmessvorrichtung 9 gemäß Fig. 1. Die zur Erzeugung der Lichtlinie 17 (Fig. 2, 3) vorgesehenen Austrittsöffnungen 14, 19 sind um den Abstand 18 in Richtung parallel zu der Längserstreckung 11 des Tischbalkens 5 versetzt angeordnet. Das Licht der Lichtquelle 16 der Beleuchtungsvorrichtung 15 kann wahlweise über einen ersten Beleuchtungsstrahlengang 26 durch die erste Austrittsöffnung 14 oder über einen zweiten Beleuchtungsstrahlengang 27 durch die zweite Austrittsöffnung 19 auf das Werkstück 4 gerichtet werden. Das heißt, die Beleuchtungsvorrichtung 15 weist eine schaltbare Strahlführung auf, wodurch zwischen einem ersten, vor der ersten Austrittsöffnung 14 liegenden Messfeld und einem zweiten, vor der zweiten Austrittsöffnung 19 liegenden Messfeld umgeschaltet werden kann. Dazu umfasst die Beleuchtungsvorrichtung 15 ein schwenkbar gelagertes Umlenkprisma 28, mit dem das von der Lichtquelle 16 kommende Licht wahlweise in einen der werkstückseitigen Strahlengangabschnitte, d.h. entweder in den ersten, werkstückseitigen Beleuchtungsstrahlengang 26 oder in den zweiten Beleuchtungsstrahlengang 27, umgelenkt werden kann. In der in Fig. 4 dargestellten Situation wird das Licht der Lichtquelle 16 über den zweiten Beleuchtungsstrahlengang 27 durch die zweite Austrittsöffnung 19 hindurch (gemäß der Darstellung durch die rechte der beiden Austrittsöffnungen 14, 19) auf das Werkstück 4 abgestrahlt. Dementsprechend wird auch die Kamera 21 mit ihrer optischen Achse 24 auf den entsprechenden, räumlichen Bereich der Lichtlinie 17 hin ausgerichtet (gemäß der Darstellung nach rechts).
  • Als Lichtquelle 16 wird vorzugsweise ein Laser verwendet. Ein solcher eignet sich besonders, um damit ein fächerartiges, schmales Lichtbündel zu bilden, das - auf die Oberfläche des Werkstücks 4 gerichtet - die gewünschte Lichtlinie 17 erzeugt. Das durch eine der beiden Austrittsöffnungen 14, 19 auf das Werkstück 4 gerichtete schmale Lichtbündel entspricht annähernd der Ebene 25. Dieses schmale Lichtbündel bzw. die diesem entsprechende Ebene 25 ist senkrecht bezüglich der Biegeachse bzw. senkrecht bezüglich der Längserstreckung 11 des Tischbalkens 5 ausgerichtet.
  • Bei diesem Ausführungsbeispiel sind das Umlenkprisma 28 und die Kamera 21 an einem gemeinsamen Drehrahmen 29 befestigt. Dieser Drehrahmen 29 ist bezüglich einer zu der Längserstreckung 11 des Tischbalkens 5 senkrechten Achse 30 verschwenkbar gelagert. Das Ändern der Ausrichtung des Umlenkprismas 28 als auch der Kamera 21 kann somit gleichzeitig durch Verschwenken des Drehrahmen 29 um 180° erfolgen. Gemäß der Darstellung in Fig. 4 wird damit von der zweiten Austrittsöffnung 19 der Beleuchtungsvorrichtung 15 zu der ersten Austrittsöffnung 14 gewechselt und die Ausrichtung der Kamera 21 auf das zweite Messfeld hin zur Ausrichtung auf das erste Messfeld hin geändert.
