WO2003052347A2 - Verfahren zur dreidimensionalen messung einer oberfläche - Google Patents

Verfahren zur dreidimensionalen messung einer oberfläche Download PDF

Info

Publication number
WO2003052347A2
WO2003052347A2 PCT/EP2002/014915 EP0214915W WO03052347A2 WO 2003052347 A2 WO2003052347 A2 WO 2003052347A2 EP 0214915 W EP0214915 W EP 0214915W WO 03052347 A2 WO03052347 A2 WO 03052347A2
Authority
WO
WIPO (PCT)
Prior art keywords
determined
contrast
sensor
optical axis
image
Prior art date
Application number
PCT/EP2002/014915
Other languages
English (en)
French (fr)
Other versions
WO2003052347A3 (de
Inventor
Ralf Christoph
Original Assignee
Werth Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Werth Messtechnik Gmbh filed Critical Werth Messtechnik Gmbh
Priority to EP02804921A priority Critical patent/EP1459033A2/de
Priority to AU2002366374A priority patent/AU2002366374A1/en
Publication of WO2003052347A2 publication Critical patent/WO2003052347A2/de
Publication of WO2003052347A3 publication Critical patent/WO2003052347A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/236Image signal generators using stereoscopic image cameras using a single 2D image sensor using varifocal lenses or mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps

Definitions

  • the invention relates to a method for three-dimensional measurement of a surface of an object according to the autofocus principle by means of a coordinate measuring device, an optical sensor that detects a measurement area of the surface moving or apparently moving along its optical axis and a parameter that is characteristic of the surface, such as Contrast value is measured, and the spatial coordinate of the measuring point is calculated from the position of the sensor, which corresponds to a focus location, and the position of the measuring point to be measured or its image in a plane perpendicular to the optical axis.
  • optically scanning measuring systems For the surface analysis of material surfaces, optically scanning measuring systems are used that work according to the auto focus principle. For example, individual autofocus points are measured using the contrast method during scanning. This method requires long measuring times to record complete contours. A few seconds are required per measuring point.
  • WO 99/53271 describes a method for point-wise scanning profile determination of a material surface with a coordinate measuring machine according to the auto focus principle.
  • an image processing sensor is moved along an optical axis and, at the same time, the contrast values are determined via an evaluation system.
  • the resulting contrast curve is used to infer the distance between the object surface and the sensor.
  • Another common feature of the known methods is that only one measurement point along the optical axis is obtained for each image field. This results in the disadvantage that a quick measurement of surfaces is not possible. It has already been considered to set several windows simultaneously in the image field of a focus sensor. However, the number of focus values is limited by the size of the windows arranged next to one another, so that only a few windows or focus points with sufficient pixel information are used to determine the contrast.
  • the present invention is based on the problem of developing a method of the type mentioned in the introduction in such a way that a high-resolution description of three-dimensional surfaces is made possible.
  • the problem is essentially solved in that the measuring area is divided into partial areas and the characteristic parameter of each partial area is determined along its optical axis during the movement of the sensor.
  • the optical sensor is a CCD chip or a CCD camera, a focus location being determined for each image processing pixel.
  • a focus location is assigned to the measuring points.
  • the focus location is understood to mean the position relative to the sensor (in sensor coordinates) in which an image section has the optimal sharpness (e.g. maximum contrast).
  • the invention provides that the partial areas, that is to say the windows of the image field of the CCD sensor, overlap for the determination of the characteristic parameter, measuring points being determined from overlapping partial or evaluation areas simultaneously or almost simultaneously.
  • the density of the measured focus locations and thus measurement points is limited by the number of image points of the image processing sensor.
  • the focus location is determined for each measuring point in a partial area to be designated as the operator window.
  • the size of the measuring area is limited overall by the image field.
  • the measuring range is the evaluation range defined by the image processing window, in which measuring points are generated by the method according to the invention.
  • Sub-area is to be understood as the local area in which z.
  • the term field of view of the image processing sensor should also be introduced. This describes the physical limitation of the entire field of view by the camera chip or the chip size.
  • an image processing operator is used in a known manner to convert the gray value into a binary image in order to determine the contrast value for selected image processing pixels from the respective operator window.
  • a stack of images is measured during the process of the optical sensor along its optical axis, the characteristic parameter being determined for each partial area and then the focus location per partial area being determined from the stack of images.
  • the spatial coordinate for each pixel and thus each measuring point can then be calculated.
  • the respective focus locations of the desired measuring points are determined from a few image planes. For example, two or three levels of contrast values can be calculated, which are used to calculate the focus location after determining a measured focus function beforehand.
  • the focus location for each pixel (pixel) can be calculated simultaneously by arranging two or three or more sensor chips, and the coordinate on the optical axis can be determined from this, as disclosed by WO 01/33166 A1.
  • the determination of the contrast values measured in each sensor can result in a predetermined distance the previously known relation of the contrast value curves or parabolas to each other, the contrast value curve of the sensor is calculated, on the working plane of which the point is to be depicted sharply.
  • the point to be measured lies in the focal plane of the optics assigned to the sensor.
  • the invention is also characterized in that the focus location for the respective image point (pixel) is calculated from the neighboring focus location using additional image points located in the evaluation window.
  • the calculation of the focus location for each image processing pixel can also take place by starting from a calculated focus location for a pixel and then calculating the neighboring focus locations differentially from this.
  • the secondary information is used that neighboring pixels are close to each other. can be expected. This additional condition allows the calculation algorithm to be limited to the close range around the focus maximum.
  • An independent proposal of the invention also provides for the calculation of the functional course of the contrast function to be detached in principle from the calculation of the focus locations. This makes it possible to use all amplitudes for the most accurate possible calculation of the functional curve of the contrast function and thus to achieve a low-noise result.
  • the contrast function can be generated from individual profiles for individual pixels by averaging, or can be determined by combining all the contrast profiles of all pixels. This contrast function determined in this way is then used to determine the location of the maximum of the contrast function for each pixel from a few support points when determining the respective local focus location. Three bases are normally sufficient for this. The noise of the corresponding contrast values is no longer received by falsifying the contrast function, but only by directly falsifying the amplitude values. A higher accuracy is thus achieved.
  • the advantage lies in the fact that fewer measuring points have to be recorded in order to determine an exact focus location, which increases the measuring speed or achieves a reliable measuring result (reproducible) with a high number of measuring points.
  • the invention is characterized in that a virtual 2D image is generated from the determined maximum values, the contrast values in the individual pixels (pixels) in such a way that each pixel is assigned the amplitude that corresponds to the image of the maximum contrast. Images captured during the autofocus measurement are searched for high-contrast pixels. An image is then composed of all high-contrast areas (pixels) of the individual images, which improves the depth of field.
  • the three-dimensional surface course determined by the method according to the invention can be overlaid for further evaluation with the 2D image determined according to the invention with a large depth of field such that a joint evaluation of the 2D image curved in space is possible using image processing methods.
  • Fig. 4 Determination of a focus location on the basis of a calibrated
  • FIG. 5 shows a basic illustration of a sensor arrangement for determining a focus location
  • Fig. 7 is a schematic diagram of a coordinate measuring machine.
  • a coordinate measuring machine 10 is shown in principle, with which the surface geometry of an object is to be determined in high resolution.
  • the coordinate measuring machine 10 can be a z. B. from granite base frame 12 with measuring table 14, on which an object, not shown, can be arranged, the surface of which is to be measured.
  • a portal 16 is adjustable in the Y direction along the base frame 12.
  • columns or stands 18, 20 are slidably supported on the base frame 12.
  • a crossbeam extends from the columns 18, 20, along which - in the X direction - a carriage 24 can be adjusted, which in turn receives a quill or column 26 which moves in the Z direction is adjustable.
  • An optical sensor 28 such as a laser distance sensor, emanates from the quill or column 26 and, on the one hand, is adjustable in the X and Y planes to determine the surface geometry and, on the other hand, it can be moved along its optical axis, that is to say in the exemplary embodiment along the Z axis.
