EP3948433B1 - Spherical oscillator for a timepiece mechanism - Google Patents

Spherical oscillator for a timepiece mechanism Download PDF

Info

Publication number
EP3948433B1
EP3948433B1 EP20712626.9A EP20712626A EP3948433B1 EP 3948433 B1 EP3948433 B1 EP 3948433B1 EP 20712626 A EP20712626 A EP 20712626A EP 3948433 B1 EP3948433 B1 EP 3948433B1
Authority
EP
European Patent Office
Prior art keywords
flexible
flexible elements
oscillator
pairs
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20712626.9A
Other languages
German (de)
French (fr)
Other versions
EP3948433A1 (en
Inventor
Thomas MERCIER
Guy Semon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LVMH Swiss Manufactures SA
Original Assignee
LVMH Swiss Manufactures SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LVMH Swiss Manufactures SA filed Critical LVMH Swiss Manufactures SA
Publication of EP3948433A1 publication Critical patent/EP3948433A1/en
Application granted granted Critical
Publication of EP3948433B1 publication Critical patent/EP3948433B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/10Oscillators with torsion strips or springs acting in the same manner as torsion strips, e.g. weight oscillating in a horizontal plane

Definitions

  • the present invention relates to an oscillator for a timepiece mechanism regulator, to a mechanism and to a movement for a timepiece comprising such an oscillator and to a timepiece comprising such a mechanism for a timepiece .
  • the invention relates to a method of manufacturing an oscillator for a timepiece.
  • the invention aims to propose an oscillator having a design different from the existing designs, while preferably being balanced in rotation.
  • WO2015104693 describes an oscillator for a timepiece mechanism regulator comprising a spherical mass connected to a frame by lugs extending in a single plane.
  • an oscillator for a timepiece mechanism regulator comprising a frame, a rigid body and a mechanism for connecting the rigid body to the frame allowing the oscillations of the rigid body with respect to the frame, the connecting mechanism comprising at least a first and a second rigid parts, and a first and a second flexible elements, in the form of angular sectors of crowns, the first and second flexible elements extending mainly in distinct, non-parallel planes, the first and second flexible elements being concentric, the first and second flexible elements each connecting the first and second rigid parts together.
  • a watch movement comprising a mechanism as described above in all its combinations and said energy distribution member.
  • a timepiece comprising a timepiece movement as described above in all its combinations.
  • the flexible blades can be made by superimposing layers of which at least one is flexible with respect to the others, and by deploying the flexible blades so that each of these extends mainly in a plane distinct from the plane of extension of the overlapping layers.
  • the anchor 11 and the regulator 12 form a mechanism 14.
  • a decoupling member 15 can be interposed between the decoupling member and the regulator, which then forms part of the mechanism 14.
  • the energy distribution member 10 may be an escapement wheel rotatably mounted for example on a support plate, so as to be able to rotate around an axis of rotation perpendicular to the median plane XY of the mechanism 14.
  • the member power distribution 10 is biased by the energy storage device 8 in a single direction of rotation.
  • Regulator 12 may comprise an oscillator 13, a first example of which is illustrated in figures 3 to 5 .
  • the oscillator 13 essentially comprises a fixed frame 16, an oscillating rigid body 18 and a mechanism 20 for connecting the frame 16 to the rigid body 18, allowing the oscillations of the rigid body 18 with respect to the frame.
  • the fixed frame 16 is located substantially at the center of the oscillator 13, while the rigid oscillating body 18 is on the periphery.
  • the opposite configuration is also possible, in which the immobilized rigid body 18 becomes a peripheral frame, and in which the "frame" 16, central, oscillates due to the link mechanism 20.
  • the frame 16, fixed comprises a central part 22, having in this case substantially the shape of a rectangular parallelepiped. From this central part 22 extend two first arms 24 which are identical. The first arms 24 are here symmetrical with respect to the center of the oscillator 13. The first arms 24 extend in this case substantially along the direction X of the length of the central part 22.
  • the frame 16 further comprises two second arms 26 identical. The second arms 26 are here symmetrical with respect to the center of the oscillator 13. The second arms 26 extend substantially along the direction Z of the height of the central part 22 of the frame 16. Thus, the second arms 26 extend in a direction Z normal to the direction X of extension of the first arms 24.
  • the second arms 26 can be substantially longer than the first arms 24, to allow fixing of the frame 16 of the oscillator 13 in the housing 2 of the timepiece 1, while allowing the oscillations of oscillator 13.
  • the oscillator 13 also comprises a rigid body 18.
  • the rigid body 18 here comprises a circular part 28. From the circular part 28 of the rigid body 18, extend radially inwards, two pairs of arms 30, 32. Two arms 30 of the first pair of arms 30 are substantially identical and are symmetrical with respect to the center of gravity of the oscillator 13, which here corresponds to the geometric center of the oscillator. Similarly, the two arms 32 of the second pair of arms 32 are substantially identical and are symmetrical with respect to the center of gravity of the oscillator 13. It should be noted here that the first and second arms 30, 32 do not extend as far as frame 16, so as to leave clearance between frame 16 and rigid body 18.
  • Each first arm 24 of the frame 16 is connected to a first arm 30 of the rigid body 18 by a first flexible blade 34.
  • each second arm 26 of the frame 16 is connected to a second arm 32 of the rigid body 18 by a second blade flexible 36.
  • the first and second flexible blades 34, 36 are here identical.
  • the first and second flexible blades 34, 36 here have the shape of an angular crown sector. In this case, the first and second flexible blades 34, 36 have the shape of a quarter crown.
  • the flexible blades 34, 36 can have a substantially constant thickness. Alternatively, however, the first and second flexible blades 34, 36 have a smaller thickness radially towards the center of the oscillator 13.
  • the first and second flexible blades 34, 36 have a substantially trapezoidal section, such that two sides of the section intersect substantially at the center of oscillator 13.
  • the first and second flexible strips 34, 36 are concentric, with a center corresponding here to the center of the oscillator 13.
  • the first and second flexible blades 34, 36 here form the link mechanism 20 between the frame 16 and the rigid body 18 which allows the oscillations of the rigid body 18 with respect to the frame 16.
  • a link mechanism 20 comprising a single first flexible blade 34 and a single second flexible blade 36 already allows oscillations of the rigid body 18 with respect to the frame 16.
  • the implementation of two first flexible blades 34 symmetrical with respect to the center of the oscillator 13 and two second flexible blades 36 also symmetrical with respect to the center of oscillator 13, makes it possible to better balance oscillator 13.
  • each of the first and second flexible blades 34, 36 is here in one piece.
  • the first and second flexible blades can be made of the same material as the frame 16 and the rigid body 18.
  • the flexible blades have an aspect ratio and a slenderness ratio giving them satisfactory flexibility.
  • aspect ratio is meant here the ratio between the width and the thickness of the flexible strip.
  • slenderness we here means the relationship between the length and the thickness of the flexible blade.
  • the length of a flexible strip is defined here as the length of the neutral fiber thereof.
  • the width of a flexible strip is defined as the difference between the outer radius and the inner radius thereof.
  • the thickness of a flexible strip is understood as its third dimension.
  • the thickness of a blade is much less than the length and the width of this blade. In particular, the thickness of a blade is ten times lower, or even a hundred times lower, than the length and/or the width of the blade.
  • the first and second flexible strips 34, 36 can be integral with the frame 16 and/or the rigid body 18.
  • the flexibility of the flexible strips 34, 36 with respect to the frame 16 and the rigid body 18 can in particular be obtained by producing flexible blades 34, 36 whose aspect ratio is lower than the aspect ratio of the frame 16 and/or of the rigid body 18.
  • the aspect ratio of the flexible blades 34, 36 is ten times lower, preferably one hundred times lower than the aspect ratio of the frame 16 and/or of the rigid body 18.
  • the first and second flexible blades can be made of a different material than the one or more material(s) forming the frame 16 and the rigid body 18.
  • the flexible elements can be made by combining rigid parts which are connected in pairs via a flexible part or a flexible blade, that is to say more flexible than the rigid parts.
  • the rigid and flexible parts can be monobloc or added on top of each other.
  • the flexible blades 34, 36 substantially form a quarter crown.
  • the flexible blades 34, 36 can extend over an angular sector corresponding to a central angle greater than 10°, preferably greater than 45°, more preferably greater than 80° and/or less at 180°, preferably less than 135°, more preferably less than 100°.
  • the greater the angle at the center of the flexible blades 34, 36 the greater the risk of these flexible blades buckling. 34, 36 is tall.
  • the smaller the central angle the less flexible the blades 34, 36 are a priori flexible.
  • the average radius of the flexible blades 34, 36 can advantageously be between 0.2 mm and 2 mm.
  • the average radius is understood here as the arithmetic mean of the inner radius and the outer radius.
  • the ratio between the inner radius and the outer radius of each flexible strip 34, 36 may be greater than or equal to 1/10, preferably greater than or equal to 4/10, and/or less than or equal to 9/10, preferably less than or equal to 8/10.
  • the first flexible strips 34 extend in a first plane
  • the second flexible strips 36 extending in a second plane such that the first and second planes are distinct.
  • the first and second planes are also non-parallel.
  • the first and second planes are substantially perpendicular.
  • the flexible blades 34, 36 can in particular extend in planes forming between them an angle of between 40° and 120°.
  • THE figure 4 And 5 illustrate two positions of the oscillator 13.
  • the oscillations of the rigid body 18 with respect to the frame 16 are relatively complex, which substantially correspond to a rotation around a movable instantaneous rotation axis, the rotation axis mobile instant always passing through the center of oscillator 13.
  • Oscillator 13 of figures 3 to 5 can advantageously be carried out in whole or in part, by implementing a method of the "pop-up" type, an example of which is described in the application WO2018/197516 A1 .
  • the flexible blades 34, 36 can be produced by implementing such a process.
  • process of the “pop-up” type is meant here a manufacturing process comprising a superposition of layers (or sheets) of materials, if necessary precut, and a deployment of the multilayer structure thus obtained.
  • Such a method makes it possible to obtain, after deployment, flexible blades with optimal aspect ratios, which extend in distinct planes and not parallel to the mid-plane of the oscillator.
  • FIG 6 illustrates in particular a step of such a process, during which the first and second flexible blades 34, 36 are made, and they are positioned so as to be able to then easily assemble them with the frame 16 and the rigid body 18.
  • the first and third layers 52, 56 allow the production of sacrificial structures, which may comprise flexible connections ensured by the third layer 56. To do this, various cuts are made in the layers 52-64 in order, in particular, to create primers bends and/or incipient fractures. Cuts made in the seventh layer 64 make it possible to define the flexible blades 34, 36.
  • the sacrificial structures form one or more mounting scaffolds - from the English "mounting scaffold" - facilitating the deployment of the assembly 50.
  • the sacrificial structures can make it possible to connect the various movements necessary for the deployment of the multilayer assembly 50.
  • the frame and/or the oscillating body are produced separately from the flexible blades 34, 36 and they are assembled to the flexible blades 34, 36 after the deployment of these flexible blades 34, 36.
  • the frame and/or the rigid bodies can then also be produced by implementing a process of the “pop-up” type, either separately or concomitantly.
  • the frame and/or the oscillating body are produced concomitantly with the flexible blades.
  • the frame and/or the oscillating body can be made on layers separate from the layer in which the flexible blades 34, 36, possibly distinct, are formed.
  • the frame 16 and/or the oscillating body 18 can in particular be made of one of tungsten, molybdenum, gold, silver, tantalum, platinum, alloys comprising these elements, a polymer material charged with particles of density greater than ten, in particular of tungsten particles, steel, a copper alloy, in particular brass. These materials are indeed heavy. Other materials that can be used are also accessible to those skilled in the art.
  • the frame 16 and/or the oscillating body 18 can also be made of a material chosen from silicon, glass, sapphire or alumina, diamond, in particular synthetic diamond, in particular synthetic diamond obtained by chemical vapor deposition process. , titanium, a titanium alloy, in particular an alloy from the Gum metal ® family and an alloy from the Elinvar family, in particular Elinvar ® , Nivarox ® , Thermelast ® , NI-Span-C ® and Precision C ® .
  • Gum metal ® are materials comprising: 23% niobium; 0.7% tantalum; 2% zirconium; 1% oxygen; optionally vanadium; and optionally hafnium.
  • Elinvar alloys are nickel steel alloys comprising nickel and chromium which are very insensitive to temperature.
  • Elinvar ® in particular, is a nickel steel alloy, comprising 59% iron, 36% nickel and 5% chromium.
  • NI-Span-C ® comprises between 41.0 and 43.5% nickel and cobalt; between 4.9 and 5.75% chromium; between 2.20 and 2.75% titanium; between 0.30 and 0.80% aluminum; at most 0.06% carbon; at most 0.80% manganese; at most 1% silicon; at most 0.04% sulphur; at most 0.04% phosphorus; and the 100% iron supplement.
  • Precision C ® includes: 42% nickel; 5.3% chromium; 2.4% titanium; 0.55% aluminum; 0.50% silicon; 0.40% manganese; 0.02% carbon; and the 100% iron supplement.
  • Nivarox ® comprises: between 30 and 40% nickel; between 0.7 and 1.0% beryllium; between 6 and 9% molybdenum and/or 8% chromium; optionally, 1% titanium; between 0.7 and 0.8% manganese; between 0.1 and 0.2% silicon; carbon, up to 0.2%; and iron supplement.
  • Thermelast ® comprises: 42.5% nickel; less than 1% silicon; 5.3% chromium; less than 1% aluminum; less than 1% manganese; 2.5% titanium; and 48% iron.
  • the flexible blades 34, 36 are for example made of steel.
  • THE figures 8 to 12 illustrate a third example of oscillator 13.
  • the elements which are identical or of identical function to the elements of the first example bear the same numerical reference sign.
  • Oscillator 13 of figures 8 to 12 can be deduced from the oscillator 113 of the figure 7 by transforming the oscillator 113 so that the axes perpendicular to the main plane become concurrent. By this transformation, the main plane becomes a sphere, the axes having become concurrent passing through the center of this sphere.
  • the flexible blades 140, 142 of the oscillator 113 are thus replaced by flexible blades (or more generally flexible elements) which are crown portions extending in distinct and non-parallel planes, the flexible blades of the oscillator 13 of figures 8 to 12 further being arranged so as to be concentric.
  • Such an oscillator 13 with eight such flexible blades already has a rigid body, oscillating in rotation.
  • the oscillator of the figure 8 however, comprises eight additional flexible blades, symmetrical to the eight blades indicated above, with respect to the center of oscillator 13. These additional flexible blades allow better balancing of oscillator 13.
  • the oscillating body is found at the center of the oscillator 13 and the frame at the periphery.
  • Oscillator 13 of figures 8 to 12 thus more precisely comprises a frame 16 connected to the rigid body 18, oscillating, by means of a link mechanism 20 allowing the oscillations of the rigid body 18 with respect to the frame 16.
  • the rigid body 18 oscillates in rotation around a axis A, fixed, central of the oscillator 13.
  • the central part 22 of the frame 16 has the shape of a disc, from which extend two first arms 24 which here have substantially the shape of angular sectors of crowns. As in the first example, these first two arms 24 are identical and symmetrical with respect to the center of oscillator 13.
  • Oscillator 13 also comprises a rigid body 18 located in this case radially outwards relative to frame 16.
  • Rigid body 18 comprises, in the example illustrated, a circular part 28 with, in this case, two recesses side 38 in which extend two teeth 40, 42 extending substantially in an orthoradial direction.
  • a first tooth 40 is located radially closer to the center of the oscillator 13 than a second tooth 42.
  • This shape of the rigid body 18 with two lateral recesses 38 allows better balancing of the rigid body.
  • a single lateral recess 38 with two teeth 40, 42 may be sufficient to implement the oscillator and associated it with an escapement, in particular a Graham-type escapement.
  • a second recess 38 may be provided for the purpose of balancing the rigid body 18, this second recess 38 possibly not being provided with teeth 40, 42.
  • the rigid body 18 also comprises, in the example illustrated, two identical first arms 30, which are in this case symmetrical with respect to the center of the oscillator 13.
  • the first two arms 30 of the rigid body 18 have here substantially the shape of an angular crown sector.
  • the frame 16 is here connected to the rigid body 18 by means of a link mechanism 20 described below, allowing the oscillations of the rigid body 18 relative to the frame 16, substantially by rotation around an axis A normal to the common plane extension of the frame 16 and the rigid body 18.
  • the link mechanism 20 comprises, in the example illustrated in figures 8 to 12 , two first pairs of flexible blades 44, each first pair of flexible blades 44 connecting an arm 24 of the frame 16 to a first intermediate piece 46, rigid, respectively.
  • the first two intermediate pieces 46 are substantially identical.
  • the first two intermediate pieces 46 have the shape of an angular sector of a truncated cone.
  • the first intermediate pieces 46 can take many other shapes, in particular other portions of quadric surfaces.
  • the first two intermediate pieces 46 extend in line with the arms 24 of the frame 16 and the arms 30 of the rigid body 18.
  • Each first intermediate piece 44 is also connected to one of the arms 30 of the rigid body 18, by a second pair of flexible blades 48.
  • each intermediate piece 44 essentially has the function of connecting a first pair of flexible blades 44 to a second pair of flexible blades 48.
  • the angular difference between the planes along which the flexible blades 44 of a first pair of flexible blades 44 extend is substantially identical to the angular difference between the planes along which the flexible blades 44 extend.
  • the flexible blades 48 of a second pair of flexible blades 48 can extend along planes inclined with respect to the vertical direction, normal to the plane of extension of the frame and of the rigid body in the example shown.
  • the flexible blades 44, 48 of the first and second pairs of flexible blades are substantially identical to the flexible blades of the first example described above, in particular as regards their shapes.
  • link mechanism 20 is substantially symmetrical with respect to the center of oscillator 13.
  • each arm 20 of frame 16 is connected to a second intermediate part 50, image respective of a first intermediate piece with respect to the center of the oscillator 13, by means of a third pair of flexible blades 52.
  • Each of the two second intermediate pieces 50 is substantially identical to the first intermediate pieces 46 of which they are symmetrical with respect to at the center of the oscillator 13.
  • Each of the flexible blades 52 of the third pairs of flexible blades 52 is symmetrical with a flexible blade 44 of a first pair of flexible blades 44, with respect to the center of the oscillator 13.
  • each of the second intermediate pieces 50 is connected to a respective arm 30 of the rigid body 18 by means of a fourth pair of flexible blades 54.
  • Each of the flexible blades 54 of the fourth pairs of flexible blades 54 is symmetrical with a flexible blade 48 of the second pairs of flexible blades, with respect to the center of the oscillator 13.
  • the first, second, third and fourth flexible blades 44, 48, 52, 54 are concentric, their center corresponding to the center of the oscillator 13.
  • each of the pairs of first and third flexible blades 44, 52 is connected on the one hand to the frame 16 and, on the other hand, to an intermediate piece 46, 50, which is rigid.
  • first, second, third and fourth flexible blades 44, 48, 52, 54 are symmetrical with respect to the center of gravity of the oscillator 13.
  • the first, second, third and fourth flexible blades 44, 48, 52, 54 are also, in the example illustrated, symmetrical with respect to the plane of extension of the rigid body 24.
  • This second example has the advantage that the rigid body 18 oscillates substantially in its plane of extension, as illustrated by the figure 10 And 12 . More precisely, the rigid body 18 oscillates in rotation with respect to the frame 16.
  • the second example of oscillator 13 can thus, in particular, be implemented to cooperate with a conventional Graham-type escapement.
  • the two oscillators 13 described above are shaped to oscillate at a frequency greater than or equal to 4 Hz, preferably greater than or equal to 5 Hz, and/or less than or equal to 500 Hz, preferably less than or equal to 50 Hz, preferably still less than or equal to 15 Hz.
  • the second example of oscillator 13 illustrated in figures 8 to 12 can advantageously be produced in whole or in part by means of a process of the “pop-up” type.
  • such a method makes it possible to produce oscillators, in particular the blades of the oscillators, having reduced dimensions, with high positioning precision of the various elements of the oscillators, relative to each other.
  • flexible blades are used.
  • flexible elements can more generally be implemented in the link mechanism 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)