  • Ein Verschwenken des Drehrahmens 29 um 180° ändert also die Lage und Ausrichtung der Kamera 21 in die durch strichlierte Linien dargestellte Lage und leitet das von der Lichtquelle 16 kommende Licht in den ersten, werkstückseitigen Beleuchtungsstrahlengang 26, hin zu der ersten Austrittsöffnung 14.
  • In der Fig. 5 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform der Biegewinkelmessvorrichtung 9 bzw. der Biegevorrichtung 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangenen Fig. 1 bis 4 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die detaillierte Beschreibung in den vorangegangenen Fig. 1 bis 4 hingewiesen bzw. Bezug genommen.
  • Die Fig. 5 zeigt ein alternatives Ausführungsbeispiel der Biegewinkelmessvorrichtung 9 der Biegevorrichtung 1, ebenfalls dargestellt als Querschnitt, wie in Fig. 1 angezeigt. Die Kamera 21 ist dabei koaxial zu der Achse 30 des Drehrahmens 29 ausgerichtet und feststehend montiert. Gemäß diesem Ausführungsbeispiel ist an dem Drehrahmen 29 auch ein zweites Umlenkprisma 31 angeordnet. Das zweite Umlenkprisma 31 ist der Kamera 21 vorgesetzt und ist so positioniert, dass ein Strahlengang 32 der Kamera 21 bzw. das Sehfeld 22 um einen Winkel 33 gegenüber der Achse 30 geneigt ist. Durch Verschwenken des Drehrahmens 29 um 180° kann nun ebenfalls zwischen der Verwendung der ersten Austrittsöffnung 14 und Verwendung der zweiten Austrittsöffnung 19, d.h. zwischen einer Messung unter Verwendung des ersten oder des zweiten Messfeldes gewechselt werden.
  • Die Fig. 6 zeigt noch ein weiteres alternatives Ausführungsbeispiel der Biegewinkelmessvorrichtung 9. Dabei ist die Kamera 21 unter dem Fenster 20 feststehend angeordnet, wobei ihre optische Achse 24 fluchtend zu der Achse 30 ausgerichtet ist. Die Kamera 21 gemäß diesem Ausführungsbeispiel umfasst ein Weitwinkelobjektiv, sodass ihr Sehfeld 22 die Lichtlinie 17 in beiden Messsituationen, das heißt bei Verwendung der Austrittsöffnung 14 als auch bei Verwendung der Austrittsöffnung 19 zur Erzeugung der Lichtlinie 17, erfassen kann. Bei diesem Ausführungsbeispiel der Biegewinkelmessvorrichtung 9 braucht nur das Umlenkprisma 28 an dem Drehrahmen 29 befestigt und mit diesem verschwenkbar zu sein.
  • Der Schutzbereich ist durch die Ansprüche bestimmt.
  • Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.
  • Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus Elemente teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
  • Bezugszeichenaufstellung
  • 1 Biegevorrichtung 31 Umlenkprisma
    2 Matrize 32 Strahlengang
    3 Stempel 33 Winkel
    4 Werkstück
    5 Tischbalken
    6 Biegekante
    7 Winkel
    8 Winkel
    9 Biegewinkel-Messvorrichtung
    10 Biegewinkel-Messvorrichtung
    11 Längsrichtung
    12 Geradführung
    13 Geradführung
    14 Austrittsöffnung
    15 Beleuchtungsvorrichtung
    16 Lichtquelle
    17 Lichtlinie
    18 Abstand
    19 Austrittsöffnung
    20 Fenster
    21 Kamera
    22 Sehfeld
    23 Steuervorrichtung
    24 optische Achse
    25 Ebene
    26 Beleuchtungsstrahlengang
    27 Beleuchtungsstrahlengang
    28 Umlenkprisma
    29 Drehrahmen
    30 Achse