  • FIG. 1 shows the optical sensor 28, which comprises a lens 30 and a CCD chip 32 assigned to it, arranged in the image plane of the lens 30.
  • the CCD chip 32 or also called the camera matrix has light-sensitive pixels 42, 44 arranged in lines 34, 36 and columns 38, 40 in order to use the image information to be extracted from them in the form of gray-scale images in the manner described below to assign the surface 46 of an object 48 measure up.
  • the measuring range detected at a predetermined XY coordinate by means of the optical sensor 28 or its image depicted on the camera matrix 32 is divided into partial areas, so-called windows, which are mxn - in the exemplary embodiment by a 3 x 3 Operator - is specified, which scans the entire camera matrix 32, as is symbolized purely in principle by the arrow representations 52, 54 in FIGS. 1 and 2a.
  • the focus location is determined for each pixel 42, 44 from the 3x3 operator, specifically by the fact that, given a predetermined XY position, the optical sensor 28 or the CCD camera along its or its optical axis 50, ie in Z- Direction is moved, wherein a stack of images 56, 58, 60 is generated.
  • Each image 56, 58, 60 is scanned by the corresponding mx n operator, that is to say the 3 ⁇ 3 operator in the exemplary embodiment, in order then to determine a contrast curve 62, 64 for each pixel 42, 44, as is purely in principle shown in FIG. 2a can be seen.
  • the focus location ie the working distance at which a measurement point of the surface 46 is sharply imaged in the image plane 38, corresponds to the maximum of the contrast curve 62, 64. Since, according to the invention, a focus location is fundamentally assigned to each pixel 42, 44, the spatial coordinate of each measurement point can then be assigned and thus the surface profile of the object 48 to be measured can be determined, as the diagram in FIG. 2b illustrates in principle. Knowledge of the XY coordinate of the respective pixel 42, 44 in is used here the coordinate measuring machine 10 and the focus location (Z coordinate) determined from the contrast curves 62, 64.
  • 1 and 2 also show that the measuring points, i. H. the focus locations of the individual pixels 42, 44 are calculated from overlapping evaluation areas which are predetermined by the size of the operator.
  • the contrast values of a total of 9 pixels, which are symbolized by the numbers 1 to 9, are determined and then an average contrast value is determined from these, which corresponds to the pixel in the center of the partial area, that is to say in the exemplary embodiment the pixel with the number “5”.
  • a contrast value curve 70 is reproduced in principle, in which the contrast is plotted against the Z axis.
  • the height profile of an object can also be determined in a direction other than the Z axis of a coordinate measuring machine, depending on the orientation of the optical axis of the optical sensor used in relation to the coordinates of the coordinate measuring machine.
  • a stack with a desired number of images can be evaluated to determine the contrast curves and thus the focus locations
  • FIG. 4 there is the basic possibility according to FIG. 4 of using a stack with three planes or images captured in these, basically per Processing pixels a focus location is determined. Three images are sufficient if a general focus function of the system is determined, the contrast curve then being determined from the position of two or three support points.
  • the con- Trast values Pl, P2 and P3 were determined at different working or image distances Z ', Z' and Z '".
  • the contrast value curve determined in the system was then passed through the measuring points Pl, P2 and P3 in order to then increase the actual focus location 74 determine (vertex).
  • contrast value curves i. H. the contrast values measured from the stack of images are determined by scanning the gray values of the pixels 42, 44 as a function of the working distance of the lens 30 of the CCD camera 28, that is to say at different Z positions of the camera 28 from the surface 46 of the object 48 to be measured, 5 and 6 can be simulated in this regard by replacing the sensor 28 with three sensors 76, 78, 80 in the exemplary embodiment, which work or deviate from one another at a point 82 of an object 84 to be measured. Have image spacing. To the distance of the point 82 z. B.
  • the distance-dependent contrast values that is, the entire contrast curve is approximately on a parabola. If the distance between the sensor 78 and the point 82 to be measured is consequently changed, depending on the imaging plane to the working or image plane, a contrast curve results in the sensor 78 which corresponds to a parabola which is given the reference symbol 86 in FIG. 6 is.
  • the beam path is directed via a lens 88 to the working or image plane of the sensor 78, that is to say a CCD matrix.
  • sensors 76, 80 are assigned to sensor 78, which have a different optical distance from point 82 to be measured.
  • the lens 88 with the deflection devices and the sensors 76, 78, 80 preferably forms a unit and is integrated in a probe of a coordinate measuring machine.
  • the contrast course to be measured is first determined in the sensors 76, 78, 80, so that measurement curves result which can be seen in FIG. 6, the parabola 86 for the sensor 78 and, because of the sensors 76, 80 arranged at different optical distances compared to the sensor 78, the parabolas 100, 102 are offset.
  • the parabola 100 is assigned to the sensor 76 and the parabola 102 to the sensor 80. This spacing offset of the parabolas 100, 86, 102 results from the fact that the sensors 76, 78, 80 have different focus levels, which are identified in FIG. 5 by the reference numerals 104, 106 and 108.
  • the probe head which comprises the sensors 76, 78, 80 and the optics 88, is adjusted to the point 82 in such a way that it is in the focal plane 106 of the sensor 80, a contrast value 110 results, which is the vertex of the parabola 102 corresponds.
  • a contrast value 110 results, which is the vertex of the parabola 102 corresponds.
  • the contrast curves 86, 100, 102 have been determined and placed in relation to one another, it is only necessary to determine the respective contrast values of the sensors 76, 78, 80 at a desired distance of the probe head from a point to be measured, in order to then immediately use them to calculate the vertex of the sensor corresponding to a distance Z - in the exemplary embodiment of the sensor 78 - at which the point to be measured is or would be imaged sharply on the working or image plane of the sensor 78, as a result of which the focus location of the point 82 to be measured can be determined is. This is illustrated with the aid of FIG. 6.
  • the contrast values of the measurement point 82 depicted in the sensors 76, 78, 80 are determined at the distance ZI, measurement values P1, P2 and P3 result, where P3 is the measurement value of the sensor 78.
  • the measured value Pl corresponds to the contrast value that was determined by the sensor 76 and the measured value P3 to the contrast value that was determined by the sensor 80. Since the relation of the contrast value curves 86, 100, 102 to one another is known, it is only necessary to assign measured values on the contrast curve 86 and sensor P3 to the measured values P1 and P3, so that they have a total of three measured values P ', P "and P'" result that lie on the stored measured value curve of the sensor 78.
  • a distance Z is assigned, at which the measuring point 82 is sharply imaged on the working plane or image plane of the sensor 78.
  • the Z distance between the measuring point 82 and the probe and thus the focus location can thus be determined without the probe having to be adjusted to the object 84.
  • the respective CCD matrix is scanned in accordance with the explanations, in particular in connection with FIGS. 1 and 2, by an image processing operator of the desired size.
  • a contrast curve is not determined for the entire area of a CCD matrix, but basically a contrast curve for each pixel itself.
  • An image processing operator is run over the measuring range by means of an algorithm and thereby simulates a large number of small windows.
  • the subareas are thus basically measured simultaneously with each Z setting of the sensor, each contrast value of a subarea being assigned to a pixel encompassed by the subarea.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur dreidimensionalen Messung einer Oberfläche (46) eines Objektes (48, 84) nach dem Autofokusprinzip mittels eines Koordinatenmessgerätes (10). Um eine hochauflösende Beschreibung von dreidimensionalen Oberflächen zu ermöglichen, wird vorgeschlagen, dass der Messbereich (32) in Teilbereiche (1, 2, 3, 4, 5, 6, 7, 8, 9) unterteilt wird und Kontrast jeden Teilbereichs während des Verfahrens eines optischen Sensors (28) entlang seiner optischen Achse (50) gleichzeitig oder im Wesentlichen gleichzeitig bestimmt wird.

