EP3914101B1 - Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie - Google Patents

Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie

Info

Publication number
EP3914101B1
EP3914101B1 EP19702050.6A EP19702050A EP3914101B1 EP 3914101 B1 EP3914101 B1 EP 3914101B1 EP 19702050 A EP19702050 A EP 19702050A EP 3914101 B1 EP3914101 B1 EP 3914101B1
Authority
EP
European Patent Office
Prior art keywords
rod
shaped
receiving
shaped product
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19702050.6A
Other languages
English (en)
French (fr)
Other versions
EP3914101A1 (de
Inventor
Denis Baron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber Technologies GmbH
Original Assignee
Koerber Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koerber Technologies GmbH filed Critical Koerber Technologies GmbH
Publication of EP3914101A1 publication Critical patent/EP3914101A1/de
Application granted granted Critical
Publication of EP3914101B1 publication Critical patent/EP3914101B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields

Definitions

  • the invention relates to a method for measuring at least one quality parameter of rod-shaped products from the tobacco processing industry, in particular heat-not-burn products, wherein the rod-shaped products are conveyed transversely to their longitudinal axis.
  • the invention further relates to a measuring device for the tobacco processing industry, comprising a conveying device for conveying rod-shaped products from the tobacco processing industry, in particular heat-not-burn products, wherein the conveying device has receiving troughs for receiving the rod-shaped products, wherein the conveying device is designed to convey the rod-shaped products in a direction transverse to the longitudinal axis of the receiving troughs.
  • rod-shaped products produced such as filter cigarettes or filter rods or multi-segment filter rods as well as heat-not-burn products with regard to their quality in order to exclude rod-shaped products that do not meet the quality requirements from the further production process.
  • WO 2015/138440 A1 or DE 10 2014 213 244 A1 Both patent applications show measuring devices by means of which rod-shaped products of the tobacco processing industry can be examined with regard to their properties.
  • DE 10 2014 209 721 A1 shows a method for determining a property of a rod-shaped article in the tobacco processing industry.
  • the rod-shaped article is placed on a rotating sample holder and irradiated with X-rays.
  • a quality parameter is understood to mean a diameter, roundness, the position of segments, the shape of segments, the inner diameter of a tube, the presence and/or location of additional elements, such as liquid-filled capsules, the length of the rod-shaped product, and similar parameters.
  • products for which conventional measurement methods fail because materials are used that are not suitable for conventional measurement methods.
  • heat-not-burn products have an aluminum foil wrapped around the rod-shaped products or are provided as the outermost layer or one of the outer layers of such rod-shaped products. It is not possible to produce a transmission image in the optical or infrared range with these products.
  • the use of X-rays per se is also hardly suitable for such products. suitable because, even when X-rays are used, sufficient contrast in the transmission images cannot be expected during the rapid conveyance of such products in machines in the tobacco processing industry.
  • the object of the present invention is to enable a reliable and highly accurate measurement of quality parameters even in rod-shaped products of the tobacco processing industry which have components that make conventional transmission measurement difficult.
  • This object is achieved by a method for measuring at least one quality parameter, in particular the length of one or more segments or a type of at least one segment, of rod-shaped products of the tobacco processing industry, in particular heat-not-burn products, wherein the rod-shaped products are conveyed transversely to their longitudinal axis and during conveyance X-rays pass through the rod-shaped products, wherein the transmitted X-rays are recorded by means of an area detector and a transmission image of the respective rod-shaped product is generated by means of a time delay integration.
  • the method according to the invention and the resulting longer exposure time result in significantly higher contrast and thus higher image quality.
  • the evaluation of the transmission image, particularly by means of digital image processing, is thus simplified and has greater accuracy.
  • the time delay integration is or is synchronized with the conveying speed of the rod-shaped products.
  • a speed signal is preferably provided to a control device that controls the recording of the transmission image by the area detector, so that the time delay integration is preferably synchronized depending on the conveying speed of the rod-shaped products.
  • the transmission image of the respective rod-shaped product is integrated synchronously with the conveying movement of the rod-shaped product. This enables very precise transmission images and also significantly increases the contrast.
  • the rod-shaped products are completely arranged in a receiving trough of a conveyor device during the measurement.
  • the rod-shaped products are placed in the Suction cup to fix the rod-shaped products in place in the receiving cup.
  • the receiving recess is radiation-permeable to the X-rays.
  • radiation-permeable means an absorption of less than 50%, particularly preferably less than 40%, particularly preferably less than 30%, particularly preferably less than 20%, particularly preferably less than 10%. It can also preferably be provided that at least a portion of the receiving recess provides no absorption of the X-rays, for example, if a recess or a slot is provided in the receiving recess through which the X-rays can pass, specifically directly into the rod-shaped product.
  • the conveying device has at least one section, transverse to the longitudinal axis of the rod-shaped products or the receiving trough, adjacent to the receiving trough, that is substantially opaque or completely opaque to X-rays.
  • a material is preferably used that has a high absorption coefficient for the X-rays used, and/or a sufficient thickness of the material is provided.
  • a transmission image of the rod-shaped product is formed by successively considering different lines or line groups of the area detector for the integration of the signal as the X-rays passing through the rod-shaped product pass over the area detector, synchronized with the speed of the conveyance of the rod-shaped products in the conveying direction.
  • the image is very precise throughout the entire time the image of the rod-shaped product falls on the area detector.
  • the area detector In the event that interfering radiation from neighboring areas of the receiving cavity or the respective rod-shaped product also falls on the area detector, preferably only one area should contribute to the integration, which represents the transmission image of the rod-shaped product at a given time.