Claims (11)

  1. Biegevorrichtung (1) zur Herstellung eines Bauteils durch Umformung eines Werkstücks (4) aus Blech mit zwei parallel zueinander ausgerichteten Pressbalken und daran befestigten Biegewerkzeugen (2, 3), mit einer Steuervorrichtung (23) und mit einer Messvorrichtung (9, 10) zur Bestimmung eines Biegewinkels (7, 8) des Werkstücks (4) bezüglich einer Biegeachse (6), wobei die Messvorrichtung (9, 10) eine Beleuchtungsvorrichtung (15) zur Erzeugung einer Lichtlinie (17) auf dem Werkstück (4) und eine Kamera (21) zum Aufzeichnen eines Bildes der Lichtlinie (17) umfasst, und wobei die Kamera (21) und eine erste Austrittsöffnung (14) der Beleuchtungsvorrichtung (15) in Richtung parallel bezüglich der Biegeachse (6) voneinander distanziert angeordnet sind, und wobei die Steuervorrichtung mit einem Bilderkennungsprogramm ausgebildet ist, sodass aus einer Änderung des Bildes der Lichtlinie (17) in Bildern der Kamera (21) ein Wert des Biegewinkels (7, 8) bestimmbar ist, wobei die Beleuchtungsvorrichtung (15) eine zweite Austrittsöffnung (19) zur Erzeugung einer zweiten Lichtlinie auf dem Werkstück (4) umfasst, wobei die erste Austrittsöffnung (14) und die zweite Austrittsöffnung (19) der Beleuchtungsvorrichtung (15) in Richtung parallel bezüglich der Biegeachse (6) voneinander distanziert angeordnet sind, und wobei die Kamera (21) zwischen der ersten Austrittsöffnung (14) und der zweiten Austrittsöffnung (19) angeordnet ist, dadurch gekennzeichnet, dass die Beleuchtungsvorrichtung (15) eine Lichtquelle (16) und eine Umlenkvorrichtung (28) für Licht der Lichtquelle (16) umfasst, wobei die Umlenkvorrichtung (28) dazu ausgebildet ist, das Licht der Lichtquelle (16) wahlweise durch einen ersten Beleuchtungs-Strahlengang (26) und die erste Austrittsöffnung (14) oder durch einen zweiten Beleuchtungs-Strahlengang (27) und die zweite Austrittsöffnung (19) zu führen.
  2. Biegevorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Messvorrichtung (9, 10) ein Fenster (20) für die Kamera (21) umfasst, wobei die erste Austrittsöffnung (14) und die zweite Austrittsöffnung (19) symmetrisch bezüglich des Fensters (20) angeordnet sind.
  3. Biegevorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch die Austrittsöffnung (14, 19) der Beleuchtungsvorrichtung (15) und die Lichtlinie (17) eine Ebene (25) bestimmt ist, die senkrecht bezüglich der Biegeachse (6) ausgerichtet ist.
  4. Biegevorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (9, 10) einen Drehrahmen (29) umfasst, wobei die Umlenkvorrichtung (28) für das Licht der Lichtquelle (16) an dem Drehrahmen (29) befestigt und mit diesem um eine Achse (30) verschwenkbar ist.
  5. Biegevorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umlenkvorrichtung (28) einen Planspiegel umfasst.
  6. Biegevorrichtung (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umlenkvorrichtung (28) ein Prisma umfasst.
  7. Biegevorrichtung (1) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Kamera (21) an dem Drehrahmen (29) befestigt und mit diesem um die Achse (30) verschwenkbar ist, wobei die Achse (30) senkrecht bezüglich der Biegeachse (6) ausgerichtet ist.
  8. Biegevorrichtung (1) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass ein Umlenkprisma (31) zur Umlenkung des Strahlengangs (32) der Kamera (21) an dem Drehrahmen (29) befestigt ist, wobei die Kamera (21) koaxial zu der Achse (30) des Drehrahmens (29) ausgerichtet ist.
  9. Biegevorrichtung (1) nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass eine Richtung eines Strahlengangs (32) der Kamera (21) und die Ebene (25) der Lichtlinie (17) einen spitzen Winkel (33) einschließen.
  10. Biegevorrichtung (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kamera (21) ein Weitwinkelobjektiv umfasst und feststehend angeordnet ist, wobei eine Richtung eines Strahlengangs (32) der Kamera (21) parallel zu der Ebene (25) der Lichtlinie (17) ausgerichtet ist.
  11. Biegevorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Geradführung (12, 13) umfasst ist und die Messvorrichtung (9, 10) für den Biegewinkel (7, 8) an der Geradführung (12, 13) in einer Richtung parallel zu der Biegeachse verstellbar ist.
EP20730962.6A 2019-04-11 2020-04-10 Messvorrichtung zur bestimmung des biegewinkels Active EP3953077B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50331/2019A AT522419B1 (de) 2019-04-11 2019-04-11 Messvorrichtung zur Bestimmung des Biegewinkels
PCT/AT2020/060145 WO2020206479A1 (de) 2019-04-11 2020-04-10 Messvorrichtung zur bestimmung des biegewinkels