Description

"Verfahren zur dreidimensionalen Messung einer Oberfläche
Die Erfindung bezieht sich auf ein Verfahren zur dreidimensionalen Messung einer Oberfläche eines Objekts nach dem Autofokusprinzip mittels eines Koordinatenmessge- rätes, wobei zur Messung ein einen Messbereich der Oberfläche erfassender optischer Sensor entlang dessen optischer Achse verfahren oder scheinbar verfahren und ein für die Oberfläche charakteristischer Parameter wie Kontrastwert gemessen wird und wobei aus Position des Sensors, die einem Fokusort entspricht, und Position zu messenden Messpunktes bzw. dessen Bildes in einer senkrecht zu der optischen Achse verlaufenden Ebene die Raumkoordinate des Messpunktes berechnet wird.
Zur Oberflächenanalyse von Materialoberflächen werden optisch abtastende Messsysteme eingesetzt, die nach dem Autofokusprinzip arbeiten. Es werden beispielsweise einzelne Autofokuspunkte nach dem Kontrastverfahren bei der Abtastung gemessen. Um vollständige Konturen aufzunehmen, benötigt dieses Verfahren lange Messzeiten. Pro Messpunkt sind einige Sekunden erforderlich.
Aus P. Profos, T. Pfeifer (Hrsg.): Handbuch der industriellen Messtechnik, 5. Aufl., Olden- bourg Verlag, München- Wien 1992, S. 455, 456 ist ein Verfahren der eingangs genannten Art bekannt. Dabei werden Laserabstandssensoren für die Erfassung von Oberflächen- Topographien verwendet. Bei dem bekannten Verfahren wird Licht einer Laserdiode über einen Kollimator und ein bewegliches Objektiv auf die Materialoberfläche geworfen. Das von der Oberfläche reflektierte Licht gelangt über die Objektivlinse, den Kollimator und einem Strahlteiler zu einem optoelektronischen Fokusdetektor in Form einer Modemzeile. Die Objektivlinse wird oberflächentopographieabhängig nachgeführt. Aus ihrer Bewegung wird das Höhenprofil ermittelt. Ein Nachteil dieses Verfahrens besteht in der starken Empfindlichkeit gegenüber Eigenschaftsänderungen der Materialoberfläche.
Aus H. Naumann, G. Schröder: Bauelemente der Optik, Taschenbuch der technischen Optik, 6. Aufl., C. Hanser Verlag, München-Wien 1992, S. 348, 349, ist eine Autofo- kussierung durch Kontrastmessung bekannt, wobei drei unterschiedlich lange optische Wege zur photometrischen Kontrastmessung benutzt und eine Scharfstellposition an einem Kontrastunterschied erkannt wird.
Aus der DE-Z: VDI-Z 131 (1989) Nr. 11, S. 12 - 16 R.-J. Ahlers, W. Rauh: "Koordinaten- messtechnik mit Bildverarbeitung" ist eine Koordinatenmessung nach dem Autofokusprinzip bekannt, bei der durch Kontrastanalyse mit Ortsfrequenzmessung der von einem bilderfassenden Sensor gelieferten 'Daten eine dreidimensionale Objektvermessung erfolgen kann.
In der WO 99/53271 wird ein Verfahren zur punktweise scannenden Profilbestimmung einer Materialoberfläche mit einem Koordinatenmessgerät nach dem Autofokusprinzip beschrieben.
Bei den bekannten Verfahren werden ein Bildverarbeitungssensor entlang einer optischen Achse bewegt und gleichzeitig über ein Auswertesystem die Kontrastwerte ermittelt. Aus der so entstehenden Kontrastkurve wird auf den Abstand zwischen Objektoberfläche und Sensor geschlossen. Gemeinsam ist den bekannten Verfahren des Weiteren, dass jeweils pro Bildfeld nur ein Messpunkt entlang der optischen Achse gewonnen wird. Hierdurch bedingt ist der Nachteil gegeben, dass eine schnelle Messung von Oberflächen nicht möglich ist. Zwar wurde bereits in Betracht gezogen, mehrere Fenster gleichzeitig im Bildfeld eines Fokussensors zu setzen. Allerdings ist die Zahl der Fokuswerte durch die Größe der nebeneinander angeordneten Fenster beschränkt, so dass nur wenige Fenster bzw. Fokuspunkte mit ausreichend Pixelinformationen zur Kontrastbestimmung herangezogen werden.
Der vorliegenden Erfindung liegt das Problem zu Grunde, ein Verfahren der eingangs genannten Art so weiterzubilden, dass eine hochauflösende Beschreibung von dreidimensionalen Oberflächen ermöglicht wird.
Erfindungsgemäß wird das Problem im Wesentlichen dadurch gelöst, dass der Messbereich in Teilbereiche unterteilt wird und der charakteristische Parameter jeden Teilbereichs während des Verfahrens des Sensors entlang seiner optischen Achse bestimmt wird. Mit anderen Worten werden während der Bewegung des Sensors entlang seiner optischen Achse mehrere Messpunkte gleichzeitig bestimmt. Insbesondere handelt es sich bei dem optischen Sensor um einen CCD-Chip bzw. eine CCD-Kamera, wobei für jeden Bildverarbeitungspixel ein Fokusort ermittelt wird.
Den Messpunkten ist ein Fokusort zugeordnet. Unter Fokusort wird die Position relativ zum Sensor (in Sensorkoordinaten) verstanden, in der ein Bildabschnitt die optimale Schärfe aufweist (z.B. maximaler Kontrast).
Insbesondere sieht die Erfindung vor, dass sich die Teilbereiche, also die Fenster des Bildfeldes des CCD-Sensors, für die Bestimmung des charakteristischen Parameters überlappen, wobei Messpunkte aus sich überlappenden Teil- bzw. Auswertebereichen gleichzeitig oder nahezu gleichzeitig bestimmt werden.
Erfϊndungsgemäß ist die Dichte der gemessenen Fokusorte und damit Messpunkte durch die Zahl der Bildpunkte des Bildverarbeitungssensors begrenzt. Es wird zu jedem Messpunkt in einem als Operatorfenster zu bezeichnenden Teilbereich der Fokusort bestimmt. Die Größe des Messbereich ist durch das Bildfeld insgesamt begrenzt. Mit anderen Worten ist der Messbereich der durch das Bildverarbeitungsfenster festgelegte Auswertebereich, in dem Messpunkte durch das erfindungsgemäße Verfahren erzeugt werden.
Unter Teilbereich ist der lokale Bereich zu verstehen, in dem durch z. B. einen Bildverarbeitungsoperator das Fokuskriterium ermittelt wird, um einen Messpunkt zu erzeugen.
Auch ist der Begriff Sehfeld des Bildverarbeitungssensors einzuführen. Dieser beschreibt die physikalische Begrenzung des gesamten Sehfeldes durch den Kamerachip bzw. die Chipgröße.
Zur Bestimmung des charakteristischen Parameters in Form des Kontrastwertes werden in bekannter Weise zur Umwandlung des Grauwertes in ein Binärbild ein Bildverarbeitungsoperator benutzt, um aus jeweiligem Operatorfenster den Kontrastwert für ausgewählten Bildverarbeitungspixel zu bestimmen.
Erfindungsgemäß wird während des Verfahrens des optischen Sensors entlang dessen optischer Achse ein Stapel von Bildern gemessen, wobei pro Bild für jeden Teilbereich der charakteristische Parameter ermittelt und sodann aus dem Stapel der Bilder der Fokusort pro Teilbereich ermittelt wird. Unter Berücksichtigung der in der senkrecht zu der optischen Achse verlaufenden Ebene bekannten Position des Bildverarbeitungspixels im Ko- ordinatenmessgerät lässt sich sodann die Raumkoordinate für jedes Pixel und damit jeden Messpunkt berechnen.
In Weiterbildung der Erfindung ist vorgesehen, dass aus wenigen Bildebenen die jeweiligen Fokusorte der gewünschten Messpunkte bestimmt werden, wobei aus z. B. zwei oder drei Ebenen Kontrastwerte errechnet werden, die nach vorheriger Ermittlung einer eingemessenen Fokusfunktion zur Berechnung des Fokusortes in diese eingesetzt werden. Insoweit wird auf ein Verfahren Bezug genommen, das in der WO 01/33166 AI beschrieben ist, auf dessen Offenbarung ausdrücklich Bezug genommen wird. Entsprechend kann für jeden Bildpunkt (Pixel) der Fokusort durch Anordnung von zwei oder drei oder mehr Sensorchips gleichzeitig berechnet und hieraus die Koordinate auf der optischen Achse ermittelt werden, wie dies durch die WO 01/33166 AI offenbart ist.
