EP3931576A1 - Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system - Google Patents

Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system

Info

Publication number
EP3931576A1
EP3931576A1 EP20709128.1A EP20709128A EP3931576A1 EP 3931576 A1 EP3931576 A1 EP 3931576A1 EP 20709128 A EP20709128 A EP 20709128A EP 3931576 A1 EP3931576 A1 EP 3931576A1
Authority
EP
European Patent Office
Prior art keywords
sensor
magnets
movement
acceleration
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20709128.1A
Other languages
English (en)
French (fr)
Other versions
EP3931576B1 (de
Inventor
Michael PSCHYKLENK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP3931576A1 publication Critical patent/EP3931576A1/de
Application granted granted Critical
Publication of EP3931576B1 publication Critical patent/EP3931576B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/49Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/003Kinematic accelerometers, i.e. measuring acceleration in relation to an external reference frame, e.g. Ferratis accelerometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/003Kinematic accelerometers, i.e. measuring acceleration in relation to an external reference frame, e.g. Ferratis accelerometers
    • G01P15/005Kinematic accelerometers, i.e. measuring acceleration in relation to an external reference frame, e.g. Ferratis accelerometers measuring translational acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/105Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by magnetically sensitive devices

Definitions

  • the invention relates to a device and a method for determining a
  • the invention also relates to a system with an electrically conductive object and with such a device.
  • Such devices are also referred to as Ferraris sensors and typically comprise a magnet with which an external magnetic field is generated which runs in a field direction perpendicular to the direction of movement of the object.
  • the external magnetic field induces eddy currents in the moving electrically conductive object, which create an internal magnetic field opposite to the external magnetic field.
  • Flux density of this internal magnetic field is proportional to the speed of the object. With the help of a sensor, the flux density or its change can be recorded and conclusions can be drawn about the speed or acceleration of the object.
  • An exemplary device for determining an acceleration of an electrically conductive object is described in EP 1 395 836 B1.
  • this device several sensors designed as detector coils and several magnets are arranged alternately next to one another in the direction of movement.
  • the known device is well suited for detecting the movement of non-magnetic objects.
  • it has proven to be disadvantageous that in those applications in which the electrically conductive object is formed from a magnetizable material or has a possibly variable magnetization, a reliable determination of the acceleration is not possible.
  • the reason for this is that changes in the distance between the moving object and the sensor as well as changes in the magnetization of the object lead to changes in the measurement signal of the detector coil that exceed the magnitude of the changes caused by the movement of the object. This affects the quality of the measurement.
  • the task arises of making it possible to determine a speed or acceleration of an electrically conductive, in particular magnetizable, object with increased reliability.
  • the object is achieved by a device for determining a speed or acceleration of an electrically conductive object in a predetermined range
  • a measuring axis of the first sensor running perpendicular to the direction of movement and the at least two first magnets and the at least one first sensor being arranged at a distance from one another in the direction of movement, each a first sensor is arranged between two first magnets,
  • Magnetic field perpendicular to the direction of movement each of which is arranged with one of the at least two first magnets on a common magnet axis, which is arranged perpendicular to the measurement axis and perpendicular to the direction of movement and wherein the first magnet and the second magnet are polarized in opposite directions from such a common magnet axis,
  • At least one second sensor for detecting an internal magnetic field caused by eddy currents in the object which is arranged together with the first sensor on a common sensor axis parallel to the magnetic axes, a measuring axis of the second sensor being arranged parallel to the measuring axis of the first sensor , wherein a second sensor is arranged between two second magnets, and
  • the evaluation device is set up to receive a first measurement signal from the first sensor and a second measurement signal from the second sensor and to form a difference between the first measurement signal and the second measurement signal to determine the speed or acceleration.
  • both the first and the second magnet generate an external magnetic field which can induce eddy currents in the moving object. Because the first and second magnets are arranged on a common magnetic axis and the first and second sensors are arranged on a common sensor axis, it is possible to control the influence of external magnetic fields, ie a premagnetization of the object to be measured, in the evaluation device compensate. Changes in the distance between the moving object and the sensors can also be compensated for. Both the first sensor and the second sensor detect the same external magnetic fields. Since the first magnet and the second magnet are polarized in opposite directions, the magnets induce eddy currents in the moving object in opposite directions. The internal magnetic fields resulting from the eddy currents have the same magnitude, but are opposite
  • the sensors therefore also detect the internal magnetic fields of opposite polarity. Because the external magnetic fields that are measured by the first and the second sensor are identical, it is possible by means of the evaluation device to compensate for the influence of the external magnetic fields. Changes in the distance between the object and the two sensors can also be compensated for. As a result, increased reliability in determining the speed or acceleration can be achieved.
  • Premagnetization of the object to be measured, or changes in distance between the object and device on the measurement can be eliminated. From the formation of the difference, a difference value can be obtained which corresponds to twice the amount of the measurement signal. This difference value is essentially dependent on the speed or the acceleration of the moving object.
  • the first magnet and / or the second magnet is preferably designed as a permanent magnet, which enables a compact configuration of the device.
  • Electromagnet is designed so that the external magnetic field generated by the respective magnet can be adjusted.
  • first magnets and several second magnets are provided, the first magnets preferably being of identical design and the second magnets being preferably of identical design.
  • a plurality of first magnets are preferably arranged along the direction of movement such that adjacent first
  • the at least one first sensor and / or the at least one second sensor is a Hall sensor.
  • the Hall sensor can be a
  • Measurement signal in particular a Hall voltage
  • the magnetic flux density is proportional to the speed of the moving object, so that the evaluation device can determine the speed based on the measurement signal of the Hall sensor.
  • the at least one first sensor and / or the at least one second sensor is a measuring coil.
  • the measuring coil can generate a measuring signal, in particular an induced voltage, which is proportional to the change in the speed of the moving object, that is to say the acceleration of the object. If a plurality of first sensors and / or a plurality of second sensors are provided, then the first sensors are preferably designed identically and / or the second sensors are designed identically.
  • a plurality of first sensors are preferably arranged along the direction of movement in such a way that a first magnet is arranged between two adjacent first sensors. Accordingly, it is preferred if a plurality of second sensors are arranged along the direction of movement in such a way that a second magnet is located between each two adjacent second sensors.
  • a plurality of first magnets and a plurality of first sensors are arranged alternately spaced from one another in the direction of movement and a plurality of second magnets and a plurality of second ones in the direction of movement
  • a device which enables the determination of a linear movement of the object over a predetermined route section in the direction of movement.
  • Adjacent first magnets are preferably each arranged in such a way that they
  • Magnets each arranged in such a way that they are polarized in opposite directions.
  • the at least two first magnets, the at least one first sensor, the at least two second magnets and the at least one second sensor are preferably arranged on a common scanning head. It is therefore possible to use the device as a
  • Another object of the invention is a system with an electrically conductive object and with a device described above for determining a speed or acceleration of the electrically conductive object in a predetermined direction of movement.
  • the movable object takes on the function of an eddy current body in the system, in which eddy currents are induced by the external magnetic field of the first magnet and the second magnet.
  • the object can be the object to be monitored itself or can be attached to the object to be monitored, for example an electrically non-conductive object.
  • Such an object can be a rotatably arranged shaft, a rotatably arranged machine axis, a rotatable part of a bearing, a movable part of a linear guide.
  • the object is a raw material or semi-finished product which is electrically conductive, for example a sheet metal, a pipe, or a rod.
  • the object is magnetized.