Description

Domaine techniqueTechnical area

La présente invention se rapporte à un oscillateur pour régulateur de mécanisme de pièce d'horlogerie, à un mécanisme et à un mouvement pour pièce d'horlogerie comprenant un tel oscillateur et à une pièce d'horlogerie comprenant un tel mécanisme pour pièce d'horlogerie. Selon un autre aspect, l'invention se rapporte à un procédé de fabrication d'un oscillateur pour pièce d'horlogerie.The present invention relates to an oscillator for a timepiece mechanism regulator, to a mechanism and to a movement for a timepiece comprising such an oscillator and to a timepiece comprising such a mechanism for a timepiece . According to another aspect, the invention relates to a method of manufacturing an oscillator for a timepiece.

Art antérieurPrior art

On connaît des mécanismes pour pièce d'horlogerie comprenant :

  • un régulateur ou oscillateur, comprenant au moins un premier organe réglant monté élastiquement sur un support pour osciller,
  • une ancre adaptée pour coopérer avec un organe de distribution d'énergie pourvu de dents et destiné à être sollicité par un dispositif de stockage d'énergie, l'ancre étant commandée par le premier organe réglant pour régulièrement et alternativement bloquer et libérer l'organe de distribution d'énergie, de sorte que l'organe de distribution d'énergie se déplace pas à pas sous la sollicitation du dispositif de stockage d'énergie selon un cycle de mouvement répétitif. L'ancre est adaptée pour transférer de l'énergie mécanique au régulateur au cours de ce cycle de mouvement répétitif. L'organe oscillant du régulateur a généralement une forme de roue plane. Il est classiquement monté rotatif sur un arbre central.
There are known mechanisms for timepieces comprising:
  • a regulator or oscillator, comprising at least a first regulating member elastically mounted on a support for oscillating,
  • an anchor adapted to cooperate with an energy distribution member provided with teeth and intended to be acted upon by an energy storage device, the anchor being controlled by the first regulating member to regularly and alternately block and release the member of energy distribution, so that the energy distribution member moves step by step under the stress of the energy storage device according to a cycle of repetitive movement. The anchor is adapted to transfer mechanical energy to the regulator during this repetitive motion cycle. The oscillating member of the regulator generally has the shape of a flat wheel. It is conventionally rotatably mounted on a central shaft.

L'invention vise à proposer un oscillateur présentant un design différent des designs existant, tout en étant de préférence équilibré en rotation.The invention aims to propose an oscillator having a design different from the existing designs, while preferably being balanced in rotation.

WO2015104693 décrit un oscillateur pour régulateur de mécanisme de pièce d'horlogerie comprenant une masse sphérique reliée à un cadre par des pattes s'étendant dans un plan unique. WO2015104693 describes an oscillator for a timepiece mechanism regulator comprising a spherical mass connected to a frame by lugs extending in a single plane.

Résumé de la descriptionDescription Summary

À cette fin, il est proposé un oscillateur pour régulateur de mécanisme de pièce d'horlogerie comprenant un bâti, un corps rigide et un mécanisme de liaison du corps rigide au bâti permettant les oscillations du corps rigide par rapport au bâti, le mécanisme de liaison comprenant au moins une première et une deuxième pièces rigides, et un premier et un deuxième éléments flexibles, en forme de secteurs angulaires de couronnes, les premier et deuxième éléments flexibles s'étendant principalement dans des plans distincts, non parallèles, les premier et deuxième éléments flexibles étant concentriques, les premier et deuxième éléments flexibles reliant chacun les première et deuxièmes pièces rigides, ensemble.To this end, there is proposed an oscillator for a timepiece mechanism regulator comprising a frame, a rigid body and a mechanism for connecting the rigid body to the frame allowing the oscillations of the rigid body with respect to the frame, the connecting mechanism comprising at least a first and a second rigid parts, and a first and a second flexible elements, in the form of angular sectors of crowns, the first and second flexible elements extending mainly in distinct, non-parallel planes, the first and second flexible elements being concentric, the first and second flexible elements each connecting the first and second rigid parts together.