Bei der Bestimmung des Fokusortes unter Zugrundelegung von in wenigen Ebenen ermittelten Kontrastwerten bzw. aufgrund der Ermittlung der Kontrastwerte pro Bildpunkt mittels zwei oder drei oder mehreren Sensorchips, durch die quasi ein Verfahren eines optischen Sensors entlang dessen optischer Achse zur Erzeugung eines Stapels von Bildern simuliert wird, nutzt man die Kenntnis, dass die in unterschiedlichen Abständen zwischen Messpunkt und Arbeits- bzw. Bildebene eines Sensors gemessenen Kontrastwerte auf in etwa einer Parabel liegen, wobei der Kontrastwert im Scheitelpunkt dem optischen Abstand zwischen Arbeits- bzw. Bildebene des Sensors und dem Punkt bei dessen Scharfabbildung entspricht, also den Fokusort angibt. Benutzt man mehrere Sensoren, die einen unterschiedlichen Abstand zu dem abzubildenden Punkt aufweisen und ermittelt die Kontrastwertkurven und normiert diese aufgrund der geometrischen Relation der Sensoren bzw. optischen Wege zueinander, so kann durch die Ermittlung der in einem jeden Sensor gemessenen Kontrastwerte in einem vorgegebenen Abstand aufgrund der zuvor bekannten Relation der Kontrastwertkurven bzw. -parabeln zueinander die Kontrastwertkurve des Sensors errechnet werden, auf dessen Arbeitsebene der Punkt scharf abgebildet werden soll. Der zu messende Punkt liegt in der Fokusebene der dem Sensor zugeordneten Optik. Nach Berechnung der entsprechenden Kontrastwertkurve bedarf es allein der Bestimmung des Scheitelpunktes, um den Fokusort zu erhalten.
Die Erfindung zeichnet sich auch dadurch aus, dass der Fokusort für den jeweiligen Bildpunkt (Pixel) aus dem Nachbarfokusort unter Hinzuziehung weiterer im Auswertefenster liegender Bildpunkte errechnet wird.
Die Errechnung des Fokusortes für jedes Bildverarbeitungspixel kann ebenfalls dadurch erfolgen, dass jeweils von einem berechneten Fokusort für ein Pixel ausgegangen wird und dann differentiell zu diesem die Nachbarfokusorte berechnet werden. Hierbei wird die Nebeninformation genutzt, dass nebeneinanderliegende Pixel nahe beieinanderliegende Fo- kuswerte erwarten lassen. Durch diese Nebenbedingung kann der Berechnungsalgorithmus auf den Nahbereich um das Fokusmaximum beschränkt werden.
Auch sieht ein selbständiger Vorschlag der Erfindung vor, die Berechnung des funktionalen Verlaufes der Kontrastfunktion prinzipiell von der Berechnung der Fokusorte loszulösen. Hierdurch ist es möglich, alle Amplituden für eine möglichst exakte Berechnung des funktionalen Verlaufes der Kontrastfunktion heranzuziehen und somit hierbei ein rauscharmes Ergebnis zu erzielen. Die Kontrastfunktion kann im Prinzip sowohl aus einzelnen Verläufen für einzelne Pixel durch Mittelung generiert als auch durch Zusammenfassung aller Kontrastverläufe aller Pixel bestimmt werden. Diese so ermittelte Kontastfunktion wird anschließend dazu benutzt, bei der Bestimmung des jeweiligen lokalen Fokusortes für jedes Pixel aus wenigen Stützpunkten die Lage des Maximums der Kontrastfunktion zu ermitteln. Im Normalfall reichen hierfür drei Stützpunkte aus. Das Rauschen der entsprechenden Kontrastwerte geht nicht mehr über Verfälschung der Kontrastfunktion, sondern lediglich über die direkte Verfälschung der Amplitudenwerte ein. Es wird somit eine höhere Genauigkeit erzielt. Der Vorteil liegt insbesondere hierin, dass weniger Messpunkte aufgenommen werden müssen, um einen exakten Fokusort zu ermitteln, wodurch die Messgeschwindigkeit erhöht wird oder bei einer hohen Messpunkteanzahl ein sicheres Messergebnis erzielt wird (reproduzierbarer).
Des Weiteren zeichnet sich die Erfindung dadurch aus, dass ein virtuelles 2D-Bild aus den ermittelten maximalen Werten die Kontrastwerte in den einzelnen Bildpunkten (Pixel) derart erzeugt wird, dass jedem Pixel die Amplitude zugeordnet wird, die dem Bild des maximalen Kontrastes entspricht. Jeweils werden während der Autofokusmessung aufgenommene Bilder auf kontrastreiche Pixel durchsucht. Sodann wird ein Bild aus allen kontrastreichen Bereichen (Pixel) der Einzelbilder zusammengesetzt, wodurch eine Verbesserung der Schärfentiefe erzielt wird.
Der nach dem erfindungsgemäßen Verfahren ermittelte dreidimensionale Flächenverlauf kann zur weiteren Auswertung mit dem erfindungsgemäß ermittelten 2D-Bild mit großer Schärfentiefe so überlagert werden, dass eine gemeinsame Auswertung des im Raum gekrümmten 2D-Bilds mit Bildverarbeitungsmethoden möglich wird. Weitere Einzelheiten Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen -für sich und/oder in Kombination-, sondern auch aus der nachfolgenden Beschreibung von der Zeichnung zu entnehmenden bevorzugten Ausführungsbeispielen.
Es zeigen:
Fig. 1 eine Prinzipdarstellung zur Erläuterung des erfindungsgemäßen Verfahrens,
Fig. 2 Fokusortbestimmungen nach dem erfindungsgemäßen Verfahren,
Fig. 3 eine Kontrastwertkurve,
Fig. 4 Bestimmung eines Fokusortes unter Zugrundelegung einer eingemessenen
Kurve,
Fig. 5 eine Prinzipdarstellung einer Sensoranordnung zur Bestimmung eines Fokusortes,
Fig. 6 prinzipielle Verläufe von Kontrastwertkurven ermittelt mit Sensoren der
Fig. 5 und
Fig. 7 eine Prinzipdarstellung eines Koordinatenmessgerätes.
In Fig. 7 ist rein prinzipiell ein Koordinatenmessgerät 10 dargestellt, mit dem hochauflösend die Oberflächengeometrie eines Objektes bestimmt werden soll. Das Koordinatenmessgerät 10 kann einen z. B. aus Granit bestehenden Grundrahmen 12 mit Messtisch 14 aufweisen, auf dem ein nicht dargestelltes Objekt anordbar ist, dessen Oberfläche zu messen ist. Entlang dem Grundrahmen 12 ist ein Portal 16 in Y-Richtung verstellbar. Hierzu sind Säulen oder Ständer 18, 20 gleitend auf dem Grundrahmen 12 abgestützt. Von den Säulen 18, 20 geht eine Traverse aus, entlang der - also in X-Richtung - ein Schlitten 24 verstellbar ist, der seinerseits eine Pinole oder Säule 26 aufnimmt, die in Z-Richtung ver- stellbar ist. Von der Pinole oder Säule 26 geht ein optischer Sensor 28 wie Laserab- standssensor aus, der zur Ermittlung der Oberflächengeometrie einerseits in X- und Y- Ebene verstellbar und andererseits entlang seiner optischen Achse, also im Ausführungsbeispiel entlang der Z- Achse, verfahrbar ist.
Der Fig. 1 ist rein prinzipiell der optische Sensor 28 zu entnehmen, der ein Objektiv 30 sowie diesem zugeordneten CCD-Chip 32 in der Bildebene des Objektivs 30 angeordnet umfasst. Der CCD-Chip 32 oder auch Kameramatrix genannt weist in Zeilen 34, 36 und Spalten 38, 40 angeordnete lichtempfindliche Pixel 42, 44 auf, um aus den diesen zu entnehmenden Bildinformationen in Form von Grauwertbildern in nachstehend beschriebener Weise die Oberfläche 46 eines Objektes 48 zu messen.
Erfindungsgemäß ist vorgesehen, dass der bei vorgegebener X-Y-Koordinate mittels des optischen Sensors 28 erfasste Messbereich bzw. dessen auf der Kameramatrix 32 abgebildetes Bild in Teilbereiche, sogenannte Fenster unterteilt wird, die durch einen m x n - Operator - im Ausführungsbeispiel durch einen 3 x 3-Operator - vorgegeben ist, der die gesamte Kameramatrix 32 abrastert, wie rein prinzipiell durch die Pfeildarstellungen 52, 54 in den Fig. 1 und 2a symbolisiert wird. Dabei wird für jedes Pixel 42, 44 aus dem 3x3- Operator der Fokusort ermittelt, und zwar dadurch, dass bei vorgegebener X-Y-Position der optische Sensor 28 bzw. die CCD-Kamera entlang dessen bzw. deren optischer Achse 50, also in Z-Richtung verfahren wird, wobei ein Stapel von Bildern 56, 58, 60 erzeugt wird. Jedes Bild 56, 58, 60 wird von dem entsprechenden m x n-Operator, also im Ausführungsbeispiel dem 3 x 3-Operator abgerastert, um sodann eine Kontrastkurve 62, 64 für jedes Pixel 42, 44 zu bestimmen, wie dies rein prinzipiell der Fig. 2a zu entnehmen ist.
Der Fokusort, also der Arbeitsabstand, bei dem in der Bildebene 38 ein Messpunkt der Oberfläche 46 scharf abgebildet wird, entspricht dem Maximum der Kontrastkurve 62, 64. Da erfindungsgemäß grundsätzlich jedem Pixel 42, 44 ein Fokusort zugeordnet wird, kann sodann die Raumkoordinate jeden Messpunktes und somit das Oberflächenprofil des zu messenden Objekts 48 ermittelt werden, wie die Darstellung der Fig. 2b prinzipiell verdeutlicht. Dabei nutzt man die Kenntnis der X-Y-Koordinate des jeweiligen Pixel 42, 44 in dem Koordinatenmessgerät 10 sowie den aus den Kontrastkurven 62, 64 ermittelten Fokusort (Z-Koordinate).
Aus den Prinzipdarstellungen der Fig. 1 und 2 ergibt sich des Weiteren, dass die Messpunkte, d. h. die Fokusorte der einzelnen Pixel 42, 44 aus sich überlappenden Auswertebereichen errechnet werden, die durch die Größe des Operators vorgegeben werden.