Publications (2)

Publication Number Publication Date
EP3953077A1 EP3953077A1 (de) 2022-02-16
EP3953077B1 true EP3953077B1 (de) 2023-10-18

Family

ID=71016318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20730962.6A Active EP3953077B1 (de) 2019-04-11 2020-04-10 Messvorrichtung zur bestimmung des biegewinkels

Country Status (4)

Country Link
EP (1) EP3953077B1 (de)
CN (1) CN113692325B (de)
AT (1) AT522419B1 (de)
WO (1) WO2020206479A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063783A1 (de) * 2021-03-25 2022-09-28 Bystronic Laser AG Verfahren und vorrichtung zur biegewinkelbestimmung an einer biegemaschine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216053A1 (de) * 1982-04-29 1983-11-03 Karl Mengele & Söhne Maschinenfabrik und Eisengießerei GmbH & Co, 8870 Günzburg Optoelektronisches messverfahren und vorrichtung zur durchfuehrung des verfahrens
JPS59176614A (ja) * 1983-03-28 1984-10-06 Mutoh Ind Ltd プレスワ−クの角度検出方法
JPS59197813A (ja) * 1983-04-26 1984-11-09 Ishikawajima Harima Heavy Ind Co Ltd 光切断による姿勢測定方法
US5531087A (en) * 1990-10-05 1996-07-02 Kabushiki Kaisha Komatsu Seisakusho Metal sheet bending machine
AU1671497A (en) * 1996-02-13 1997-09-02 Amada Metrecs Company, Limited Angle detection method for bending machine, angle detection apparatus and angle sensor
DE19939837A1 (de) * 1999-08-21 2001-03-29 Eht Werkzeugmaschinen Gmbh Verfahren und Vorrichtung zum Erfassen eines Biegewinkels an einem Werkstück
SE0802343A1 (sv) * 2008-11-04 2010-05-05 Ursviken Technology Ab Anordning för vinkelmätning
CN101713640B (zh) * 2009-09-30 2011-08-03 大连理工大学 一种锻件热态尺寸的非接触测量方法
AT511557B1 (de) * 2011-05-17 2013-08-15 Trumpf Maschinen Austria Gmbh Winkelmessvorrichtung für eine biegepresse
JP5883627B2 (ja) * 2011-12-02 2016-03-15 株式会社アマダホールディングス 板材曲げ加工装置用曲げ角度検出装置
ITMI20120751A1 (it) * 2012-05-04 2013-11-05 Salvagnini Italia Spa Apparato e metodo per la misurazione dell'angolo di piegatura di una lamiera.
FI20125492L (fi) * 2012-05-07 2013-11-08 Aliko Oy Ltd Menetelmä työkappaleen mittaamiseksi särmäyksessä, mittauslaite, mittauskelkka sekä särmäyspuristin
JP5970267B2 (ja) * 2012-07-04 2016-08-17 株式会社アマダホールディングス ワーク曲げ角度測定装置およびプレスブレーキ
CN103438835B (zh) * 2013-08-23 2016-06-08 中联重科股份有限公司 一种板材折弯角度检测装置和方法
AT515788B1 (de) * 2014-06-27 2015-12-15 Wögerbauer Johann Ing Vorrichtung zum Bestimmen des Winkels zwischen zwei ebenen Werkstückflächen
CN105436252A (zh) * 2014-09-17 2016-03-30 哈尔滨恒誉名翔科技有限公司 一种基于视觉测量的折弯机加工控制方法及装置
AT515944B1 (de) * 2014-10-16 2016-01-15 Trumpf Maschinen Austria Gmbh Biegewinkel-Messverfahren
JP6702013B2 (ja) * 2016-06-20 2020-05-27 村田機械株式会社 プレスブレーキ、制御装置、及びプレスブレーキの制御方法