L'oscillateur peut présenter une ou plusieurs des caractéristiques suivantes, prises seules ou en combinaison :

  • le mécanisme de liaison comprend au moins un troisième élément flexible et au moins un quatrième élément flexible, symétriques des premier et deuxième éléments flexibles, respectivement, par rapport au centre commun des premier et deuxième éléments flexibles ;
  • les premier et deuxième éléments flexibles sont identiques ;
  • le centre commun des premier et deuxième éléments flexibles correspond au centre de gravité de l'oscillateur ;
  • l'un et/ou l'autre des premier et deuxième éléments flexibles s'étend/ent sur un secteur angulaire compris entre 10° et 180°, de préférence entre 45° et 135°, de préférence encore 80° et 100° ;
  • les premier et deuxième éléments flexibles s'étendent dans des plans formant l'un par rapport à l'autre, un angle compris entre 40° et 120° ;
  • les premier et deuxième éléments flexibles sont d'épaisseurs constantes ;
  • le rayon moyen du premier et/ou du deuxième élément/s flexible/s est/sont compris entre 0,2 mm et 2 mm ;
  • le premier et/ou le deuxième élément/s flexible/s est/sont des lames flexibles ;
  • le premier et/ou le deuxième élément/s flexible/s est/sont formé/s d'une pluralité de parties rigides, de préférence sensiblement planes, solidarisées deux à deux au moyen d'une partie flexible ;
  • le premier et/ou le deuxième éléments flexibles et au moins l'une parmi la première pièce rigide et la deuxième pièce rigide sont réalisés en mettant en oeuvre un procédé de superposition de couches planes et déploiement de la structure multicouche ainsi obtenue ;
  • l'oscillateur est conçu pour osciller à une fréquence supérieure ou égale à 4 Hz, de préférence supérieure ou égale à 5 Hz, et/ou inférieure ou égale à 500 Hz, de préférence inférieure ou égale à 50 Hz, de préférence encore inférieure ou égale à 15 Hz ;
  • la première pièce rigide est le bâti et la deuxième pièce rigide est le corps rigide ;
  • le mécanisme de liaison comprend deux premières paires d'éléments flexibles, chacun des éléments flexibles de chacune des premières paires d'éléments flexibles reliant le bâti à une première pièce rigide intermédiaire, respective, et deux deuxièmes paires d'éléments flexibles, chacun des éléments flexibles de chacune des deuxièmes paires d'éléments flexibles reliant une première pièce rigide intermédiaire, respective, au corps rigide, les éléments des premières et deuxièmes paires d'éléments flexibles étant en forme de secteurs angulaires de couronnes, les éléments flexibles des première et deuxième paires d'éléments flexibles s'étendant principalement dans des plans distincts deux à deux, non parallèles, les éléments flexibles des première et deuxième paires d'éléments flexibles étant concentriques ; et
  • le mécanisme de liaison comprend en outre deux troisièmes paires d'éléments flexibles, chacun des éléments flexibles de chacune des troisièmes paires d'éléments flexibles reliant le bâti à une deuxième pièce rigide intermédiaire, respective, et deux quatrièmes paires d'éléments flexibles, chacun des éléments flexibles de chacune des quatrièmes paires d'éléments flexibles reliant l'une des deuxièmes pièces rigides intermédiaires, respective, au corps rigide, les premières et troisièmes paires d'éléments flexibles étant symétriques par rapport au centre des éléments flexibles de la première paire d'éléments flexibles et les deuxièmes et quatrièmes paires d'éléments flexibles étant symétriques par rapport au centre des éléments flexibles de la deuxième paire d'éléments flexibles.
The oscillator may exhibit one or more of the following characteristics, taken alone or in combination:
  • the connecting mechanism comprises at least one third flexible element and at least one fourth flexible element, symmetrical with the first and second flexible elements, respectively, with respect to the common center of the first and second flexible elements;
  • the first and second flexible elements are identical;
  • the common center of the first and second flexible elements corresponds to the center of gravity of the oscillator;
  • one and/or the other of the first and second flexible elements extend/ent over an angular sector comprised between 10° and 180°, preferably between 45° and 135°, more preferably 80° and 100°;
  • the first and second flexible elements extend in planes forming, relative to each other, an angle comprised between 40° and 120°;
  • the first and second flexible elements are of constant thickness;
  • the average radius of the first and/or of the second flexible element/s is/are between 0.2 mm and 2 mm;
  • the first and/or the second flexible element/s is/are flexible blades;
  • the first and/or the second flexible element/s is/are formed of a plurality of rigid parts, preferably substantially planar, joined in pairs by means of a flexible part;
  • the first and/or the second flexible elements and at least one of the first rigid part and the second rigid part are made by implementing a method of superimposing flat layers and deploying the multilayer structure thus obtained;
  • the oscillator is designed to oscillate at a frequency greater than or equal to 4 Hz, preferably greater than or equal to 5 Hz, and/or less than or equal to 500 Hz, preferably less than or equal to 50 Hz, more preferably less than or equal to 15 Hz;
  • the first rigid part is the frame and the second rigid part is the rigid body;
  • the connection mechanism comprises two first pairs of flexible elements, each of the flexible elements of each of the first pairs of flexible elements connecting the frame to a first intermediate rigid part, respectively, and two second pairs of flexible elements, each of the elements flexible elements of each of the second pairs of flexible elements connecting a respective first intermediate rigid part to the rigid body, the elements of the first and second pairs of flexible elements being in the form of angular sectors of crowns, the flexible elements of the first and second pairs of flexible elements extending mainly in distinct two-by-two, non-parallel planes, the flexible elements of the first and second pairs of flexible elements being concentric; And
  • the connection mechanism further comprises two third pairs of flexible elements, each of the flexible elements of each of the third pairs of flexible elements connecting the frame to a second intermediate rigid part, respectively, and two fourth pairs of flexible elements, each flexible elements of each of the fourth pairs of flexible elements connecting one of the respective second intermediate rigid parts to the rigid body, the first and third pairs of flexible elements being symmetrical with respect to the center of the flexible elements of the first pair of flexible elements and the second and fourth pairs of flexible elements being symmetrical with respect to the center of the flexible elements of the second pair of flexible elements.

Selon un autre aspect, il est proposé un mécanisme pour pièce d'horlogerie comprenant :

  • un oscillateur tel que décrit ci-avant dans toutes ses combinaisons,
  • une ancre adaptée pour coopérer avec un organe de distribution d'énergie et destiné à être sollicité par un dispositif de stockage d'énergie, ladite ancre étant commandée par l'oscillateur pour régulièrement et alternativement bloquer et libérer l'organe de distribution d'énergie, de sorte que ledit organe de distribution d'énergie se déplace pas à pas sous la sollicitation du dispositif de stockage d'énergie selon un cycle de mouvement répétitif, et ladite ancre étant adaptée pour transférer de l'énergie mécanique à l'oscillateur au cours de ce cycle de mouvement répétitif.
According to another aspect, there is proposed a mechanism for a timepiece comprising:
  • an oscillator as described above in all its combinations,
  • an anchor adapted to cooperate with an energy distribution member and intended to be acted upon by an energy storage device, said anchor being controlled by the oscillator to regularly and alternately block and release the energy distribution member , so that said energy distribution member moves step by step under the stress of the storage device of energy according to a cycle of repetitive movement, and said anchor being adapted to transfer mechanical energy to the oscillator during this cycle of repetitive movement.

L'oscillateur peut comporter en outre :

  • un deuxième organe oscillant monté élastiquement sur le bâti pour osciller, les premier et deuxième organes oscillant étant reliés entre eux pour avoir toujours des mouvements symétriques et opposés, et
  • un organe d'équilibrage qui est commandé par le deuxième organe oscillant pour se déplacer selon des mouvements symétriques et opposés à l'ancre.
The oscillator may also include:
  • a second oscillating member elastically mounted on the frame to oscillate, the first and second oscillating members being interconnected to always have symmetrical and opposite movements, and
  • a balancing member which is controlled by the second oscillating member to move according to movements symmetrical and opposite to the anchor.

Selon un autre aspect, il est proposé un mouvement horloger comprenant un mécanisme tel que décrit ci-avant dans toutes ses combinaisons et ledit organe de distribution d'énergie.According to another aspect, a watch movement is proposed comprising a mechanism as described above in all its combinations and said energy distribution member.

Selon un autre aspect, il est proposé une pièce d'horlogerie comprenant un mouvement horloger tel que décrit ci-avant dans toutes ses combinaisons.According to another aspect, a timepiece is proposed comprising a timepiece movement as described above in all its combinations.

Selon encore un autre aspect, il est proposé un procédé pour réaliser un oscillateur tel que décrit ci-avant dans toutes ses combinaisons, comprenant :

  • la réalisation de lames flexibles ;
  • la superposition de couches formant au moins l'un parmi le bâti, le corps rigide, la première pièce rigide et la deuxième pièce rigide ; et
  • la fixation des lames flexibles à l'au moins un parmi le bâti, le corps rigide, la première pièce rigide et la deuxième pièce rigide.
According to yet another aspect, a method is proposed for producing an oscillator as described above in all its combinations, comprising:
  • the production of flexible blades;
  • the superposition of layers forming at least one of the frame, the rigid body, the first rigid part and the second rigid part; And
  • fixing the flexible blades to at least one of the frame, the rigid body, the first rigid part and the second rigid part.

Les lames flexibles peuvent être réalisées par superposition de couches dont au moins une est flexible par rapport aux autres, et par déploiement des lames flexibles de manière que chacune de celles-ci s'étende principalement dans un plan distinct du plan d'extension de la superposition de couches.The flexible blades can be made by superimposing layers of which at least one is flexible with respect to the others, and by deploying the flexible blades so that each of these extends mainly in a plane distinct from the plane of extension of the overlapping layers.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et à l'analyse des dessins annexés, sur lesquels :

  • [Fig. 1] est une vue schématique d'une pièce d'horlogerie comprenant un mécanisme pour pièce d'horlogerie ;
  • [Fig. 2] est un schéma bloc du mouvement de la pièce d'horlogerie de la figure 1 ;
  • [Fig. 3] est une vue en perspective d'un premier exemple d'oscillateur pouvant être mis en oeuvre dans le mouvement de la figure 2, au repos ;
  • [Fig. 4] est une vue en perspective du premier exemple d'oscillateur dans une première position d'oscillation ;
  • [Fig. 5] est une vue en perspective du premier exemple d'oscillateur dans une deuxième position d'oscillation ;
  • [Fig. 6] illustre une étape d'un exemple de procédé de réalisation du premier exemple d'oscillateur ;
  • [Fig. 7] représente schématiquement un deuxième exemple d'oscillateur ;
  • [Fig. 8] est une vue en perspective d'un troisième exemple d'oscillateur ;
  • [Fig. 9] est une vue de dessus du troisième exemple d'oscillateur, dans une première position d'oscillation ;
  • [Fig. 10] est une vue de côté du troisième exemple d'oscillateur, dans la première position d'oscillation ;
  • [Fig. 11] est une vue de dessus du troisième exemple d'oscillateur, dans une deuxième position d'oscillation ; et
  • [Fig. 12] est une vue de côté du troisième exemple d'oscillateur, dans la deuxième position d'oscillation.
Other characteristics, details and advantages of the invention will appear on reading the detailed description below, and on analyzing the appended drawings, in which:
  • [ Fig. 1 ] is a schematic view of a timepiece comprising a timepiece mechanism;
  • [ Fig. 2 ] is a block diagram of the movement of the timepiece of the figure 1 ;
  • [ Fig. 3 ] is a perspective view of a first example of an oscillator that can be implemented in the movement of the picture 2 , at rest ;
  • [ Fig. 4 ] is a perspective view of the first example oscillator in a first oscillating position;
  • [ Fig. 5 ] is a perspective view of the first example of an oscillator in a second oscillation position;
  • [ Fig. 6 ] illustrates a step of an exemplary method for producing the first exemplary oscillator;
  • [ Fig. 7 ] schematically represents a second example of an oscillator;
  • [ Fig. 8 ] is a perspective view of a third example of an oscillator;
  • [ Fig. 9 ] is a top view of the third oscillator example, in a first oscillating position;
  • [ Fig. 10 ] is a side view of the third example oscillator, in the first oscillation position;
  • [ Fig. 11 ] is a top view of the third oscillator example, in a second oscillation position; And
  • [ Fig. 12 ] is a side view of the third oscillator example, in the second oscillating position.

Description détailléedetailed description

Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.In the various figures, the same references designate identical or similar elements.

La figure 1 représente une pièce d'horlogerie 1 telle qu'une montre, comprenant :

  • un boîtier 2,
  • un mouvement horloger 3 contenu dans le boîtier 2,
  • généralement, un remontoir 4,
  • un cadran 5,
  • un verre 6 recouvrant le cadran 5,
  • un indicateur de temps 7, comprenant par exemple deux aiguilles 7a, 7b respectivement pour les heures et les minutes, disposé entre le verre 6 et le cadran 5 et actionné par le mouvement horloger 3.
There figure 1 represents a timepiece 1 such as a watch, comprising:
  • a box 2,
  • a watch movement 3 contained in the case 2,
  • generally, a crown 4,
  • a dial 5,
  • a glass 6 covering the dial 5,
  • a time indicator 7, comprising for example two hands 7a, 7b respectively for the hours and the minutes, arranged between the crystal 6 and the dial 5 and actuated by the watch movement 3.