Aus der Fig. 1 wird gleichfalls ersichtlich, dass im Ausführungsbeispiel die Kontrastwerte von insgesamt 9 Pixel, die mit den Zahlen 1 bis 9 symbolisiert sind, ermittelt und sodann aus diesen ein mittlerer Kontrastwert bestimmt wird, der dem Pixel im Mittelpunkt des Teilbereichs entspricht, also im Ausführungsbeispiel dem Pixel mit der Zahl „5".
Sind gemäß der Fig. 2 rein prinzipiell ein Stapel von 3 Bilden 56, 58, 60 wiedergegeben, aufgrund der die Kontrastwertkurven 63, 64 ermittelt werden, so können gegebenenfalls auch zwei Ebenen ausreichen. Selbstverständlich kann auch eine größere Anzahl von Ebenen zur Bestimmung der Kontrastwertkurven und damit des Fokusortes ausgewertet werden.
In Fig. 3 ist rein prinzipiell eine Kontrastwertkurve 70 wiedergegeben, in der der Kontrast gegen die Z- Achse aufgetragen ist. Selbstverständlich kann das Höhenprofil eines Objektes auch in einer anderen Richtung als der Z-Achse eines Koordinatenmessgerätes bestimmt werden, und zwar in Abhängigkeit von der Ausrichtung der optischen Achse des zum Einsatz gelangenden optischen Sensors in Bezug auf die Koordinaten des Koordinatenmessgerätes.
Kann erfindungsgemäß ein Stapel mit einer gewünschten Anzahl von Bildern zur Bestimmung der Kontrastkurven und damit der Fokusorte ausgewertet werden, so besteht entsprechend der Fig. 4 die grundsätzliche Möglichkeit, allein einen Stapel mit drei Ebenen bzw. in diesen erfassten Bildern zu nutzen, wobei grundsätzlich pro Verarbeitungspixel ein Fokusort ermittelt wird. Drei Bilder reichen dann aus, wenn eine allgemeine Fokusfunktion des Systems ermittelt wird, wobei der Kontrastverlauf sodann aus der Lage von zwei oder drei Stützpunkten bestimmt wird. Im Ausführungsbeispiel der Fig. 4 sind die Kon- trastwerte Pl, P2 und P3 bei unterschiedlichen Arbeits- bzw. Bildabständen Z', Z' und Z'" ermittelt worden. Die im System ermittelte Kontrastwertkurve ist sodann durch die Messpunkte Pl, P2 und P3 gelegt worden, um sodann den tatsächlichen Fokusort 74 zu bestimmen (Scheitelpunkt).
Ist durch die Fig. 1 bis 4 erläutert worden, dass Kontrastwertkurven, d. h. die aus dem Stapel von Bildern gemessenen Kontrastwerte durch Abrastern der Grauwerte der Pixel 42, 44 in Abhängigkeit von dem Arbeitsabstand des Objektivs 30 der CCD-Kamera 28 ermittelt, also bei verschiedenen Z-Positionen der Kamera 28 zur Oberfläche 46 des zu messenden Objekts 48, so kann ein diesbezügliches Verstellen entsprechend der Ausführungsform der Fig. 5 und 6 simuliert werden, indem der Sensor 28 durch im Ausführungsbeispiel drei Sensoren 76, 78, 80 ersetzt wird, die zu einem zu messenden Punkt 82 eines Objekts 84 voneinander abweichende Arbeits- bzw. Bildabstände aufweisen. Um den Abstand des Punktes 82 z. B. zu dem Sensor 78 zu ermitteln, der ebenfalls Bestandteil eines Tastkopfes eines nicht dargestellten Koordinatenmessgerätes ist, nutzt man die Kenntnis, dass die ab- standsabhängigen Kontrastwerte, also der gesamte Kontrastverlauf in etwa auf einer Parabel liegt. Verändert man folglich den Abstand des Sensors 78 zu dem zu messenden Punkt 82, so ergibt sich in Abhängigkeit der Abbildungsebene zu Arbeits- bzw. Bildebene in dem Sensor 78 ein Kontrastverlauf, der einer Parabel entspricht, die in Fig. 6 mit dem Bezugszeichen 86 versehen ist. Hierzu wird der Strahlengang über ein Objektiv 88 auf die Arbeits- oder Bildebene des Sensors 78, also einer CCD-Matrix gelenkt. Dem Sensor 78 sind erwähntermaßen die Sensoren 76, 80 zugeordnet, die zu dem zu messenden Punkt 82 einen unterschiedlichen optischen Abstand aufweisen. Dies wird dadurch erreicht, dass der zu dem Sensor 78 fuhrende Strahl 90 über Strahlungsteiler 92, 94 und Umlenkelemente wie Prismen 96, 98 aufgeteilt wird, um so zu den Sensoren 76, 80 zu gelangen, die ihrerseits in Bezug auf ihre Bild- bzw. Arbeitsebenen, also CCD-Matrizes, ebenfalls in unterschiedlichem Abstand zu dem zu messenden Punkt 82 verlaufen. Das Objektiv 88 mit den Umlenkeinrichtungen sowie den Sensoren 76, 78, 80 bildet bevorzugterweise eine Einheit und ist in einem Tastkopfeines Koordinatenmessgerätes integriert.
Um im Ausführungsbeispiel den Fokusort des Punktes 82 mittels des Sensors 78 zu bestimmen, der im Ausführungsbeispiel die Z-Koordinate des Arbeitspunktes 82 vorgibt, ohne dass der Punkt 82 in der Bildebene des Sensors 78 scharf abgebildet sein muss, wird zunächst der jeweils zu messende Kontrastverlauf in den Sensoren 76, 78, 80 bestimmt, so dass sich Messkurven ergeben, die der Fig. 6 zu entnehmen sind, die Parabel 86 für den Sensor 78 sowie aufgrund der im Vergleich zu dem Sensor 78 in unterschiedlichen optischen Abständen angeordneten Sensoren 76, 80 versetzt verlaufenden Parabeln 100, 102. Dabei ist die Parabel 100 dem Sensor 76 und die Parabel 102 dem Sensor 80 zugeordnet. Dieser abstandsmäßige Versatz der Parabeln 100, 86, 102 ergibt sich aus dem Umstand, dass die Sensoren 76, 78, 80 unterschiedliche Scharfebenen aufweisen, die in Fig. 5 mit den Bezugszeichen 104, 106 und 108 gekennzeichnet sind.
Ist folglich der Tastkopf, der die Sensoren 76, 78, 80 sowie die Optik 88 umfasst, zu dem Punkt 82 derart verstellt, dass sich dieser in der Scharfebene 106 des Sensors 80 befindet, so ergibt sich ein Kontrastwert 110, der dem Scheitelpunkt der Parabel 102 entspricht. Entsprechendes gilt in Bezug auf die Einstellung des Tastkopfes zu den Scharfebenen 104, 108 der Sensoren 78, 76.
Nachdem die Kontrastkurven 86, 100, 102 bestimmt und zueinander in Relation gesetzt sind, ist es nur noch erforderlich, iri einem gewünschten Abstand des Tastkopfes zu einem zumessenden Punkt die jeweiligen Kontrastwerte der Sensoren 76, 78, 80 zu bestimmen, um aus diesen sodann unmittelbar den einem Abstand Z entsprechenden Scheitelpunkt des Sensors - im Ausführungsbeispiel des Sensors 78 - zu berechnen, bei dem der zu messende Punkt scharf auf der Arbeits- bzw. Bildebene des Sensors 78 abgebildet ist bzw. wäre, wodurch der Fokusort des zu messenden Punktes 82 bestimmbar ist. Dies wird anhand der Fig. 6 verdeutlicht. Werden in dem Abstand ZI die Kontrastwerte des in den Sensoren 76, 78, 80 abgebildeten Messpunktes 82 bestimmt, so ergeben sich Messwerte Pl, P2 und P3, wobei P3 der Messwert des Sensors 78 ist. Der Messwert Pl entspricht dem Kontrastwert, der von dem Sensor 76 und der Messwert P3 dem Kontrastwert, der von dem Sensor 80 ermittelt worden ist. Da die Relation der Kontrastwertkurven 86, 100, 102 zueinander bekannt ist, ist es nur noch erforderlich, den Messwerten Pl und P3 Messwerte auf der Kontrastkurve 86 des Sensors 78 zuzuordnen, so dass sie insgesamt drei Messwerte P', P" und P'" ergeben, die auf der abgelegten Messwertkurve des Sensors 78 liegen. Aus diesen Werten lässt sich sodann der gesamte Messwerteverlauf und somit der Scheitelpunkt P4 ermitteln, dem ein Abstand Z zugeordnet ist, bei dem der Messpunkt 82 scharf auf der Arbeitsebene bzw. Bildebene des Sensors 78 abgebildet ist. Somit lässt sich der Z- Abstand zwischen Messpunkt 82 und Tastkopf und somit der Fokusort ermitteln, ohne dass es eines Versteilens des Tastkopfes zu dem Objekt 84 bedarf. Um pro Pixel der CCD-Sensoren 76, 78, 80 einen Fokusort zu erhalten, wird die jeweilige CCD-Matrix entsprechend der Erläuterungen insbesondere im Zusammenhang mit den Fig. 1 und 2 von einem Bildverarbeitungsoperator gewünschter Größe abgerastert.
Abweichend vom vorbekannten Stand der Technik wird eine Kontrastkurve nicht für den gesamten Bereich einer CCD-Matrix, sondern grundsätzlich für jedes Pixel selbst eine Kontrastkurve ermittelt. Mittels eines Algorithmus lässt man einen Bildverarbeitungsoperator über den Messbereich laufen und simuliert hierdurch eine Vielzahl von kleinen Fenstern. Somit werden die Teilbereiche dem Grunde nach gleichzeitig bei jeder Z-Einstellung des Sensors ausgemessen, wobei jeder Kontrastwert eines Teilbereichs jeweils einem von dem Teilbereich umfassten Pixel zugeordnet wird.
Die erfindungsgemäße Lehre wird jedoch auch dann nicht verlassen, wenn z. B. zwei oder mehr Pixel, die wiederum für sich genommen eine sehr kleine Einheit bilden, einem Kontrastwert zugeordnet werden.

