EP3918042A1 - Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources - Google Patents

Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources

Info

Publication number
EP3918042A1
EP3918042A1 EP20707712.4A EP20707712A EP3918042A1 EP 3918042 A1 EP3918042 A1 EP 3918042A1 EP 20707712 A EP20707712 A EP 20707712A EP 3918042 A1 EP3918042 A1 EP 3918042A1
Authority
EP
European Patent Office
Prior art keywords
fatty acid
acid
polyol
unsaturated
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20707712.4A
Other languages
German (de)
English (en)
Inventor
Stéphanie LEBRUN
Salomé GRAVELAT
Guillaume Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3918042A1 publication Critical patent/EP3918042A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/081Biodegradable compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to esters of polyols and a mixture of fatty acids, their use as a lubricating base and their manufacturing process.
  • lubricating base market is dominated by mineral oils of petroleum origin.
  • European production of lubricants amounted to 4.5 million tonnes per year.
  • These lubricating bases are used in various industries such as motor oil, cutting oil for chainsaw chains, oil for offshore petroleum drilling, hydraulic oil for construction machinery and agricultural machinery, etc.
  • oils have the advantage of being environmentally friendly. However, they have low thermal stability, low resistance to oxidation compared to mineral oils and are susceptible to hydrolysis in the presence of water.
  • Biodegradable lubricating compositions comprising products derived from palm oil and polyols such as neopentylglycol or trimethylolpropane are described in patent application EPI 533360. However, such compositions are only suitable for temperatures ranging from 15 to 40 ° C.
  • esters of polyols whose structure can be derived from ingredients preferably of renewable origins, possessing excellent lubricating properties as well as safety with respect to man and the environment.
  • esters of at least one polyol and of a mixture of fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10 fatty acid -C12 exhibit excellent properties for lubricant applications.
  • esters of at least one polyol and of a mixture of fatty acids in which the acids are a mixture of 10-undecylenic acid and of n-heptanoic acid from renewable resources exhibit excellent properties for applications in lubricants.
  • the present invention relates to esters of at least one polyol and a mixture of fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10-C12 fatty acid.
  • the present invention also relates to the use of esters of at least one polyol and of a mixture of linear fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10-C12 fatty acid such as as defined above as a lubricating base.
  • the present invention also relates to a lubricating base composition
  • a lubricating base composition comprising esters of at least one polyol and of a mixture of linear fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10- fatty acid.
  • C12 as defined above.
  • the present invention also relates to a process for the preparation of esters comprising the esterification of a mixture of linear fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10-C12 fatty acid with at least a polyol, optionally in the presence of a catalyst.
  • the present invention also relates to esters of at least one polyol and of a mixture of linear fatty acids comprising at least one saturated C5-C12 fatty acid and at least one unsaturated C10-C12 fatty acid obtained by the defined process. above.
  • the lubricating base compositions according to the invention synthesized from esters of at least one polyol and a mixture of fatty acids of renewable origin, such as for example erythritol and the mixture of fatty acids in which acids its ⁇ a mixture of n-heptanoic acid e ⁇ of 10-undecylenic acid (eg a mixture of OIeris® C7 e ⁇ Cl 1: 1 from Arkema), make it possible to achieve properties in terms of thermal stability, oxidation stability, as well as a viscosity index, higher than the usual esters don ⁇ the alcohol is non-biobased, such as, for example, trimethylolpropane, as detailed in the examples below.
  • esters of at least one polyol and a mixture of fatty acids of renewable origin such as for example erythritol and the mixture of fatty acids in which acids its ⁇ a mixture of n-heptanoic acid e ⁇ of 10-undecylenic acid (
  • the present invention provides a particular lubricating base composition which offers good thermal stability, improved oxidation stability and very good lubricating properties.
  • biodegradable is used here to denote a compound formed from molecules which can be transformed into smaller molecules which pollute less, for example by microorganisms living in the natural environment, such as bacteria, fungi and algae. The end result of this degradation is usually water, carbon dioxide or methane.
  • materials, compounds or ingredients “from renewable resources” or “biobased” are meant renewable natural materials, compounds or ingredients whose stock can be reconstituted over a short period on a human scale. These are in particular raw materials of animal or plant origin.
  • raw materials of renewable origin or bio-resourced raw materials is meant materials which include bio-resourced carbon or carbon of renewable origin. In fact, unlike materials made from fossil fuels, materials made from renewable raw materials contain carbon 14 ( . 4 C).
  • the “carbon content of renewable origin” or “bio-resourced carbon content” is determined in application of the standards ASTM D 6866 (ASTM D 6866-06) and ASTM D 7026 (ASTM D 7026-04).
  • the viscosity of a fluid refers to the resistance it opposes to the internal sliding of its molecules during its flow.
  • the viscosity is given for a reference temperature.
  • h is the dynamic viscosity in Pa.s.
  • p is the density of the fluid in kg / m 3
  • Oxidative stability can be determined via two measurements: oxygen induction time and oxygen induction temperature.
  • the oxygen induction time and the oxygen induction temperature can be measured in a differential scanning calorimeter (DSC - Differential scanning calorimetry) according to ISO 1 1357-6: 2018.
  • the pour point of a product is the minimum temperature at which the product will still flow.
  • the pour point is measured according to ISO 3016.
  • the viscosity index (VI) indicates the rate of change in the viscosity of an oil over a given temperature range, usually between 40 ° C and ⁇ 100 ° C.
  • the viscosity index can be defined as the kinematic viscosity gradient of a material, between 40 and 100 ° C. When the viscosity index is low (less than 100), the fluid shows a relatively large variation in viscosity with temperature. When the viscosity index is high (greater than 150), the fluid exhibits relatively little change in viscosity with temperature. In a variety of applications, a high or very high viscosity index is preferred.
  • the viscosity index is measured according to the test method described in ASTM D 2270.
  • the esters according to the invention are formed from at least one polyol e ⁇ of a mixture of fatty acids comprising at least one saturated C5-C12 fatty acid e ⁇ at least one unsaturated C10-C12 fatty acid.
  • the esters according to the present invention can be mono-, di-, tri-, e ⁇ tetraesters.
  • the fatty acid mixture according to the invention is preferably derived from renewable resources.
  • the fatty acid mixture according to the invention is preferably of plant or animal origin, linear or branched.
  • the mixture of fatty acids according to the invention is preferably composed mainly of linear fatty acids.
  • the mixture of fatty acids according to the invention consists of at least 50% by weight, more preferably from 50% to 70% by weight, still more preferably at least 70% by weight of acids.
  • the fatty acid mixture consists of 100% linear fatty acids.
  • linear fatty acids make it possible to increase the viscosity index of the lubricating bases synthesized, to improve their thermal stability and are more easily biodegradable than branched acids, mainly obtained from the petroleum industry.
  • the fatty acid mixture according to the invention is preferably obtained from castor oil, coconut oil, cottonseed oil, dehydrated castor oil, soybean oil, tall oil, rapeseed oil, sunflower oil, linseed oil, palm oil, tung oil, oiticica oil, oil safflower, olive oil, wood, corn, squash, grape seed, jojoba oil, sesame, walnut, hazelnut, almond, shea, macadamia, alfalfa, rye, peanut, copra, or argan oil.
  • heptanoic acid and / or 10-undecylenic acid can be obtained from castor oil, typically, by the thermal cracking step of methyl ricinoleate which results from the transesterification of the oil. of castor.
  • the saturated C5-C 12 fatty acid according to the invention is selected from the group consisting of pentanoic acid, isovaleric acid, caproic acid, heptanoic acid, n-heptanoic acid , caprylic acid, pelargonic acid, capric acid, citric acid, tetrahydrofuran 2,5 dicarboxylic acid, tetrahydrofuran 3,5 dicarboxylic acid, azelaic acid, undecanedioic acid, and dodecanedioic acid
  • the saturated C5-C 12 fatty acid according to the invention is n-heptanoic acid, more preferably Oleris® n-Heptanoic acid (ARKEMA).
  • ARKEMA Oleris® n-Heptanoic acid
  • the n-heptanoic acid is derived from castor oil.
  • the unsaturated C10-C12 fatty acid according to the invention is selected from the group consisting of 10-undecylenic acid, and dodec-2-enedioic acid.
  • the unsaturated C10-C12 fatty acid according to the invention is 10-undecylenic, more preferably Oleris® undecylenic acid (ARKEMA).
  • ARKEMA Oleris® undecylenic acid
  • the 10-undecylenic acid is obtained from castor oil.
  • the mass ratio of saturated C5-C12 fatty acid to unsaturated C10-C12 fatty acid according to the invention is 1: 10 to 10: 1, preferably 8: 2 to 2: 8, more preferably of 7: 3.
  • the polyol according to the invention can be chosen from any polyol well known to those skilled in the art.
  • the polyol according to the invention can be of petrochemical origin or from renewable resources.
  • the polyol according to the invention is an organic compound containing several hydroxyl groups.
  • the polyols do not refer to compounds which contain functional groups other than hydroxyls.
  • the polyol according to the invention is preferably selected from the group consisting of frimethylolpropane, frimethylolethane, pentaerythritol, dipentaerythritol, tripentaerythritol, tetra pentaerythritol and neopenfyl glycol, or mixtures thereof.
  • the polyol obtained from renewable resources according to the invention is preferably biodegradable.
  • the polyol obtained from renewable resources according to the invention can be a sugar polyol.
  • the sugar polyol is a compound having the general chemical formula C n H2n + 20n and having at least two hydroxyl groups.
  • the sugar polyol is selected from the group consisting of monosaccharides, disaccharides and frisaccharides.
  • the monosaccharide according to the invention is selected from the group consisting of erythritol, xylose, arabinose, ribose, sorbitol, sorbitan, glucose, sorbose, fructose, xylifol and mannitol, more preferably from the group consisting of xylose, arabinose, ribose, glucose, sorbose and fructose.
  • the disaccharide according to the invention is selected from the group consisting of malfose, lactose, and sucrose.
  • the frisaccharide according to the invention is preferably selected from the group consisting of raffinose, malfotriose, and hydrogenated hydrolysates of starch.
  • the sugar polyol according to the invention is erythritol.
  • the polyol according to the invention is preferably selected from the group consisting of erythritol, xylifol, mannitol, frimethylolpropane, frimethylolethane, pentaerythritol, dipentaerythritol, tripentaerythritol, tetrapentaerythritol, malfose, lactose , sucrose, raffinose, maltotriose e ⁇ of neopentyl glycol or mixtures thereof, more preferably from the group consisting of erythritol, xylitol, mannitol, trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, tripentaerythritol, tetrapentaerythoprityl, and glycol or mixtures thereof.
  • the sugar polyol according to the invention is obtained by hydrogenation of a sugar.
  • the mass ratio of the polyol to the mixture of fatty acids is in the range of 1: 4 to 1: 10. More preferably, the weight ratio of polyol to fatty acid mixture is about 1: 5.
  • the ester according to the invention has an oxygen induction time measured in a differential scanning calorimeter at 150 ° C of greater than 2 hours.
  • the ester according to the invention has an oxygen induction temperature measured in a differential scanning calorimeter of greater than 200 ° C.
  • the ester according to the invention has a kinematic viscosity of 14 to 30 mm 2 / s at 40 ° C, and / or less than 6 mm 2 / s at 100 ° C, which is measured according to the ISO 3104 standard. .
  • the ester according to the invention has a pour point of less than -
  • the esterification process according to the invention comprises a step of esterifying at least one polyol according to the invention in the presence of a mixture of excess fatty acids comprising at least one saturated fatty acid in Cs- C12 and at least one C10-C12 unsaturated fatty acid according to the invention, with or without catalyst.
  • the esterification step according to the invention is preferably carried out at a temperature between 140 ° C and 250 ° C for a period of 0.5 to 12 hours, preferably 1 to 10 hours, more preferably 2 at 8 o'clock.
  • the esterification step according to the invention is preferably carried out under an inert atmosphere.
  • the esterification step according to the invention is preferably carried out in a pressure range ranging from 30 mm Hg to 760 mm Hg.
  • the esterification process according to the invention may comprise a step of adding an absorbent such as alumina, silica gel, zeolites, activated carbon, and clay.
  • the process according to the invention can further comprise a step of adding basic water to simultaneously neutralize the residual organic and mineral acids and / or to hydrolyze the catalyst.
  • the method according to the invention may include a step of removing the water used by heating and placing under vacuum.
  • the process according to the invention can also include a step of filtering the solids of the ester mixture containing the major part of the excess acid mixture used in the esterification reaction.
  • the process according to the invention may include a step of removing excess acids by steam extraction or by any other method of distillation and recycling of the polyol in the reaction vessel.
  • the compound obtained by the process according to the invention is purified by distillation at reduced pressure of the unreacted acid.
  • the distillation is preferably carried out under vacuum for 15 to 60 minutes.
  • the distillation is further preferably carried out at a temperature between 140 ° C and 180 ° C.
  • the amount of free acid remaining after the distillation step can be reduced by treatment with epoxy esters, by neutralization with any suitable alkali material such as lime, alkali metal hydroxides, metal carbonates alkaline or basic alumina.
  • a second distillation under reduced pressure can be carried out to remove excess epoxy ester.
  • alkaline treatment washing with water can be performed to remove excess unreacted alkaline material.
  • the process according to the invention may include a step of removing any residual solid matter from the ester extracted during a final filtration.
  • the fatty acid mixture according to the invention is present in the reaction to form the ester according to the invention in an excess of about 10 to 50% by moles, preferably about 10 to 30%. in moles, relative to the amount of polyol used.
  • the process according to the invention can be carried out in the presence of a catalyst.
  • the catalyst can be any catalyst well known to those skilled in the art for esterification reactions.
  • the catalyst is selected from the group consisting of tin chloride, sulfuric acid, p-toluene acid sulfonic acid, methane sulfonic acid, sulfosuccinic acid, hydrochloric acid, phosphoric acid, catalysts based on zinc, copper, tin, titanium, zirconium or tungsten; alkali metal salts such as sodium or potassium hydroxide, sodium or potassium carbonate, sodium or potassium ethoxide, sodium or potassium methoxide, zeolites and acidic ion exchangers , or mixtures thereof.
  • esters according to the invention are preferably used as such as a lubricating base or lubricating base oil.
  • esters according to the invention can also be used as a mixture with other base oils, such as mineral oils, highly refined mineral oils, polyalphaolefins (PAO), polyalkylene glycols (PAG), phosphate esters, silicone oils, diesfers, polyisobufylenes and polyol esters.
  • base oils such as mineral oils, highly refined mineral oils, polyalphaolefins (PAO), polyalkylene glycols (PAG), phosphate esters, silicone oils, diesfers, polyisobufylenes and polyol esters.
  • esters according to the invention are useful for the preparation of a lubricating base composition.
  • the lubricating base composition according to the invention can be used in all types of industries, in particular as automotive lubricants, as metalworking oils, as hydraulic oils, as turbine oils, or even as oils for airplanes.
  • the composition according to the invention may contain a level of tetraesters greater than or equal to 80% by weight relative to the total amount of ester. More preferably, the composition may contain a level of tetraesters greater than or equal to 93% by weight relative to the total amount of ester.
  • composition according to the invention may contain, in addition to the esters according to the invention, one or more additives.
  • the additives are selected from the group consisting of antioxidants, thermal stability improvers, corrosion inhibitors, metal deactivators, lubricant additives, viscosity index improvers, pour point depressants, detergents, dispersing agents, defoamers, antiwear agents, and additives resistant to extreme pressures.
  • the amount of additives in the composition according to the invention does not exceed 10% by weight, preferably 8% by weight, more preferably 5% by weight relative to the total weight of the lubricating base composition.
  • the amount of antioxidants used is between 0.01% and 5% relative to the total weight of the lubricating base composition.
  • the amount of corrosion inhibitors is between 0.01% and 5% by weight relative to the total weight of the lubricating base composition.
  • the amount of metal deactivators is between the two metal deactivators.
  • the amount of metal deactivators is between the two metal deactivators.
  • the amount of lubricating additives is between 0.5% and 5% by weight relative to the total weight of the lubricating base composition.
  • the amount of agents improving the viscosity index is between 0.01% and 2% by weight relative to the total weight of the lubricating base composition.
  • the amount of pour point depressants is between 0.01% and 2% by weight relative to the total weight of the lubricating base composition.
  • the amount of detergents is between 0.1% and 5% by weight relative to the total weight of the lubricating base composition.
  • the amount of dispersing agents is between 0.1% and 5% by weight relative to the total weight of the lubricating base composition.
  • the amount of anti-foaming agents is between 0.01% and
  • the amount of anti-wear agents is between 0.01% and 2% by weight relative to the total weight of the lubricating base composition.
  • the amount of additives resistant to extreme pressures is between 0.1% and 2% by weight relative to the total weight of the lubricating base composition.
  • Antioxidants and thermal stability improvers can be selected from any of the antioxidants and thermal stability improvers well known to those skilled in the art.
  • the antioxidant and the thermal stability improving agent can be selected from the group consisting of:
  • diphenyl-amine dinaphthyl-amine, phenylnaphthylamine, in which the phenyl group or the naphthyl group may be substituted, for example by the groups N, N'-diphenyl phenylenediamine, p-octyldiphenylamine, p, p-diocfyldiphenylamine, N-phenyll-naphthyl amine, N-phenyl-2-naphthyl amine, N- (p-dodecyl) phenyl-2-naphthyl amine, di-1-naphthyl amine, e ⁇ di-2-naphthyl amine;
  • phenofhazines such as N-alkylphenothiazines
  • hindered phenols such as 6- (t-butyl) phenol, 2, ô-di- (t-butyl) phenol, 4-methyl-2, 6- di- (t-butyl) phenol, 4,4'- methylenebis (-2,6-di- (t-butyl) phenol).
  • Metal deactivators can be selected from any metal deactivators well known to those skilled in the art.
  • the metal deactivators can be selected from the group consisting of imidazole, benzamidazole, 2-mercaptobenzthiazole, 2,5-di-mercaptothiadiazole, salicylidin-propylenediamine, pyrazole, benzotriazole, tolutriazole, 2-methylbenzamidazole, 3,5-dimethyl pyrazole, and methylene bis-benzotriazole.
  • Other examples of metal deactivators or corrosion inhibitors include:
  • heterocyclic compounds containing nitrogen such as thiadiazoles, substituted imidazolines and oxazolines;
  • the lubricant additives can be selected from any lubricant additives well known to those skilled in the art.
  • lubricant additives we can mention long-chain derivatives of fatty acids and natural oils, such as esters, amines, amides, imidazolines and borates.
  • the viscosity index improvers can be selected from any viscosity index improver well known to those skilled in the art.
  • agents which improve the viscosity index mention may be made of polymethacrylates, vinylpyrrolidone copolymers and methacrylates, polybutenes and styrene-acrylate copolymers.
  • Pour point depressants can be selected from any pour point depressants well known to those skilled in the art.
  • pour point depressants mention may be made of polymethacrylates such as ethylene methacrylate-vinyl acetate terpolymers; alkylated naphthalene derivatives; e ⁇ Friedel-Crafts condensation products catalyzed by urea with naphthalene or phenols.
  • Detergent and dispersant agents can be selected from any detergent and dispersant agents well known to those skilled in the art.
  • detergent and dispersant agents mention may be made of polybutenylsuccinic acid amides; polybutenylphosphonic acid derivatives; long chain alkyl substituted aromatic sulfonic acids in their salts; e ⁇ metal salts of alkylsulphides, of alkylphenols e ⁇ of condensation products of alkylphenols e ⁇ of aldehydes.
  • Anti-foaming agents can be selected from any anti-foaming agents well known to those skilled in the art.
  • an anti-foaming agent we can mention silicone polymers and certain acrylates.
  • Antiwear agents and additives resistant to extreme pressure can be selected from any antiwear agents and additives resistant to extreme pressure.
  • anti-wear agents and additives resistant to extreme pressures we can mention:
  • organo-phosphorus derivatives including amine phosphates, alkyl acid phosphates, dialkyl phosphates, aminedithiophosphates, trialkyl and triaryl phosphorothionates, trialkyl e ⁇ triaryl phosphines, e ⁇ dialkyl phosphites such as phosphoric acid monohexyl ester amine salts, dinonylnaphthalenesulfonate amine salts, triphenyl phosphate, trinaphthyl phosphate, diphenylcresyl and phenylphenyl phosphates, naphthyldiphenyl phosphate, triphenylphosphorothionate;
  • dithiocarbamates such as antimony dialkyldithiocarbamate; chlorinated and / or fluorinated hydrocarbons and xanthafes.
  • the inventors have studied the properties of an ester according to the present invention for application in lubricants.
  • trimefhylolpropane ester of unsafe fatty acids (comparative example commercial 3-product PRIOLUBE 2044 ® from CRODA);
  • Ester according to the invention Synthesis of an erythritol e ⁇ tefraesfer of a mixture of hepfanoiaue and undecylismeaue acids with a molar excess of acid
  • the reaction mixture was heated at 210 ° C under a nitrogen atmosphere for a period of 5 hours, until the theoretical amount of water was stable.
  • Zirconium tetrabutanolate (1.35 g, 80% in butanol, 1% by weight / total weight of the reactants) is then added in batch to the reactor.
  • the assembly is gradually placed under maximum vacuum at 190 ° C for 2h30 to distill off the excess unreacted acid and yields 82.8g of product.
  • Downstream treatment with activated basic alumina is carried out on the reaction crude and results in an oil with an acid number of 0.02 mgKOH / g.
  • Comparative Example 1 Synthesis of an ester of trimethylolpropane and n-heptano ⁇ aue acid with a molar excess of acid
  • Trimethylolpropane (53.8g, 0.4 mol) and n-heptanoic acid (181.5g, 1.38mol) are loaded into a 500ml three-necked flask equipped with an agitator, a thermometer, a condenser and 'an inlet for nitrogen.
  • the reaction mixture was heated at 185 ° C under a nitrogen atmosphere for a period of 3 hours, until the theoretical amount of water was collected.
  • Zirconium tetrabutanolate (1.5 g, 80% in butanol, 0.5% by weight / total weight of the reactants) is then added in batch to the reactor.
  • the assembly is gradually placed under maximum vacuum at 185 ° C for 3 hours 30 minutes to distill off the excess unreacted acid and yields 187.4g of product.
  • a downstream treatment with activated basic alumina is carried out on the reaction crude and results in an oil with an acid number of
  • Comparative example 2 Synthesis of a trimethylolpropane ester of 10-undecylenic acid with a molar excess of acid Trimethylolpropane (40.4g, 0.30 mol) e ⁇ 10-undecylenic acid (218g, 1.17mol) are loaded into a 500ml three-necked flask equipped with a stirrer, a thermometer, a condenser and 'an inlet for nitrogen. The reaction mixture was heated at 185 ° C. under a nitrogen atmosphere for a period of 3 h, until the theoretical quantity of water was collected.
  • Zirconium tetrabutanolate (3.2 g, at 80% in butanol, 1% by mass / total mass of the reactants) is then added in batch to the reactor.
  • the assembly is gradually placed under maximum vacuum at 185 ° C. for 3 hours 30 minutes to distill off the excess unreacted acid and leads to 195.3 g of product.
  • Oxidative stability is determined by two measurements: the oxygen induction time and the oxygen induction temperature.
  • the oxygen induction time and the oxygen induction temperature are measured in a Differential Scanning Calorimeter (DSC).
  • DSC Differential Scanning Calorimeter
  • the sample is heated to 150 ° C and then kept at constant temperature. It is then exposed to an oxidizing atmosphere. The time between contact with oxygen and the onset of oxidation is the oxygen induction time.
  • the sample is heated with a constant heating rate under an oxidizing atmosphere until the reaction begins.
  • the oxygen induction temperature is the temperature at which the oxidation reaction begins.
  • the measurements show that the oxygen induction time at 150 ° C of the three samples are similar.
  • the ester according to the invention has a higher oxygen induction temperature than Comparative Examples 1 e ⁇ 2. Consequently, the ester according to the invention has better oxidation resistance properties than usual ester synthesized from a non-biobased alcohol.
  • the kinematic viscosity was measured at 40 ° C. e ⁇ at 100 ° C. according to the ISO 3104 standard. The results, expressed in mm 2 / s, are presented in Table 2 below.
  • the viscosity index (unitless) is measured according to the test method described in ASTM D 2270. The results are presented in Table 2 below.
  • Table 2 Measurement of kinematic viscosity, viscosity index and pour point.
  • ester according to the invention synthesized from substances of renewable origin, has the lowest kinematic viscosities at 40 ° C e ⁇ 100 ° C as well as the highest viscosity index, which means that the lubricating base according to the invention has a stable viscosity as a function of the temperature.
  • the lubricating base of the invention has the lowest pour point, compared to those of the comparative examples synthesized from alcohols obtained from the petroleum industry and from unsaturated fatty acids, or linear or branched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lubricants (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne des esters d'au moins un polyol et d'un mélange d'acides gras comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12.

Description

DESCRIPTION
TITRE : HUILE DE BASE LUBRI FIANTE SYNTHETISEE A PARTI R D’ESTERS DE POLYOLS ET
D’ACIDES GRAS BIOSOURCES
Domaine de l’invention
La présente invention concerne des esters de polyols et d’un mélange d’acides gras, leur utilisation comme base lubrifiante ainsi que leur procédé de fabrication.
Actuellement, le marché des bases lubrifiantes est dominé par les huiles minérales d'origine pétrolière. En 2008, la production européenne de lubrifiants s’élevait à 4,5 millions de tonnes par an. Ces bases lubrifiantes son† utilisées dans diverses industries en tan† qu’huile de moteurs, huile de coupes pour chaînes de tronçonneuse, huile de forage de pétrole en mer, huile hydraulique pour les engins de travaux publics et les machines agricoles, etc.
Ces huiles minérales, une fois utilisées, ne son† pas toujours recyclées et entraînent des nuisances environnementales dues au rejet sur le sol, dans les égouts, dans les lacs et les rivières. Au vu de l’impact potentiel de ces huiles lubrifiantes sur l’environnement, le développement de bases lubrifiantes écologiques et biodégradables est essentiel, en particulier pour les applications dans lesquelles le lubrifiant est susceptible de s’échapper dans l’environnement.
L’utilisation d’huiles végétales et animales est connue depuis plusieurs années. Ces huiles présentent l’avantage d’être écologique. Cependant, elles possèdent une faible stabilité thermique, une faible résistance à l’oxydation par rapport aux huiles minérales et son† susceptibles de s’hydrolyser en présence d’eau.
Des compositions lubrifiantes biodégradables comprenant des produits dérivés de l'huile de palme et des polyols tels que le néopentylglycol ou le triméthylolpropane son† décrites dans la demande de brevet EPI 533360. Toutefois, de telles compositions ne son† adaptées que pour des températures allant de 15 à 40°C.
Dans ce contexte, il reste donc nécessaire de développer des esters de polyols don† la structure peut dériver d’ingrédients de préférence d’origines renouvelables, possédant d’excellentes propriétés de lubrification ainsi qu’une innocuité vis-à-vis de l’homme et de l’environnement. Résumé de l’invention
Dans le cadre de l’invention, il a été observé que des esters d’au moins un polyol et d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 présentent d’excellentes propriétés pour des applications dans les lubrifiants.
La présente invention découle de la mise en évidence inattendue, par les inventeurs, que des esters d’au moins un polyol et d’un mélange d’acides gras dans lesquels les acides son† un mélange d’acide 10-undécylénique et d’acide n- heptanoïque issus de ressources renouvelables présentent d’excellentes propriétés pour des applications dans les lubrifiants.
Ainsi, la présente invention concerne des esters d’au moins un polyol et d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12.
La présente invention concerne également l’utilisation d’esters d’au moins un polyol et d’un mélange d’acides gras linéaires comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 tels que définis ci-dessus comme base lubrifiante.
La présente invention concerne également une composition de base lubrifiante comprenant des esters d’au moins un polyol et d’un mélange d’acides gras linéaires comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 tel que défini ci-dessus.
La présente invention concerne aussi un procédé de préparation d’esters comprenant l’estérification d’un mélange d’acides gras linéaires comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 avec au moins un polyol, éventuellement en présence d’un catalyseur.
La présente invention concerne également des esters d’au moins un polyol et d’un mélange d’acides gras linéaires comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 obtenus par le procédé défini ci- dessus.
Description détaillée de l’invention
Les compositions de base lubrifiante selon l’invention synthétisées à partir d’esters d’au moins un polyol et d’un mélange d’acides gras d’origine renouvelable, tel que par exemple l’érythritol et le mélange d’acides gras dans lesquels les acides son† un mélange d’acide n-heptanoïque e† d’acide 10-undécylénique (e.g. un mélange d’OIeris® C7 e† Cl 1 :1 d’Arkema), permettent d’atteindre des propriétés en termes de stabilité thermique, de stabilité à l’oxydation, ainsi qu’un indice de viscosité, supérieurs aux esters usuels don† l’alcool est non biosourcé, tel que par exemple le triméthylolpropane, comme cela est détaillé dans les exemples ci-après.
Ainsi, la présente invention propose une composition de base lubrifiante particulière qui offre une bonne stabilité thermique, une meilleure stabilité vis-à-vis de l’oxydation et très bonnes propriétés lubrifiantes. Le terme « biodégradable » est employé ici pour désigner un composé formé de molécules qui peuvent être transformées en molécules plus petites et moins polluantes par exemple par des micro organismes vivants dans le milieu naturel, tels que les bactéries, les champignons et les algues. Le résultat final de cette dégradation est en général composé d'eau, de dioxyde de carbone ou de méthane.
On entend par matières, composés ou ingrédients « issus de ressources renouvelables » ou « biosourcés », des matières, composés ou ingrédients naturels renouvelables don† le stock peut se reconstituer sur une période courte à l'échelle humaine. Il s'agit en particulier de matières premières d'origine animale ou d'origine végétale. Par matières premières d’origine renouvelable ou matières premières bio- ressourcées, on entend des matériaux qui comprennent du carbone bio-ressourcé ou carbone d’origine renouvelable. En effet, à la différence des matériaux issus de matières fossiles, les matériaux composés de matières premières renouvelables contiennent du carbone 14 (, 4C). La « teneur en carbone d’origine renouvelable » ou « teneur en carbone bio-ressourcé » est déterminée en application des normes ASTM D 6866 (ASTM D 6866-06) et ASTM D 7026 (ASTM D 7026-04).
La viscosité d’un fluide s’entend de la résistance qu’il oppose au glissement interne de ses molécules au cours de son écoulement. La viscosité est donnée pour une température de référence. La viscosité cinématique exprimée est m/s2, est calculée grâce à la formule suivante : o = h/r, où
h est la viscosité dynamique en Pa.s ; et
p est la masse volumique du fluide en kg/m3
La viscosité cinématique s’exprime aussi en Stockes (St) ou en centistokes (cSt).
La viscosité cinématique est mesurée selon la norme ISO 3104. La stabilité à l’oxydation peut être déterminée via deux mesures : le temps d’induction à l’oxygène et la température d’induction à l’oxygène. Le temps d’induction à l’oxygène et la température d’induction à l’oxygène peuvent être mesurés dans un calorimètre à balayage différentiel (DSC - Differential scanning calorimetry) selon la norme ISO 1 1357-6 :2018.
Le point d’écoulement d’un produit es† la température minimale à laquelle le produit s'écoule encore. Le point d’écoulement es† mesuré selon la norme ISO 3016.
L'indice de viscosité (VI) (sans unité) indique le taux de variation de la viscosité d'une huile dans une plage de température donnée, habituellement entre 40°C e† 100°C. L'indice de viscosité peu† être défini comme le gradient de viscosité cinématique d'un matériau, entre 40 e† 100°C. Lorsque l'indice de viscosité es† faible (inférieur à 100) le fluide montre une variation relativement importante de viscosité avec la température. Lorsque l'indice de viscosité es† élevé (supérieur à 150), le fluide présente relativement peu de changement de viscosité avec la température. Dans une variété d'applications, un indice de viscosité élevé ou très élevé es† préférable. L’indice de viscosité es† mesuré selon la méthode d’essai décrit dans la norme ASTM D 2270.
Esters
Les esters selon l’invention sont formés à partir d’au moins un polyol e† d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 e† au moins un acide gras insaturé en C10-C12.
Selon un mode de réalisation, les esters selon la présente invention peuvent être des mono-, di-, tri-, e† tétraester.
Le mélange d’acide gras selon l’invention es† de préférence issu de ressources renouvelables. Le mélange d’acide gras selon l’invention es† de préférence d'origine végétale ou animale, linéaire ou ramifié.
Le mélange d’acides gras selon l’invention es† de préférence constitué majoritairement d’acides gras linéaires. De préférence, le mélange d’acides gras selon l’invention es† constitué d’au moins 50% en masse, plus préférablement de 50% à 70% en masse, encore plus préférablement d’au moins 70% en masse d’acides gras linéaires par rapport à la masse du mélange d’acides gras. Plus préférablement, le mélange d’acide gras es† constitué de 100% d’acides gras linéaires. De préférence, les acides gras linéaires permettre d’augmenter l’indice de viscosité des bases lubrifiantes synthétisées, d’en améliorer la stabilité thermique et sont plus facilement biodégradables que les acides ramifiés, principalement issus de l’industrie pétrolière.
Le mélange d’acide gras selon l’invention est de préférence issus de l’huile de ricin, de l’huile de coco, de l’huile coton, de l’huile ricin déshydraté, de l’huile soja, de l’huile de tall, de l’huile de colza, de l’huile de tournesol, de l’huile lin, de l’huile de palme, de l’huile de tung, de l'huile d’oiticica, de l’huile de carthame, de l’huile d'olive, de bois, de maïs, de courge, de pépins de raisin, de l’huile jojoba, de sésame, de noix, de noisette, d'amande, de karité, de macadamia, de luzerne, de seigle, d'arachide, de coprah, ou de l’huile d'argan.
On entend par l’acide gras ou le mélange d’acide gras « issu(s) de l’huile », un acide gras présent dans l’huile et/ou des acides gras pouvant être obtenus à l’issue d’une transformation chimique. Par exemple, on peut obtenir l’acide heptanoïque et/ou l’acide 10-undécylénique à partir de l’huile de ricin, typiquement, par l’étape de craquage thermique du ricinoléate de méthyle qui provient de la transestérification de l’huile de ricin.
De préférence, l’acide gras saturé en C5-C 12 selon l’invention est sélectionné dans le groupe constitué de l’acide pentanoïque, l’acide isovalérique, l’acide caproïque, l’acide heptanoïque, l’acide n-heptanoïque, l’acide caprylique, l’acide pélargonique, l’acide caprique, l’acide citrique, l’acide tétrahydrofuranne 2,5 dicarboxylique, l’acide tétrahydrofuranne 3,5 dicarboxylique, l’acide azélaïque, l’acide undécanedioïque, et l’acide dodécanedioïque
De préférence, l’acide gras saturé en C5-C 12 selon l’invention est l’acide n- heptanoïque, plus préférablement l’acide n-Heptanoïque Oleris® (ARKEMA).
De préférence, l’acide n-heptanoïque est issu de l’huile de ricin.
De préférence, l’acide gras insaturé en C10-C12 selon l’invention est sélectionné dans le groupe constitué de l’acide 10-undécylénique, et l’acide dodéc-2- ènedioïque.
De préférence, l’acide gras insaturé en C10-C12 selon l’invention est l’acide 10- undécylénique, plus préférablement undecylénique Oleris® (ARKEMA).
De préférence, l’acide 10-undécylénique est issu de l’huile de ricin. Le rapport massique de l’acide gras saturé en C5-C12 sur l’acide gras insaturé en C10-C12 selon l’invention est de 1 :10 à 10:1 , de préférence de 8:2 à 2:8, plus préférablement de 7:3.
Le polyol selon l’invention peut être choisi parmi n’imporfe quel polyol bien connu de l’homme du métier. Le polyol selon l’invention peut être d’origine pétrochimique ou issu de ressources renouvelables.
De préférence, le polyol selon l’invention est un composé organique contenant plusieurs groupes hydroxyles.
Selon un mode de réalisation, les polyols ne ton† pas référence à des composés qui contiennent des groupes fonctionnels autres qu’ hydroxyles.
Le polyol selon l’invention est de préférence sélectionné dans le groupe constitué du frimethylolpropane, du frimethyloléthane, du pentaérythritol, du dipentaérythritol, du tripentaérythritol, du tetra pentaérythritol et du neopenfyl glycol, ou de leurs mélanges.
Le polyol issu de ressources renouvelables selon l’invention est, de préférence, biodégradable. Le polyol issu de ressources renouvelables selon l’invention peut être un polyol de sucre. Typiquement, le polyol de sucre est un composé répondant à la formule chimique générale CnH2n+20n et possédant au moins deux groupes hydroxyles.
De préférence, le polyol de sucre est sélectionné dans le groupe constitué de monosaccharides, de disaccharides et de frisaccharides.
De préférence, le monosaccharide selon l’invention est sélectionné dans le groupe constitué de l’érythritol, du xylose, de l’arabinose, du ribose, du sorbitol, du sorbitane, du glucose, du sorbose, du fructose, du xylifol et du mannitol, plus préférentiellement, dans le groupe constitué du xylose, de l’arabinose, du ribose, du glucose, du sorbose et du fructose.
De préférence, le disaccharide selon l’invention est sélectionné dans le groupe constitué du malfose, du lactose, et du saccharose.
Le frisaccharide selon l’invention est de préférence sélectionné dans le groupe constitué du raffinose, du malfotriose, et d’hydrolysats hydrogénés de l’amidon.
Plus préférablement, le polyol de sucre selon l’invention est l’érythritol.
Le polyol selon l’invention est, de préférence, sélectionné dans le groupe constitué de l’érythritol, du xylifol, du mannitol, du frimethylolpropane, du frimethyloléthane, du pentaérythritol, du dipentaérythritol, du tripentaérythritol, du tetrapentaérythritol, du malfose, du lactose, du saccharose, du raffinose, du maltotriose e† du néopentyl glycol ou de leurs mélanges, plus préférablement, dans le groupe constitué de l’érythritol, du xylitol, du mannitol, du triméthylolpropane, du triméthyloléthane, du pentaérythritol, du dipentaérythritol, du tripentaérythritol, du tetrapentaérythritol, et du néopentyl glycol ou de leurs mélanges.
Selon un mode de réalisation, le polyol de sucre selon l’invention est obtenu par hydrogénation d’un sucre.
De préférence, le rapport massique du polyol sur le mélange d’acides gras est compris dans la plage allant de 1 :4 à 1 :10. Plus préférablement, le rapport massique du polyol sur le mélange d’acides gras est d’environ 1 :5.
De préférence, l’ester selon l’invention possède un temps d’induction à l’oxygène mesuré dans un calorimètre à balayage différentiel à 150°C supérieur à 2 heures.
De préférence, l’ester selon l’invention possède une température d’induction à l’oxygène mesuré dans un calorimètre à balayage différentiel supérieure à 200°C.
De préférence, l’ester selon l’invention a une viscosité cinématique de 14 à 30 mm2/s à 40°C, et/ou inférieure à 6 mm2/s à 100°C, laquelle est mesurée selon la norme ISO 3104.
De préférence, l’ester selon l’invention a un point d’écoulement inférieur à -
20° C.
Procédé
De préférence, le procédé d’estérification selon l’invention comprend une étape d’estérification d’au moins un polyol selon l’invention en présence d’un mélange d’acides gras en excès comprenant au moins un acide gras saturé en Cs- Ci 2 et au moins un acide gras insaturé en C10-C12 selon l’invention, avec ou sans catalyseur.
L’étape d’estérification selon l’invention est de préférence réalisée à une température comprise entre 140°C et 250°C pendant une période de 0,5 à 12 heures, de préférence, de 1 à 10 heures, plus préférablement de 2 à 8 heures.
L’étape d’estérification selon l’invention est de préférence réalisée sous atmosphère inerte.
L’étape d’estérification selon l’invention est de préférence réalisée dans une plage de pression allant de 30 mm Hg à 760 mm Hg. Le procédé d’estérification selon l’invention peu† comprendre une étape d’ajout d’un absorbant tel que l’alumine, le gel de silice, les zéolithes, le charbon actif, e† l’argile.
Le procédé selon l’invention peu† en outre comprendre une étape d’addition d'eau e† de base pour neutraliser simultanément les acides organiques e† minéraux résiduels et/ou hydrolyser le catalyseur. Dans ce cas, le procédé selon l’invention peu† comprendre une étape d’élimination de l'eau utilisée par chauffage e† mise sous vide.
Le procédé selon l’invention peu† également comprendre une étape de filtration des solides du mélange d'esters contenant la majeure partie du mélange d’acide en excès utilisé dans la réaction d'estérification.
Le procédé selon l’invention peu† comprendre une étape d’élimination des acides en excès par extraction à la vapeur ou par toute autre méthode de distillation e† de recyclage du polyol dans le récipient de réaction. De préférence, le composé obtenu par le procédé selon l’invention es† purifié par distillation à pression réduite de l'acide n'ayant pas réagi. La distillation es†, de préférence, effectuée sous vide pendant 15 à 60 minutes. La distillation es† en outre, de préférence, effectuée à une température comprise entre 140°C e† 180°C. La quantité d’acide libre restant après l’étape de distillation peu† être réduite par un traitement avec des esters époxy, par neutralisation avec n’importe quel matériau alcalin approprié tel que la chaux, les hydroxydes de métal alcalin, les carbonates de métal alcalin ou l'alumine basique. Lorsqu’un traitement avec des esters époxy es† effectué, une deuxième distillation sous pression réduite peu† être effectuée pour éliminer l’ester époxy en excès. Lorsqu’un traitement alcalin es† effectué un lavage à l’eau peu† être réalisé pour éliminer le matériau alcalin en excès n’ayant pas réagi.
Le procédé selon l’invention peu† comprendre une étape d’élimination de toute matière solide résiduelle de l'ester extrait lors d'une filtration finale.
De préférence, le mélange d'acide gras selon l’invention es† présent dans la réaction pour former l'ester selon l’invention dans un excès d'environ 10 à 50% en moles, de préférence d’environ 10 à 30% en moles, par rapport à la quantité de polyol utilisée.
Le procédé selon l’invention peu† être réalisé en présence d’un catalyseur. Le catalyseur peu† être n’importe quel catalyseur bien connu de l’homme du métier pour les réactions d’estérification. De préférence, le catalyseur es† sélectionné dans le groupe constitué de chlorure d’étain, d’acide sulfurique, d'acide p-toluène sulfonique, d'acide méthane sulfonique, d'acide sulfosuccinique, d’acide chloridrique, d’acide phosphorique, des catalyseurs à base de zinc, de cuivre, de d'étain, de titane, de zirconium ou de tungstène ; des sels de métaux alcalins tels que l'hydroxyde de sodium ou de potassium, le carbonate de sodium ou de potassium, l'éthoxyde de sodium ou de potassium, le méthoxyde de sodium ou de potassium, les zéolithes et des échangeurs d'ions acides, ou des mélanges de ceux-ci.
Utilisation
Les esters selon l’invention sont, de préférence, utilisés en tant que tels comme base lubrifiante ou huile de base lubrifiante.
Les esters selon l’invention peuvent en outre être utilisés en mélange avec d'autres huiles de base, telles que des huiles minérales, des huiles minérales hautement raffinées, des polyalphaoléfines (PAO), des polyalkylèneglycols (PAG), les esters de phosphate, les huiles de silicone, les diesfers, les polyisobufylènes et des esters de polyol.
En particulier, les ester selon l’invention sont utiles pour la préparation d’une composition de base lubrifiante. La composition de base lubrifiante selon l’invention peu† être utilisée dans tous types d’industries, notamment comme lubrifiants automobiles, comme huiles de travail des métaux, comme huiles hydrauliques, comme huiles de turbines, ou encore comme huiles pour les avions.
De préférence, la composition selon l’invention peu† comprendre un taux en tétraesters supérieur ou égal à 80% en masse par rapport à la quantité totale d’ester. Plus préférablement, la composition peu† comprendre taux en tétraesters supérieur ou égale à 93% en masse par rapport à la quantité totale d’ester.
La composition selon l’invention peu† comprendre en plus des esters selon l’invention, un ou plusieurs additifs. De préférence, les additifs sont sélectionnés dans le groupe constitué d’antioxydants, d’agents améliorant la stabilité thermique, d’inhibiteurs de corrosion, de désactivateurs de métaux, d’additifs lubrifiants, d’agents améliorant l’indice de viscosité, de dépresseurs de point d’écoulement, de détergents, d’agents dispersants, d’agents antimousses, d’agents anti-usures, e† d’additifs résistant à des pressions extrêmes.
De préférence, la quantité d’additifs dans la composition selon l’invention ne dépasse pas 10% en poids, de préférence 8% en poids, plus préférablement 5% en poids par rapport au poids total de la composition de base lubrifiante. De préférence, la quantité d’antioxydants utilisée est comprise entre 0,01 % et 5% par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’inhibiteurs de corrosion est comprise entre 0,01% et 5% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité de désactivateurs de métaux est comprise entre
0,001 % et 0,5% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’additifs lubrifiants est comprise entre 0,5% et 5% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’agents améliorant l'indice de viscosité est comprise entre 0,01% et 2% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité de dépresseurs de point d’écoulement est comprise entre 0,01% et 2% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité de détergents est comprise entre 0,1% et 5% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’agents dispersants est comprise entre 0,1% et 5% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’agents antimousses est comprise entre 0,01 % et
2% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’agents anti-usures est comprise entre 0,01% et 2% en poids par rapport au poids total de la composition de base lubrifiante.
De préférence, la quantité d’additifs résistant à des pressions extrêmes est comprise entre 0,1 % et 2% en poids par rapport au poids total de la composition de base lubrifiante.
Les antioxydants et les agents améliorant la stabilité thermique peuvent être choisis parmi n’importe quels agents antioxydants et agents améliorant la stabilité thermique bien connus de l’homme du métier. A titre d’exemple, l’agent antioxydant et l’agent améliorant la stabilité thermique peuvent être sélectionnés dans le groupe constitué de :
diphényle-amine, dinaphthyl-amine, phénylnaphthylamine, dans lequel le groupe phényl ou le groupe naphthyl peuvent être substitué, par exemple par les groupe N,N'-diphényl phénylènediamine, p-octyldiphénylamine, p, p-diocfyldiphénylamine, N-phényll-naphthyl amine, N-phényl-2-naphthyl amine, N-(p-dodécyl)phényl-2-naphthyl amine, di-l-naph†hylamine, e† di-2- naphthylamine ;
phénofhazines, telles que N-alkylphénothiazines ;
imino(bisbenzyl) ; et
les phénols encombrées tels que le 6-(t-butyl) phénol, 2, ô-di-(t-butyl) phénol, 4-méthyl-2, 6- di-(t-butyl) phénol, 4,4'-méthylènebis(-2,6-di-(t-butyl) phénol).
Les désactivateurs de métaux peuvent être choisis parmi n’importe quels désactivateurs de métaux bien connus de l’homme du métier. A titre d’exemple, les désactivateurs de métaux peuvent être sélectionnés dans le groupe constitué d’imidazole, de benzamidazole, 2-mercaptobenzthiazole, 2,5-di- mercaptothiadiazole, salicylidine-propylènediamine, pyrazole, benzotriazole, tolutriazole, 2-méthylbenzamidazole, 3,5-diméthyl pyrazole, et méthylène bis- benzotriazole. D’autres exemples de désactivateurs de métaux ou d’inhibiteurs de corrosion comprennent :
- les acides organiques et leurs esters, sels métalliques et anhydrides, tels que N-oléyl-sarcosine, monooléate de sorbitan, naphténate de plomb, acide dodécényl-succinique et ses esters et amides partiels, et acide 4- nonylphénoxyacétique ;
les amines primaires, secondaires et tertiaires alines et cycloaliphatiques et les sels d'amines d'acides organiques et inorganiques, tels que les carboxylates d'alkylammonium solubles dans l'huile ;
- les composés hétérocycliques contenant de l'azote, tels que des thiadiazoles, des imidazolines substituées et des oxazolines ;
les quinoléines, les quinones et les anthraquinones ;
- le gallate de propyle :
le dinonylnaphtalènesulfonate de baryum ;
les dérivés d'esters et d'amides d'anhydrides ou d'acides alcénylsucciniques, les dithiocarbamates, les dithiophosphates ; les sels d'aminés de phosphates d'alkylacides et leurs dérivés.
Les additifs lubrifiants peuvent être choisis parmi n’importe quels additifs lubrifiants bien connus de l’homme du méfier. A titre, d’exemple d’additifs lubrifiants, on peu† citer les dérivés à longue chaîne d'acides gras et d'huiles naturelles, tels que les esters, les amines, les amides, les imidazolines e† les borates.
Les agents améliorant l'indice de viscosité peuvent être choisis parmi n’importe quels agents améliorant l'indice de viscosité bien connus de l’homme du métier. A titre d’exemple d’agents améliorant l'indice de viscosité, on peu† citer les polyméthacrylates, les copolymères de vinylpyrrolidone e† de méthacrylates, les polybutènes e† les copolymères styrène-acrylate.
Les dépresseurs de point d’écoulement peuvent être choisis parmi n’importe quels dépresseurs de point d’écoulement bien connus de l’homme du métier. A titre d’exemple de dépresseurs de point d’écoulement on peu† citer les polyméthacrylates tels que les terpolymères de méthacrylate d'éthylène-acétate de vinyle ; les dérivés de naphtalène alkylés ; e† les produits de condensation de Friedel-Crafts catalysée par de l’urée avec du naphtalène ou des phénols.
Les agents détergents e† dispersants peuvent être choisis parmi n’importe quels agents détergents e† dispersants bien connus de l’homme du métier. A titre d’exemple d’agents détergents e† dispersants, on peu† citer les amides d'acide polybuténylsuccinique ; les dérivés d'acide polybuténylphosphonique ; les acides sulfoniques aromatiques substitués par un alkyle à longue chaîne e† leurs sels ; e† les sels métalliques d'alkylsulfures, d'alkylphénols e† de produits de condensation d'alkylphénols e† d'aldéhydes.
Les agents antimoussants peuvent être sélectionnés parmi n’importe quels agents anti-moussants bien connus de l’homme du métier. A titre d’exemple d’agent antimoussant, on peu† citer les polymères de silicone e† certains acrylates.
Les agents anti-usures e† les additifs résistant à des pressions extrêmes peuvent être choisis parmi n’importe quels agents anti-usures e† additifs résistant à des pressions extrêmes. A titre d’exemple d’agents anti-usures e† d’additifs résistant à des pressions extrêmes on peu† citer :
- les acides gras sulfurés e† esters d'acides gras, tels que l'octyl fallafe sulfuré ;
- les ferpènes sulfurés ;
les oléfines sulfurées ;
- les organopolysulfures ;
les dérivés organo-phosphorés comprenant les phosphates d'amine, les phosphates d'alkylacides, les phosphates de dialkyle, les aminedithiophosphates, les phosphorothionates de trialkyle e† de triaryle, les phosphines de trialkyle e† de triaryle, e† les phosphites de dialkyle tels que les sels d'aminés d'ester monohexylique d'acide phosphorique, les sels d'aminés de dinonylnaphtalènesulfonate, le phosphate de triphényle, le phosphate de trinaphtyle, le diphénylcrésyle et les phosphates de phénylphényle, le phosphate de naphtyldiphényle, le triphénylphosphorothionate ;
des dithiocarbamates, tels qu'un dialkyldithiocarbamate d'antimoine ; les hydrocarbures chlorés et/ou fluorés e† les xanthafes.
L’invention sera davantage explicitée à l’aide des Exemples non limitatifs qui suivent.
Exemples
Les inventeurs ont étudié les propriétés d’un ester selon la présente invention pour l’application dans les lubrifiants.
1 . Préparation de l’ester
5 échantillons sont testés :
ester d’érythritol e† d’un mélange d’acide n-hepfanoïque e† d’acide 10- undécylénique (ester selon l’invention) ;
ester de trimefhylolpropane e† d’acide n-hepfanoïque (exemple comparatif 1 ) ;
ester de trimefhylolpropane de l’acide 10-undécylénique (exemple comparatif 2) ;
ester de trimefhylolpropane e† d’acides gras insafurés (exemple comparatif 3-produif commercial PRIOLUBE 2044® de CRODA) ;
ester de pentaérythritol e† d’acides gras linéaires (exemple comparatif 4- produif commercial NYCOBASE® 8410 de NYCO) ;
ester de pentaérythritol e† d’acides gras ramifiés (exemple comparatif 5- produif commercial NYCOBASE® 1060X de NYCO).
Ester selon l’invention: Synthèse d’un téfraesfer d’erythritol e† d’un mélange d’acides hepfanoiaue e† undecyléniaue avec un excès molaire en acide
L’erythritol (16,4g, 0,13mol), l’acide n-hepfanoïque (64.3g, 0,49mol) e† l’acide 10- undécylénique (27.8g, 0,15 mol) avec un ratio massique 70/30 sont chargés dans un tricol de 250ml équipé d’un agitateur, d'un thermomètre, d'un réfrigérant et d'une entrée pour l’azote.
Le mélange réactionnel a été chauffé à 210°C sous atmosphère d'azote pendant une durée de 5h, jusqu’à ce que la quantité d'eau théorique soit stable. Le tetrabutanolate de zirconium (1 .35g, à 80% dans le butanol, 1 % massique/masse totale des réactifs) est ensuite ajouté en batch dans le réacteur. Le montage est progressivement mis sous vide maximal à 190°C pendant 2h30 pour distiller l’excès d’acide n’ayanf pas réagi et conduit à 82.8g de produit.
Un traitement aval avec de l’alumine basique activée est réalisé sur le brut réactionnel et conduit à une huile avec un indice d’acidité de 0.02mgKOH/g.
Les viscosités cinématiques, l'indice de viscosité (VI.) et le point d'écoulement du produit son† évalués et reportés dans le tableau N°2.
La composition chimique du produit a été établie par chromatographie
gazeuse comme suit : 93.6% de tetraesters, 4.8% d’anhydroesters et 0.1 % de triesters.
Exemple comparatif 1 : Synthèse d’un ester de trimethylolpropane et d’acide n- heptanoïaue avec un excès molaire en acide
Le trimethylolpropane (53.8g, 0.4 mol) et l’acide n-heptanoïque (181 .5g, 1 .38mol) son† chargés dans un tricol de 500ml équipé d’un agitateur, d'un thermomètre, d'un réfrigérant et d'une entrée pour l’azote. Le mélange réactionnel a été chauffé à 185°C sous atmosphère d'azote pendant une durée de 3h, jusqu’à ce que la quantité d'eau théorique soit recueillie. Le tetrabutanolate de zirconium (1 .5g, à 80% dans le butanol, 0,5% massique/masse totale des réactifs) est ensuite ajouté en batch dans le réacteur. Le montage est progressivement mis sous vide maximal à 185°C pendant 3h30 pour distiller l’excès d’acide n’ayan† pas réagi et conduit à 187.4g de produit. Un traitement aval avec de l’alumine basique activée est réalisé sur le brut réactionnel et conduit à une huile avec un indice d’acidité de
0.1 mgKOH/g. La composition chimique du produit a été établie par
chromatographie gazeuse comme suit : 98.8% de triheptanoate de trimethylol propane et 0.03% de diheptanoate de trimethylol propane.
Exemple comparatif 2 : Synthèse d’un ester de trimethylolpropane de l’acide 10- undécyléniaue avec un excès molaire en acide Le trimethylolpropane (40.4g, 0.30 mol) e† l’acide 10-undécylénique (218g, 1 .1 7mol) son† chargés dans un tricol de 500ml équipé d’un agitateur, d'un thermomètre, d'un réfrigérant et d'une entrée pour l’azote. Le mélange réactionnel a été chauffé à 185°C sous atmosphère d'azote pendant une durée de 3h, jusqu’à ce que la quantité d'eau théorique soit recueillie. Le tetrabutanolate de zirconium (3.2g, à 80% dans le butanol, 1 % massique/masse totale des réactifs) est ensuite ajouté en batch dans le réacteur. Le montage est progressivement mis sous vide maximal à 185°C pendant 3h30 pour distiller l’excès d’acide n’ayan† pas réagi et conduit à 195.3g de produit.
Un traitement aval avec de l’alumine basique activée est réalisé sur le brut réactionnel et conduit à une huile avec un indice d’acidité de 1 .8 mgKOH/g. La composition chimique du produit a été établie par chromatographie
gazeuse comme suit : 98.3% de triundecylenate de trimethylol propane et 0.99% de diundecylenate de trimethylol propane.
2. Mesure de la tenue à l’oxydation
La stabilité à l’oxydation est déterminée via deux mesures : le temps d’induction à l’oxygène et la température d’induction à l’oxygène. Le temps d’induction à l’oxygène et la température d’induction à l’oxygène son† mesurés dans un calorimètre à balayage différentiel (DSC - Differential scanning calorimetry).
Pour la mesure du temps d’induction à l’oxygène, l’échantillon est chauffé à 150°C puis maintenu à température constante. Il est ensuite exposé à une atmosphère oxydante. Le temps entre le contact avec l’oxygène et le début de l’oxydation est le temps d’induction à l’oxygène.
Pour la mesure de la température d’induction à l’oxygène, l’échantillon est chauffé avec une vitesse de chauffage constante sous atmosphère oxydante jusqu’à ce que la réaction commence. La température d’induction à l’oxygène est la température à laquelle la réaction d’oxydation commence.
Les résultats son† présentés dans le tableau 1 ci-dessous :
[Tableaux 1 ]
Tableau 1 : mesure de la tenue à l’oxydation
Les mesures montrent que le temps d’induction à l’oxygène à 150°C des trois échantillons sont similaires. L’ester selon l’invention présente une température d’induction à l’oxygène plus élevée que les exemples comparatifs 1 e† 2. Par conséquent, l’ester selon l’invention présente de meilleures propriétés de tenue à l’oxydation que les ester usuels synthétisés à partir d’un alcool non biosourcé.
3. Mesure de la viscosité cinématique
La viscosité cinématique a été mesurée à 40°C e† à 100°C selon la norme ISO 3104. Les résultats, exprimés en mm2/s, sont présentés dans le tableau 2 ci-dessous.
4. Mesure de l’indice de viscosité
L’indice de viscosité (sans unité) es† mesuré selon la méthode d’essai décrite dans la norme ASTM D 2270. Les résultats sont présentés dans le tableau 2 ci-dessous.
5. Mesure du point d’écoulement
Le point d’écoulement, exprimé en °C, es† mesuré selon la norme ISO 3016. Les résultats sont présentés dans le tableau 2 ci-dessous. [Tableaux 2]
Tableau 2 : mesure de la viscosité cinématique, de l’indice de viscosité et du point d’écoulement.
Ces exemples montrent que l’ester selon l’invention synthétisé à partir de substances d’origine renouvelable présente les plus faibles viscosités cinématiques à 40°C e† 100°C ainsi que l’indice de viscosité le plus élevé, ce qui signifie que la base lubrifiante selon l’invention a une viscosité stable en fonction de la température. La base lubrifiante de l’invention affiche le point d'écoulement le plus bas, comparativement à ceux des exemples comparatifs synthétisés à partir d’alcools issus de l’industrie pétrolière et d’acides gras insaturés, ou linéaires ou encore branchés.

Claims

REVENDICATIONS
[Revendication 1 ] Esters d’au moins un polyol et d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12.
[Revendication 2] Esters selon la revendication 1 , dans lequel le mélange est constitué majoritairement d’acides gras linéaires.
[Revendication 3] Esters selon la revendication 1 ou 2, dans lequel l’acide gras saturé en C5-C12 est l’acide n-heptanoïque.
[Revendication 4] Esters selon l’une des revendications l à 3, dans lequel l’acide gras insaturé en C10-C12 est l’acide 10-undécylénique.
[Revendication 5] Esters selon l’une quelconque des revendications 1 à 4, dans lequel le rapport massique de l’acide gras saturé en C5-C12 sur l’acide gras insaturé en C10- C12 est de 1 : 10 à 10 :1 .
[Revendication 6] Esters selon l’une quelconque des revendications 1 à 5, dans lequel le rapport massique de l’acide gras saturé en C5-C12 sur l’acide gras insaturé en C10- C12 est de 8 :2 à 2 :8.
[Revendication 7] Esters selon l’une quelconque des revendications 1 à 6, dans lequel le rapport massique de l’acide gras saturé en C5-C12 sur l’acide gras insaturé en C10- C12 est de 7 :3.
[Revendication 8] Esters selon l’une quelconque des revendications 1 à 7, dans lequel le rapport massique du polyol sur le mélange d’acides gras est d’au moins 1 :5.
[Revendication 9] Esters selon l’une quelconque des revendications 1 à 8, dans lequel l’acide gras saturé en C5-C12 et l’acide gras insaturé en C10-C12 sont issus de ressources renouvelables.
[Revendication 10] Esters selon l’une quelconque des revendications 3 à 4, dans lequel l’acide gras saturé en C5-C12 et l’acide gras insaturé en C10-C12 sont issus de l’huile de ricin.
[Revendication 1 1 ] Esters selon l’une quelconque des revendications 1 à 10, dans lequel le polyol est sélectionné dans le groupe constitué du sorbitol, de l’érythritol, du xylitol, du mannitol, du triméthylolpropane, du triméthyloléthane, du pentaérythritol, du dipentaérythritol, du tripentaérythritol, du tetrapentaérythritol, du maltose, du lactose, du saccharose, du raffinose, du maltotriose, et du neopentyl glycol ou de leurs mélanges.
[Revendication 12] Esters selon l’une quelconque des revendications 1 à 1 1 , dans lequel le polyol est issu de ressource renouvelable.
[Revendication 13] Utilisation de l’ester d’au moins un polyol et d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 et au moins un acide gras insaturé en C10-C12 tel que défini dans l’une des revendications 1 à 12 comme base lubrifiante.
[Revendication 14] Composition d’une base lubrifiante comprenant un ester d’au moins un polyol et d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 e† au moins un acide gras insaturé en C10-C12 tel que défini dans l’une des revendications 1 à 12.
[Revendication 15] Procédé de préparation d’un ester comprenant G estérification d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 e† au moins un acide gras insaturé en C10-C12 avec au moins un polyol, éventuellement en présence d’un catalyseur.
[Revendication 16] Esters d’au moins un polyol e† d’un mélange d’acides gras comprenant au moins un acide gras saturé en C5-C12 e† au moins un acide gras insaturé en C10-C12 obtenu par le procédé selon la revendication 15.
EP20707712.4A 2019-01-29 2020-01-29 Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources Pending EP3918042A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900786A FR3092112B1 (fr) 2019-01-29 2019-01-29 Huile de base lubrifiante synthetisee a partir d’esters de polyols et d’acides gras biosources
PCT/FR2020/050138 WO2020157433A1 (fr) 2019-01-29 2020-01-29 Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources

Publications (1)

Publication Number Publication Date
EP3918042A1 true EP3918042A1 (fr) 2021-12-08

Family

ID=67185230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20707712.4A Pending EP3918042A1 (fr) 2019-01-29 2020-01-29 Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources

Country Status (8)

Country Link
US (1) US11453833B2 (fr)
EP (1) EP3918042A1 (fr)
JP (1) JP2022518941A (fr)
KR (1) KR20210121101A (fr)
CN (1) CN113366095A (fr)
FR (1) FR3092112B1 (fr)
SG (1) SG11202108270XA (fr)
WO (1) WO2020157433A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3232245A1 (fr) * 2021-10-08 2023-04-13 Inolex Investment Corporation Esters de polyglyceryle d'origine biologique et compositions les comprenant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763597B1 (fr) * 1997-05-20 1999-12-17 Igol Ind Composition d'huile lubrifiante formee par un polyester de sucre biodegradable et non-toxique
MY141241A (en) 2003-11-20 2010-03-31 Malaysia Palm Oil Board Lubricant base from palm oil and its by-products
WO2007068800A2 (fr) * 2005-12-12 2007-06-21 Neste Oil Oyj Procede de production d'un compose d'hydrocarbure sature
EP1950218A1 (fr) * 2007-01-24 2008-07-30 Centre National de la Recherche Scientifique Antigènes sulfoglycolipidiques, leur procédé de préparation et leur utilisation contre la tuberculose
US8658813B2 (en) * 2008-05-14 2014-02-25 Council Of Scientific & Industrial Research Polyol esters of medium chain fatty acids and process for preparation thereof
JP5689428B2 (ja) * 2012-02-22 2015-03-25 Jx日鉱日石エネルギー株式会社 冷凍機油組成物及びその製造方法、冷凍機用作動流体組成物
CN104262302B (zh) * 2014-09-02 2016-05-11 石家庄康诺生物技术有限公司 L-抗坏血酸-6-(e-2-癸烯酸)酯或其衍生物以及它们的应用
FR3057271B1 (fr) * 2016-10-10 2020-01-17 Arkema France Utilisation de compositions a base de tetrafluoropropene

Also Published As

Publication number Publication date
WO2020157433A1 (fr) 2020-08-06
JP2022518941A (ja) 2022-03-17
CN113366095A (zh) 2021-09-07
SG11202108270XA (en) 2021-08-30
US20220089964A1 (en) 2022-03-24
FR3092112A1 (fr) 2020-07-31
KR20210121101A (ko) 2021-10-07
US11453833B2 (en) 2022-09-27
FR3092112B1 (fr) 2023-01-06

Similar Documents

Publication Publication Date Title
Yunus et al. Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters
JP2016153491A (ja) 高粘度及び低粘度エストリド基油及び潤滑剤
US10125335B2 (en) Lubricating compositions containing isoprene based components
WO2001053247A1 (fr) Ester d'etholide oleique comprenant un groupe terminal d'acides gras satures utilise comme huile de base de lubrifiant
US20130029891A1 (en) Turbine oil comprising an ester component
EP2444388A1 (fr) Esters asymétriques d'acides gras utiles en tant que lubrifiants
US20130029893A1 (en) Process for Preparing a Turbine Oil Comprising an Ester Component
WO2017097645A1 (fr) Utilisation d'esters d'acide isostéarique en tant que lubrifiants
EP3918042A1 (fr) Huile de base lubrifiante synthetisee a partir d'esters de polyols et d'acides gras biosources
CN1219193A (zh) 由支链羰基合成酸制备的可生物降解的合成酯基料
FR2832417A1 (fr) Association synergique d'anti-oxydants du type arylamine dans des huiles pour turbines d'aviation
WO2020157434A1 (fr) Huile de base lubrifiante synthetisee a partir desters d'alcool de sucre
WO2007034336A2 (fr) Utilisation d'une huile de colza dans des biolubrifiants
WO2019126924A1 (fr) Polyalkylène glycols solubles dans l'huile modifiés
CN115605562B (zh) 交内酯组合物和制备交内酯的方法
JP7401553B2 (ja) ポリアルキレングリコール潤滑剤組成物
WO2018138261A1 (fr) Utilisation d'un ester d'acide lipoique comme additif anti-usure et/ou modificateur de friction
WO2023078985A1 (fr) Utilisation d'une base biodégradable lubrifiante, son procédé de préparation et composition lubrifiante comprenant ladite base lubrifiante
KR102103519B1 (ko) 윤활제 조성물을 위한 중합체 및 그의 형성 방법
KR20240045662A (ko) 낮은 견인 계수를 갖는 에스테르계 화합물, 이를 포함하는 윤활기유, 및 이를 포함하는 윤활제 조성물
FR3062387A1 (fr) Dilipoate de dimere(s) diol et son utilisation comme additif
FR3027915A1 (fr) Compositions lubrifiantes comportant un alternatif a l'adipate de di-isotridecyle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230821