Comme représenté schématiquement sur la figure 2, le mouvement horloger 3 peut comprendre par exemple :

  • un dispositif 8 de stockage d'énergie mécanique, généralement un ressort de barillet,
  • une transmission mécanique 9 mue par le dispositif 8 de stockage d'énergie mécanique,
  • l'indicateur de temps 7 susmentionné,
  • un organe de distribution d'énergie 10 (par exemple une roue d'échappement),
  • une ancre 11 adaptée pour séquentiellement retenir et libérer l'organe de distribution d'énergie 10,
  • un régulateur 12, qui est un mécanisme comportant un organe réglant inertiel oscillant (ou oscillateur) 13, contrôlant l'ancre 11 pour la déplacer régulièrement de façon que l'organe de distribution d'énergie 10 soit déplacé pas à pas à intervalles de temps constants.
As shown schematically in the figure 2 , the watch movement 3 can comprise for example:
  • a device 8 for storing mechanical energy, generally a mainspring,
  • a mechanical transmission 9 moved by the device 8 for storing mechanical energy,
  • the aforementioned time indicator 7,
  • an energy distribution member 10 (for example an escape wheel),
  • an anchor 11 adapted to sequentially retain and release the energy distribution member 10,
  • a regulator 12, which is a mechanism comprising an oscillating inertial regulating member (or oscillator) 13, controlling the anchor 11 to move it regularly so that the energy distribution member 10 is moved step by step at time intervals constants.

L'ancre 11 et le régulateur 12 forment un mécanisme 14.The anchor 11 and the regulator 12 form a mechanism 14.

Un organe de découplage 15 peut être interposé entre l'organe de découplage et le régulateur, qui fait alors partie du mécanisme 14.A decoupling member 15 can be interposed between the decoupling member and the regulator, which then forms part of the mechanism 14.

L'organe de distribution d'énergie 10 peut être une roue d'échappement montée rotative par exemple sur une platine de support, de façon à pouvoir tourner autour d'un axe de rotation perpendiculaire au plan médian XY du mécanisme 14. L'organe de distribution d'énergie 10 est sollicité par le dispositif de stockage d'énergie 8 dans un unique sens de rotation.The energy distribution member 10 may be an escapement wheel rotatably mounted for example on a support plate, so as to be able to rotate around an axis of rotation perpendicular to the median plane XY of the mechanism 14. The member power distribution 10 is biased by the energy storage device 8 in a single direction of rotation.

Le régulateur 12 peut comporter un oscillateur 13, dont un premier exemple est illustré aux figures 3 à 5.Regulator 12 may comprise an oscillator 13, a first example of which is illustrated in figures 3 to 5 .

Tel que cela est visible sur ces figures, l'oscillateur 13 comprend essentiellement un bâti 16 fixe, un corps rigide 18 oscillant et un mécanisme 20 de liaison du bâti 16 au corps rigide 18, permettant les oscillations du corps rigide 18 par rapport au bâti. Il est à noter ici que, selon l'exemple illustré, le bâti 16 fixe est situé sensiblement au centre de l'oscillateur 13, alors que le corps rigide 18 oscillant est en périphérie. Cependant, la configuration opposée est également envisageable, dans laquelle le corps rigide 18 immobilisé devient un bâti périphérique, et dans laquelle le « bâti » 16, central, oscille du fait du mécanisme de liaison 20.As can be seen in these figures, the oscillator 13 essentially comprises a fixed frame 16, an oscillating rigid body 18 and a mechanism 20 for connecting the frame 16 to the rigid body 18, allowing the oscillations of the rigid body 18 with respect to the frame. . It should be noted here that, according to the example illustrated, the fixed frame 16 is located substantially at the center of the oscillator 13, while the rigid oscillating body 18 is on the periphery. However, the opposite configuration is also possible, in which the immobilized rigid body 18 becomes a peripheral frame, and in which the "frame" 16, central, oscillates due to the link mechanism 20.

Plus précisément, ici, le bâti 16, fixe, comprend une partie centrale 22, ayant en l'espèce sensiblement la forme d'un parallélépipède rectangle. Depuis cette partie centrale 22 s'étendent deux premiers bras 24 identiques. Les premiers bras 24 sont ici symétriques par rapport au centre de l'oscillateur 13. Les premiers bras 24 s'étendent en l'espèce sensiblement selon la direction X de la longueur de la partie centrale 22. Le bâti 16 comprend encore deux deuxièmes bras 26 identiques. Les deuxièmes bras 26 sont ici symétriques par rapport au centre de l'oscillateur 13. Les deuxièmes bras 26 s'étendent sensiblement selon la direction Z de la hauteur de la partie centrale 22 du bâti 16. Ainsi, les deuxièmes bras 26 s'étendent selon une direction Z normale à la direction X d'extension des premiers bras 24. Les deuxièmes bras 26 peuvent être sensiblement plus longs que les premiers bras 24, pour permettre une fixation du bâti 16 de l'oscillateur 13 dans le boîtier 2 de la pièce d'horlogerie 1, tout en permettant les oscillations de l'oscillateur 13.More specifically, here, the frame 16, fixed, comprises a central part 22, having in this case substantially the shape of a rectangular parallelepiped. From this central part 22 extend two first arms 24 which are identical. The first arms 24 are here symmetrical with respect to the center of the oscillator 13. The first arms 24 extend in this case substantially along the direction X of the length of the central part 22. The frame 16 further comprises two second arms 26 identical. The second arms 26 are here symmetrical with respect to the center of the oscillator 13. The second arms 26 extend substantially along the direction Z of the height of the central part 22 of the frame 16. Thus, the second arms 26 extend in a direction Z normal to the direction X of extension of the first arms 24. The second arms 26 can be substantially longer than the first arms 24, to allow fixing of the frame 16 of the oscillator 13 in the housing 2 of the timepiece 1, while allowing the oscillations of oscillator 13.

L'oscillateur 13 comprend également un corps rigide 18. Le corps rigide 18 comprend ici une partie circulaire 28. De la partie circulaire 28 du corps rigide 18, s'étendent radialement vers l'intérieur, deux paires de bras 30, 32. Les deux bras 30 de la première paire de bras 30 sont sensiblement identiques et sont symétriques par rapport au centre de gravité de l'oscillateur 13, lequel correspond ici au centre géométrique de l'oscillateur. De même, les deux bras 32 de la deuxième paire de bras 32 sont sensiblement identiques et sont symétriques par rapport au centre de gravité de l'oscillateur 13. Il est à noter ici que les premiers et deuxièmes bras 30, 32 ne s'étendent pas jusqu'au bâti 16, de manière à laisser un jeu entre le bâti 16 et le corps rigide 18.The oscillator 13 also comprises a rigid body 18. The rigid body 18 here comprises a circular part 28. From the circular part 28 of the rigid body 18, extend radially inwards, two pairs of arms 30, 32. two arms 30 of the first pair of arms 30 are substantially identical and are symmetrical with respect to the center of gravity of the oscillator 13, which here corresponds to the geometric center of the oscillator. Similarly, the two arms 32 of the second pair of arms 32 are substantially identical and are symmetrical with respect to the center of gravity of the oscillator 13. It should be noted here that the first and second arms 30, 32 do not extend as far as frame 16, so as to leave clearance between frame 16 and rigid body 18.

Chaque premier bras 24 du bâti 16 est relié à un premier bras 30 du corps rigide 18 par une première lame flexible 34. De même, chaque deuxième bras 26 du bâti 16 est relié à un deuxième bras 32 du corps rigide 18 par une deuxième lame flexible 36. Les premières et deuxièmes lames flexibles 34, 36 sont ici identiques. Les premières et deuxièmes lames flexibles 34, 36 ont ici la forme d'un secteur angulaire de couronne. En l'espèce, les premières et deuxièmes lames flexibles 34, 36 ont la forme d'un quart de couronne. Les lames flexibles 34, 36 peuvent présenter une épaisseur sensiblement constante. En variante, cependant, les premières et deuxièmes lames flexibles 34, 36 ont une épaisseur plus faible radialement vers le centre de l'oscillateur 13. Par exemple, les premières et deuxièmes lames flexibles 34, 36 ont une section sensiblement trapézoïdale, telle que deux côtés de la section sont sécants sensiblement au centre de l'oscillateur 13.Each first arm 24 of the frame 16 is connected to a first arm 30 of the rigid body 18 by a first flexible blade 34. Similarly, each second arm 26 of the frame 16 is connected to a second arm 32 of the rigid body 18 by a second blade flexible 36. The first and second flexible blades 34, 36 are here identical. The first and second flexible blades 34, 36 here have the shape of an angular crown sector. In this case, the first and second flexible blades 34, 36 have the shape of a quarter crown. The flexible blades 34, 36 can have a substantially constant thickness. Alternatively, however, the first and second flexible blades 34, 36 have a smaller thickness radially towards the center of the oscillator 13. For example, the first and second flexible blades 34, 36 have a substantially trapezoidal section, such that two sides of the section intersect substantially at the center of oscillator 13.

Les premières et deuxièmes lames flexibles 34, 36 sont concentriques, de centre correspondant ici au centre de l'oscillateur 13.The first and second flexible strips 34, 36 are concentric, with a center corresponding here to the center of the oscillator 13.

Les premières et deuxièmes lames flexibles 34, 36 forment ici le mécanisme 20 de liaison entre le bâti 16 et le corps rigide 18 qui permet les oscillations du corps rigide 18 par rapport au bâti 16. Il est à noter ici qu'un mécanisme de liaison 20 comprenant une unique première lame flexible 34 et une unique deuxième lame flexible 36 permet déjà des oscillations du corps rigide 18 par rapport au bâti 16. Cependant, la mise en oeuvre de deux premières lames flexibles 34 symétriques par rapport au centre de l'oscillateur 13 et de deux deuxièmes lames flexibles 36 également symétriques par rapport au centre de l'oscillateur 13, permet de mieux équilibrer l'oscillateur 13.The first and second flexible blades 34, 36 here form the link mechanism 20 between the frame 16 and the rigid body 18 which allows the oscillations of the rigid body 18 with respect to the frame 16. It should be noted here that a link mechanism 20 comprising a single first flexible blade 34 and a single second flexible blade 36 already allows oscillations of the rigid body 18 with respect to the frame 16. However, the implementation of two first flexible blades 34 symmetrical with respect to the center of the oscillator 13 and two second flexible blades 36 also symmetrical with respect to the center of oscillator 13, makes it possible to better balance oscillator 13.

Il est également à noter que chacune des premières et deuxièmes lames flexibles 34, 36 est ici monobloc. Les premières et deuxièmes lames flexibles peuvent être réalisées dans un même matériau que le bâti 16 et le corps rigide 18. Les lames flexibles présentent un rapport d'aspect et un rapport d'élancement leur assurant une flexibilité satisfaisante. Par rapport d'aspect, on entend ici le rapport entre la largeur et l'épaisseur de la lame flexible. Par rapport d'élancement, on entend ici le rapport entre la longueur et l'épaisseur de la lame flexible. On définit ici la longueur d'une lame flexible comme la longueur de la fibre neutre de celle-ci. On définit, dans cet exemple où les lames flexibles sont des secteurs de couronnes, la largeur d'une lame flexible comme la différence entre le rayon extérieur et le rayon intérieur de celle-ci. L'épaisseur d'une lame flexible s'entend comme la troisième dimension de celle-ci. Typiquement, l'épaisseur d'une lame est bien inférieure à la longueur et la largeur de cette lame. Notamment, l'épaisseur d'une lame est dix fois inférieure, voire cent fois inférieure, à la longueur et/ou la largeur de la lame.It should also be noted that each of the first and second flexible blades 34, 36 is here in one piece. The first and second flexible blades can be made of the same material as the frame 16 and the rigid body 18. The flexible blades have an aspect ratio and a slenderness ratio giving them satisfactory flexibility. By aspect ratio is meant here the ratio between the width and the thickness of the flexible strip. With respect to slenderness, we here means the relationship between the length and the thickness of the flexible blade. The length of a flexible strip is defined here as the length of the neutral fiber thereof. In this example where the flexible strips are crown sectors, the width of a flexible strip is defined as the difference between the outer radius and the inner radius thereof. The thickness of a flexible strip is understood as its third dimension. Typically, the thickness of a blade is much less than the length and the width of this blade. In particular, the thickness of a blade is ten times lower, or even a hundred times lower, than the length and/or the width of the blade.

Les premières et deuxièmes lames flexibles 34, 36 peuvent être monoblocs avec le bâti 16 et/ou le corps rigide 18. Dans ce cas, comme indiqué précédemment, la flexibilité des lames flexibles 34, 36 par rapport au bâti 16 et au corps rigide 18 peut notamment être obtenue en réalisant des lames flexibles 34, 36 dont le rapport d'aspect est inférieur au rapport d'aspect du bâti 16 et/ou du corps rigide 18. Notamment, le rapport d'aspect des lames flexibles 34, 36 est dix fois inférieur, de préférence cent fois inférieur au rapport d'aspect du bâti 16 et/ou du corps rigide 18. Dans d'autres modes de réalisation, les premières et deuxièmes lames flexibles peuvent être réalisées dans un matériau différent que le ou les matériau(x) formant le bâti 16 et le corps rigide 18.The first and second flexible strips 34, 36 can be integral with the frame 16 and/or the rigid body 18. In this case, as indicated above, the flexibility of the flexible strips 34, 36 with respect to the frame 16 and the rigid body 18 can in particular be obtained by producing flexible blades 34, 36 whose aspect ratio is lower than the aspect ratio of the frame 16 and/or of the rigid body 18. In particular, the aspect ratio of the flexible blades 34, 36 is ten times lower, preferably one hundred times lower than the aspect ratio of the frame 16 and/or of the rigid body 18. In other embodiments, the first and second flexible blades can be made of a different material than the one or more material(s) forming the frame 16 and the rigid body 18.

Cependant, d'autres éléments flexibles peuvent être mis en oeuvre en lieu et place des lames flexibles 34, 36. Par exemple, les éléments flexibles peuvent être réalisés en combinant des parties rigides qui sont reliées deux à deux par l'intermédiaire d'une partie flexible ou d'une lame flexible, c'est-à-dire plus flexible que les parties rigides. Les parties rigides et flexibles peuvent être monoblocs ou rapportées les unes sur les autres.However, other flexible elements can be implemented instead of flexible blades 34, 36. For example, the flexible elements can be made by combining rigid parts which are connected in pairs via a flexible part or a flexible blade, that is to say more flexible than the rigid parts. The rigid and flexible parts can be monobloc or added on top of each other.

Dans l'exemple illustré, les lames flexibles 34, 36, forment sensiblement un quart de couronne. Cependant, de manière plus générale, les lames flexibles 34, 36 peuvent s'étendre sur un secteur angulaire correspondant à un angle au centre supérieur à 10°, de préférence supérieur à 45°, de préférence encore supérieur à 80° et/ou inférieur à 180°, de préférence inférieur à 135°, de manière préférée encore, inférieur à 100°. De manière générale, plus l'angle au centre des lames flexibles 34, 36 est grand, plus le risque de flambage de ces lames flexibles 34, 36 est grand. Au contraire, plus l'angle au centre est petit, moins les lames flexibles 34, 36 sont a priori flexibles.In the example illustrated, the flexible blades 34, 36 substantially form a quarter crown. However, more generally, the flexible blades 34, 36 can extend over an angular sector corresponding to a central angle greater than 10°, preferably greater than 45°, more preferably greater than 80° and/or less at 180°, preferably less than 135°, more preferably less than 100°. In general, the greater the angle at the center of the flexible blades 34, 36, the greater the risk of these flexible blades buckling. 34, 36 is tall. On the contrary, the smaller the central angle, the less flexible the blades 34, 36 are a priori flexible.

Également, le rayon moyen des lames flexibles 34, 36, peut avantageusement être compris entre 0,2 mm et 2 mm. Le rayon moyen s'entend ici comme la moyenne arithmétique du rayon intérieur et du rayon extérieur.Also, the average radius of the flexible blades 34, 36 can advantageously be between 0.2 mm and 2 mm. The average radius is understood here as the arithmetic mean of the inner radius and the outer radius.

En variante ou au surplus, le rapport entre le rayon intérieur et le rayon extérieur de chaque lame flexible 34, 36 peut être supérieur ou égal à 1/10, de préférence supérieur ou égal à 4/10, et/ou inférieur ou égal à 9/10, de préférence inférieur ou égal à 8/10.Alternatively or additionally, the ratio between the inner radius and the outer radius of each flexible strip 34, 36 may be greater than or equal to 1/10, preferably greater than or equal to 4/10, and/or less than or equal to 9/10, preferably less than or equal to 8/10.

Comme cela est visible sur la figure 3, l'oscillateur 13 étant fixe, au repos, les premières lames flexibles 34 s'étendent dans un premier plan, les deuxièmes lames flexibles 36 s'étendant dans un deuxième plan tel que les premier et deuxième plans sont distincts. Les premier et deuxième plans sont également non-parallèles. En l'espèce, les premier et deuxième plans sont sensiblement perpendiculaires. En variante, les lames flexibles 34, 36 peuvent notamment s'étendre dans des plans formant entre eux, un angle compris entre 40° et 120°.As can be seen on the picture 3 , the oscillator 13 being fixed, at rest, the first flexible strips 34 extend in a first plane, the second flexible strips 36 extending in a second plane such that the first and second planes are distinct. The first and second planes are also non-parallel. In this case, the first and second planes are substantially perpendicular. As a variant, the flexible blades 34, 36 can in particular extend in planes forming between them an angle of between 40° and 120°.

Les figures 4 et 5 illustrent deux positions de l'oscillateur 13. En l'espèce, les oscillations du corps rigide 18 par rapport au bâti 16 sont relativement complexes, qui correspondent sensiblement à une rotation autour d'un axe de rotation instantanée mobile, l'axe de rotation instantanée mobile passant toujours par le centre de l'oscillateur 13.THE figure 4 And 5 illustrate two positions of the oscillator 13. In this case, the oscillations of the rigid body 18 with respect to the frame 16 are relatively complex, which substantially correspond to a rotation around a movable instantaneous rotation axis, the rotation axis mobile instant always passing through the center of oscillator 13.

L'oscillateur 13 des figures 3 à 5 peut avantageusement être réalisé en tout ou partie, en mettant en oeuvre un procédé du type « pop-up », dont un exemple est décrit dans la demande WO2018/197516 A1 . Notamment les lames flexibles 34, 36 peuvent être réalisées en mettant en oeuvre un tel procédé. Par procédé du type « pop-up », on entend ici un procédé de fabrication comprenant une superposition de couches (ou feuilles) de matériaux, le cas échéant prédécoupées, et un déploiement de la structure multicouches ainsi obtenue. Un tel procédé permet d'obtenir après déploiement, des lames flexibles de rapports d'aspect optimaux, qui s'étendent dans des plans distincts et non parallèles au plan médian de l'oscillateur.Oscillator 13 of figures 3 to 5 can advantageously be carried out in whole or in part, by implementing a method of the "pop-up" type, an example of which is described in the application WO2018/197516 A1 . In particular the flexible blades 34, 36 can be produced by implementing such a process. By process of the “pop-up” type, is meant here a manufacturing process comprising a superposition of layers (or sheets) of materials, if necessary precut, and a deployment of the multilayer structure thus obtained. Such a method makes it possible to obtain, after deployment, flexible blades with optimal aspect ratios, which extend in distinct planes and not parallel to the mid-plane of the oscillator.

La figure 6 illustre en particulier une étape d'un tel procédé, durant laquelle on réalise les premières et deuxièmes lames flexibles 34, 36, et on les positionne de manière à pouvoir les assembler aisément ensuite avec le bâti 16 et le corps rigide 18.There figure 6 illustrates in particular a step of such a process, during which the first and second flexible blades 34, 36 are made, and they are positioned so as to be able to then easily assemble them with the frame 16 and the rigid body 18.

Ainsi, la figure 6 représente un assemblage 50 de sept couches distinctes 52, 54, 56, 58, 60, 62, 64 parmi lesquelles :

  • une première couche 52 est en un premier matériau, de préférence rigide ;
  • une deuxième couche 54 est une couche de colle ou de matériau adhésif pour assurer la fixation de la première couche 52 à une troisième couche 56 ;
  • la troisième couche 56 en un matériau flexible. Le matériau flexible peut notamment être un film polymère, par exemple un polyimide. À titre d'exemple, le matériau flexible peut être du kapton® ;
  • une quatrième couche 58 est une couche de colle ou de matériau adhésif pour assurer la fixation de la troisième couche 56 à une cinquième couche 58 ;
  • la cinquième couche 60 est dans un deuxième matériau, de préférence rigide, qui peut avantageusement être le même que le premier matériau ;
  • une sixième couche 62 qui est une couche de colle ou de matériau adhésif pour assurer la fixation de la cinquième couche 58 à une septième couche 64 ;
  • la septième couche 64 qui peut être en un matériau différent du premier et du deuxième matériau ou qui peut être l'un parmi le premier et le deuxième matériau. Cette septième couche 64 peut alternativement ou au surplus être plus fine que les première et cinquième couches 52, 60, notamment dans le cas où toutes ces couches 52, 60, 64 sont en un même matériau. C'est dans cette septième couche 64 qu'on forme les lames flexibles 34,36.
Thus, the figure 6 represents an assembly 50 of seven distinct layers 52, 54, 56, 58, 60, 62, 64 among which:
  • a first layer 52 is made of a first material, preferably rigid;
  • a second layer 54 is a layer of glue or adhesive material to secure the first layer 52 to a third layer 56;
  • the third layer 56 in a flexible material. The flexible material may in particular be a polymer film, for example a polyimide. By way of example, the flexible material can be kapton® ;
  • a fourth layer 58 is a layer of glue or adhesive material to secure the third layer 56 to a fifth layer 58;
  • the fifth layer 60 is in a second material, preferably rigid, which can advantageously be the same as the first material;
  • a sixth layer 62 which is a layer of glue or adhesive material to secure the fifth layer 58 to a seventh layer 64;
  • the seventh layer 64 which can be in a material different from the first and the second material or which can be one of the first and the second material. This seventh layer 64 can alternatively or additionally be thinner than the first and fifth layers 52, 60, in particular in the case where all these layers 52, 60, 64 are made of the same material. It is in this seventh layer 64 that the flexible blades 34,36 are formed.

Les première et troisième couches 52, 56 permettent la réalisation de structures sacrificielles, lesquelles peuvent comprendre des liaisons flexibles assurées par la troisième couche 56. Pour ce faire, différentes découpes sont réalisées dans les couches 52-64 afin, notamment, de créer des amorces de pliages et/ou des amorces de rupture. Des découpes réalisées dans la septième couche 64 permettent de définir les lames flexibles 34, 36.The first and third layers 52, 56 allow the production of sacrificial structures, which may comprise flexible connections ensured by the third layer 56. To do this, various cuts are made in the layers 52-64 in order, in particular, to create primers bends and/or incipient fractures. Cuts made in the seventh layer 64 make it possible to define the flexible blades 34, 36.

Les structures sacrificielles forment un ou plusieurs échafaudages de montage - de l'anglais « mounting scaffold » - facilitant le déploiement de l'assemblage 50. Les structures sacrificielles peuvent permettre de relier les différents mouvements nécessaires au déploiement de l'assemblage multicouche 50.The sacrificial structures form one or more mounting scaffolds - from the English "mounting scaffold" - facilitating the deployment of the assembly 50. The sacrificial structures can make it possible to connect the various movements necessary for the deployment of the multilayer assembly 50.

Ici, en déployant l'assemblage, on peut positionner les différentes lames flexibles 34, 36 nécessaires à la réalisation du mécanisme de liaison 20 décrit précédemment.Here, by deploying the assembly, it is possible to position the various flexible strips 34, 36 necessary for the production of the connection mechanism 20 described previously.

Selon un exemple de réalisation, on réalise le bâti et/ou le corps oscillant séparément des lames flexibles 34, 36 et on les assemble aux lames flexibles 34, 36 après le déploiement de ces lames flexibles 34, 36. Le bâti et/ou le corps rigide peuvent alors également être réalisés en mettant en oeuvre un procédé du type « pop-up », soit séparément, soit concomitamment.According to an exemplary embodiment, the frame and/or the oscillating body are produced separately from the flexible blades 34, 36 and they are assembled to the flexible blades 34, 36 after the deployment of these flexible blades 34, 36. The frame and/or the rigid bodies can then also be produced by implementing a process of the “pop-up” type, either separately or concomitantly.

Selon une variante, le bâti et/ou le corps oscillant sont réalisés concomitamment aux lames flexibles. Dans ce cas, le bâti et/ou le corps oscillant peuvent être réalisés sur des couches séparées de la couche dans laquelle sont formées les lames flexibles 34, 36, éventuellement distinctes.According to a variant, the frame and/or the oscillating body are produced concomitantly with the flexible blades. In this case, the frame and/or the oscillating body can be made on layers separate from the layer in which the flexible blades 34, 36, possibly distinct, are formed.

Le bâti 16 et/ou le corps oscillant 18 peuvent notamment être en l'un parmi le tungstène, le molybdène, l'or, l'argent, le tantale, le platine, les alliages comprenant ces éléments, un matériau polymère chargé de particules de densité supérieure à dix, notamment de particules de tungstène, l'acier, un alliage de cuivre, notamment le laiton. Ces matériaux sont en effet lourds. D'autres matériaux pouvant être mis en oeuvre sont également accessibles à l'homme de l'art.The frame 16 and/or the oscillating body 18 can in particular be made of one of tungsten, molybdenum, gold, silver, tantalum, platinum, alloys comprising these elements, a polymer material charged with particles of density greater than ten, in particular of tungsten particles, steel, a copper alloy, in particular brass. These materials are indeed heavy. Other materials that can be used are also accessible to those skilled in the art.

Le bâti 16 et/ou le corps oscillant 18 peuvent encore être en matériau choisi parmi le silicium, le verre, le saphir ou alumine, le diamant, notamment le diamant synthétique, en particulier le diamant synthétique obtenu par procédé de déposition chimique en phase vapeur, le titane, un alliage de titane, notamment un alliage de la famille des Gum metal ® et un alliage de la famille des élinvars, en particulier l'Elinvar ®, le Nivarox ®, le Thermelast ®, le NI-Span-C ® et le Précision C ®.The frame 16 and/or the oscillating body 18 can also be made of a material chosen from silicon, glass, sapphire or alumina, diamond, in particular synthetic diamond, in particular synthetic diamond obtained by chemical vapor deposition process. , titanium, a titanium alloy, in particular an alloy from the Gum metal ® family and an alloy from the Elinvar family, in particular Elinvar ® , Nivarox ® , Thermelast ® , NI-Span-C ® and Precision C ® .

Ces matériaux présentent en effet l'avantage que leur module d'Young est très peu sensible aux variations de température. Ceci est particulièrement avantageux dans le domaine horloger, afin que l'oscillateur 13 garde sa précision, même en cas de variations de température.These materials have the advantage that their Young's modulus is very insensitive to temperature variations. This is particularly advantageous in the watchmaking field, so that the oscillator 13 maintains its precision, even in the event of temperature variations.

Les Gum métal® sont des matériaux comprenant : 23 % de niobium ; 0,7 % de tantale ; 2 % de zirconium ; 1 % d'oxygène ; facultativement du vanadium ; et facultativement du hafnium.Gum metal ® are materials comprising: 23% niobium; 0.7% tantalum; 2% zirconium; 1% oxygen; optionally vanadium; and optionally hafnium.

Les alliages élinvars sont des alliages d'acier au nickel comprenant du nickel et du chrome qui sont très peu sensibles aux températures. L'Elinvar ®, en particulier, est un alliage d'acier au nickel, comprenant 59 % de fer, 36 % de nickel et 5 % de chrome.Elinvar alloys are nickel steel alloys comprising nickel and chromium which are very insensitive to temperature. Elinvar ® , in particular, is a nickel steel alloy, comprising 59% iron, 36% nickel and 5% chromium.

Le NI-Span-C ® comprend entre 41,0 et 43,5 % de nickel et de cobalt ; entre 4,9 et 5,75 % de chrome ; entre 2,20 et 2,75 % de titane ; entre 0,30 et 0,80 % d'aluminium ; au plus 0,06 % de carbone ; au plus 0,80 % de manganèse ; au plus 1 % de silicium ; au plus 0,04 % de soufre ; au plus de 0,04 % de phosphore ; et le complément à 100 % en fer.NI-Span-C ® comprises between 41.0 and 43.5% nickel and cobalt; between 4.9 and 5.75% chromium; between 2.20 and 2.75% titanium; between 0.30 and 0.80% aluminum; at most 0.06% carbon; at most 0.80% manganese; at most 1% silicon; at most 0.04% sulphur; at most 0.04% phosphorus; and the 100% iron supplement.

Le Précision C ® comprend : 42 % de nickel ; 5,3 % de chrome ; 2,4 % de titane ; 0,55 % d'aluminium ; 0,50 % de silicium ; 0,40 % de manganèse ; 0,02 % de carbone ; et le complément à 100 % en fer.Precision C ® includes: 42% nickel; 5.3% chromium; 2.4% titanium; 0.55% aluminum; 0.50% silicon; 0.40% manganese; 0.02% carbon; and the 100% iron supplement.

Le Nivarox ® comprend : entre 30 et 40 % de nickel ; entre 0,7 et 1,0 % de beryllium ; entre 6 et 9 % de molybdène et/ou 8 % de chrome ; de manière facultative, 1 % de titane ; entre 0,7 et 0,8 % de manganèse ; entre 0,1 et 0,2 % de silicium ; du carbone, jusqu'à 0,2 % ; et le complément en fer.Nivarox ® comprises: between 30 and 40% nickel; between 0.7 and 1.0% beryllium; between 6 and 9% molybdenum and/or 8% chromium; optionally, 1% titanium; between 0.7 and 0.8% manganese; between 0.1 and 0.2% silicon; carbon, up to 0.2%; and iron supplement.

Le Thermelast ® comprend : 42,5 % de nickel ; moins de 1 % de silicium ; 5,3 % de chrome ; moins de 1 % d'aluminium ; moins de 1 % de manganèse ; 2,5 % de titane ; et 48 % de fer.Thermelast ® comprises: 42.5% nickel; less than 1% silicon; 5.3% chromium; less than 1% aluminum; less than 1% manganese; 2.5% titanium; and 48% iron.

Toutes les compositions ci-dessus sont indiquées en pourcentages massiques.All the compositions above are indicated in mass percentages.

Les lames flexibles 34, 36 sont par exemple en acier.The flexible blades 34, 36 are for example made of steel.

La figure 7 illustre un exemple d'oscillateur 113 présentant un degré de liberté principal. Plus précisément, dans l'oscillateur 113 de la figure 7, le corps rigide 118 oscille principalement par rapport au bâti selon un mouvement de va-et-vient en translation illustré par les flèches F1, F2. Pour obtenir ce mouvement du corps rigide 118, celui-ci est relié au bâti 116 par l'intermédiaire d'un mécanisme de liaison 120, lequel comprend :

  • deux corps rigides intermédiaires 138, identiques ;
  • deux premières lames flexibles 140 entre chacun des deux corps rigides intermédiaires 138 et le bâti 116 ;
  • deux deuxièmes lames flexibles 142 entre chacun des deux corps rigides intermédiaires 138 et le corps rigide 118 oscillant. En l'espèce, les premières et deuxièmes lames flexibles 140, 142 sont identiques. Il est à noter ici que les premières et deuxièmes lames flexibles 140, 142 de l'oscillateur 113 sont, au repos, rectilignes et s'étendent dans des plans parallèles entre eux et perpendiculaires au plan principal (i.e. le plan de la figure 7).
There figure 7 illustrates an example of oscillator 113 having a principal degree of freedom. More precisely, in oscillator 113 of the figure 7 , the rigid body 118 mainly oscillates with respect to the frame according to a to-and-fro movement in translation illustrated by the arrows F1, F2. To obtain this movement of the rigid body 118, the latter is connected to the frame 116 via a connection mechanism 120, which comprises:
  • two intermediate rigid bodies 138, identical;
  • two first flexible blades 140 between each of the two intermediate rigid bodies 138 and the frame 116;
  • two second flexible blades 142 between each of the two intermediate rigid bodies 138 and the oscillating rigid body 118. In this case, the first and second flexible blades 140, 142 are identical. It should be noted here that the first and second flexible blades 140, 142 of the oscillator 113 are, at rest, rectilinear and extend in planes parallel to each other and perpendicular to the main plane (ie the plane of the figure 7 ).

Les figures 8 à 12 illustrent un troisième exemple d'oscillateur 13. Dans ce troisième exemple, les éléments identiques ou de fonction identique aux éléments du premier exemple portent le même signe de référence numérique.THE figures 8 to 12 illustrate a third example of oscillator 13. In this third example, the elements which are identical or of identical function to the elements of the first example bear the same numerical reference sign.

L'oscillateur 13 des figures 8 à 12 peut être déduit de l'oscillateur 113 de la figure 7 en transformant l'oscillateur 113 de manière que les axes perpendiculaires au plan principal, deviennent concourants. Par cette transformation, le plan principal devient une sphère, les axes devenus concourants passant par le centre de cette sphère. On remplace ainsi notamment les lames flexibles 140, 142 de l'oscillateur 113, par des lames flexibles (ou plus généralement des éléments flexibles) qui sont des portions de couronnes s'étendant dans des plans distincts et non parallèles, les lames flexibles de l'oscillateur 13 des figures 8 à 12 étant en outre disposées de manière à être concentriques. Par construction, un tel oscillateur 13 à huit telles lames flexibles présente déjà un corps rigide, oscillant en rotation. L'oscillateur de la figure 8 comporte cependant huit lames flexibles supplémentaires, symétriques des huit lames indiquées ci-avant, par rapport au centre de l'oscillateur 13. Ces lames flexibles supplémentaires permettent un meilleur équilibrage de l'oscillateur 13.Oscillator 13 of figures 8 to 12 can be deduced from the oscillator 113 of the figure 7 by transforming the oscillator 113 so that the axes perpendicular to the main plane become concurrent. By this transformation, the main plane becomes a sphere, the axes having become concurrent passing through the center of this sphere. In particular, the flexible blades 140, 142 of the oscillator 113 are thus replaced by flexible blades (or more generally flexible elements) which are crown portions extending in distinct and non-parallel planes, the flexible blades of the oscillator 13 of figures 8 to 12 further being arranged so as to be concentric. By construction, such an oscillator 13 with eight such flexible blades already has a rigid body, oscillating in rotation. The oscillator of the figure 8 however, comprises eight additional flexible blades, symmetrical to the eight blades indicated above, with respect to the center of oscillator 13. These additional flexible blades allow better balancing of oscillator 13.

En outre, en réalisant l'opération ci-dessus, le corps oscillant se retrouve au centre de l'oscillateur 13 et le bâti à la périphérie. Cependant, comme déjà indiqué pour le premier exemple d'oscillateur, en pratique, il suffit de bloquer la pièce centrale pour que celle-ci soit le bâti et que la pièce en périphérie puisse osciller par rapport à ce bâti.Furthermore, by carrying out the above operation, the oscillating body is found at the center of the oscillator 13 and the frame at the periphery. However, as already indicated for the first example of oscillator, in practice, it is enough to block the central part so that it is the frame and that the part on the periphery can oscillate with respect to this frame.

L'oscillateur 13 des figures 8 à 12 comporte ainsi plus précisément un bâti 16 relié au corps rigide 18, oscillant, au moyen d'un mécanisme de liaison 20 permettant les oscillations du corps rigide 18 par rapport au bâti 16. Ici, le corps rigide 18 oscille en rotation autour d'un axe A, fixe, central de l'oscillateur 13. Dans l'exemple, la partie centrale 22 du bâti 16 a la forme d'un disque, depuis lequel s'étendent deux premiers bras 24 qui ont ici sensiblement la forme de secteurs angulaires de couronnes. Comme dans le premier exemple, ces deux premiers bras 24 sont identiques et symétriques par rapport au centre de l'oscillateur 13.Oscillator 13 of figures 8 to 12 thus more precisely comprises a frame 16 connected to the rigid body 18, oscillating, by means of a link mechanism 20 allowing the oscillations of the rigid body 18 with respect to the frame 16. Here, the rigid body 18 oscillates in rotation around a axis A, fixed, central of the oscillator 13. In the example, the central part 22 of the frame 16 has the shape of a disc, from which extend two first arms 24 which here have substantially the shape of angular sectors of crowns. As in the first example, these first two arms 24 are identical and symmetrical with respect to the center of oscillator 13.

L'oscillateur 13 comprend encore un corps rigide 18 se trouvant en l'espèce radialement vers l'extérieur par rapport au bâti 16. Le corps rigide 18 comporte dans l'exemple illustré une partie circulaire 28 avec, en l'espèce, deux renfoncements latéraux 38 dans lesquels s'étendent deux dents 40, 42 s'étendant sensiblement selon une direction orthoradiale. Une première dent 40 est située radialement plus près du centre de l'oscillateur 13 qu'une deuxième dent 42. Cette forme du corps rigide 18 avec deux renfoncements latéraux 38 permet un meilleur équilibrage du corps rigide. En pratique, cependant, un seul renfoncement latéral 38 avec deux dents 40, 42 peut suffire pour mettre en oeuvre l'oscillateur et l'associé à un échappement, notamment un échappement du type Graham. Un deuxième renfoncement 38 peut être prévu à fin d'équilibrage du corps rigide 18, ce deuxième renfoncement 38 pouvant ne pas être muni de dents 40, 42.Oscillator 13 also comprises a rigid body 18 located in this case radially outwards relative to frame 16. Rigid body 18 comprises, in the example illustrated, a circular part 28 with, in this case, two recesses side 38 in which extend two teeth 40, 42 extending substantially in an orthoradial direction. A first tooth 40 is located radially closer to the center of the oscillator 13 than a second tooth 42. This shape of the rigid body 18 with two lateral recesses 38 allows better balancing of the rigid body. In practice, however, a single lateral recess 38 with two teeth 40, 42 may be sufficient to implement the oscillator and associated it with an escapement, in particular a Graham-type escapement. A second recess 38 may be provided for the purpose of balancing the rigid body 18, this second recess 38 possibly not being provided with teeth 40, 42.

Le corps rigide 18 comprend encore, dans l'exemple illustré, deux premiers bras 30 identiques, qui sont en l'espèce symétriques par rapport au centre de l'oscillateur 13. Les deux premiers bras 30 du corps rigide 18 ont ici sensiblement la forme d'un secteur angulaire de couronne.The rigid body 18 also comprises, in the example illustrated, two identical first arms 30, which are in this case symmetrical with respect to the center of the oscillator 13. The first two arms 30 of the rigid body 18 have here substantially the shape of an angular crown sector.

Le bâti 16 est ici relié au corps rigide 18 au moyen d'un mécanisme de liaison 20 décrit ci-après, autorisant les oscillations du corps rigide 18 par rapport au bâti 16, sensiblement par rotation autour d'un axe A normal au plan commun d'extension du bâti 16 et du corps rigide 18.The frame 16 is here connected to the rigid body 18 by means of a link mechanism 20 described below, allowing the oscillations of the rigid body 18 relative to the frame 16, substantially by rotation around an axis A normal to the common plane extension of the frame 16 and the rigid body 18.

Le mécanisme de liaison 20 comprend dans l'exemple illustré aux figures 8 à 12, deux premières paires de lames flexibles 44, chaque première paire de lames flexible 44 reliant un bras 24 du bâti 16 à une première pièce intermédiaire 46, rigide, respective. Les deux premières pièces intermédiaires 46 sont sensiblement identiques. Ici les deux premières pièces intermédiaires 46 ont la forme d'un secteur angulaire de tronc de cône. Cependant, les premières pièces intermédiaires 46 peuvent prendre bien d'autres formes, notamment d'autres portions de surfaces quadriques. Avantageusement, les deux premières pièces intermédiaires 46 s'étendent au droit des bras 24 du bâti 16 et des bras 30 du corps rigide 18. Chaque première pièce intermédiaire 44 est reliée par ailleurs à l'un des bras 30 du corps rigide 18, par une deuxième paire de lames flexibles 48. Ainsi, chaque pièce intermédiaire 44 a essentiellement pour fonction de relier une première paire de lames flexibles 44 à une deuxième paire de lames flexibles 48.The link mechanism 20 comprises, in the example illustrated in figures 8 to 12 , two first pairs of flexible blades 44, each first pair of flexible blades 44 connecting an arm 24 of the frame 16 to a first intermediate piece 46, rigid, respectively. The first two intermediate pieces 46 are substantially identical. Here the first two intermediate pieces 46 have the shape of an angular sector of a truncated cone. However, the first intermediate pieces 46 can take many other shapes, in particular other portions of quadric surfaces. Advantageously, the first two intermediate pieces 46 extend in line with the arms 24 of the frame 16 and the arms 30 of the rigid body 18. Each first intermediate piece 44 is also connected to one of the arms 30 of the rigid body 18, by a second pair of flexible blades 48. Thus, each intermediate piece 44 essentially has the function of connecting a first pair of flexible blades 44 to a second pair of flexible blades 48.

L'oscillateur 13 étant au repos, l'écart angulaire entre les plans selon lesquelles s'étendent les lames flexibles 44 d'une première paire de lames flexibles 44, est sensiblement identique à l'écart angulaire entre les plans selon lesquelles s'étendent les lames flexibles 48 d'une deuxième paire de lames flexibles 48. Plus généralement, les lames flexibles 44, 48 peuvent s'étendre selon des plans inclinés par rapport à la direction verticale, normale au plan d'extension du bâti et du corps rigide dans l'exemple illustré. Les lames flexibles 44, 48 des premières et deuxièmes paires de lames flexibles sont sensiblement identiques aux lames flexibles du premier exemple décrit ci-avant, notamment quant à leurs formes.The oscillator 13 being at rest, the angular difference between the planes along which the flexible blades 44 of a first pair of flexible blades 44 extend, is substantially identical to the angular difference between the planes along which the flexible blades 44 extend. the flexible blades 48 of a second pair of flexible blades 48. More generally, the flexible blades 44, 48 can extend along planes inclined with respect to the vertical direction, normal to the plane of extension of the frame and of the rigid body in the example shown. The flexible blades 44, 48 of the first and second pairs of flexible blades are substantially identical to the flexible blades of the first example described above, in particular as regards their shapes.

Par ailleurs, pour assurer un meilleur équilibrage de l'oscillateur 13, le mécanisme de liaison 20 est sensiblement symétrique par rapport au centre de l'oscillateur 13. Ainsi, chaque bras 20 du bâti 16 est relié à une deuxième pièce intermédiaire 50, image respective d'une première pièce intermédiaire par rapport au centre de l'oscillateur 13, au moyen d'une troisième paire de lames flexibles 52. Chacune des deux deuxièmes pièces intermédiaires 50 est sensiblement identiques aux premières pièces intermédiaires 46 dont elles sont symétriques par rapport au centre de l'oscillateur 13. Chacune des lames flexibles 52 des troisièmes paires de lames flexibles 52 est symétrique d'une lame flexible 44 d'une première paire de lames flexibles 44, par rapport au centre de l'oscillateur 13.Furthermore, to ensure better balancing of oscillator 13, link mechanism 20 is substantially symmetrical with respect to the center of oscillator 13. Thus, each arm 20 of frame 16 is connected to a second intermediate part 50, image respective of a first intermediate piece with respect to the center of the oscillator 13, by means of a third pair of flexible blades 52. Each of the two second intermediate pieces 50 is substantially identical to the first intermediate pieces 46 of which they are symmetrical with respect to at the center of the oscillator 13. Each of the flexible blades 52 of the third pairs of flexible blades 52 is symmetrical with a flexible blade 44 of a first pair of flexible blades 44, with respect to the center of the oscillator 13.

Enfin, chacune des deuxièmes pièces intermédiaires 50 est reliée à un bras 30, respectif, du corps rigide 18 au moyen d'une quatrième paire de lames flexibles 54. Chacune des lames flexibles 54 des quatrièmes paires de lames flexibles 54 est symétrique d'une lame flexible 48 des deuxièmes paires de lames flexibles, par rapport au centre de l'oscillateur 13.Finally, each of the second intermediate pieces 50 is connected to a respective arm 30 of the rigid body 18 by means of a fourth pair of flexible blades 54. Each of the flexible blades 54 of the fourth pairs of flexible blades 54 is symmetrical with a flexible blade 48 of the second pairs of flexible blades, with respect to the center of the oscillator 13.

Ainsi, dans le mécanisme de liaison 20, les premières, deuxièmes, troisièmes et quatrièmes lames flexibles 44, 48, 52, 54 sont concentriques, leur centre correspondant au centre de l'oscillateur 13.Thus, in the link mechanism 20, the first, second, third and fourth flexible blades 44, 48, 52, 54 are concentric, their center corresponding to the center of the oscillator 13.

Dans ce deuxième exemple également, chacune des paires de premières et troisièmes lames flexibles 44, 52 est reliée d'une part au bâti 16 et, d'autre part, à une pièce intermédiaire 46, 50, rigide.Also in this second example, each of the pairs of first and third flexible blades 44, 52 is connected on the one hand to the frame 16 and, on the other hand, to an intermediate piece 46, 50, which is rigid.

En l'espèce, les premières, deuxièmes, troisièmes et quatrièmes lames flexibles 44, 48, 52, 54 sont symétriques par rapport au centre de gravité de l'oscillateur 13. Les premières, deuxièmes, troisièmes et quatrièmes lames flexibles 44, 48, 52, 54 sont également, dans l'exemple illustré, symétriques par rapport au plan d'extension du corps rigide 24.In this case, the first, second, third and fourth flexible blades 44, 48, 52, 54 are symmetrical with respect to the center of gravity of the oscillator 13. The first, second, third and fourth flexible blades 44, 48, 52, 54 are also, in the example illustrated, symmetrical with respect to the plane of extension of the rigid body 24.

Ce deuxième exemple présente l'avantage que le corps rigide 18 oscille sensiblement dans son plan d'extension, comme illustré par les figures 10 et 12. Plus précisément, le corps rigide 18 oscille en rotation par rapport au bâti 16. Le deuxième exemple d'oscillateur 13 peut ainsi, en particulier, être mis en oeuvre pour coopérer avec un échappement classique de type Graham.This second example has the advantage that the rigid body 18 oscillates substantially in its plane of extension, as illustrated by the figure 10 And 12 . More precisely, the rigid body 18 oscillates in rotation with respect to the frame 16. The second example of oscillator 13 can thus, in particular, be implemented to cooperate with a conventional Graham-type escapement.

Avantageusement, les deux oscillateurs 13 décrits précédemment sont conformés pour osciller à une fréquence supérieure ou égale à 4 Hz, de préférence supérieure ou égale à 5 Hz, et/ou inférieure ou égale à 500 Hz, de préférence inférieure ou égale à 50 Hz, de préférence encore inférieure ou égale à 15 Hz.Advantageously, the two oscillators 13 described above are shaped to oscillate at a frequency greater than or equal to 4 Hz, preferably greater than or equal to 5 Hz, and/or less than or equal to 500 Hz, preferably less than or equal to 50 Hz, preferably still less than or equal to 15 Hz.

Comme pour le premier exemple d'oscillateur 13, le deuxième exemple d'oscillateur 13 illustré aux figures 8 à 12 peut avantageusement être réalisé en tout ou partie au moyen d'un procédé de type « pop-up ».As for the first example of oscillator 13, the second example of oscillator 13 illustrated in figures 8 to 12 can advantageously be produced in whole or in part by means of a process of the “pop-up” type.

Avantageusement, un tel procédé permet de réaliser des oscillateurs, notamment les lames des oscillateurs, ayant des dimensions réduites, avec une grande précision de positionnement des différents éléments des oscillateurs, les uns par rapport aux autres.Advantageously, such a method makes it possible to produce oscillators, in particular the blades of the oscillators, having reduced dimensions, with high positioning precision of the various elements of the oscillators, relative to each other.

L'invention est définie par le jeu de revendications annexées.The invention is defined by the set of appended claims.

Notamment, dans les exemples décrits, on a fixé une pièce qualifiée de bâti, l'autre pièce - le corps rigide - oscillant. Il est à noter cependant que dans ces exemples, il est possible de fixer le corps rigide pour en faire le bâti, l'autre pièce, présentée comme le bâti dans les exemples précédents, devenant le corps rigide oscillant.In particular, in the examples described, a part qualified as a frame has been fixed, the other part—the rigid body—oscillating. It should be noted however that in these examples, it is possible to fix the rigid body to make the frame, the other part, presented as the frame in the previous examples, becoming the oscillating rigid body.

Également, dans les exemples décrits, des lames flexibles sont mises en oeuvre. Cependant, comme évoqué dans la description du premier exemple, des éléments flexibles peuvent plus généralement être mis en oeuvre dans le mécanisme de liaison 20.Also, in the examples described, flexible blades are used. However, as mentioned in the description of the first example, flexible elements can more generally be implemented in the link mechanism 20.

La géométrie du bâti 16, du corps rigide 18 et des pièces intermédiaires 46, 50 décrite dans les exemples n'est nullement limitative. Bien d'autres formes peuvent être mises en oeuvre qui sont accessibles à l'homme de l'art.The geometry of the frame 16, of the rigid body 18 and of the intermediate parts 46, 50 described in the examples is in no way limiting. Many other forms can be implemented which are accessible to those skilled in the art.

Claims (15)

  1. An oscillator (13) for a regulator (12) of a timepiece (1) mechanism (14) comprising a frame (16), a rigid body (18) and a mechanism (20) for connecting the rigid body (18) to the frame (16) enabling oscillations of the rigid body (18) relative to the frame (16), the connecting mechanism (20) comprising at least one first and one second rigid parts (16, 18; 46), and first and second flexible elements (34, 36; 44, 48) in the form of angular sectors of rings, the first and second flexible elements (34, 36; 44, 48) being concentric, each of the first and second flexible elements (34, 36; 44, 48) connecting the first and second rigid parts (16, 18; 46) together, characterised in that the first and second flexible elements (34, 36; 44, 48) extend primarily in distinct, non-parallel planes.
  2. The oscillator according to claim 1, wherein the connecting mechanism (20) comprises at least one third flexible element and at least one fourth flexible element (34, 36; 52, 54), symmetrical with the first and second flexible elements (34, 36; 44, 48) respectively, relative to the common centre of the first and second flexible elements (34, 36; 44, 48).
  3. The oscillator according to claim 1 or 2, wherein the first and second flexible elements (34, 36; 44, 48) are identical.
  4. The oscillator according to claims 2 and 3, wherein the common centre of the first and second flexible elements (34, 36; 44, 48) corresponds to the centre of gravity of the oscillator (13).
  5. The oscillator according to any one of claims 1 to 4, wherein:
    - either one or both of the first and second flexible elements (34, 36; 44, 48) extend(s) over an angular sector comprised between 10° and 180°, preferably between 45° and 135°, still preferably between 80° and 100°; and/or
    - the first and second flexible elements (34, 36; 44, 48) extend in planes forming an angle comprised between 40° and 120° between them; and/or
    - the first and second flexible elements have constant thicknesses.
  6. The oscillator according to any one of the preceding claims, wherein the first and/or the second flexible element(s) (34, 36; 44, 48) is/are flexible blades.
  7. The oscillator according to any one of claims 1 to 5, wherein the first and/or the second flexible element(s) (34, 36; 44, 48) is/are formed by a plurality of rigid portions, preferably substantially planar, joined together in pairs by means of a flexible portion.
  8. The oscillator according to any one of the preceding claims, wherein the first and/or the second flexible element(s) (34, 36; 44, 48) and the at least one amongst the first rigid part and the second rigid part (16, 18; 46) are made by implementing a method for superimposing planar layers and deploying the multilayer structure thus obtained.
  9. The oscillator according to any one of the preceding claims, designed to oscillate at a frequency higher than or equal to 4 Hz, preferably higher than or equal to 5 Hz, and/or lower than or equal to 500 Hz, preferably lower than or equal to 50 Hz, still preferably lower than or equal to 15 Hz.
  10. The oscillator according to any one of the preceding claims, wherein the first rigid part is the frame (16) and the second rigid part is the rigid body (18).
  11. The oscillator according to any one of claims 1 to 9, wherein the connecting mechanism (20) comprises two first pairs of flexible elements (44), each of the flexible elements (44) of each of the first pairs of flexible elements (44) connecting the frame (16) to a first respective intermediate rigid part (46), and two second pairs of flexible elements (48), each of the flexible elements (48) of each of the second pairs of flexible elements (48) connecting a first respective intermediate rigid part (46) to the rigid body (18), the elements of the first and second pairs of flexible elements (44, 48) being in the form of angular sectors of rings, the flexible elements of the first and second pairs of flexible elements (44, 48) extending primarily in pairs in distinct, non-parallel planes, the flexible elements of the first and second pairs of flexible elements (44, 48) being concentric, preferably the connecting mechanism (20) further comprises two third pairs of flexible elements (52), each of the flexible elements (52) of each of the third pairs of flexible elements (52) connecting the frame (16) to a second respective intermediate rigid part (50), and, still preferably, two fourth pairs of flexible elements (54), each of the flexible elements (54) of each of the fourth pairs of flexible elements (54) connecting one of the second respective intermediate rigid parts (50) to the rigid body (18), the first and third pairs of flexible elements (44, 52) being symmetrical with respect to the centre of the flexible elements of the first pair of flexible elements (44) and the second and fourth pairs of flexible elements (48, 54) being symmetrical with respect to the centre of the flexible elements of the second pair of flexible elements (48).
  12. A mechanism for a timepiece comprising:
    - an oscillator (13) according to any one of the preceding claims,
    - a pallet (11) adapted to cooperate with an energy distribution member (10) and intended to be biased by an energy storage device (8), said pallet (11) being controlled by the oscillator (13) to regularly and alternately block and release the energy distribution member (10), so that said energy distribution member (10) moves increment-by-increment under the biasing of the energy storage device (8) according to a repetitive movement cycle, and said pallet (11) being adapted to transfer mechanical energy to the oscillator (13) during this repetitive movement cycle, preferably the oscillator (13) further includes:
    - a second oscillating member elastically mounted on the frame so as to oscillate, the first and second oscillating members being connected together so as to always have symmetrical and opposed movements, and, still preferably,
    - a balancing member which is controlled by the second oscillating member so as to move according to movements that are symmetrical and opposed to the pallet (11).
  13. A timepiece movement (3) comprising a mechanism (14) according to claim 12 and said energy distribution member (11).
  14. A timepiece (1) comprising a timepiece movement (3) according to claim 13.
  15. A method for making an oscillator according to any one of claims 1 to 11 in combination with claim 6, comprising:
    - making flexible blades (34, 36; 44, 48);
    - superimposing layers forming at least one amongst the frame (16), the rigid body (18), the first rigid part and the second rigid part (16, 18; 46); and
    - fastening the flexible blades (34, 36; 44, 48) to the at least one amongst the frame (16), the rigid body (18), the first rigid part and the second rigid part (16, 18; 46), preferably, the flexible blades (34, 36; 44, 48) are made by superimposing layers, at least one of which is flexible in comparison with the others, and by deploying the flexible blades (34, 36; 44, 48) so that each of these extends primarily in a plane distinct from the plane of extension of the layer superimposition.
EP20712626.9A 2019-04-05 2020-03-26 Spherical oscillator for a timepiece mechanism Active EP3948433B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1903703A FR3094803B1 (en) 2019-04-05 2019-04-05 Spherical oscillator for watch mechanism
PCT/EP2020/058593 WO2020201025A1 (en) 2019-04-05 2020-03-26 Spherical oscillator for a timepiece mechanism

Publications (2)

Publication Number Publication Date
EP3948433A1 EP3948433A1 (en) 2022-02-09
EP3948433B1 true EP3948433B1 (en) 2023-04-19

Family

ID=67742658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20712626.9A Active EP3948433B1 (en) 2019-04-05 2020-03-26 Spherical oscillator for a timepiece mechanism

Country Status (6)

Country Link
US (1) US20220197217A1 (en)
EP (1) EP3948433B1 (en)
JP (1) JP7477525B2 (en)
CN (1) CN114041090B (en)
FR (1) FR3094803B1 (en)
WO (1) WO2020201025A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661543B2 (en) * 2014-01-13 2020-03-11 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル)Ecole Polytechnique Federale De Lausanne (Epfl) General two-degree-of-freedom isotropic harmonic oscillator without escapement or with simple escapement and associated time base
EP3021174A1 (en) * 2014-11-17 2016-05-18 LVMH Swiss Manufactures SA Monolithic timepiece regulator, timepiece movement and timepiece having such a timepiece regulator
EP3147725B1 (en) * 2015-09-28 2018-04-04 Nivarox-FAR S.A. Oscillator with rotary detent
ES2698115T3 (en) * 2015-12-16 2019-01-31 Sa De La Manufacture Dhorlogerie Audemars Piguet & Cie Mechanism of regulation of an average speed in a movement of watchmaking and movement of watchmaking
JP6639943B2 (en) 2016-02-18 2020-02-05 シチズン時計株式会社 Balance wheel and mechanical watch
FR3048791B1 (en) * 2016-03-14 2018-05-18 Lvmh Swiss Manufactures Sa MECHANISM FOR A WATCHING PART AND A WATCHPIECE COMPRISING SUCH A MECHANISM
GB2550891A (en) * 2016-05-27 2017-12-06 Ultra Electronics Ltd Mechanical link
EP3273309B1 (en) * 2016-07-21 2018-11-07 Montres Breguet S.A. Timepiece with hybrid oscillator
US11432836B2 (en) * 2016-09-14 2022-09-06 Intuitive Surgical Operations, Inc. Joint assemblies with cross-axis flexural pivots
EP3361325A1 (en) * 2017-02-14 2018-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL-TTO Two degree of freedom mechanical oscillator
FR3065542B1 (en) 2017-04-25 2019-07-12 Lvmh Swiss Manufactures Sa METHOD FOR MANUFACTURING A MECHANISM
FR3071075B1 (en) * 2017-09-14 2019-09-20 Lvmh Swiss Manufactures Sa DEVICE FOR WATCHMAKING PART, CLOCK MOVEMENT AND TIMEPIECE COMPRISING SUCH A DEVICE
EP3476748B1 (en) * 2017-10-24 2020-07-15 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Pivot mechanism with flexible elements
US20220154766A1 (en) * 2020-11-19 2022-05-19 Lawrence Livermore National Security, Llc System and method for multi-dof cross-pivot flexure bearing with enhanced range and enhanced load capacity

Also Published As

Publication number Publication date
EP3948433A1 (en) 2022-02-09
JP7477525B2 (en) 2024-05-01
WO2020201025A1 (en) 2020-10-08
FR3094803B1 (en) 2021-04-23
CN114041090B (en) 2023-06-16
FR3094803A1 (en) 2020-10-09
JP2022526412A (en) 2022-05-24
US20220197217A1 (en) 2022-06-23
CN114041090A (en) 2022-02-11

Similar Documents

Publication Publication Date Title
EP3457221B1 (en) Timepiece oscillator with flexible pivot
EP2410386B1 (en) balance wheel with inertia adjustment with insert
EP3548973B1 (en) Device for timepiece, clockwork mechanism and timepiece comprising such a device.
EP2257855B1 (en) Process of manufacturing of a composite balance
CH712105A2 (en) Resonator clock mechanism.
EP2407831A1 (en) Hairspring for oscillator balance of a clock piece and method for manufacturing same
EP2482144B1 (en) Ratchet locking assembly system
EP2690507A1 (en) Holorological hairspring
CH703464B1 (en) oscillating mechanism with elastic pivot.
EP2887151A2 (en) Oscillating element for a clockwork
EP3948433B1 (en) Spherical oscillator for a timepiece mechanism
EP3379342A1 (en) Device comprising a quick-adjustment spring engaging with a mobile of a timepiece
EP2138912B1 (en) Horological hairspring with concentric development
EP3615470B1 (en) Method for manufacturing a timepiece oscillator
CH714165A2 (en) Device for a timepiece, a watch movement and a timepiece comprising such a device.
EP3786720B1 (en) Clock component for receiving an organ by insertion
CH715889A2 (en) Flexible blade oscillator for timepiece mechanism.
CH708553B1 (en) Mobile watchmaker to catch up game.
EP3637196A1 (en) Mechanical oscillator
EP4191346B1 (en) Shock protection of a resonator mechanism with rotatable flexible guiding
CH704386A2 (en) Assembly for assembling e.g. hairspring, in opening of piece of time piece, has connecting system connecting piece and part and including ratchet device for linking movements of piece and part
CH712108A1 (en) Oscillating mass, especially for a timepiece.
EP3916489A1 (en) Shock absorber spring, bearing body and bearing for timepiece
WO2024175797A1 (en) Timepiece assembly and method for manufacturing a timepiece assembly
CH704246B1 (en) piece micromechanical component.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211015

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602020009892

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1561656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1561656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602020009892

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240226

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240307

Year of fee payment: 5

Ref country code: GB

Payment date: 20240325

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240402

Year of fee payment: 5