Also Published As

Publication number Publication date
AT522419A1 (de) 2020-10-15
EP3953077A1 (de) 2022-02-16
CN113692325A (zh) 2021-11-23
WO2020206479A1 (de) 2020-10-15
CN113692325B (zh) 2023-05-30
AT522419B1 (de) 2021-11-15

Similar Documents

Publication Publication Date Title
DE102018219129B3 (de) Verfahren und Computerprogrammprodukt zur OCT-Messstrahljustierung
DE2256736C3 (de) Meßanordnung zur automatischen Prüfung der Oberflächenbeschaffenheit und Ebenheit einer Werkstückoberfläche
EP3076148B1 (de) Vorrichtung und verfahren zum messen von abbildungseigenschaften eines optischen abbildungssystems
DE102017126867A1 (de) Laserbearbeitungssystem und Verfahren zur Laserbearbeitung
DE19963010B4 (de) Verfahren und Vorrichtung zur Laserbearbeitung von Werkstücken
DE102016001661B3 (de) Messvorrichtung und Verfahren zum Ermitteln einer relativen Neigung eines Werkstücks mittels optischer Kohärenztomographie bei einer Bearbeitung
DE112008002862T5 (de) Abtastkopfkalibrierungssystem und Verfahren
DE102016014564A1 (de) Messvorrichtung zum Überwachen eines Bearbeitungsprozesses unter Verwendung von an unterschiedlichen Messpositionen erfassten Messinformationen
EP0770445A2 (de) Verfahren zum Kontrollieren und Positionieren eines Strahls zum Bearbeiten von Werkstücken
EP3507035B1 (de) Biegemaschine mit einer arbeitsbereich-bilderfassungsvorrichtung und verfahren zur darstellung eines arbeitsbereichs
DE4136002A1 (de) Moire- konturenabbildungsvorrichtung
WO2016128287A1 (de) Mehrkopf-laseranlage mit sensoreinheit in kombination mit einem beweglichen optischen führungselement
EP3207333B1 (de) Biegewinkel-messverfahren
EP3242107A1 (de) Optische interferometrische vorrichtung zum erfassen einer 3d-struktur eines objekts
DE102017010055A1 (de) Laserstrahlschweißen von geometrischen Figuren mit OCT-Nahtführung
DE19732668C2 (de) Vorrichtung und Verfahren zur Kalibrierung von Strahlabtastvorrichtungen
EP1640688A1 (de) Verfahren und Vorrichtung zur 3-dimensionalen Vermessung der Oberfläche eines Gegenstands
DE102005009817A1 (de) Lochmaske für einen Röntgenstrahlendetektor, Computertomograpiegerät, aufweisend eine Lochmaske und Verfahren zur Justierung einer Lochmaske
DE69927597T2 (de) Verfahren und Vorrichtung zur Falzwinkelmessung eines Blattes in einer Falzmaschine
EP3953077B1 (de) Messvorrichtung zur bestimmung des biegewinkels
DE3531156C1 (de) Verfahren zum Ausrichten der Achse eines zweiten Halters in bezug auf die Achse eines ersten Halters bei einer Pruef- oder Bearbeitungsmaschine
EP2995391A2 (de) Kalibrierverfahren für eine biegemaschine und solche biegemaschine
WO2001014826A1 (de) Verfahren und vorrichtung zum erfassen eines biegewinkels an einem werkstück
DE102020210586A1 (de) Laserbearbeitungsvorrichtung, laserbearbeitungsverfahren undkorrekturdatenerzeugungsverfahren
WO2003052347A2 (de) Verfahren zur dreidimensionalen messung einer oberfläche

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020005706

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018