Claims

PatentansprücheVerfahren zur dreidimensionalen Messung einer Oberfläche
1. Verfahren zur dreidimensionalen Messung einer Oberfläche (46) eines Objektes (48, 84) nach dem Autofokusprinzip mittels eines Koordinatenmessgerätes (10), wobei zur Messung ein einen Messbereich der Oberfläche erfassender optischer Sensor entlang dessen optischer Achse (50) verfahren oder scheinbar verfahren und ein für die Oberfläche charakteristischer Parameter wie Kontrastwert gemessen wird und wobei aus Position des Sensors (28, 78), die einem Fokusort entspricht, und Position zu messenden Messpunktes (82) bzw. diesem zugeordneten Bild in einer senkrecht zu der optischen Achse verlaufenden Ebene die Raumkoordinate des Messpunktes berechnet wird, dadurch gekennzeichnet, dass der Messbereich (32) in Teilbereiche (1, 2, 3, 4, 5, 6, 7, 8, 9) unterteilt wird und der charakteristische Parameter jeden Teilbereichs während des Verfahrens des Sensors (28) entlang seiner optischen Achse gleichzeitig oder im Wesentlichen gleichzeitig bestimmt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass für jede gewünschte Position des optischen Sensors (28) entlang seiner optischen Achse (50) die Teilbereiche (1, 2, 3, 4, 5, 6, 7, 8, 9) in Bezug auf deren charakteristischen Parameter gleichzeitig oder im Wesentlichen gleichzeitig ausgewertet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Sensor (28, 76, 78.80) ein CCD-Chip bzw. eine CCD-Kamera verwendet wird.
4. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als charakteristischer Parameter Kontrastwert des auf den Teilbereich abgebildeten Messpunktes (82) angewählt wird.
5. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der charakteristische Parameter pro Teilbereich (1, 2, 3, 4, 5, 6, 7, 8, 9) vorzugsweise geometrischem Mittelpunkt (5) des Teilbereichs zugeordnet wird.
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für jeden Bildverarbeitungspixel der CCD-Chips bzw. CCD-Matrix der CCD- Kamera (28) ein Fokusort ermittelt wird.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere charakteristische' Parameter aus einander überlappenden Teilbereichen gleichzeitig bestimmt werden.
8. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für jedes Bildverarbeitungspixel (42, 44) ein Kontrastwert pro Bild (56, 5860) ermittelt und sodann aus durch tatsächlich oder scheinbares Verfahren des optischen Sensors (28) entlang dessen optischer Achse (50) sich ergebendem Bilderstapel pro Pixel ein Fokusort ermittelt wird.
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unter Berücksichtigung koordinatenmessgerätbekannter Position des Pixel in der senkrecht zu der optischen Achse verlaufenden Ebene und Fokusort dieses die Raumkoordinate des Pixel ermittelt wird.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kontrastwert für jedes Pixel (42, 44) zur Bestimmung des Fokusorts aus einem m x n - Operator wie 3x3- Operator über den gesamten Messbereich bzw. der CCD-Matrix (32) der CCD-Kamera (28) ermittelt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenige Bilder eines Stapels wie zwei oder drei Bilder ausgewertet und zur Berechnung des Fokusorts die entsprechenden Kontrastwerte in einer vorher eingemessene Fokusfunktion eingesetzt werden.
12. Verfahren nach vorzugsweise zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein virtuelles 2D-Bild aus den ermittelten Maxima der Kontrastwerte derart erzeugt wird, dass jedem Pixel eine Amplitude zugeordnet wird, die dem Bild des maximalen Kontrastes entspricht.
13. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass für jedes Bildverarbeitungspixel der Fokusort durch Anordnung von zumindest zwei, vorzugsweise drei oder mehr optischen Sensoren (76, 78, 80) in Bezug auf den Messpunkt (82) in voneinander abweichenden optischen Abständen jeweiliger Kontrastwert ermittelt und aus diesen Koordinate des Messpunktes auf einer Achse ermittelt wird, die parallel zu der optischen Achse von zumindest einem optischen Sensor verläuft.
14. Verfahren nach vorzugsweise zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass der Fokusort für den jeweiligen Bildverarbeitungspixel aus Nachbarfokusort unter Hinzuziehung weiterer im Teilbereich (Auswertefenster) liegender Bildverarbeitungspixel berechnet wird.
15. Verfahren nach vorzugsweise zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Berechnung einer allgemeinen Kontrastfunktion einige wie zumindest zwei Kontrastverläufe von Pixeln herangezogen werden und eine allgemeine Fokusfunktion des Systems ermittelt wird, deren Koordinatenlage für jeden Messpunkt sodann jeweils aus zwei oder drei Stützpunkten (Fokusebenen) ermittelt wird.
16. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während des Verfahrens des optischen Sensors (28) entlang dessen optischer Achse (50) ein Stapel von Bildern (56, 68, 60) ermittelt wird, dass pro Bild für jeden Teilbereich ein charakteristischer Parameter ermittelt wird und dass aus dem Stapel der Bilder bzw. unter Zugrundelegung der jeweiligen charakteristischen Parameter der Fokusort pro Teilbereich ermittelt wird.
17. Verfahren nach vorzugsweise einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der nach dem erfindungsgemäßen Verfahren ermittelte dreidimensionale Flächenverlauf zur weiteren Auswertung mit dem nach dem erfindungsgemäßen Verfahren entsprechend Anspruch 12 ermittelten 2D-Bild mit großer Schärfentiefe so überlagert wird, dass eine gemeinsame Auswertung des im Raum gekrümmten 2D-Bilds mit Bildverarbeitungsmethoden möglich wird.
18. Verfahren zur dreidimensionalen Messung einer Oberfläche (46) eines Objektes (48, 84) nach dem Autofokusprinzip mittels eines Koordinatenmessgerätes (10), wobei zur Messung ein einen Messbereich der Oberfläche erfassender optischer Sensor entlang dessen optischer Achse (50) verfahren oder scheinbar verfahren und ein für die Oberfläche charakteristischer Parameter wie Kontrastwert gemessen wird und wobei aus Position des Sensors (28, 78), die einem Fokusort entspricht, und Position zu messenden Messpunktes (82) bzw. diesem zugeordneten Bild in einer senkrecht zu der optischen Achse verlaufenden Ebene die Raumkoordinate des Messpunktes berechnet wird, nach insbesondere zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Sensor eine CCD-Kamera verwendet wird, deren CCD-Matrix in sich überlappende Teilbereiche unterteilt werden, die von einem n x m - Operator zur Ermittlung von einem Kontrastwert für jeden Teilbereich abgerastert werden, dass während des Verfahrens der CCD-Kamera entlang deren optischer Achse ein Stapel von Bildern generiert wird und dass aus den Kontrastwerten von Teilbereich mit gleichen Koordinaten in der senkrecht zu der optischen Achse verlaufenden Ebene eine Kontrastwertkurve mit einem Maxima ermittelt wird, das Fokusort des Messpunktes entspricht.
PCT/EP2002/014915 2001-12-19 2002-12-19 Verfahren zur dreidimensionalen messung einer oberfläche WO2003052347A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02804921A EP1459033A2 (de) 2001-12-19 2002-12-19 Verfahren zur dreidimensionalen messung einer oberfläche
AU2002366374A AU2002366374A1 (en) 2001-12-19 2002-12-19 Method for the three-dimensional measurement of a surface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10162663 2001-12-19
DE10162663.0 2001-12-19
DE10219491.2 2002-04-30
DE10219491 2002-04-30

Publications (2)

Publication Number Publication Date
WO2003052347A2 true WO2003052347A2 (de) 2003-06-26
WO2003052347A3 WO2003052347A3 (de) 2004-03-25

Family

ID=26010811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014915 WO2003052347A2 (de) 2001-12-19 2002-12-19 Verfahren zur dreidimensionalen messung einer oberfläche

Country Status (3)