  • the background radiation can be eliminated by measuring the intensity outside the area in which the image of the rod-shaped product falls on the area detector and subtracting it. This can be achieved with appropriate control and image processing.
  • time-delay integration can be performed in such a way that the exact location of the image of the rod-shaped product on the area detector is determined at any given time, for example, by detecting the contour of the image. Only those pixels within the image can then be considered for integration.
  • a pixel matrix is assigned to the image, so to speak, with the respective pixels moving relative to the location of the image as the image moves.
  • the rod-shaped product is measured over its entire length.
  • the rod-shaped product is measured over its entire diameter.
  • image processing can take into account the fact that the edge areas of the recording wells may contribute somewhat more to X-ray absorption, since there is slightly more material there in the direction of the X-ray beam. This can be taken into account during image processing.
  • a suitable area detector can be a CCD image sensor, For example, a CCD 5061 from BAE Systems Imaging Solutions can be selected. This is a CCD sensor with 6,144 pixels by 128 lines. This can be read at 80 MHz with a line rate of up to 12 kHz.
  • CCDs instead of a CCD as an area detector, line CCDs arranged in an array or an array of line detectors can also be used.
  • sampling frequency for example, 10 KHz
  • sampling between 50 ⁇ m and 500 ⁇ m can be achieved depending on the size of the pixels and the size of the rod-shaped products to be measured and the conveying speed.
  • a measuring device of the tobacco processing industry comprising a conveyor device for conveying rod-shaped products of the tobacco processing industry, in particular heat-not-burn products, wherein the conveyor device has receiving troughs for receiving the rod-shaped products, wherein the conveyor device is designed to convey the rod-shaped products in a direction that is transverse to the longitudinal axis of the receiving troughs, wherein an X-ray source is provided and an area detector is provided that is arranged such that the area detector detects the X-ray radiation passing through a receiving trough and a rod-shaped product received in the receiving trough, wherein a control device is provided that is designed to generate a transmission image of the rod-shaped product by means of time-delay integration when the rod-shaped product is conveyed.
  • the area detector has an extension in the conveying direction that is greater than the diameter of the rod-shaped product or greater than the diameter of the receiving trough.
  • the rows of pixels or lines of the area detector are perpendicular to the conveying direction or parallel to the longitudinal axes of the receiving troughs.
  • the extension of the area detector in the conveying direction is preferably between two and five times the diameter of the rod-shaped product or the diameter of the receiving trough.
  • the complete rod-shaped product can preferably be measured if the extension of the area detector transverse to the conveying direction corresponds at least to the length of the rod-shaped product or the length of the receiving trough.
  • the receiving troughs are at least partially X-ray transparent in an area intended for receiving the rod-shaped products.
  • the entire receiving trough is X-ray transparent.
  • X-ray-permeable means that the thickness of the material and/or the material selection is such that less than 50%, in particular less than 40%, in particular less than 30%, in particular less than 20%, in particular less than 10% of the X-ray radiation is absorbed by the material upon passing through the receiving recess.
  • the receiving recess is provided with a slot in sections so that no X-ray absorption occurs there at all. The receiving recess is thus free of material in the region of the slot.
  • the material thickness of the receiving trough is at least partially less than or equal to 1 mm.
  • the material of the receiving trough is at least partially made of aluminum or comprises aluminum.
  • the front side of the receiving trough A ring-shaped frame is provided to stabilize the receiving troughs.
  • the use of X-rays is proposed for measuring quality parameters of rod-shaped products in the tobacco processing industry, especially heat-not-burn products. Since heat-not-burn products are often completely wrapped in aluminum foil, conventional sensor methods cannot be applied or can only be applied to a limited extent.
  • the quality parameters measured include, among others, the position of segments, the length of segments, the spacing between segments, and the material of the segments.
  • the products to be inspected are guided through an X-ray beam on a cross-axial conveyor device, such as a conveyor drum, a cantilever spider, or a conveyor belt.
  • a cross-axial conveyor device such as a conveyor drum, a cantilever spider, or a conveyor belt.
  • Line detectors with so-called time-delay integration (TDI) technology are particularly suitable for dynamic processes.
  • the image is integrated, particularly analogically, synchronously with the linear object movement within the TDI sensor or area detector in the scanning direction.
  • the resulting longer exposure time results in significantly higher image quality.
  • evaluations are simplified and more accurate using digital image processing.
  • Thin-walled conveyor elements which only slightly attenuate the X-ray signal, are particularly preferred for the measuring method and device.
  • the invention makes it possible to precisely determine, even in complex products from the tobacco processing industry, whether the segments used are in the correct position, whether the correct segments are inserted, or even whether segments are missing, and whether these segments are the correct length. Furthermore, statements can be made about the correct positioning of inserted materials, such as threads, capsules, strips, and the like.
  • the X-rays are preferably generated using a standard X-ray tube with a suitable focus.
  • the tube voltage of a commonly used X-ray tube should be between 5 keV and 450 keV.
  • the X-ray beam is preferably collimated to the area to be examined or the X-ray beam is appropriately shaded to avoid or reduce parasitic scattering effects and thus artifacts in the imaging.
  • the transmitted radiation is directed to a receiver.
  • the receiver is preferably an area detector, preferably with a scintillation layer and can preferably be a CMOS or CCD.
  • a line detector or area detector with TDI technology is preferably used.
  • the image is integrated analogously synchronously with the linear object movement within the TDI sensor in the scanning direction. The resulting longer exposure time enables significantly higher image quality.
  • the resulting high-resolution images can be very easily evaluated using digital image processing algorithms.
  • solid rings are provided on the front end, enclosing the walls of the receiving troughs.
  • the control flange must be adjusted so that no material is in the beam path between the X-ray tube and the area detector.
  • the walls of the receiving troughs can also be made of other materials such as plastic, composite materials, or other materials with low X-ray absorption.
  • a conveyor belt can also be provided, which is conveyed via appropriate conveyor belt drums.
  • Fig. 1 shows a schematic sectional view of part of a measuring device according to the invention.
  • Receiving troughs 15 are provided on a conveyor drum 16, in which rod-shaped products 10 are held.
  • the conveyor drum 16 is rotated or moved in the conveying direction 14.
  • X-ray radiation 12 is generated by an X-ray source 20 and sent toward the area detector 13.
  • the transmission image of the rod-shaped product is recorded by the area detector 13.
  • the transmission image is moved during the movement of the rod-shaped product 10 in the conveying direction 14.
  • Fig. 1 The transmission image moves from right to left on the area detector 13.
  • the transmission image is integrated accordingly, so that a very high-contrast transmission image is generated by means of a time-delay integration.
  • the areas between the receiving recesses 15 have a relatively thick wall, so that relatively little X-ray radiation passes through them.
  • the material here can be, for example, stainless steel.
  • the receiving recess 15 can be made of aluminum, at least in part, or entirely of aluminum and relatively thin-walled, allowing X-rays to pass through it easily, thus enabling the best possible image of the material of the rod-shaped product 10.
  • Fig. 2 shows a schematic sectional view of a section of a conveyor drum 16 in another embodiment.
  • the receiving trough 15 has a portion made of a material and an otherwise material-free area 18 or a slot 18 to prevent any absorption of X-rays in this area by additional material that is not part of the rod-shaped product.
  • FIG. 3 schematically shows another embodiment of a measuring device according to the invention.
  • a conveyor belt 17 is deflected over two drums 25.
  • the conveyor belt 17 is conveyed in the conveying direction 14.
  • Receiving troughs 15, into which rod-shaped products 10 are inserted, are mounted on the conveyor belt 17. For clarity, only some of the receiving troughs 15 and the rod-shaped products 10 are shown.
  • an X-ray source 20 is provided, which emits X-ray radiation 12 in the direction of the area detector 13.
  • a precise image of the respective rod-shaped products 10 is enabled by time-delay integration.
  • a control device 21 is provided both in the embodiment according to Fig. 1 as well as in the embodiment according to Fig. 3 which controls the recording or reading of the area detector 13 via a control line 24.
  • the control device 21 receives a speed signal from the machine control and processes this signal in such a way that, based on the geometric conditions, the speed signal is converted into a signal which represents a speed of the image of the rod-shaped product 10 on the area detector 13 in order to enable a synchronized integration of the signal.
  • Fig. 4 shows, in a further embodiment, a section of a conveyor drum 16.
  • Three receiving troughs 15 are shown, wherein rod-shaped products 10 are introduced into two receiving troughs and one receiving trough has been left open in order to illustrate properties of this receiving trough 15.
  • the receiving trough 15 is essentially thin-walled and has a slot 18 in the central region, i.e. an area in which no material is arranged.
  • a border 23 is provided which is also connected to the material provided between the receiving troughs 15 of the conveyor drum 16.
  • the rod-shaped products indicate several segments. Typically, however, an aluminum foil, for example, is wrapped around these segments, so that the various segments themselves would not be visible in a plan view.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Messen wenigstens eines Qualitätsparameters von stabförmigen Produkten der Tabak verarbeitenden Industrie, insbesondere von Heat-not-burn-Produkten, wobei die stabförmigen Produkte quer zu deren Längsachse gefördert werden. Die Erfindung betrifft ferner eine Messvorrichtung der Tabak verarbeitenden Industrie umfassend eine Fördervorrichtung zum Fördern von stabförmigen Produkten der Tabak verarbeitenden Industrie, insbesondere Heat-not-burn-Produkten, wobei die Fördervorrichtung Aufnahmemulden zur Aufnahme der stabförmigen Produkte aufweist, wobei die Fördervorrichtung ausgebildet ist, die stabförmigen Produkte in einer Richtung, die quer zur Längsachse der Aufnahmemulden ist, zu fördern.
  • Es ist in der Tabak verarbeitenden Industrie wichtig, die hergestellten stabförmigen Produkte, wie beispielsweise Filterzigaretten oder Filterstäbe oder Multisegmentfilterstäbe als auch Heat-not-burn-Produkte im Hinblick auf deren Qualität zu untersuchen, um stabförmige Produkte, die den Qualitätsanforderungen nicht entsprechen, aus dem weiteren Herstellverfahren auszuschließen oder vorzugsweise steuertechnisch oder regelungstechnisch auf die Herstellmaschine so einzuwirken, dass die Qualitätsparameter im laufenden Betrieb eingehalten werden oder die Qualität dieser stabförmigen Produkte verbessert wird. Hierzu sind einige Dokumente des Standes der Technik bekannt, wie beispielsweise WO 2015/138440 A1 oder DE 10 2014 213 244 A1 . Bei beiden genannten Patentanmeldungen sind Messvorrichtungen gezeigt, mittels derer stabförmige Produkte der Tabak verarbeitenden Industrie im Hinblick auf deren Eigenschaften untersucht werden können.
  • DE 10 2014 209 721 A1 zeigt ein Verfahren zur Bestimmung einer Eigenschaft eines stabförmigen Artikels der Tabak verarbeitenden Industrie. Der stabförmige Artikel wird dafür auf einem rotierbaren Probenhalter angeordnet und mit Röntgenstrahlung durchstrahlt.
  • In DE 10 2015 112 441 A1 ist eine Röntgenstrahlungs-Prüfvorrichtung und ein Fremdstoff-Nachweisverfahren offenbart. Dazu wird eine Probe, die in einer spezifischen Richtung bewegt wird, mit Röntgenstrahlung durchleuchtet, die von einem TDI-Sensor erfasst wird.
  • Im Rahmen dieser Patentanmeldung bzw. dieses Patents wird unter einem Qualitätsparameter ein Durchmesser, die Rundheit, die Lage von Segmenten, die Form von Segmenten, ein Innendurchmesser eines Röhrchens, das Vorhandensein und/oder der Ort von Zusatzelementen, wie beispielsweise mit Flüssigkeit gefüllte Kapseln, die Länge des stabförmigen Produktes und ähnliche Parameter verstanden. Es gibt insbesondere Produkte, bei denen herkömmliche Messverfahren versagen, weil Materialien verwendet werden, die für herkömmliche Messverfahren nicht geeignet sind. Insbesondere weisen Heat-not-burn-Produkte eine Aluminiumfolie auf, die um die stabförmigen Produkte gewickelt ist bzw. als äußerste Lage oder eine der äußeren Lagen derartiger stabförmiger Produkte vorgesehen ist. Es ist mit diesen Produkten nicht möglich, im optischen oder Infrarotbereich ein Transmissionsbild zu ermöglichen. Auch die Verwendung von Röntgenstrahlung an sich ist für derartige Produkte kaum geeignet, da bei der schnellen Förderung derartiger Produkte in Maschinen der Tabak verarbeitenden Industrie auch bei Verwendung von Röntgenstrahlung kein ausreichender Kontrast der Transmissionsbilder zu erwarten ist.
  • Es ist Aufgabe der vorliegenden Erfindung, auch bei stabförmigen Produkten der Tabak verarbeitenden Industrie, die Bestandteile aufweisen, die eine übliche Transmissionsmessung erschweren, eine verlässliche und hohe Genauigkeit aufweisende Messung von Qualitätsparametern zu ermöglichen.
  • Gelöst wird diese Aufgabe durch ein Verfahren zum Messen wenigstens eines Qualitätsparameters, insbesondere der Länge eines oder mehrerer Segmente oder einer Art wenigstens eines Segments, von stabförmigen Produkten der Tabak verarbeitenden Industrie, insbesondere von Heat-not-burn-Produkten, wobei die stabförmigen Produkte quer zu deren Längsachse gefördert werden und während der Förderung Röntgenstrahlung durch die stabförmigen Produkte hindurchtritt, wobei die transmittierte Röntgenstrahlung mittels eines Flächendetektors aufgenommen wird und mittels einer Zeitverzögerungsintegration ein Transmissionsbild des jeweiligen stabförmigen Produkts erzeugt wird.
  • Durch das erfindungsgemäße Verfahren und die hieraus resultierende längere Belichtungszeit ergibt sich ein deutlich höherer Kontrast und damit eine höhere Bildqualität. Die Auswertung des Transmissionsbildes mittels insbesondere digitaler Bildverarbeitung wird somit vereinfacht und weist eine höhere Genauigkeit auf. Insbesondere ist es bevorzugt, wenn die Zeitverzögerungsintegration mit der Fördergeschwindigkeit der stabförmigen Produkte synchronisiert wird oder ist. Hierbei wird ein Geschwindigkeitssignal einer Steuervorrichtung vorzugsweise zur Verfügung gestellt, die die Aufnahme des Transmissionsbildes durch den Flächendetektor steuert, so dass die Zeitverzögerungsintegration vorzugsweise in Abhängigkeit der Fördergeschwindigkeit der stabförmigen Produkte synchronisiert geschieht.
  • Vorzugsweise wird das Transmissionsbild des jeweiligen stabförmigen Produkts synchron zur Förderbewegung des stabförmigen Produkts aufintegriert oder ist aufintegriert. Hierdurch sind sehr genaue Transmissionsbilder möglich und zudem ist hierdurch auch der Kontrast deutlich erhöht.
  • Zudem sind sehr genaue Bilder mit wenig Verwacklungen möglich, wenn die stabförmigen Produkte jeweils vollständig während des Messens in einer Aufnahmemulde einer Fördervorrichtung angeordnet sind. Vorzugsweise werden die stabförmigen Produkte während des Messens in der Aufnahmemulde angesaugt, um die stabförmigen Produkte in der Aufnahmemulde ortsfest zu fixieren.
  • Vorzugsweise ist wenigstens ein Abschnitt der Aufnahmemulde für die Röntgenstrahlung strahlungsdurchlässig. Im Rahmen der Erfindung bedeutet strahlungsdurchlässig eine Absorption von weniger als 50%, insbesondere vorzugsweise weniger als 40%, insbesondere vorzugsweise weniger als 30%, insbesondere vorzugsweise weniger als 20%, insbesondere vorzugsweise weniger als 10%. Es kann auch vorzugsweise vorgesehen sein, dass zumindest ein Abschnitt der Aufnahmemulde keinerlei Absorption der Röntgenstrahlung vorsieht, beispielsweise dann, wenn eine Aussparung in der Aufnahmemulde bzw. ein Schlitz dort vorgesehen ist, durch die die Röntgenstrahlung treten kann, und zwar unmittelbar in das stabförmige Produkt.
  • Vorzugsweise weist die Fördervorrichtung quer zur Längsachse der stabförmigen Produkte oder der Aufnahmemulde neben der Aufnahmemulde wenigstens einen Abschnitt auf, der für die Röntgenstrahlen im Wesentlichen undurchlässig ist oder vollständig undurchlässig ist. In diesem Bereich, der für die Röntgenstrahlen im Wesentlichen undurchlässig ist oder vollständig undurchlässig ist, der benachbart zu den Aufnahmemulden ist, wird vorzugsweise ein Material verwendet, das für die verwendete Röntgenstrahlung einen hohen Absorptionskoeffizienten aufweist und/oder es ist eine ausreichende Dicke des Materials vorgesehen.
  • Gemäß einer Ausführungsform des Verfahrens wird ein Transmissionsbild des stabförmigen Produkts dadurch gebildet, dass beim Überfahren der durch das stabförmige Produkt hindurchtretenden Röntgenstrahlung über den Flächendetektor synchronisiert mit der Geschwindigkeit der Förderung der stabförmigen Produkte in Förderrichtung nacheinander verschiedene Zeilen bzw. Zeilengruppen des Flächendetektors für die Integration des Signals berücksichtigt werden. Für den Fall, dass die Röntgenstrahlung, die neben die Aufnahmemulden bzw. die stabförmigen Produkte fallen, nicht oder nur unwesentlich zum Transmissionsbild beitragen, kann während der gesamten Zeit, in der das Abbild des stabförmigen Produktes auf den Flächendetektor fällt, ist das Abbild sehr genau. Für den Fall, dass eine Störstrahlung durch benachbarte Gebiete der Aufnahmemulde bzw. das jeweilige stabförmige Produkt mit auf den Flächendetektor fällt, sollte vorzugsweise nur ein Bereich zur Integration beitragen, der zu einem gewissen Zeitpunkt das Transmissionsbild des stabförmigen Produktes darstellt. Die Hintergrundstrahlung kann durch Messen der Intensität außerhalb des Bereichs, in dem das Abbild des stabförmigen Produkts auf dem Flächendetektor fällt, und Subtraktion herausgerechnet werden. Dies kann mit einer entsprechenden Steuerung und Bildbearbeitung realisiert werden.
  • Zudem kann alternativ eine Zeitverzögerungsintegration derart erfolgen, dass zu jedem Zeitpunkt genau festgestellt wird, wo das Abbild des stabförmigen Produkts auf dem Flächendetektor liegt, beispielsweise durch Erkennen der Kontur des Abbildes. Es können dann ausschließlich die Pixel für die Integration berücksichtigt werden, die innerhalb des Abbildes liegen. Dem Abbild wird sozusagen eine Pixelmatrix zugeordnet, wobei die jeweiligen Pixel relativ zum Ort des Abbildes mit der Bewegung des Abbildes mitwandern.
  • Vorzugsweise wird das stabförmige Produkt über die gesamte Länge des stabförmigen Produkts gemessen. Insbesondere vorzugsweise wird das stabförmige Produkt über den gesamten Durchmesser des stabförmigen Produktes gemessen.
  • Zudem kann durch Bildverarbeitung berücksichtigt werden, dass die Randbereiche der Aufnahmemulden möglicherweise etwas mehr zur Absorption der Röntgenstrahlung beitragen, da dort in Strahlrichtung der Röntgenstrahlung etwas mehr Material zur Absorption beiträgt. Dieses kann bei der Bildbearbeitung berücksichtigt werden.
  • Das grundsätzliche Prinzip einer Zeitverzögerungsintegration ist in EP 2 088 763 A2 dargestellt. Als geeigneter Flächendetektor kann ein CCD-Bildsensor, beispielsweise des Typs CCD 5061 der BAE Systems Imaging Solutions, gewählt werden. Hierbei handelt es sich um einen CCD-Sensor mit 6.144 Pixel mal 128 Linien. Dies kann bei 80 MHz mit einer Linienrate von bis 12 KHz ausgelesen werden.
  • Anstelle eines CCD als Flächendetektor können auch zu einem Array angeordnete Linien-CCDs bzw. einem Array von Zeilendetektoren verwendet werden.
  • Bei einer Abtastfrequenz von beispielsweise 10 KHz lassen sich je nach Größe der Pixel und der Größe der zu messenden stabförmigen Produkte und der Fördergeschwindigkeit Abtastungen zwischen 50 µm und 500 µm realisieren.
  • Die Aufgabe wird ferner gelöst durch eine Messvorrichtung der Tabak verarbeitenden Industrie umfassend eine Fördervorrichtung zum Fördern von stabförmigen Produkten der Tabak verarbeitenden Industrie, insbesondere Heat-not-burn-Produkten, wobei die Fördervorrichtung Aufnahmemulden zur Aufnahme der stabförmigen Produkte aufweist, wobei die Fördervorrichtung ausgebildet ist, die stabförmigen Produkte in einer Richtung, die quer zur Längsachse der Aufnahmemulden ist, zu fördern, wobei eine Röntgenstrahlungsquelle vorgesehen ist und ein Flächendetektor vorgesehen ist, der so angeordnet ist, dass der Flächendetektor die durch eine Aufnahmemulde und ein in der Aufnahmemulde aufgenommenes stabförmiges Produkt hindurchtretende Röntgenstrahlung detektiert, wobei eine Steuervorrichtung vorgesehen ist, die derart eingerichtet ist, mittels einer Zeitverzögerungsintegration ein Transmissionsbild des stabförmigen Produkts beim Fördern des stabförmigen Produkts zu erzeugen.
  • Vorzugsweise weist der Flächendetektor eine Erstreckung in Förderrichtung auf, die größer als der Durchmesser des stabförmigen Produktes oder größer als der Durchmesser der Aufnahmemulde ist.
  • Vorzugsweise liegen die Zeilen der Pixel bzw. Linien des Flächendetektors senkrecht zur Förderrichtung oder parallel zu den Längsachsen der Aufnahmemulden.
  • Insbesondere vorzugsweise ist die Erstreckung des Flächendetektors in Förderrichtung zwischen zweifach bis fünffach des Durchmessers des stabförmigen Produktes oder des Durchmessers der Aufnahmemulde.
  • Das vollständige stabförmige Produkt kann vorzugsweise dann gemessen werden, wenn die Erstreckung des Flächendetektors quer zur Förderrichtung wenigstens der Länge des stabförmigen Produktes entspricht oder der Länge der Aufnahmemulde.
  • Vorzugsweise sind die Aufnahmemulden in einem Bereich, der zur Aufnahme der stabförmigen Produkte vorgesehen ist, wenigstens abschnittsweise röntgenstrahlungsdurchlässig. Vorzugsweise ist die gesamte Aufnahmemulde röntgenstrahlungsdurchlässig.
  • Im Rahmen der Erfindung bedeutet röntgenstrahlungsdurchlässig, dass die Dicke des Materials und/oder die Materialauswahl so getroffen wird, dass weniger als 50%, insbesondere weniger als 40%, insbesondere weniger als 30%, insbesondere weniger als 20%, insbesondere weniger als 10% der Röntgenstrahlung durch das Material beim Durchtritt durch die Aufnahmemulde absorbiert wird. Vorzugsweise ist die Aufnahmemulde abschnittsweise mit einem Schlitz versehen, so dass dort überhaupt keine Röntgenstrahlungsabsorption stattfindet. Die Aufnahmemulde ist somit im Bereich des Schlitzes materialfrei.
  • Vorzugsweise ist die Materialstärke der Aufnahmemulde wenigstens abschnittsweise weniger oder gleich 1 mm. Besonders bevorzugt ist das Material der Aufnahmemulde wenigstens abschnittsweise Aluminium oder umfasst Aluminium. Um eine entsprechende Stabilität der Fördervorrichtung zu ermöglichen, ist vorzugsweise stirnseitig der Aufnahmemulden eine ringförmige Einfassung zur Stabilisierung der Aufnahmemulden vorgesehen.
  • Zur Messung von Qualitätsparametern von stabförmigen Produkten der Tabak verarbeitenden Industrie, insbesondere Heat-not-burn-Produkten, wird die Verwendung von Röntgenstrahlen vorgeschlagen. Da Heat-not-burn-Produkte oft vollständig mit Aluminiumpapier umhüllt sind, können übliche Sensorverfahren nicht oder nur eingeschränkt angewendet werden. Zu den Qualitätsparametern, die gemessen werden, zählen u.a. die Lage von Segmenten, die Länge von Segmenten, Abstände von Segmenten und das Material der Segmente.
  • Die zu prüfenden Produkte werden auf einer queraxialen Fördereinrichtung, beispielsweise einer Fördertrommel, einer einseitig haltenden Spinne oder einem Förderband, durch einen Röntgenstrahl geführt. Insbesondere in dynamischen Prozessen eignen sich Zeilendetektoren mit einer sogenannten Zeitverzögerungsintegrationstechnologie bzw. TDI-Techno-logie von Time Delayed Integration oder Time Delay and Integration. Hierbei wird das Abbild synchron zur linearen Objektbewegung innerhalb des TDI-Sensors bzw. Flächendetektors in Scanrichtung, insbesondere analog, aufintegriert. Durch die hieraus resultierende längere Belichtungszeit ergibt sich eine deutlich höhere Bildqualität. Zudem werden die Auswertungen mittels digitaler Bildverarbeitung vereinfacht und weisen eine höhere Genauigkeit auf. Insbesondere sind bei dem Messverfahren und bei der Messvorrichtung dünnwandige Förderorgane bevorzugt, die das Röntgensignal nur geringfügig abschwächen.
  • Mit der Erfindung ist es möglich, auch bei komplexen Produkten der Tabak verarbeitenden Industrie genau zu bestimmen, ob die verwendeten Segmente an der richtigen Position liegen, ob die richtigen Segmente eingelegt sind oder sogar Segmente fehlen und ob diese die richtige Länge aufweisen. Zudem können Aussagen über die korrekte Positionierung von beispielsweise eingelegten Materialien, wie Fäden, Kapseln und Strips oder Ähnliches, getroffen werden.
  • Die Röntgenstrahlung wird vorzugsweise mit einer üblichen Röntgenröhre erzeugt, wobei diese einen geeigneten Fokus aufweist. Die Röhrenspannung einer üblicherweise verwendeten Röntgenröhre sollte zwischen 5 keV und 450 keV liegen. Vorzugsweise wird der Röntgenstrahl auf den zu prüfenden Bereich kollimiert bzw. wird der Röntgenstrahl entsprechend abgeschattet, um möglichst parasitäre Streueffekte und damit Artefakte in der Bildgebung zu vermeiden oder zu reduzieren.
  • Abhängig von der Materialdichte kommt es bei verschiedenen Materialien zu unterschiedlichen Absorptionen und Streueffekten der Röntgenstrahlung. Die transmittierte Strahlung wird auf einen Empfänger gegeben. Der Empfänger ist vorzugsweise ein Flächendetektor, der vorzugsweise eine Szintillationsschicht aufweist und vorzugsweise ein CMOS oder CCD sein kann. Zudem wird vorzugsweise ein Zeilendetektor bzw. Flächendetektor mit TDI-Technologie verwendet. Hierbei wird das Abbild synchron zur linearen Objektbewegung innerhalb des TDI-Sensors in Scanrichtung analog aufintegriert. Die hieraus resulierende längere Belichtungszeit ermöglicht eine deutlich höhere Bildqualität. Die entstandenen hochaufgelösten Bilder können sich über Algorithmen der digitalen Bildverarbeitung sehr gut auswerten lassen.
  • Aufgrund des Lambert-Beer'schen Schwächungsgesetzes I = I 0 e μ d
    • (mit I = Intensität, I0 = Basisintensität, µ= Absorptionskoeffizient und d= Dicke)
    • ist es sinnvoll, bei den zu vermessenden Materialien im Strahlengang, nicht zusätzlich noch stark absorbierende Materialien, also dichte Materialien, vorzusehen. Aus diesem Grunde ist es sinnvoll, Fördervorrichtungen zu verwenden, die im Bereich, in denen die stabförmigen Produkte aufgenommen sind, wenig Material aufweisen. Beispielsweise sind dünne Blechmulden bzw. dünne Aufnahmemulden vorgesehen, die im Muldenbereich, also dem Auflagebereich des stabförmigen Produktes, nur aus einem dünnen Blech mit Wandstärken von weniger oder gleich 1 mm aufweisen. Das Material ist hierbei vorzugsweise Aluminium, da Aluminium für Röntgenstrahlung sehr durchlässig ist. Die dünne Wandstärke ist hierbei vorzugsweise über die gesamte Länge des stabförmigen Produktes auszuführen.
  • Um die Steifigkeit der Fördervorrichtung, beispielsweise einer Fördertrommel, zu erhöhen, werden stirnseitig massive Ringe vorgesehen, in die die Wände der Aufnahmemulden eingefasst sind. Zudem ist der Steuerflansch so anzupassen, dass im Strahlengang zwischen Röntgenröhre und Flächendetektor kein Material liegt. Die Wände der Aufnahmemulden können auch aus anderen Materialien wie Kunststoff, Verbundwerkstoffen oder weiteren Materialien gefertigt sein, die eine geringe Absorption von Röntgenstrahlung aufweisen. An Stelle einer Fördertrommel kann auch ein Förderband vorgesehen sein, das über entsprechende Förderband-Trommeln gefördert wird.
  • Weitere Merkmale der Erfindung werden aus der Beschreibung erfindungsgemäßer Ausführungsformen zusammen mit den Ansprüchen und den beigefügten Zeichnungen ersichtlich. Erfindungsgemäße Ausführungsformen können einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllen.
  • Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen beschrieben, wobei bezüglich aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten ausdrücklich auf die Zeichnungen verwiesen wird. Es zeigen:
  • Fig. 1
    eine schematische Schnittdarstellung eines Teils der erfindungsgemäßen Messvorrichtung in einer ersten Ausführungsform,
    Fig. 2
    eine schematische Schnittdarstellung eines Teils einer Fördertrommel,
    Fig. 3
    eine schematische Darstellung einer erfindungsgemäßen Messvorrichtung in einer weiteren Ausführungsform,
    Fig. 4
    eine schematische Draufsicht auf einen Ausschnitt einer Fördertrommel.
  • In den Zeichnungen sind jeweils gleiche oder gleichartige Elemente und/oder Teile mit denselben Bezugsziffern versehen, so dass von einer erneuten Vorstellung jeweils abgesehen wird.
  • Fig. 1 zeigt eine schematische Schnittdarstellung eines Teils einer erfindungsgemäßen Messvorrichtung. Auf einer Fördertrommel 16 sind Aufnahmemulden 15 eingebracht, in denen stabförmige Produkte 10 gehalten werden. Die Fördertrommel 16 wird in Förderrichtung 14 gedreht bzw. bewegt.
  • Mittels einer Röntgenstrahlungsquelle 20 wird Röntgenstrahlung 12 erzeugt und in Richtung des Flächendetektors 13 gesendet. Beim Durchtreten des stabförmigen Produktes 10 durch die Röntgenstrahlung 12, die hier in Art eines Kegels ausgebildet ist, wird das Transmissionsbild des stabförmigen Produktes mittels des Flächendetektors 13 aufgenommen. Hierbei wird während der Bewegung des stabförmigen Produktes 10 in Förderrichtung 14 das Transmissionsbild bewegt. In Fig. 1 wandert das Transmissionsbild auf dem Flächendetektor 13 von rechts nach links. Es wird entsprechend das Transmissionsbild aufintegriert, so dass mittels einer Zeitverzögerungsintegration ein sehr kontrastreiches Transmissionsbild erzeugt wird. Die Bereiche zwischen den Aufnahmemulden 15 weisen eine relativ hohe Wandstärke auf, so dass dort relativ wenig Röntgenstrahlung hindurchtritt. Das Material kann hier beispielsweise Edelstahl sein, wodurch die Röntgenstrahlung gut absorbiert wird. Die Aufnahmemulde 15 kann wenigstens abschnittsweise aus Aluminium sein oder vollständig aus Aluminium und relativ dünnwandig, so dass Röntgenstrahlen hier gut durchtreten, um von dem Material des stabförmigen Produktes 10 ein möglichst gutes Abbild zu ermöglichen.
  • Fig. 2 zeigt schematisch in einer Schnittdarstellung einen Ausschnitt aus einer Fördertrommel 16 in einer anderen Ausführungsform. Die Aufnahmemulde 15 weist einen Abschnitt aus einem Material auf und ansonsten einen materialfreien Bereich 18 bzw. einen Schlitz 18, um in diesem Bereich überhaupt keine Absorption der Röntgenstrahlung durch weiteres Material, das nicht zum stabförmigen Produkt gehört, vorzusehen.
  • Fig. 3 zeigt schematisch eine weitere Ausführungsform einer erfindungsgemäßen Messvorrichtung. Über zwei Trommeln 25 ist ein Förderband 17 umgelenkt. Das Förderband 17 wird in Förderrichtung 14 gefördert. Auf dem Förderband 17 sind Aufnahmemulden 15 aufgebracht, in die stabförmige Produkte 10 eingebracht sind. Zur besseren Veranschaulichung sind nur teilweise die Aufnahmemulden 15 und die stabförmigen Produkte 10 dargestellt. Zwischen den beiden Trommeln 25 ist eine Röntgenstrahlungsquelle 20 vorgesehen, die Röntgenstrahlung 12 in Richtung des Flächendetektors 13 strahlt. Auch hier wird mit einer Zeitverzögerungsintegration ein genaues Abbild der jeweiligen stabförmigen Produkte 10 ermöglicht.
  • Um eine Synchronisation der Zeitverzögerungsintegration mit der Fördergeschwindigkeit der stabförmigen Produkte 10 zu ermöglichen, ist eine Steuervorrichtung 21 sowohl in dem Ausführungsbeispiel gemäß Fig. 1 als auch im Ausführungsbeispiel gemäß Fig. 3 vorgesehen, die über eine Steuerleitung 24 das Aufnehmen bzw. Auslesen des Flächendetektors 13 steuert. Die Steuervorrichtung 21 erhält ein Geschwindigkeitssignal von der Maschinensteuerung und verarbeitet dieses Signal so, dass anhand der geometrischen Gegebenheiten das Geschwindigkeitssignal in ein Signal umgewandelt wird, das einer Geschwindigkeit des Abbildes des stabförmigen Produktes 10 auf den Flächendetektor 13 darstellt, um eine synchronisierte Integration des Signals zu ermöglichen.
  • Fig. 4 zeigt in einer weiteren Ausführungsform einen Ausschnitt einer Fördertrommel 16. Es sind drei Aufnahmemulden 15 gezeigt, wobei in zwei Aufnahmemulden stabförmige Produkte 10 eingebracht sind und eine Aufnahmemulde offengelassen wurde, um Eigenschaften dieser Aufnahmemulde 15 darzustellen. Die Aufnahmemulde 15 ist im Wesentlichen dünnwandig und weist im mittleren Bereich einen Schlitz 18 auf, also einen Bereich, in dem kein Material angeordnet ist. Damit die Aufnahmemulde insbesondere im Randbereich stabil ist, ist eine Einfassung 23 vorgesehen, die auch mit dem Material, das zwischen den Aufnahmemulden 15 der Fördertrommel 16 vorgesehen ist, verbunden ist. Die stabförmigen Produkte deuten mehrere Segmente an. Typischerweise ist allerdings beispielsweise eine Aluminiumfolie um diese Segmente gewickelt, so dass in einer Draufsicht die verschiedenen Segmente an sich nicht sichtbar wären.
  • Anstelle des in den Figuren gezeigten Strahlenkegels können auch parallele oder im Wesentlichen parallele Röntgenstrahlen Verwendung finden.
  • Im Rahmen der Erfindung sind Merkmale, die mit "insbesondere" oder "vorzugsweise" gekennzeichnet sind, als fakultative Merkmale zu verstehen.
  • Alle genannten Merkmale, auch die den Zeichnungen allein zu entnehmenden sowie auch einzelne Merkmale, die in Kombination mit anderen Merkmalen offenbart sind, werden allein und in Kombination als erfindungswesentlich angesehen. Erfindungsgemäße Ausführungsformen können durch einzelne Merkmale oder eine Kombination mehrerer Merkmale erfüllt sein.
  • Bezugszeichenliste
  • 10
    stabförmiges Produkt
    11
    Längsachse
    12
    Röntgenstrahlung
    13
    Flächendetektor
    14
    Förderrichtung
    15
    Aufnahmemulde
    16
    Fördertrommel
    17
    Förderband
    18
    Schlitz
    20
    Röntgenstrahlungsquelle
    21
    Steuervorrichtung
    22
    stirnseitig
    23
    Einfassung
    24
    elektrische Verbindung Steuerleitung
    25
    Trommel

Claims (16)

  1. Verfahren zum Messen wenigstens eines Qualitätsparameters, insbesondere der Länge eines oder mehrerer Segmente oder einer Art wenigstens eines Segments, von stabförmigen Produkten (10) der Tabak verarbeitenden Industrie, insbesondere von Heat-not-burn-Produkten, wobei die stabförmigen Produkte (10) quer zu deren Längsachse (11) gefördert werden und während der Förderung Röntgenstrahlung (12) durch die stabförmigen Produkte (10) hindurchtritt, wobei die transmittierte Röntgenstrahlung (12) mittels eines Flächendetektors (13) aufgenommen wird und mittels einer Zeitverzögerungsintegration ein Transmissionsbild des jeweiligen stabförmigen Produkts (10) erzeugt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zeitverzögerungsintegration mit der Fördergeschwindigkeit der stabförmigen Produkte (10) synchronisiert wird oder ist, wobei insbesondere das Transmissionsbild des jeweiligen stabförmigen Produkts (10) synchron zur Förderbewegung des stabförmigen Produkts (10) aufintegriert wird oder ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die stabförmigen Produkte (10) jeweils vollständig während des Messens in einer Aufnahmemulde (15) einer Fördervorrichtung (16, 17) angeordnet sind.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass wenigstens ein Abschnitt der Aufnahmemulde (15) für die Röntgenstrahlung (12) strahlungsdurchlässig ist.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Fördervorrichtung (16, 17) quer zur Längsachse (11) der stabförmigen Produkte (10) oder der Aufnahmemulde (15) neben der Aufnahmemulde (15) wenigstens einen Abschnitt aufweist, der für die Röntgenstrahlen im Wesentlichen undurchlässig ist oder vollständig undurchlässig ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das stabförmige Produkt (10) über die gesamte Länge des stabförmigen Produkts (10) gemessen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das stabförmige Produkt (10) über den gesamten Durchmesser des stabförmigen Produkts (10) gemessen wird.
  8. Messvorrichtung der Tabak verarbeitenden Industrie umfassend eine Fördervorrichtung (16, 17) zum Fördern von stabförmigen Produkten (10) der Tabak verarbeitenden Industrie, insbesondere Heat-not-burn-Produkten, wobei die Fördervorrichtung (16, 17) Aufnahmemulden (15) zur Aufnahme der stabförmigen Produkte (10) aufweist, wobei die Fördervorrichtung (16, 17) ausgebildet ist, die stabförmigen Produkte (10) in einer Richtung, die quer zur Längsachse (11) der Aufnahmemulden (15) ist, zu fördern, wobei eine Röntgenstrahlungsquelle (20) vorgesehen ist und ein Flächendetektor (13) vorgesehen ist, der so angeordnet ist, dass der Flächendetektor (13) die durch eine Aufnahmemulde (15) und ein in der Aufnahmemulde (15) aufgenommenes stabförmiges Produkt (10) hindurchtretende Röntgenstrahlung (12) detektiert, wobei eine Steuervorrichtung (21) vorgesehen ist, die derart eingerichtet ist, mittels einer Zeitverzögerungsintegration ein Transmissionsbild des stabförmigen Produkts (10) beim Fördern des stabförmigen Produkts (10) zu erzeugen.
  9. Messvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Flächendetektor (13) eine Erstreckung in Förderrichtung (14) aufweist, die größer als der Durchmesser des stabförmigen Produktes (10) oder größer als der Durchmesser der Aufnahmemulde (15) ist.
  10. Messvorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Erstreckung des Flächendetektors (13) in Förderrichtung (14) zwischen zweifach bis fünffach des Durchmessers des stabförmigen Produktes (10) oder des Durchmessers der Aufnahmemulde (15) ist.
  11. Messvorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Erstreckung des Flächendetektors (13) quer zur Förderrichtung (14) wenigstens der Länge des stabförmigen Produktes (10) entspricht.
  12. Messvorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die Aufnahmemulden (15) in einem Bereich, der zur Aufnahme der stabförmigen Produkte (10) vorgesehen ist, wenigstens abschnittsweise röntgenstrahlungsdurchlässig ist.
  13. Messvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Aufnahmemulden (15) wenigstens abschnittsweise mit einem Schlitz (18) versehen sind.
  14. Messvorrichtung nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die Materialstärke der Aufnahmemulde (15) wenigstens abschnittsweise kleiner oder gleich 1 mm ist.
  15. Messvorrichtung nach einem der Ansprüche 8 bis 14, dadurch gekennzeichnet, dass das Material der Aufnahmemulde (15) wenigstens abschnittsweise Aluminium ist.
  16. Messvorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass stirnseitig (22) der Aufnahmemulde (15) eine ringförmige Einfassung (23) zur Stabilisierung der Aufnahmemulde (15) vorgesehen ist.
EP19702050.6A 2019-01-24 2019-01-24 Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie Active EP3914101B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/051717 WO2020151823A1 (de) 2019-01-24 2019-01-24 Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie

Publications (2)

Publication Number Publication Date
EP3914101A1 EP3914101A1 (de) 2021-12-01
EP3914101B1 true EP3914101B1 (de) 2025-10-15

Family

ID=65237025

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19702050.6A Active EP3914101B1 (de) 2019-01-24 2019-01-24 Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie

Country Status (3)

Country Link
EP (1) EP3914101B1 (de)
CN (1) CN113316397B (de)
WO (1) WO2020151823A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393460B (zh) * 2021-08-16 2021-11-30 湖南磐钴传动科技有限公司 基于图像处理的烟丝质量参数检测方法及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB745153A (en) * 1953-04-07 1956-02-22 Ind Machinery Co Ltd Improvements relating to radiation gauges such as beta gauges
JP2000094425A (ja) * 1998-09-17 2000-04-04 Noritake Co Ltd 押出成形機に装着される素材定寸切断装置
JP4723752B2 (ja) * 2001-05-01 2011-07-13 株式会社イシダ X線検査装置
JP4094910B2 (ja) * 2002-08-23 2008-06-04 川崎重工業株式会社 X線画像撮像装置
GB0802478D0 (en) 2008-02-11 2008-03-19 Cmosis Nv Tiem delay integration in imaging device
DE102011006449A1 (de) * 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zum Messen einer physikalischen Eigenschaft eines längsaxial geförderten stabförmigen Artikels der Tabak verarbeitenden Industrie
DE102012102338A1 (de) * 2012-03-20 2013-09-26 Hauni Maschinenbau Ag Messanordnung zum Messen von in Strangmaschinen der Tabak verarbeitenden Industrie hergestellten und geförderten Strängen
US9844232B2 (en) 2014-03-11 2017-12-19 R.J. Reynolds Tobacco Company Smoking article inspection system and associated method
DE102014209721A1 (de) * 2014-05-22 2015-11-26 Hauni Maschinenbau Ag Verfahren zur Bestimmung einer Eigenschaft eines stabförmigen Artikels der Tabak verarbeitenden Industrie mittels Röntgenstrahlung, und Probenhalter
DE102014213244A1 (de) 2014-07-08 2016-01-14 Hauni Maschinenbau Ag Prüfung von stabförmigen Artikeln, insbesondere Filterzigaretten
JP6397690B2 (ja) * 2014-08-11 2018-09-26 株式会社日立ハイテクノロジーズ X線透過検査装置及び異物検出方法
PL227616B1 (pl) * 2014-09-12 2018-01-31 International Tobacco Machinery Poland Spólka Z Ograniczona Odpowiedzialnoscia Urządzenie pomiarowe i sposób pomiaru prętopodobnych artykułów wielosegmentowych przemysłu tytoniowego
JP6665470B2 (ja) * 2015-09-30 2020-03-13 大日本印刷株式会社 放射線検出装置及びコントローラ

Also Published As

Publication number Publication date
WO2020151823A1 (de) 2020-07-30
CN113316397B (zh) 2023-06-20
CN113316397A (zh) 2021-08-27
EP3914101A1 (de) 2021-12-01

Similar Documents

Publication Publication Date Title
EP0024028B1 (de) Röntgengerät zur Herstellung von Transversalschichtbildern und Röntgenschattenbildern eines Aufnahmeobjektes
DE69417504T2 (de) Vorrichtung zum nachweis von oberflächenfehlern
EP3191824B1 (de) Thermographische untersuchungseinrichtung sowie verfahren zur zerstörungsfreien untersuchung einer oberflächennahen struktur an einem prüfobjekt
DE2106945C3 (de) Verfahren und Vorrichtung zur Prüfung von Flüssigkeiten
WO2018024648A1 (de) Verfahren und vorrichtung zur optischen untersuchung transparenter körper
EP2918180B2 (de) Optische Prüfung von stabförmigen Artikeln der Tabak verarbeitenden Industrie
DE102005016124A1 (de) Sensorvorrichtung einer Verpackungsmaschine
DE3624236A1 (de) Verfahren und vorrichtung zum pruefen der dichte eines umhuellten tabakstrangs
EP1893983A1 (de) Vorrichtung zur röntgen-laminographie und/oder tomosynthese
EP2690977A1 (de) Verfahren und vorrichtung zum messen einer inneren physikalischen eigenschaft eines längsaxial geförderten stabförmigen artikels der tabak verarbeitenden industrie
DE102015112441A1 (de) Röntgendurchstrahlungs-Prüfvorrichtung und Fremdstoff-Nachweisverfahren
EP0790006A2 (de) Verfahren und Vorrichtung zum Bestimmen der Dichte eines Faserstrangs der tabakverarbeitenden Industrie
WO2012013368A1 (de) Einrichtung und verfahren zur gewichtsbestimmung von pharmazeutischen produkten mittels einer röntgenstrahlungsquelle
DE69408023T2 (de) Verfahren und Anordnung zum Eichen der Dickenmessanordnung des Querprofils eines flächigen Gutes
DE112008001839T5 (de) Prüfvorrichtung und Prüfverfahren, welches durchdringende Strahlung verwendet
DE102004059663A1 (de) Verfahren zur Bildgebung mit einem Mehrzeilen-Computertomographen
DE102013108367A1 (de) Vorrichtung und Verfahren zur Aufnahme von Durchstrahlungsbildern bei einer Computertomografie
EP3914101B1 (de) Qualitätsprüfung stabförmiger produkte der tabak verarbeitenden industrie
CH616581A5 (de)
EP2711701B1 (de) Verfahren zum Durchleuchten von Produkten
DE4427605A1 (de) Verfahren und Vorrichtung zum Bestimmen des Gewichts stabförmiger Artikel der tabakverarbeitenden Industrie
EP3682749B1 (de) Verfahren zum betreiben einer maschine der tabak verarbeitenden industrie und entsprechende maschine
DE10339486A1 (de) Verfahren zum Ermitteln und Lokalisieren von störobjektebedingten Messsystemfehlern in der Computertomographie
DE102009051643B4 (de) Röntgen-Analysegerät und Verfahren zur Röntgenanalyse
DE102007045798B4 (de) Anordnung und Verfahren zur Aufnahme von Röntgenstrahlen-Streuungsbildern

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOERBER TECHNOLOGIES GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20250722

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: F10

Free format text: ST27 STATUS EVENT CODE: U-0-0-F10-F00 (AS PROVIDED BY THE NATIONAL OFFICE)

Effective date: 20251015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019013987

Country of ref document: DE