  • the object can be designed as a permanent magnet or by a movable one
  • Magnetic clamping means in particular a magnetic chuck or a magnetic clamping plate, be held and magnetized.
  • Acceleration makes it possible to compensate for external magnetic fields required for clamping by the magnetic clamping device.
  • the object of the system is preferably arranged to be linearly movable.
  • the object is arranged to be rotatable, that is, can be set in rotation.
  • the device for determining the speed or acceleration can be arranged in a fixed manner, so that the speed or acceleration of a relative movement of the object with respect to the device can be determined.
  • Another object of the invention is a method for determining a
  • An internal magnetic field caused by eddy currents in the object is detected by means of the at least one first sensor, - An external magnetic field is generated perpendicular to the direction of movement by means of the at least two second magnets, and
  • An internal magnetic field caused by eddy currents in the object is detected in the field direction by means of the at least one second sensor, and
  • Fig. 1 shows a first embodiment of a system according to the invention in a
  • FIG. 2 shows the system according to FIG. 1 in a schematic plan view in which the object is shown transparently;
  • FIG. 3 shows a second exemplary embodiment of a system according to the invention in one
  • FIG. 4 shows the system according to FIG. 3 in a schematic plan view in which the object is shown transparently;
  • FIG. 4 shows the system according to FIG. 3 in a schematic plan view in which the object is shown transparently;
  • FIGS. 3 and 4 shows a modification of the system according to FIGS. 3 and 4.
  • FIGS. 1-5 shows a block diagram to illustrate an evaluation device which can be used in the systems according to FIGS. 1-5.
  • FIGS. 1 and 2 show a first exemplary embodiment of a system according to the invention, which comprises an electrically conductive object 4 and a device 20 for determining a speed or acceleration of the object 4 in a predetermined movement direction X.
  • the object 4 can be, for example, a raw material or a semi-finished product of a manufacturing process that is moved linearly, e.g. B. when feeding to a not shown in the figures
  • the object 4 can be arranged on a linearly movable object.
  • the object 4 can be formed from a metal, for example aluminum, copper, iron, steel, in particular chromium steel.
  • the object 4 can also be magnetized, for example by a magnetic clamping means that can be moved together with the object 4, in particular a magnetic chuck or a magnetic clamping plate that holds the object 4.
  • the device 20 is designed in the manner of a Ferraris sensor and comprises a plurality of first magnets 1 which are arranged at a distance from one another in the direction of movement X.
  • the first magnets 1 are designed as permanent magnets. Adjacent first magnets 1 each have opposite polarization, so that several outer
  • Magnetic fields 1a are generated parallel and anti-parallel to a field direction Y, which is arranged perpendicular to the direction of movement X.
  • a first sensor 3 is arranged between two adjacent first magnets 1, by means of which the inner
  • Magnetic field 8 is detected, which is generated by eddy currents 6 caused in the object 4.
  • the measuring axes 5, along which the measurement of the internal magnetic field 8 takes place by the sensors 3, are shown in FIG. 1 and run parallel to
  • the device 20 additionally has second magnets 1b and second sensors 3a.
  • the second magnets 1 b are designed as permanent magnets.
  • the second magnets 1b are connected to the first magnets 1 each arranged on a common magnetic axis 12, which runs in an arrangement direction Z that is perpendicular to the field direction Y and perpendicular to
  • Direction of movement X is arranged.
  • the first magnets 1 and the second magnets 1 b which are each arranged on the same magnet axis 12, are polarized in opposite directions.
  • the second magnets 1b thus also generate an external magnetic field 8 perpendicular to the direction of movement X, this being antiparallel to the external magnetic field of the respective first magnet 1 arranged on the same magnetic axis 12.
  • the second sensors 3a are each shared with the first sensors 3
  • the measuring axes of the second sensors 3a run parallel to the measuring axes 5 of the first sensors 3, so that an internal magnetic field 8 can also be detected by the second sensors 3a, which is caused by eddy currents 6 in the object 4.
  • the magnet axis 12 runs parallel to an arrangement direction Z, which is arranged perpendicular to the movement direction X and perpendicular to the field direction Y.
  • Another component of the device 20 is an evaluation device 11 for determining a speed or acceleration of the object 4 on the basis of the internal magnetic fields 8 detected by the first sensor 3 and the second sensor 3a.
  • Signal lines connected to the first sensors 3 and the second sensors 3a.
  • measurement signals from the first and second sensors 3, 3a are made available to the evaluation device 11 for processing. If the sensors 3, 3a each detect a measurement signal that is proportional to the magnetic flux density of the measured
  • the evaluation device 11 can determine the speed of the moving object 4. If the sensors 3, 3a each detect a measurement signal that is proportional to the change in the speed of the moving object, z. B. if the sensors 3, 3a are designed as measuring coils, the evaluation device 11 can determine the acceleration of the moving object 4.
  • the first and second magnets 1, 1a and the first and second sensors 3, 3a are arranged on a common scanning head 2.
  • the evaluation device 11 can also be designed as part of the scanning head 2.
  • FIGS. 3 and 4 show a second exemplary embodiment of a system according to the invention with an electrically conductive object 4c and a device 20 for determining a speed or acceleration of the object 4c in one predetermined direction of movement X.
  • the object 4c is rotatably mounted.
  • the device 20 comprises a scanning head 2 which, in contrast to the scanning head according to FIGS. 1 and 2, has exactly one first sensor 3 and one second sensor 3 a, which are arranged on a common sensor axis 9.
  • the scanning head 2 comprises exactly two first magnets 1 with opposite polarity and exactly two second magnets 1 b with opposite polarity.
  • the direction of movement X is tangential to the direction of rotation of the object 4c in the area of the measuring axis 5 of the first sensor 3.
  • the first sensor 3 and the second sensor 3a are arranged in the direction of movement X between the first and second magnets 1, 1b, respectively.
  • FIG. 5 shows a modification of the second exemplary embodiment in which the device 20 has two scanning strips 10, 10a which have been put together to form the scanning head.
  • a first scanning strip 10 comprises the first magnets 1 and the first sensor 3.
  • a second scanning strip 10a comprises the second magnets 1b and the second sensor 3a.
  • the scanning strips 10, 10a are arranged parallel to one another and run in the direction of the movement direction X of the object to be detected.
  • FIG. 6 shows a schematic representation of an evaluation device 11 which can be used in the devices 20 described above.
  • Evaluation device 11 are measurement signals of the one or more first
  • the evaluation device 11 is set up to receive a first measurement signal from the first sensor 3 and a second measurement signal from the second sensor 3a and to form a difference between the first measurement signal and the second measurement signal. By forming the difference, the influence of external magnetic fields on the result is eliminated and an output signal W is obtained, which corresponds to twice the amount of the measurement signal and depends exclusively on the speed of the object.
  • the systems described above each have a device 20 for determining a speed or acceleration of an electrically conductive object 4, 4c in a predetermined direction of movement X, which at least one first magnet 1 for Generation of an external magnetic field 1a perpendicular to the direction of movement X and comprises at least one first sensor 3 for detecting an internal magnetic field 8 caused by eddy currents 6 in the object 4, 4c, a measuring axis 5 of the first sensor 3 running perpendicular to the direction of movement X and the first magnet 1 and the first sensor 3 are arranged at a distance from one another in the direction of movement X.
  • the device 20 comprises an evaluation device 11 for determining a speed or acceleration of the object 4, 4c on the basis of the internal magnetic fields detected by the first sensor 3 and the second sensor 3a.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Air Bags (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung (20) und ein Verfahren zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts (4, 4c) in einer vorgegebenen Bewegungsrichtung (X), mit mindestens vier Magneten (1, lb) zur Erzeugung jeweils eines äußeren Magnetfelds (la), wobei je zwei erste Magnete (1) entgegengesetzt gepolt mit Abstand in Bewegungsrichtung (X) angeordnet sind, und ein erster Sensor (3) mit Messachse (Y) senkrecht auf die Bewegungsrichtung zwischen den beiden ersten Magneten angeordnet ist, je zwei zweite Magnete (lb) entgegengesetzt gepolt mit Abstand in Bewegungsrichtung angeordnet sind, und ein zweiter Sensor (3a) mit Messachse senkrecht auf die Bewegungsrichtung zwischen den beiden zweiten Magneten angeordnet ist, wobei erste und zweite Magneten bzw. erste und zweite Sensoren jeweils entlang einer Achse (Z) angeordnet sind, welche senkrecht zur Bewegungsrichtung (X) und Messachse (Y) verläuft. Die Geschwindigkeit oder Beschleunigung des Objekts (4,4c) wird anhand der Differenz aus erstem und zweitem Messsignal gebildet, welche jeweils das durch Wirbelströme in dem Objekt hervorgerufene innere Magnetfeld erfassen, wodurch Einflüsse externer Magnetfelder und Änderungen des Abstands zwischen Sensoren und Messobjekt kompensiert werden können.

Description

Vorrichtung und Verfahren zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts, sowie System
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Bestimmen einer
Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts in einer vorgegebenen Bewegungsrichtung. Ferner betrifft die Erfindung ein System mit einem elektrisch leitfähigen Objekt und mit einer derartigen Vorrichtung.
Derartige Vorrichtungen werden auch als Ferraris-Sensoren bezeichnet und umfassen typischerweise einen Magnet, mit dem ein äußeres Magnetfeld erzeugt wird, welches in einer Feldrichtung senkrecht zur Bewegungsrichtung des Objekts verläuft. Das äußere Magnetfeld induziert in dem sich bewegenden elektrisch leitfähigen Objekt Wirbelströme, die ein dem äußeren Magnetfeld entgegengesetztes inneres Magnetfeld erzeugen. Die
Flussdichte dieses inneren Magnetfelds ist proportional zu der Geschwindigkeit des Objekts. Mithilfe eines Sensors kann die Flussdichte oder deren Änderung erfasst werden und daraus auf die Geschwindigkeit bzw. die Beschleunigung des Objekts zurückgeschlossen werden.
Eine beispielhafte Vorrichtung zum Bestimmen einer Beschleunigung eines elektrisch leitfähigen Objekts wird in der EP 1 395 836 B1 beschrieben. Bei dieser Vorrichtung sind mehrere als Detektorspulen ausgebildete Sensoren und mehrere Magnete abwechselnd in der Bewegungsrichtung nebeneinander angeordnet. Die bekannte Vorrichtung eignet sich gut zur Erfassung der Bewegung von nichtmagnetischen Objekten. Als nachteilig hat sich allerdings erwiesen, dass in solchen Anwendungsfällen, in denen das elektrisch leitfähige Objekt aus einem magnetisierbaren Material gebildet ist bzw. eine ggf. veränderliche Magnetisierung aufweist, eine zuverlässige Bestimmung der Beschleunigung nicht möglich ist. Dies liegt darin begründet, dass Änderungen des Abstands zwischen dem sich bewegenden Objekt und dem Sensor sowie Änderungen der Magnetisierung des Objekts zu Änderungen des Messsignals der Detektorspule führen, welche die Größenordnung der durch die Bewegung des Objekts hervorgerufenen Änderungen übersteigt. Somit wird die Güte der Messung beeinträchtigt.
Vor diesem Hintergrund stellt sich die Aufgabe, das Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen, insbesondere magnetisierbaren, Objekts mit erhöhter Zuverlässigkeit zu ermöglichen. Die Aufgabe wird gelöst durch eine Vorrichtung zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts in einer vorgegebenen
Bewegungsrichtung,
- mit mindestens zwei ersten Magneten zur Erzeugung jeweils eines äußeren
Magnetfelds senkrecht zur Bewegungsrichtung und
- mit mindestens einem ersten Sensor zur Erfassung eines durch Wirbelströme in dem Objekt hervorgerufenen inneren Magnetfelds, wobei eine Messachse des ersten Sensors senkrecht zur Bewegungsrichtung verläuft und die mindestens zwei ersten Magneten sowie der mindestens eine erste Sensor in der Bewegungsrichtung voneinander beabstandet angeordnet sind, wobei jeweils ein erster Sensor zwischen zwei ersten Magneten angeordnet ist,
- mit mindestens zwei zweiten Magneten zur Erzeugung jeweils eines äußeren
Magnetfelds senkrecht zur Bewegungsrichtung, die jeweils mit einem der mindestens zwei ersten Magneten auf einer gemeinsamen Magnetachse angeordnet sind, welche senkrecht zur Messachse und senkrecht zur Bewegungsrichtung angeordnet ist und wobei der erste Magnet und der zweite Magnet aus einer solchen gemeinsamen Magnetachse entgegengesetzt polarisiert sind,
- mit mindestens einem zweiten Sensor zur Erfassung eines durch Wirbelströme in dem Objekt hervorgerufenen inneren Magnetfelds, der zusammen mit dem ersten Sensor auf einer gemeinsamen Sensorachse parallel zu den Magnetachsen angeordnet ist, wobei eine Messachse des zweiten Sensors parallel zu der Messachse des ersten Sensors angeordnet ist, wobei jeweils ein zweiter Sensor zwischen zwei zweiten Magneten angeordnet ist, und
- mit einer Auswerteeinrichtung zur Bestimmung einer Geschwindigkeit oder
Beschleunigung des Objekts anhand der durch den ersten Sensor und den zweiten Sensor erfassten inneren Magnetfelder, indem
die Auswerteeinrichtung dazu eingerichtet ist, ein erstes Messignal des ersten Sensors und ein zweites Messignal des zweiten Sensors zu empfangen und zur Bestimmung der Geschwindigkeit oder Beschleunigung eine Differenz des ersten Messignals und des zweiten Messignals zu bilden.
Bei der erfindungsgemäßen Vorrichtung wird sowohl mittels des ersten als auch mittels des zweiten Magnets ein äußeres Magnetfeld erzeugt, welches in dem sich bewegenden Objekt Wirbelströme induzieren kann. Dadurch, dass der erste und der zweite Magnet auf einer gemeinsamen Magnetachse und der erste und der zweite Sensor auf einer gemeinsamen Sensorachse angeordnet sind, ist es möglich, den Einfluss externer Magnetfelder, d. h. eine Vormagnetisierung des zu messenden Objekts, in der Auswerteeinrichtung zu kompensieren. Ebenso können Änderungen des Abstands zwischen dem bewegten Objekt und den Sensoren kompensiert werden. Sowohl der erste Sensor als auch der zweite Sensor erfassen dieselben externen Magnetfelder. Da der erste Magnet und der zweite Magnet entgegengesetzt polarisiert sind, induzieren die Magnete in dem sich bewegenden Objekt Wirbelströme entgegengesetzter Richtung. Die aus den Wirbelströmen resultierenden internen Magnetfelder weisen denselben Betrag auf, sind aber entgegengesetzt
ausgerichtet. Die Sensoren erfassen daher neben dem äußeren Magnetfeld auch die internen Magnetfelder entgegengesetzter Polarität. Weil die äußeren Magnetfelder, die durch den ersten und den zweiten Sensor gemessen werden, identisch sind, ist es mittels der Auswerteeinrichtung möglich, den Einfluss der äußeren Magnetfelder zu kompensieren. Ebenso können Änderungen des Abstands zwischen dem Objekt und den beiden Sensoren kompensiert werden. Folglich kann eine erhöhte Zuverlässigkeit bei der Bestimmung der Geschwindigkeit oder Beschleunigung erreicht werden.
Gemäß der erfindungsmäßen Ausgestaltung ist vorgesehen, dass die Auswerteeinrichtung dazu eingerichtet ist, ein erstes Messignal des ersten Sensors und ein zweites Messignal des zweiten Sensors zu empfangen und zur Bestimmung der Geschwindigkeit oder
Beschleunigung eine Differenz des ersten Messignals und des zweiten Messignals zu bilden. Durch die Differenzbildung kann der Einfluss des äußeren Magnetfelds, d. h. einer
Vormagnetisierung des zu messenden Objekts, bzw. von Abstandsänderungen zwischen Objekt und Vorrichtung auf die Messung eliminiert werden. Aus der Differenzbildung kann ein Differenzwert erhalten werden, der dem zweifachen Betrag des Messsignals entspricht. Dieser Differenzwert ist im Wesentlichen abhängig von der Geschwindigkeit bzw. der Beschleunigung des bewegten Objekts.
Bevorzugt ist der erste Magnet und/oder der zweite Magnet als Permanentmagnet ausgebildet, wodurch eine kompakte Ausgestaltung der Vorrichtung ermöglicht werden kann. Alternativ bevorzugt ist es, wenn der erste Magnet und/oder der zweite Magnet als
Elektromagnet ausgebildet ist, so dass das durch den jeweiligen Magnet erzeugte äußere Magnetfeld eingestellt werden kann. Es sind mehrere erste Magnete und mehrere zweite Magnete vorgesehen, wobei die ersten Magnete bevorzugt identisch ausgebildet und die zweiten Magnete bevorzugt identisch ausgebildet sind. Bevorzugt sind mehrere erste Magnete derart entlang der Bewegungsrichtung angeordnet, dass benachbarte erste
Magnete eine entgegengesetzte Polarisierung aufweisen. Mehrere zweite Magneten sind vorteilhafterweise derart entlang der Bewegungsrichtung angeordnet, dass benachbarte zweite Magnete eine entgegengesetzte Polarisierung aufweisen. Gemäß einer vorteilhaften Ausgestaltung ist der mindestens eine erste Sensor und/oder der mindestens eine zweite Sensor ein Hall-Sensor. Durch den Hall-Sensor kann ein
Messsignal, insbesondere eine Hallspannung, erhalten werden, welches proportional zu der magnetischen Flussdichte des gemessenen Magnetfelds ist. Die magnetische Flussdichte ist proportional zu der Geschwindigkeit des bewegten Objekts, so dass die Auswerteeinrichtung anhand des Messsignals des Hall-Sensors die Geschwindigkeit bestimmen kann. Eine alternative, vorteilhafte Ausgestaltung sieht vor, dass der mindestens eine erste Sensor und/oder der mindestens eine zweite Sensor eine Messspule ist. Die Messspule kann ein Messsignal, insbesondere eine induzierte Spannung, erzeugen, welches proportional zu der Änderung der Geschwindigkeit des bewegten Objekts, also der Beschleunigung des Objekts ist. Falls mehrere erste Sensoren und/oder mehrere zweite Sensoren vorgesehen sind, dann sind die ersten Sensoren bevorzugt identisch ausgebildet und/oder die zweiten Sensoren sind identisch ausgebildet. Bevorzugt sind mehrere erste Sensoren derart entlang der Bewegungsrichtung angeordnet, dass sich zwischen zwei benachbarten ersten Sensoren jeweils ein erster Magnet angeordnet ist. Entsprechend ist es bevorzugt, wenn mehrere zweite Sensoren derart entlang der Bewegungsrichtung angeordnet sind, dass sich zwischen zwei benachbarten zweiten Sensoren jeweils ein zweiter Magnet befindet.
Gemäß einer vorteilhaften Ausgestaltung sind in der Bewegungsrichtung mehrere erste Magnete und mehrere erste Sensoren abwechselnd voneinander beabstandet angeordnet und in der Bewegungsrichtung mehrere zweite Magnete und mehrere zweite
Sensoren abwechselnd voneinander beabstandet angeordnet. Auf diese Weise kann eine Vorrichtung gebildet werden, welche das Bestimmen einer linearen Bewegung des Objekts über einen vorgegebenen Streckenabschnitt in der Bewegungsrichtung ermöglicht.
Bevorzugt sind benachbarte erste Magnete jeweils derart angeordnet, dass sie
entgegengesetzt polarisiert sind. Ebenso ist es bevorzugt, wenn benachbarte zweite
Magnete jeweils derart angeordnet, dass sie entgegengesetzt polarisiert sind.
Bevorzugt sind die mindestens zwei ersten Magneten, der mindestens eine erste Sensor, die mindestens zwei zweiten Magneten und der mindestens eine zweite Sensor an einem gemeinsamen Abtastkopf angeordnet. Es ist daher möglich, die Vorrichtung als
vorgefertigtes Einbauteil auszubilden, welches als Ganzes in ein System, beispielsweise eine Werkzeugmaschine, eingebaut werden kann.
Ein weiterer Gegenstand der Erfindung ist ein System mit einem elektrisch leitfähigen Objekt und mit einer vorstehend beschriebenen Vorrichtung zum Bestimmen einer Geschwindigkeit oder Beschleunigung des elektrisch leitfähigen Objekts in einer vorgegebenen Bewegungsrichtung.
Bei dem System können dieselben Vorteile erreicht werden, wie sie im Zusammenhang mit der Vorrichtung zum Bestimmen der Geschwindigkeit oder Beschleunigung beschrieben worden sind.
Das bewegbare Objekt nimmt in dem System die Funktion eines Wirbelstromkörpers ein, in welchem durch das äußere Magnetfeld des ersten Magnets und des zweiten Magnets Wirbelströme induziert werden. Das Objekt kann der zu überwachende Gegenstand selbst sein oder kann ein an dem zu überwachenden Gegenstand, beispielsweise einem elektrisch nicht leitfähigen Gegenstand, befestigt sein. Ein solcher Gegenstand kann eine drehbar angeordnete Welle, eine drehbar angeordnete Maschinenachse, ein drehbares Teil einer Lagerung, ein bewegbares Teil einer Linearführung sein. Alternativ ist es möglich, dass es sich bei dem Objekt um Rohmaterial oder Halbzeug handelt, welches elektrisch leitfähig ist, beispielsweise ein Blech, ein Rohr, oder eine Stange.
Gemäß einer vorteilhaften Ausgestaltung des Systems ist das Objekt magnetisiert. Das Objekt kann als Permanentmagnet ausgebildet sein oder durch ein bewegbares
Magnetspannmittel, insbesondere ein Magnetfutter oder eine Magnetspannplatte, gehalten und magnetisiert sein. Die Vorrichtung zum Bestimmen der Geschwindigkeit oder
Beschleunigung ermöglicht es, zum Einspannen durch das Magnetspannmittel erforderliche externe Magnetfelder zu kompensieren.
Bevorzugt ist das Objekt des Systems linear bewegbar angeordnet. Alternativ ist es bevorzugt, wenn das Objekt drehbar angeordnet ist, also in Rotation versetzt werden kann. Hierbei kann die Vorrichtung zum Bestimmen der Geschwindigkeit oder Beschleunigung feststehend angeordnet sein, so dass die Geschwindigkeit oder Beschleunigung einer Relativbewegung des Objekts gegenüber der Vorrichtung bestimmt werden kann.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Bestimmen einer
Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts in einer vorgegebenen Bewegungsrichtung mit einer erfindungsgemäßen Vorrichtung, wobei
- mittels der mindestens zwei ersten Magneten jeweils ein äußeres Magnetfeld
senkrecht zur Bewegungsrichtung erzeugt wird,
- mittels des mindestens einen ersten Sensors ein durch Wirbelströme in dem Objekt hervorgerufenes inneres Magnetfeld erfasst wird, - mittels der mindestens zwei zweiten Magneten jeweils ein äußeres Magnetfeld senkrecht zur Bewegungsrichtung erzeugt wird, und
- mittels des mindestens einen zweiten Sensors ein durch Wirbelströme in dem Objekt hervorgerufenes inneres Magnetfeld in der Feldrichtung erfasst wird, und
mittels der Auswerteeinrichtung eine Geschwindigkeit oder eine Beschleunigung des Objekts anhand der durch den ersten Sensor und den zweiten Sensor erfassten inneren
Magnetfelder bestimmt wird, indem gemäß dem erfindungsgemäßen Verfahren mittels der Auswerteeinrichtung ein erstes Messignal des ersten Sensors und ein zweites Messignal des zweiten Sensors empfangen und zur Bestimmung der Geschwindigkeit oder der
Beschleunigung eine Differenz des ersten Messignals und des zweiten Messignals gebildet wird, wobei die bestimmte Geschwindigkeit oder Beschleunigung unabhängig von einem Abstand und/oder einer Vormagnetisierung des Objekts ist.
Bei dem Verfahren können dieselben Vorteile erreicht werden, wie sie im Zusammenhang mit der Vorrichtung zum Bestimmen der Geschwindigkeit oder Beschleunigung beschrieben worden sind. Wie bereits im Zusammenhang mit einer entsprechenden vorteilhaften
Ausgestaltung der Vorrichtung erläutert worden ist, kann durch die Differenzbildung der Einfluss des äußeren Magnetfelds bzw. der Einfluss von Abstandsänderungen auf die Messung eliminiert werden.
Alternativ oder zusätzlich können bei dem System und/oder dem Verfahren auch die im Zusammenhang mit der Vorrichtung zum Bestimmen einer Geschwindigkeit oder
Beschleunigung eines elektrisch leitfähigen Objekts beschriebenen vorteilhaften Merkmale und Ausgestaltungen allein oder in Kombination Anwendung finden.
Weitere Einzelheiten und Vorteile der Erfindung sollen nachfolgend anhand des in den Zeichnungen dargestellten Ausführungsbeispiels erläutert werden. Hierin zeigt:
Fig. 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Systems in einer
schematischen Schnittdarstellung;
Fig. 2 das System gemäß Fig. 1 in einer schematischen Draufsicht, in der das Objekt durchsichtig gezeigt ist;
Fig. 3 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Systems in einer
schematischen Schnittdarstellung; Fig. 4 das System gemäß Fig. 3 in einer schematischen Draufsicht, in der das Objekt durchsichtig gezeigt ist;
Fig. 5 eine Abwandlung des Systems gemäß Fig. 3 und 4; und
Fig. 6 ein Blockdiagramm zur Veranschaulichung einer Auswerteeinrichtung, die bei den Systemen nach Fig. 1-5 zur Anwendung kommen kann.
Die Darstellungen in Fig. 1 und 2 zeigen ein erstes Ausführungsbeispiel eines Systems gemäß der Erfindung, welches ein elektrisch leitfähiges Objekt 4 und eine Vorrichtung 20 zum Bestimmen einer Geschwindigkeit oder Beschleunigung des Objekts 4 in einer vorgegebenen Bewegungsrichtung X umfasst. Bei dem Objekt 4 kann es sich beispielsweise um ein Rohmaterial oder ein Halbzeug eines Fertigungsprozesses handeln, welches linear bewegt wird, z. B. beim Zuführen zu einer in den Figuren nicht dargestellten
Werkzeugmaschine. Alternativ kann das Objekt 4 an einem linear bewegbaren Gegenstand angeordnet sein. Das Objekt 4 kann aus einem Metall, beispielsweise Aluminium, Kupfer, Eisen, Stahl, insbesondere Chromstahl, ausgebildet sein. Das Objekt 4 kann zudem magnetisiert sein, beispielsweise durch ein zusammen mit dem Objekt 4 bewegbares Magnetspannmittel, insbesondere ein Magnetfutter oder eine Magnetspannplatte, welches das Objekt 4 hält.
Die Vorrichtung 20 ist nach Art eines Ferraris-Sensors ausgebildet und umfasst mehrere erste Magnete 1 , die in der Bewegungsrichtung X zueinander beabstandet angeordnet sind. Die ersten Magnete 1 sind als Permanentmagnete ausgebildet. Benachbarte erste Magnete 1 weisen jeweils eine entgegengesetzte Polarisierung auf, so dass mehrere äußere
Magnetfelder 1a parallel und antiparallel zu einer Feldrichtung Y erzeugt werden, die senkrecht zur Bewegungsrichtung X angeordnet ist. Zwischen zwei benachbarten ersten Magneten 1 ist jeweils ein erster Sensor 3 angeordnet, mittels dessen das innere
Magnetfeld 8 erfasst wird, welches durch in dem Objekt 4 hervorgerufene Wirbelströme 6 erzeugt wird. Die Messachsen 5, entlang denen die Messung des inneren Magnetfelds 8 durch die Sensoren 3 erfolgt, sind in Fig. 1 dargestellt und verlaufen parallel zur
Feldrichtung Y.
Um das Bestimmen der Geschwindigkeit oder Beschleunigung des Objekts 4 mit erhöhter Zuverlässigkeit zu ermöglichen, weist die Vorrichtung 20 zusätzlich zweite Magnete 1 b und zweite Sensoren 3a auf. Gemäß dem Ausführungsbeispiel sind die zweiten Magnete 1 b als Permanentmagnete ausgebildet. Die zweiten Magnete 1b sind mit den ersten Magneten 1 jeweils auf einer gemeinsamen Magnetachse 12 angeordnet, welche in einer Anordnungsrichtung Z verläuft, die senkrecht zur Feldrichtung Y und senkrecht zur
Bewegungsrichtung X angeordnet ist. Zudem sind die ersten Magnete 1 und die jeweils auf derselben Magnetachse 12 angeordneten zweiten Magnete 1 b entgegengesetzt polarisiert. Die zweiten Magnete 1b erzeugen somit ebenfalls ein äußeres Magnetfeld 8 senkrecht zur Bewegungsrichtung X, wobei diese jeweils antiparallel zu dem äußeren Magnetfeld des jeweiligen auf derselben Magnetachse 12 angeordneten ersten Magnets 1 ist. Die zweiten Sensoren 3a sind mit den ersten Sensoren 3 jeweils auf einem gemeinsamen
Sensorachse 9 angeordnet, die parallel zur Magnetachse 12 verläuft. Die Messachsen der zweiten Sensoren 3a verlaufen parallel zu den Messachsen 5 der ersten Sensoren 3, so dass durch die zweiten Sensoren 3a ebenfalls ein inneres Magnetfeld 8 erfasst werden kann, welches durch Wirbelströme 6 in dem Objekt 4 hervorgerufen wird. Die Magnetachse 12 verläuft parallel zu einer Anordnungsrichtung Z, die senkrecht zu der Bewegungsrichtung X und senkrecht zu der Feldrichtung Y angeordnet ist.
Ein weiterer Bestandteil der Vorrichtung 20 ist eine Auswerteeinrichtung 11 zur Bestimmung einer Geschwindigkeit oder Beschleunigung des Objekts 4 anhand der durch den ersten Sensor 3 und den zweiten Sensor 3a erfassten inneren Magnetfelder 8. Die in Fig. 2 schematisch dargestellte Auswerteeinrichtung 11 ist über in der Fig. 2 nicht gezeigte
Signalleitungen mit den ersten Sensoren 3 und den zweiten Sensoren 3a verbunden.
Insofern werden der Auswerteeinrichtung 11 Messsignale der ersten und zweiten Sensoren 3, 3a zur Verarbeitung bereitgestellt. Sofern die Sensoren 3, 3a jeweils ein Messsignal erfassen, welches proportional zu der magnetischen Flussdichte des gemessenen
Magnetfelds ist, also beispielsweise bei als Hall-Sensoren ausgebildeten Sensoren 3, 3a, kann die Auswerteeinrichtung 11 die Geschwindigkeit des bewegten Objekts 4 ermitteln. Sofern die Sensoren 3, 3a jeweils ein Messsignal erfassen, welches als proportional zu der Änderung der Geschwindigkeit des bewegten Objekts ist, z. B. wenn die Sensoren 3, 3a als Messspulen ausgebildet sind, kann die Auswerteeinrichtung 11 die Beschleunigung des bewegten Objekts 4 ermitteln.
Bei der Vorrichtung 20 sind die ersten und zweiten Magnete 1 , 1a sowie die ersten und zweiten Sensoren 3, 3a an einem gemeinsamen Abtastkopf 2 angeordnet. Optional kann auch die Auswerteeinrichtung 11 als Teil des Abtastkopfs 2 ausgebildet sein.
Die Darstellungen in Fig. 3 und 4 zeigen ein zweites Ausführungsbeispiel eines Systems gemäß der Erfindung mit einem elektrisch leitfähigen Objekt 4c und einer Vorrichtung 20 zum Bestimmen einer Geschwindigkeit oder Beschleunigung des Objekts 4c in einer vorgegebenen Bewegungsrichtung X. Im Unterschied zu dem ersten Ausführungsbeispiel ist das Objekt 4c drehbar gelagert. Beispielsweise in einem drehbaren Futter, insbesondere einem Magnetfutter. Die Vorrichtung 20 umfasst einen Abtastkopf 2, der im Unterschied zu dem Abtastkopf nach Fig. 1 und 2 genau einen ersten Sensor 3 und einen zweiten Sensor 3a aufweist, die auf einer gemeinsamen Sensorachse 9 angeordnet sind. Ferner umfasst der Abtastkopf 2 genau zwei erste Magnete 1 mit entgegengesetzter Polarität und genau zwei zweite Magnete 1 b mit entgegengesetzter Polarität. Die Bewegungsrichtung X verläuft tangential zur Drehrichtung des Objekts 4c im Bereich der Messachse 5 des ersten Sensors 3. Der erste Sensor 3 und der zweite Sensor 3a ist in der Bewegungsrichtung X zwischen den ersten bzw. den zweiten Magneten 1 , 1b angeordnet.
Im Übrigen wird auf die Ausführungen zu dem in Fig.1 und 2 gezeigten ersten
Ausführungsbeispiel verwiesen.
In Fig. 5 ist eine Abwandlung des zweiten Ausführungsbeispiels gezeigt, bei welcher die Vorrichtung 20 zwei Abtaststreifen 10, 10a aufweist, die zur Bildung des Abtastkopfes zusammengesetzt worden sind. Ein erster Abtaststreifen 10 umfasst die ersten Magnete 1 und den ersten Sensor 3. Ein zweiter Abtaststreifen 10a umfasst die zweiten Magnete 1b und den zweiten Sensor 3a. Die Abtaststreifen 10, 10a sind parallel zueinander angeordnet und verlaufen in Richtung der Bewegungsrichtung X des zu erfassenden Objekts.
Die Fig. 6 zeigt eine schematische Darstellung einer Auswerteeinrichtung 11 , die bei den vorstehend beschriebenen Vorrichtungen 20 Verwendung finden kann. Der
Auswerteeinrichtung 11 werden Messsignale des einen oder der mehreren ersten
Sensoren 3 und des einen oder der mehreren zweiten Sensoren 3a zugeführt. Bei diesen Messsignalen kann es sich um Messignale handeln, die entweder proportional zu der Geschwindigkeit oder proportional zu der Beschleunigung des Objekts 4, 4c sind. Die Auswerteeinrichtung 11 ist dazu eingerichtet, ein erstes Messignal des ersten Sensors 3 und ein zweites Messignal des zweiten Sensors 3a zu empfangen und eine Differenz des ersten Messignals und des zweiten Messignals zu bilden. Durch die Differenzbildung wird der Einfluss externer Magnetfelder auf das Ergebnis eliminiert und ein Ausgangssignal W erhalten, welches dem zweifachen Betrag des Messsignals entspricht und ausschließlich von der Geschwindigkeit des Objekts abhängt.
Die vorstehend beschriebenen Systeme weisen jeweils eine Vorrichtung 20 zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts 4, 4c in einer vorgegebenen Bewegungsrichtung X auf, die mindestens einen ersten Magnet 1 zur Erzeugung eines äußeren Magnetfelds 1a senkrecht zur Bewegungsrichtung X und mindestens einen ersten Sensor 3 zur Erfassung eines durch Wirbelströme 6 in dem Objekt 4, 4c hervorgerufenen inneren Magnetfelds 8 umfasst, wobei eine Messachse 5 des ersten Sensors 3 senkrecht zur Bewegungsrichtung X verläuft und der erste Magnet 1 sowie der erste Sensor 3 in der Bewegungsrichtung X voneinander beabstandet angeordnet sind. Weitere Bestandteile der Vorrichtung sind mindestens ein zweiter Magnet 1b zur Erzeugung eines äußeren Magnetfelds 1a senkrecht zur Bewegungsrichtung X, der zusammen mit dem ersten Magnet 1 auf einer gemeinsamen Magnetachse 12 angeordnet ist, welche senkrecht zur Messachse 5 und senkrecht zur Bewegungsrichtung X angeordnet ist, wobei der erste Magnet 1 und der zweite Magnet 1 b entgegengesetzt polarisiert sind und mindestens ein zweiter Sensor 3a zur Erfassung eines durch Wirbelströme 6 in dem Objekt 4, 4c hervorgerufenen inneren Magnetfelds 8, der zusammen mit dem ersten Sensor 1 auf einer gemeinsamen Sensorachse 9 parallel zu der Magnetachse 12 angeordnet ist, wobei eine Messachse 5' des zweiten Sensors 3a parallel zu der Messachse 5 des ersten Sensors 3 angeordnet ist. Zudem umfasst die Vorrichtung 20 eine Auswerteeinrichtung 11 zur Bestimmung einer Geschwindigkeit oder Beschleunigung des Objekts 4, 4c anhand der durch den ersten Sensor 3 und den zweiten Sensor 3a erfassten inneren Magnetfelder.
Bezugszeichenliste:
1 Magnet
1a äußeres Magnetfeld
1b Magnet
2 Abtastkopf
3 Sensor
3a Sensor
4 Objekt
4c Objekt
5, 5' Messachse
6 Wirbelstrom
7 Anordnungsachse
8 inneres Magnetfeld
9 Sensorachse
10 Abtaststreifen
10a Abtaststreifen
11 Auswerteeinheit
12 Magnetachse
W Ausgangssignal
X Bewegungsrichtung
Y Feldrichtung
Z Anordnungsrichtung

Claims

Patentansprüche
1. Vorrichtung (20) zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts (4, 4c) in einer vorgegebenen Bewegungsrichtung (X),
mit mindestens zwei ersten Magneten (1) zur Erzeugung jeweils eines äußeren Magnetfelds (1a) senkrecht zur Bewegungsrichtung (X) und mit mindestens einem ersten Sensor (3) zur Erfassung eines durch
Wirbelströme (6) in dem Objekt (4, 4c) hervorgerufenen inneren Magnetfelds (8), wobei eine Messachse (5) des ersten Sensors (3) senkrecht zur Bewegungsrichtung (X) verläuft und die mindestens zwei ersten Magneten (1) sowie der mindestens eine erste Sensor (3) in der Bewegungsrichtung (X) voneinander beabstandet angeordnet sind, wobei jeweils ein erster Sensor (3) zwischen zwei ersten Magneten (1) angeordnet ist,
mit mindestens zwei zweiten Magneten (1 b) zur Erzeugung jeweils eines äußeren Magnetfelds (1a) senkrecht zur Bewegungsrichtung (X), die jeweils mit einem der mindestens zwei ersten Magneten (1) auf einer gemeinsamen Magnetachse (12) angeordnet sind, welche senkrecht zur Messachse (5) und senkrecht zur Bewegungsrichtung (X) angeordnet ist und wobei der erste Magnet (1) und der zweite Magnet (1 b) auf einer solchen gemeinsamen Magnetachse (12) entgegengesetzt polarisiert sind,
mit mindestens einem zweiten Sensor (3a) zur Erfassung eines durch
Wirbelströme (6) in dem Objekt (4, 4c) hervorgerufenen inneren Magnetfelds (8), der zusammen mit dem ersten Sensor (1) auf einer gemeinsamen Sensorachse (9) parallel zu den Magnetachsen (12) angeordnet ist, wobei eine Messachse (5') des zweiten Sensors (3a) parallel zu der Messachse (5) des ersten Sensors (3) angeordnet ist, wobei jeweils ein zweiter Sensor (3a) zwischen zwei zweiten Magneten (1 b) angeordnet ist, und mit einer Auswerteeinrichtung (11) zur Bestimmung einer Geschwindigkeit oder Beschleunigung des Objekts (4, 4c) anhand der durch den ersten Sensor (3) und den zweiten Sensor (3a) erfassten inneren Magnetfelder (8), indem die Auswerteeinrichtung (11) dazu eingerichtet ist, ein erstes Messignal des ersten Sensors (3) und ein zweites Messignal des zweiten Sensors (3a) zu empfangen und zur Bestimmung der Geschwindigkeit oder Beschleunigung eine Differenz des ersten Messignals und des zweiten Messignals zu bilden.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Magnet (1) und/oder der zweite Magnet (1b) als Permanentmagnet oder als Elektromagnet ausgebildet ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine erste Sensor (3) und/oder der mindestens eine zweite Sensor (3b) ein Hall-Sensor oder eine Messspule ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Bewegungsrichtung (X) mehrere erste Magnete (1) und mehrere erste Sensoren (3) abwechselnd voneinander beabstandet angeordnet sind und in der Bewegungsrichtung (X) mehrere zweite Magnete (3a) und mehrere zweite Sensoren (1b) abwechselnd voneinander beabstandet angeordnet sind.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der die mindestens zwei ersten Magneten (1), der mindestens eine erste Sensor (3), die mindestens zwei zweiten Magneten (1b) und der mindestens eine zweite Sensor (3a) an einem gemeinsamen Abtastkopf (2) angeordnet sind.
6. System mit einem elektrisch leitfähigen Objekt (4, 4c) und mit einer Vorrichtung zum Bestimmen einer Geschwindigkeit oder Beschleunigung des elektrisch leitfähigen Objekts (4, 4c) in einer vorgegebenen Bewegungsrichtung (X) nach einem der vorhergehenden
Ansprüche.
7. System nach Anspruch 6, dadurch gekennzeichnet, dass das Objekt (4, 4c) magnetisiert ist.
8. Verfahren zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts (4, 4c) in einer vorgegebenen Bewegungsrichtung (X) mit einer
Vorrichtung nach einem der Ansprüche 1 bis 5, wobei
mittels der mindestens zwei ersten Magnete (1) jeweils ein äußeres Magnetfeld (1a) senkrecht zur Bewegungsrichtung (X) erzeugt wird und
mittels des mindestens einen ersten Sensors (3) ein durch Wirbelströme in dem Objekt hervorgerufenes inneres Magnetfeld (8) erfasst wird, und mittels der mindestens zwei zweiten Magnete (1 b) jeweils ein äußeres Magnetfeld (1a) senkrecht zur Bewegungsrichtung (X) erzeugt wird, und
mittels des mindestens einen zweiten Sensors (3a) ein durch Wirbelströme in dem Objekt (4, 4c) hervorgerufenes inneres Magnetfeld (8) in der Feldrichtung (Y) erfasst wird, und
mittels der Auswerteeinrichtung eine Geschwindigkeit oder eine Beschleunigung des Objekts (4, 4c) anhand der durch den ersten Sensor (3) und den zweiten Sensor (3a) erfassten inneren Magnetfelder (8) bestimmt wird, indem mittels der Auswerteeinrichtung ein erstes Messignal des ersten Sensors (3) und ein zweites Messignal des zweiten Sensors (3a) empfangen wird und zur Bestimmung der Geschwindigkeit oder der Beschleunigung eine Differenz des ersten Messignals und des zweiten Messignals gebildet wird, wobei die bestimmte Geschwindigkeit oder Beschleunigung unabhängig von einem Abstand und/oder einer Vormagnetisierung des Objekts (4, 4c) ist.
EP20709128.1A 2019-03-01 2020-02-19 Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system Active EP3931576B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019105203.3A DE102019105203A1 (de) 2019-03-01 2019-03-01 Vorrichtung und Verfahren zum Bestimmen einer Geschwindigkeit oder Beschleunigung eines elektrisch leitfähigen Objekts, sowie System
PCT/DE2020/100115 WO2020177811A1 (de) 2019-03-01 2020-02-19 Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system

Publications (2)

Publication Number Publication Date
EP3931576A1 true EP3931576A1 (de) 2022-01-05
EP3931576B1 EP3931576B1 (de) 2023-05-24

Family

ID=69742623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20709128.1A Active EP3931576B1 (de) 2019-03-01 2020-02-19 Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system

Country Status (5)

Country Link
EP (1) EP3931576B1 (de)
CN (1) CN113260867A (de)
DE (1) DE102019105203A1 (de)
ES (1) ES2949532T3 (de)
WO (1) WO2020177811A1 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441077A (en) * 1981-11-23 1984-04-03 International Business Machines Real time eddy current responsive Hall effect device tachometer
DE3147819A1 (de) * 1981-12-03 1983-06-16 Herbert Prof. Dr.-Ing. 3300 Braunschweig Weh Erfassung der fahrzeugposition durch abzaehlen von nuten
JPH0713643B2 (ja) * 1985-10-30 1995-02-15 三井石油化学工業株式会社 速度・位置センサ
JPH08233843A (ja) * 1994-12-28 1996-09-13 Yamaha Motor Co Ltd 速度検出方法および速度センサ装置
DE10032143C2 (de) * 1999-09-30 2002-07-18 Heidenhain Gmbh Dr Johannes Ferraris-Sensor und Verfahren zum Betrieb eines Ferraris-Sensors
DE10039324C1 (de) * 2000-08-03 2002-04-18 Huebner Elmasch Ag Beschleunigungsmeßvorrichtung
DE10125097A1 (de) * 2001-05-23 2002-11-28 Heidenhain Gmbh Dr Johannes Ferraris-Sensor
DE10139379A1 (de) * 2001-08-10 2003-03-06 Siemens Ag Vorrichtung zum Erfassen einer Bewegung
EP1549960A1 (de) * 2002-10-11 2005-07-06 The Timken Company Geschwindigkeitsmessverfahren und vorrichtung
JP2004219383A (ja) * 2003-01-17 2004-08-05 Central Japan Railway Co 車輪速度検知システム
WO2005076016A1 (en) * 2004-01-08 2005-08-18 Philips Intellectual Property & Standards Gmbh Magnetoresistive speed sensor
EP2635512B1 (de) * 2010-11-02 2022-06-29 Laitram, LLC Fördersystem, förderband und verfahren dafür unter verwendung von beschleunigungsmessern
DE102015007190B4 (de) * 2015-06-09 2017-03-02 Micronas Gmbh Magnetfeldmessvorrichtung
DE102015213083A1 (de) * 2015-07-13 2017-01-19 Baumüller Nürnberg GmbH Verfahren zum Betrieb einer elektrischen Maschine und elektrische Maschine
JP7001385B2 (ja) * 2017-08-07 2022-01-19 ナブテスコ株式会社 速度検出装置及び速度検出方法

Also Published As

Publication number Publication date
EP3931576B1 (de) 2023-05-24
CN113260867A (zh) 2021-08-13
WO2020177811A1 (de) 2020-09-10
ES2949532T3 (es) 2023-09-29
DE102019105203A1 (de) 2020-09-03

Similar Documents

Publication Publication Date Title
DE3882962T2 (de) Multidrehungs-Positionsgeber.
DE2614328C2 (de) Einrichtng zur Messung des Drehwinkels und der Drehzahl eines sich drehenden Bauteils
DE112012005839B4 (de) Aufzugkabinenstandorterfassungsvorrichtung
EP3563116B1 (de) Wegsensor
EP1847810B1 (de) Verfahren und Vorrichtung zur Positionsdetektion
WO2007014599A1 (de) Vorrichtung zur detektion von umdrehungen einer lenkwelle
DE4400616C2 (de) Magnetischer Positionssensor, insbesondere für Kraftfahrzeuge
EP0073017A1 (de) Vorrichtung zur zerstörungsfreien Prüfung ferromagnetischer Körper
DE112011103381T5 (de) Berührungsloser Bewegungs- und Geschwindigkeitssensor
EP2137499A2 (de) Verfahren und sensoranordnung zum bestimmen der position und/oder positionsänderung eines messobjekts relativ zu einem sensor
WO2009121193A1 (de) Magnetische linearsensoranordnung
DE102008059775A1 (de) Absolut messende Lenkwinkelsensoranordnung
EP2515084A1 (de) Verfahren und Anordnung für das Erfassen von Bewegungen eines Körpers mittels eines Segmentzählers und eines Feinpositionssensors
DE102006038162A1 (de) Elektromotor mit Messsystem für Position oder Bewegung
DE3240478A1 (de) Sensor zum erfassen von magnetfeldverzerrungen bzw. aus diesen ableitbaren messgroessen
DE3631571C2 (de)
DE19612422C2 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
DE19630108A1 (de) Einrichtung zur berührungslosen Erfassung der Geschwindigkeit oder Position eines ferromagnetischen Geberteils
DE3326476A1 (de) Anordnung zur bestimmung der position, der geometrischen abmessungen oder der bewegungsgroessen eines gegenstandes
DE2834287A1 (de) Verfahren zur pruefung der magnetischen eigenschaften eines sicherheitsfadens in einem wertdruck
EP3931576B1 (de) Vorrichtung und verfahren zum bestimmen einer geschwindigkeit oder beschleunigung eines elektrisch leitfähigen objekts, sowie system
EP3976439A1 (de) Sensoreinrichtung für eine anordnung zur detektion und analyse eines entlang einer spur, insbesondere entlang eines gleises, bewegten rades eines fahrzeugs
EP0966653B1 (de) Verfahren und vorrichtung zur positionserfassung eines beweglich angeordneten stellglieds eines stellantriebs
DE102012221327A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE10221340A1 (de) Sensoranordnung zur Detektierung eines Drehwinkels einer Welle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003329

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1569824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2949532

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230924

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003329

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240219

Year of fee payment: 5