Country Link
EP (1) EP1459033A2 (de)
AU (1) AU2002366374A1 (de)
WO (1) WO2003052347A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135530A1 (de) * 2007-05-02 2008-11-13 Werth Messtechnik Gmbh Verfahren für koordinatenmessgeräte mit bildverarbeitunssensor
DE102011114932A1 (de) * 2011-10-06 2013-04-11 Hommel-Etamic Gmbh Verfahren zur Ermittlung einer Kontur einer Oberfläche
WO2014037274A2 (de) 2012-09-04 2014-03-13 Werth Messtechnik Gmbh Verfahren und vorrichtung zur bestimmung der geometrie eines objektes mit einer zoomoptik
DE102013105102A1 (de) 2013-03-28 2014-10-02 Werth Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung von Merkmalen an Messobjekten
DE102015110289A1 (de) 2015-06-26 2016-12-29 Werth Messtechnik Gmbh Verfahren zur Bestimmung von Messpunkten auf der Oberfläche eines Werkzeugstücks mit einem optischen Sensor
US10728519B2 (en) 2004-06-17 2020-07-28 Align Technology, Inc. Method and apparatus for colour imaging a three-dimensional structure
US10952827B2 (en) 2014-08-15 2021-03-23 Align Technology, Inc. Calibration of an intraoral scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151609A (en) * 1989-08-02 1992-09-29 Hitachi, Ltd. Method of detecting solid shape of object with autofocusing and image detection at each focus level
WO2001033166A1 (de) * 1999-11-03 2001-05-10 Werth Messtechnik Gmbh Kontrastautofokus mit drei optischen wegen
US20010043335A1 (en) * 1993-12-20 2001-11-22 Toshio Norita Measuring system with improved method of reading image data of an object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068608A (ja) * 1996-08-28 1998-03-10 Nikon Corp 高さ測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151609A (en) * 1989-08-02 1992-09-29 Hitachi, Ltd. Method of detecting solid shape of object with autofocusing and image detection at each focus level
US20010043335A1 (en) * 1993-12-20 2001-11-22 Toshio Norita Measuring system with improved method of reading image data of an object
WO2001033166A1 (de) * 1999-11-03 2001-05-10 Werth Messtechnik Gmbh Kontrastautofokus mit drei optischen wegen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08, 30. Juni 1998 (1998-06-30) -& JP 10 068608 A (NIKON CORP), 10. März 1998 (1998-03-10) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10750152B2 (en) 2004-06-17 2020-08-18 Align Technology, Inc. Method and apparatus for structure imaging a three-dimensional structure
US10944953B2 (en) 2004-06-17 2021-03-09 Align Technology, Inc. Method and apparatus for colour imaging a three-dimensional structure
US10924720B2 (en) 2004-06-17 2021-02-16 Align Technology, Inc. Systems and methods for determining surface topology and associated color of an intraoral structure
US10812773B2 (en) 2004-06-17 2020-10-20 Align Technology, Inc. Method and apparatus for colour imaging a three-dimensional structure
US10764557B2 (en) 2004-06-17 2020-09-01 Align Technology, Inc. Method and apparatus for imaging a three-dimensional structure
US10728519B2 (en) 2004-06-17 2020-07-28 Align Technology, Inc. Method and apparatus for colour imaging a three-dimensional structure
US10750151B2 (en) 2004-06-17 2020-08-18 Align Technology, Inc. Method and apparatus for colour imaging a three-dimensional structure
WO2008135530A1 (de) * 2007-05-02 2008-11-13 Werth Messtechnik Gmbh Verfahren für koordinatenmessgeräte mit bildverarbeitunssensor
DE102011114932A1 (de) * 2011-10-06 2013-04-11 Hommel-Etamic Gmbh Verfahren zur Ermittlung einer Kontur einer Oberfläche
DE102012109726A1 (de) 2012-09-04 2014-04-03 Werth Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung der Geometrie eines Objektes mit einer Zoomoptik
WO2014037274A3 (de) * 2012-09-04 2015-03-26 Werth Messtechnik Gmbh Verfahren und vorrichtung zur bestimmung der geometrie eines objektes mit einer telezentrischen zoomoptik
WO2014037274A2 (de) 2012-09-04 2014-03-13 Werth Messtechnik Gmbh Verfahren und vorrichtung zur bestimmung der geometrie eines objektes mit einer zoomoptik
DE102013105102A1 (de) 2013-03-28 2014-10-02 Werth Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung von Merkmalen an Messobjekten
US10952827B2 (en) 2014-08-15 2021-03-23 Align Technology, Inc. Calibration of an intraoral scanner
DE102015110289A1 (de) 2015-06-26 2016-12-29 Werth Messtechnik Gmbh Verfahren zur Bestimmung von Messpunkten auf der Oberfläche eines Werkzeugstücks mit einem optischen Sensor

Also Published As

Publication number Publication date
EP1459033A2 (de) 2004-09-22
AU2002366374A8 (en) 2003-06-30
WO2003052347A3 (de) 2004-03-25
AU2002366374A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
DE102018219129B3 (de) Verfahren und Computerprogrammprodukt zur OCT-Messstrahljustierung
EP1299691B1 (de) Verfahren zum berührungslosen messen von geometrien von gegenständen
DE102016014564B4 (de) Messvorrichtung zum Überwachen eines Bearbeitungsprozesses unter Verwendung von an unterschiedlichen Messpositionen erfassten Messinformationen
DE102017126867A1 (de) Laserbearbeitungssystem und Verfahren zur Laserbearbeitung
EP0185167B1 (de) Optisch-elektronisches Messverfahren, eine dafür erforderliche Einrichtung und deren Verwendung
DE4211875A1 (de) Optischer Abstandssensor
WO2006128733A2 (de) Koordinatenmessgerät sowie verfahren zum messen eines objektes mit einem koordinatenmessgerät
DE102007036850B4 (de) Verfahren zur Korrektur von Nichtlinearitäten der Interferometer einer Koordinaten-Messmaschine
DE102015217332A1 (de) Positionsmessvorrichtung
EP1570234A2 (de) Verfahren zum scannenden messen einer kontur eines werkstücks
EP1459033A2 (de) Verfahren zur dreidimensionalen messung einer oberfläche
EP0771406B1 (de) Einrichtung und verfahren zum messen und berechnen geometrischer parameter eines körpers
DE102004058655A1 (de) Verfahren und Anordnung zum Messen von Geometrien eines Objektes mittels eines Koordinatenmessgerätes
DE102012005966B4 (de) Vorrichtung und Verfahren zur Erzeugung einer flächenhaften Darstellung eines dreidimensionalen Körpers sowie Beleuchtungseinrichtung dazu
DE102007017649A1 (de) Verfahren zum Bestimmen der Fokuslage von mindestens zwei Kanten von Strukturen auf einem Substrat
WO1999053271A1 (de) Verfahren zur punktweise scannenden profilbestimmung einer materialoberfläche nach dem autofokusprinzip sowie koordinatenmessgerät
DE102016013550B3 (de) Profilmesssystem für eine Rauheits- und Konturmessung an einer Oberfläche eines Werkstücks
DE102020122924A1 (de) Verfahren zum Analysieren einer Werkstückoberfläche für einen Laserbearbeitungsprozess und eine Analysevorrichtung zum Analysieren einer Werkstückoberfläche
DE3404901A1 (de) Vorrichtung und verfahren zur optischen pruefung eines objekts
DE102015117276B4 (de) Verfahren und Vorrichtung zum Vermessen eines Messobjekts mit verbesserter Messgenauigkeit
EP3798570B1 (de) Verfahren zur kalibrierung eines optischen messsystems, optisches messsystem und kalibrierobjekt für ein optisches messsystem
DE102022109577B4 (de) Verfahren und Messkamera zur zweidimensionalen Vermessung von Gegenständen
EP1238244B1 (de) Kontrastautofokus mit drei optischen wegen
EP1473540A1 (de) Verfahren zur Bestimmung des Niveaus mehrerer Messpunkte sowie Anordnung dafür
DE102017007590A1 (de) Verfahren und Vorrichtung zur Erfassung von dreidimensionalen Objekten auf Basis des Lichtschnittverfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002804921

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002804921

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002804921

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP