EP3911439A1 - Verfahren zur herstellung eines selektiven hydrierungskatalysators mit einem schritt zur herstellung einer ni-cu-legierung in der vorimprägnierung - Google Patents

Verfahren zur herstellung eines selektiven hydrierungskatalysators mit einem schritt zur herstellung einer ni-cu-legierung in der vorimprägnierung

Info

Publication number
EP3911439A1
EP3911439A1 EP20700054.8A EP20700054A EP3911439A1 EP 3911439 A1 EP3911439 A1 EP 3911439A1 EP 20700054 A EP20700054 A EP 20700054A EP 3911439 A1 EP3911439 A1 EP 3911439A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
nickel
copper
precursor
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20700054.8A
Other languages
English (en)
French (fr)
Inventor
Malika Boualleg
Anne-Agathe Quoineaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3911439A1 publication Critical patent/EP3911439A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • the present invention relates to a process for preparing a supported metal catalyst, comprising nickel and copper, intended particularly for the hydrogenation of unsaturated hydrocarbons.
  • the present invention also relates to the use of these catalysts in reactions for the hydrogenation of unsaturated hydrocarbons, and more particularly, for the selective hydrogenation of olefinic fractions.
  • the catalysts for the selective hydrogenation of polyunsaturated compounds are generally based on metals from group VIII of the Periodic Table of the Elements, such as nickel.
  • the metal is in the form of nanometric metallic particles deposited on a support which may be a refractory oxide.
  • the group VIII metal content, the possible presence of a second metallic element, the size of the metal particles and the distribution of the active phase in the support as well as the nature and pore distribution of the support are parameters which may have an impact. importance on catalyst performance.
  • the rate of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reactants towards the surface of the catalyst (external diffusional limitations), the diffusion of the reactants in the porosity of the support towards the active sites (internal diffusional limitations) and the intrinsic properties of the active phase such as the size of the metal particles and the distribution of the active phase within the support.
  • a nickel-based catalyst has frequently been proposed in order to improve the performance in selective hydrogenation.
  • Document FR 3,011, 844 discloses a catalyst for the implementation of a selective hydrogenation process comprising a support and an active metallic phase deposited on the support, the active metallic phase comprising copper and at least one nickel or cobalt metal in a Cu molar ratio: ( Ni and / or Co) greater than 1.
  • a reducing treatment step in the presence of a reducing gas is carried out so as to obtain a catalyst comprising an at least partially active phase. in metallic form.
  • This treatment activates the catalyst and forms metal particles.
  • This treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the preparation process according to the invention thus makes it possible to carry out a step of reduction of the metallic elements in the presence of a reducing gas at lower temperatures and shorter reaction times than those commonly used in the prior art.
  • the use of less severe operating conditions than in the prior art allows the reduction step to be carried out directly within the reactor in which it is desired to carry out the hydrogenation. selective polyunsaturated sections.
  • the presence of copper in the catalyst makes it possible to maintain good activity and a longer lifespan of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur, in particular the C3 hydrocarbon cuts from steam cracking and / or catalytic cracking.
  • the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which therefore avoids irreversibly poisoning the most virulent active sites of the nickel which exist on the new catalyst.
  • the present invention relates to a process for preparing a catalyst for the selective hydrogenation of polyunsaturated hydrocarbon cuts comprising a metallic active phase based on nickel, in an amount of 1 and 35% by weight of nickel element relative to the weight. total catalyst, and copper-based, in an amount of 0.5 to 15% by weight of copper element relative to the total weight of the catalyst, and a support comprising at least one refractory oxide chosen from silica, alumina and silica-alumina, which process comprises the following steps:
  • a step is carried out of bringing the support into contact with at least one solution containing at least one copper precursor and one nickel precursor at a desired nickel concentration in order to obtain a content of between 0.5 and 15 on the final catalyst % by weight of nickel element relative to the total weight of the final catalyst;
  • step b) at least one step of drying the catalyst precursor is carried out at the end of step a) at a temperature below 250 ° C;
  • step b) optionally, a heat treatment of the catalyst precursor obtained at the end of step b) is carried out at a temperature between 250 and 1000 ° C, in the presence or absence of water;
  • step b) the catalyst precursor resulting from step b), optionally step c), is reduced by contacting said catalyst precursor with a reducing gas at a temperature between 150 and 250 ° C;
  • step e) a step of bringing the catalyst precursor obtained at the end of step d) into contact with a solution comprising at least one nickel precursor;
  • step f) at least one step of drying the catalyst precursor is carried out at the end of step e) at a temperature below 250 ° C .; g) optionally, a heat treatment of the catalyst precursor obtained at the end of step f) is carried out at a temperature between 250 and 1000 ° C., in the presence or absence of water;
  • step h) the catalyst precursor resulting from step f), optionally step g), is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature between 150 and 250 ° C.
  • step a) the molar ratio between nickel and copper is between 0.5 and 5.
  • step d) and / or h) is (are) carried out at a temperature between 160 and 230 ° C.
  • step d) and / or h) is (are) carried out at a temperature between 170 and 220 ° C.
  • steps d) and / or h) is (are) carried out between 10 minutes and 110 minutes.
  • the preparation process further comprises a step of passivation of the catalyst precursor with a sulfur compound after step d) of reduction but before step e), and / or after step h) of reduction.
  • the passivation step (s) is (are) carried out at a temperature of between 20 and 350 ° C for 10 to 240 minutes.
  • said sulfur compound is chosen from thiophene, thiophane, dimethylsulfide, diethylsulfide, dipropylsulfide, propylmethylsulfide, di-thio-di-ethanol.
  • the copper precursor is chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or fluoride. copper.
  • the copper precursor is copper nitrate.
  • the reducing gas of step d) and / or h) is dihydrogen.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst precursor.
  • the nickel precursor supplied during step a) and / or e) is chosen from nickel nitrate, nickel carbonate or nickel hydroxide.
  • Another object according to the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds) molar ratio to be hydrogenated) between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0 , 5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained according to the preparation process according to the
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the reduction rate (TR) of a metal M contained in the catalyst is defined as being the percentage of said metal M reduced after the step of reducing said catalyst.
  • the degree of reduction of nickel (Ni) was measured by X-ray diffraction analysis (XRD or “X-ray diffraction” according to the English terminology). The description of the method for measuring the amount of reducible metal on oxide catalysts is explained later in the description (cf. examples section).
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the BET specific surface determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established using the BRUNAUER-EMMETT method. -TELLER described in "The Journal of American Society", 60, 309, (1938).
  • macropores we mean pores with an opening greater than 50 nm.
  • pores are meant pores with an opening between 2 nm and 50 nm, limits included.
  • micropores pores with an opening of less than 2 nm.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the wetting angle was taken equal to 140 ° by following the recommendations of the book “Engineering techniques, analysis and characterization treaty”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this mercury penetrates into the pores of the sample.
  • the macroporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm.
  • the mesoporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
  • the volume of the micropores is measured by nitrogen porosimetry.
  • the quantitative analysis of the microporosity is carried out using the "t" method (method of Lippens-De Boer, 1965) which corresponds to a transform of the starting adsorption isotherm as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications ”written by F. Rouquérol, J. Rouquérol and K. Sing, Academy Press, 1999.
  • the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion with a mercury porosimeter.
  • the macroporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion with a mercury porosimeter.
  • the process for preparing a catalyst for the selective hydrogenation of polyunsaturated hydrocarbon cuts comprising, preferably consisting of, a metallic active phase based on nickel, in an amount of 1 and 35% by weight in element nickel relative to the total weight of the catalyst, and copper-based, in an amount of 0.5 to 15% by weight of copper element relative to the total weight of the catalyst, and a support comprising at least one refractory oxide chosen from silica , alumina and silica-alumina, preferably comprises the following steps: a) a step is carried out of bringing the support into contact with at least one solution containing at least, preferably consisting of, a copper precursor and a nickel precursor at a desired nickel concentration in order to obtain a content on the final catalyst of between 0.5 and 15% by weight of nickel element relative to the total weight of the final catalyst;
  • step b) at least one step of drying the catalyst precursor is carried out at the end of step a) at a temperature below 250 ° C;
  • step b) optionally, a heat treatment of the catalyst precursor obtained at the end of step b) is carried out at a temperature between 250 and 1000 ° C, in the presence or absence of water;
  • step b) the catalyst precursor resulting from step b), optionally step c), is reduced by contacting said catalyst precursor with a reducing gas at a temperature between 150 and 250 ° C;
  • step e) a step of bringing the catalyst precursor obtained at the end of step d) into contact with a solution comprising at least, preferably consisting of, a nickel precursor;
  • step f) at least one step of drying the catalyst precursor is carried out at the end of step e) at a temperature below 250 ° C;
  • a heat treatment of the catalyst precursor obtained at the end of step f) is carried out at a temperature between 250 and 1000 ° C, in the presence or absence of water;
  • step f) the catalyst precursor resulting from step f), optionally step g), is reduced by bringing said catalyst precursor into contact with a reducing gas at a temperature between 150 and 250 ° C;
  • a step i) of passivation with a sulfur compound is carried out after the reducing treatment step h).
  • Steps a) to i) of said preparation process are described in detail below. Step a) Bringing a nickel precursor and a copper precursor into contact with the support
  • step a The deposition of nickel and copper on said support, in accordance with the implementation of step a), can be carried out by impregnation, dry or in excess, or alternatively by deposition - precipitation, according to well known methods of 'Man skilled in the art.
  • Said step a) is preferably carried out by impregnation of the support consisting for example in bringing said support into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, comprising, preferably consisting of, at least one precursor of nickel and at least one precursor of at least partially copper.
  • aqueous or organic for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)
  • DMSO dimethylsulfoxide
  • the dissolved state or also by bringing said support into contact with at least one colloidal solution comprising, preferably consisting of, at least one precursor of nickel and of a precursor of copper in oxidized form (oxide nanoparticles, oxide (hydroxide) or hydroxide of nickel and copper) or in reduced form (metallic nanoparticles of nickel and copper in the reduced state).
  • the solution is aqueous.
  • the pH of this solution can be modified by the optional addition of an acid or a base.
  • said step a) is carried out by dry impregnation, which consists in bringing the catalyst support into contact with a solution, comprising, preferably consisting of, at least one nickel precursor and at least one copper precursor, in which the volume of the solution is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, sulfate, formate. , of complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, of tetrammine or hexammine complexes, or of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said support.
  • nickel precursor nickel nitrate, nickel hydroxide, nickel carbonate, nickel chloride or nickel hydroxycarbonate are used advantageously.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • a copper precursor in mineral or organic form is advantageously used.
  • the copper precursor can be chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or copper fluoride.
  • the copper precursor salt is copper nitrate.
  • the nickel precursor is supplied to step a) at a desired concentration to obtain on the final catalyst (ie obtained at the end of step h) reduction or step i) of passivation if the latter is carried out) a content of between 0.5 and 15% by weight of nickel element relative to the total weight of the final catalyst, preferably between 0.5 and 10% by weight, more preferably between 1 and 8% by weight weight, even more preferably between 1 and 5% by weight.
  • the quantities of the copper precursor (s) introduced into the solution according to step a) are chosen such that the total copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst final (ie obtained at the end of step h) of reduction or of step i) of passivation if the latter is carried out), preferably between 0.5 and 12% by weight, preferably between 0 , 75 and 10% by weight, and even more preferably between 1 and 9% by weight.
  • Step b) of drying the impregnated support is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, for a period typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the catalyst precursor obtained at the end of step b) can undergo an additional heat treatment step, before reduction step d), at a temperature between 250 and 1000 ° C and preferably between 250 and 750. ° C, for a period typically between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer durations of treatment are not excluded, but do not necessarily bring improvement.
  • heat treatment is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air.
  • the catalyst precursor comprises nickel in oxide form, that is to say in NiO form, and copper in oxide form. oxide, that is to say in CuO form.
  • a step of reducing treatment d) of the dried catalyst obtained at the end of step b) or of the catalyst obtained at the end of step c) is carried out in the presence of a reducing gas of so as to form on the catalyst support a nickel-copper alloy at least partially in metallic form.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (eg a mixture of hydrogen / nitrogen, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • said reducing treatment is carried out at a temperature between 150 ° C and 250 ° C, preferably between 160 and 230 ° C, and more preferably between 170 and 220 ° C. .
  • the duration of the reducing treatment is between 5 minutes and less than 5 hours, preferably between 10 minutes and 4 hours, and even more preferably between 10 minutes and 110 minutes.
  • step d) of reduction with a reducing gas makes it possible to form a nickel-copper alloy at least partially in metallic form.
  • the nickel-copper alloy has the formula Ni x Cu y with x ranging between 0.1 and 0.9 and including between 0.1 and 0.9.
  • the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst precursor , even more preferably between 0.1 and 5 L / hour / gram of catalyst precursor.
  • the catalyst precursor obtained at the end of reduction step d) can advantageously be passivated before carrying out the step of bringing said catalyst precursor into contact with a solution comprising, preferably consisting of, at least one precursor of nickel (step e).
  • the step of passivation of the catalyst precursor obtained at the end of step d) is carried out with a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during catalyst start-ups. new ("run away” according to the Anglo-Saxon terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the step of passivation with a sulfur compound is generally carried out at a temperature between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes.
  • the sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulfide or else an organic disulfide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C 2 H 4 -SSC 2 H 4 -OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
  • step e The deposition of nickel, in accordance with the implementation of step e), can be carried out by impregnation, dry or in excess, or alternatively by deposition - precipitation, according to methods well known to those skilled in the art.
  • Said step e) is preferably carried out by impregnating the catalyst precursor obtained at the end of step d) (or after the optional passivation step) consisting for example in bringing the catalyst precursor into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, comprising, preferably consisting of, at least one nickel precursor at least partially in the dissolved state, or alternatively by bringing the catalyst precursor into contact with at least one colloidal solution comprising, preferably consisting of, at least one precursor nickel, in oxidized form (nanoparticles of oxides, oxy (hydroxide) or nickel hydroxide) or in reduced form (metallic nanoparticles of nickel in the reduced state).
  • the solution is aqueous.
  • the pH of this solution can be modified by the possible addition of an acid or a base.
  • said step e) is carried out by dry impregnation, which consists in bringing the catalyst precursor into contact with at least one solution, containing, preferably consisting of, at least one precursor of nickel, the volume of which is solution is between 0.25 and 1.5 times the pore volume of the support of the catalyst precursor to be impregnated.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, chloride, sulfate, hydroxide, hydroxycarbonate, formate, acetate, oxalate , complexes formed with acetylacetonates, or else tetrammine or hexammine complexes, or any other inorganic derivative soluble in aqueous solution, which is brought into contact with said catalyst precursor.
  • Nickel nitrate, nickel carbonate, nickel chloride, nickel hydroxide and nickel hydroxycarbonate are advantageously used as nickel precursor.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • the nickel precursor is supplied to step e) at a desired concentration to obtain on the final catalyst (ie obtained at the end of step h) of reduction or of step i) of passivation if the latter is carried out) a content of between 0.5 and 34.5% by weight of nickel element relative to the total weight of the catalyst.
  • Step f) of drying the impregnated support is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, for a period typically between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen. g) Heat treatment of the dried catalyst (optional step)
  • the dried catalyst precursor can undergo an additional heat treatment step, before reduction step h), at a temperature between 250 and 1000 ° C and preferably between 250 and 750 ° C, for a period typically between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer durations of treatment are not excluded, but do not necessarily bring improvement.
  • the term “heat treatment” is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out.
  • the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air.
  • a reducing treatment step h) is carried out in the presence of a reducing gas so as to obtain a catalyst comprising nickel in less partially in metallic form.
  • This step is advantageously carried out in-situ, that is to say after loading the catalyst into a reactor for the selective hydrogenation of polyunsaturated compounds.
  • This treatment makes it possible to activate said catalyst and to form metal particles, in particular nickel in the zero valent state.
  • Carrying out in situ the reducing treatment of the catalyst eliminates the need for an additional step of passivation of the catalyst with an oxygen-containing compound or with C0 2 , which is necessarily the case when the catalyst is prepared by performing a reducing treatment.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (eg a mixture of hydrogen / nitrogen, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • said reducing treatment is carried out at a temperature between 150 ° C and 250 ° C, preferably between 160 and 230 ° C, and more preferably between 170 and 220 ° vs.
  • the duration of the reducing treatment is between 5 minutes and less than 5 hours, preferably between 10 minutes and 4 hours, and even more preferably between 10 minutes and 110 minutes.
  • the presence of the nickel-copper alloy at least partially in reduced form makes it possible to resort to operating conditions for reducing the active phase of nickel which are less severe than in the prior art and thus makes it possible to carry out the reduction step directly. within the reactor in which it is desired to carry out the selective hydrogenation of polyunsaturated fractions.
  • the presence of copper in the catalyst makes it possible to maintain good activity of the catalyst and a good lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur, in particular the C3 hydrocarbon cuts from steam cracking. and / or catalytic cracking.
  • the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which therefore avoids irreversibly poisoning the most virulent active sites of nickel which exist on the new catalyst.
  • the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst precursor , even more preferably between 0.1 and 5 L / hour / gram of catalyst precursor.
  • the catalyst prepared according to the process according to the invention can advantageously undergo a passivation step with a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during the start-ups of new catalysts ("run-away" according to Anglo-Saxon terminology).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the step of passivation with a sulfur compound is generally carried out at a temperature between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes.
  • the sulfur compound is for example chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulfide or else an organic disulfide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C 2 H 4 -SSC 2 H 4 -OH (often called DEODS).
  • Content sulfur is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
  • the catalyst that can be obtained by the preparation process according to the invention comprises an active phase comprising nickel and copper, part of the nickel and copper of which is in the form of a nickel-copper alloy, corresponding to advantageously of the formula Ni x Cu y with x ranging between 0.1 and 0.9 and including between 0.1 and 0.9, and a support in the form of a refractory oxide chosen from silica, alumina, silica-alumina.
  • the copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst, preferably between 0.5 and 12% by weight, preferably between 0.75 and 10% by weight , and even more preferably between 1 and 9% by weight.
  • the total nickel content in the catalyst is between 1 and 35% by weight of nickel element relative to the total weight of the catalyst, preferably between 2 and 30% by weight, more preferably between 3 and 27% by weight, and even more preferably between 4 and 18% by weight.
  • the nickel content included in the copper-nickel alloy formed by the preparation process according to the invention is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst, preferably between 1 and 12 % by weight, and more preferably between 1 and 10% by weight.
  • the porous support is chosen from the group consisting of silica, alumina and silica-alumina. Even more preferably, the support is alumina. Alumina can be present in all possible crystallographic forms: alpha, delta, theta, chi, rho, eta, kappa, gamma, etc., taken alone or as a mixture. Preferably, the support is chosen from alpha, delta, theta and gamma alumina.
  • the specific surface of the porous support is generally greater than 5 m 2 / g, preferably between 30 and 400 m 2 / g, preferably between 50 and 350 m 2 / g.
  • the total pore volume of the support is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of beads (generally having a diameter of between 1 and 8 mm), of extrudates, of tablets, of hollow cylinders. Preferably, it consists of extrudates with a diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
  • the term “average diameter” of the extrudates is understood to mean the average diameter of the circle circumscribing the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobal or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
  • the specific surface of the catalyst is generally greater than 5 m 2 / g, preferably between 30 and 400 m 2 / g, preferably between 50 and 350 m 2 / g.
  • the total pore volume of the catalyst is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • the catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 mL / g, and even more preferably less than or equal to or equal to 0.3 mL / g.
  • the mesoporous volume of the catalyst is generally at least 0.10 ml / g, preferably at least 0.20 ml / g, preferably between 0.25 ml / g and 0.80 ml / g, more preferably between 0.30 and 0.65 mL / g.
  • the mesoporous median diameter may be between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
  • the catalyst advantageously has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
  • the catalyst has a low microporosity, very preferably it does not have any microporosity.
  • a subject of the present invention is also a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenics, contained in a charge of 'hydrocarbons having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / molar ratio (polyunsaturated compounds to be hydrogenated) between 0.1 and 10 and at an hourly volume speed of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by
  • Monounsaturated organic compounds such as ethylene and propylene, are the source of the manufacturing of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It allows the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as feed, the selective hydrogenation also makes it possible to selectively hydrogenate the alkenylaromatics into aromatics while avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point of 300 ° C or less and contains at least 2 carbon atoms per molecule and comprises at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
  • the feed is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5 + cut.
  • the C2 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene relative to the total weight of said cut, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane.
  • C2 steam cracking cuts between 0.1 and 1% by weight of C3 compounds can also be present.
  • the steam cracking C3 cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene relative to the total weight of said cut , of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane.
  • C3 cuts between 0.1 and 2% by weight of C2 compounds and C4 compounds can also be present.
  • a C2 - C3 cut can also be advantageously used for carrying out the selective hydrogenation process according to the invention. It has, for example, the following composition: of the order of 0.1 to 5% by weight of acetylene relative to the total weight of said cut, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight of ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This charge can also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following average composition by mass: 1% by weight of butane relative to the total weight of said cut, 46.5 % by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne.
  • 1% by weight of butane relative to the total weight of said cut 46.5 % by weight of butene, 51% by weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne.
  • C3 compounds and of C5 compounds can also be present.
  • the C5 steam cracking cut advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes relative to the total weight of said cut, 45% by weight of pentenes , 34% by weight of pentadienes.
  • the gasoline of steam cracking or gasoline of pyrolysis corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300 ° C, of preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrene compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.) ).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains 0 to 1000 ppm by weight of sulfur, preferably 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feed treated in accordance with the selective hydrogenation process according to the invention is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said feed to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the compounds diolefins are partially hydrogenated to mono-olefins and the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds avoiding hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the feed of polyunsaturated hydrocarbons and of hydrogen in at least one fixed bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feed can advantageously be diluted by one or more re-injections of the effluent, coming from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor. reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor. .
  • the hydrogen flow can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5 + cuts from steam cracking can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the carbonated for cuts C2 and C2-C3.
  • a liquid phase reaction lowers the energy cost and increases the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed VVH (defined such as the ratio of the volume flow rate of feed to the volume of the catalyst) of between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • VVH defined such as the ratio of the volume flow rate of feed to the volume of the catalyst
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0
  • the temperature is between 0 and 200 ° C, preferably between 20 and 200 ° C and even more preferably between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1
  • the pressure is generally between 0.3 and 8.0 MPa, preferably between 1, 0 and 7.0 MPa and even more preferably between 1, 5 and 4, 0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam cracking gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
  • the feed is a steam cracking gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam-cracked gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
  • the feed is a steam-cracked gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio ( hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the speed hourly volume (VVH) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa .
  • the support is an alumina A having a specific surface area of 80 m 2 / g, a pore volume of 0.7 mL / g (cm 3 / g) and a median diameter 12 nm mesoporous.
  • Example 1 Preparation of an aqueous solution of Ni precursors
  • solution S The aqueous solution of Ni precursors used for the preparation of catalysts A to E is prepared by dissolving 43.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of water distilled. Solution S is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 2 Catalyst A - 15% by weight of Ni (comparative)
  • Solution S prepared in Example 1 is dry impregnated with 10 g of alumina A.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst thus prepared contains 15% by weight of the element nickel relative to the total weight of the catalyst supported on alumina.
  • the catalyst precursor is then reduced under the conditions as described in Example 8 below.
  • Example 3 Catalyst B - 15% by weight of Ni + Cu in co-impregnation with a ratio
  • the solid thus obtained is then dried in an oven overnight at 120 ° C.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 8 below.
  • Example 4 Catalyst C - Impregnation of Ni + Cu (5% by weight Ni and molar ratio
  • Ni / Cu 3
  • the Ni content is 5% by weight relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C. for 2 hours. This is then reduced under hydrogen pressure at 190 ° C. for 4 h then returned to air.
  • the catalyst precursor C1 is obtained.
  • the solution S is then dry impregnated on the precursor of catalyst C1 to obtain 15% by weight of Ni alone relative to the total weight of the final catalyst (which does not contribute to the alloy).
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 8 below.
  • Example 5 Catalyst D - Ni + Cu impregnation (2% by weight of Ni and molar ratio
  • Ni / Cu 3
  • the Ni content is 2% by weight relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours. This is then reduced under a stream of hydrogen at 190 ° C for 4 hours and then returned to air.
  • the catalyst precursor D1 is obtained.
  • the solution S is then dry impregnated on the catalyst precursor D1 to obtain 15% by weight of Ni alone relative to the total weight of the final catalyst (which does not contribute to the alloy).
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 8 below.
  • Example 6 Catalyst E - Impregnation of Ni + Cu (5% by weight of Ni and molar ratio
  • Ni / Cu 2) followed by an impregnation of 15% by weight of Ni (according to the invention)
  • the Ni content is 5% by weight relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C. for 2 hours. This is then reduced under a flow of hydrogen at 190 ° C. for 4 h then returned to air.
  • the catalyst precursor E1 is obtained.
  • the solution S is then dry impregnated on the catalyst precursor E1 to obtain 15% by weight of Ni alone relative to the total weight of the final catalyst (which does not contribute to the alloy).
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 8 below.
  • All the catalysts contain the target contents during the impregnation, i.e. 15% nickel element (characterized by Fluorescence X) relative to the total weight of the catalyst, and the% added copper (characterized by Fluorescence X) .
  • the amount of alloy obtained after the calcination then reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form.
  • the amount of metallic nickel obtained after the reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form. Between the reduction step and throughout the duration of the XRD characterization, the catalysts are never vented.
  • XRD X-ray diffraction
  • the reduction rate was calculated by calculating the area of the Ni 0 line located around 52 ° 2Q, on all the diffractograms of each sample of catalyst analyzed, then by subtracting the signal present from ambient temperature under the line. at 52 ° and which is due to alumina.
  • Table 1 collates the reduction rates or even the metallic nickel content Ni ° (expressed in% by weight relative to the total weight of Ni) for all the catalysts A to E characterized by DRX after a reduction step at 190 ° C for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst A (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C for 15 hours under a flow of hydrogen) . At room temperature on all the catalysts, after calcination, containing copper and nickel, we detect alumina in delta and theta form, and large lines of NiO and CuO.
  • the area of the Ni 0 line located at around 52 ° 2Q is measured, on all the diffractograms, by subtracting the signal present from ambient temperature under the line at 52 ° and which is due to the alumina. It is thus possible to determine the relative percentage of Ni 0 crystallized after reduction.
  • Table 1 summarizes the levels of reducibility or even the Ni ° content for all the catalysts characterized by DRX after reduction at 190 ° C for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst A (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C for 15 hours under a flow of hydrogen) .
  • the degree of nickel reducibility is 0% after exactly the same reduction treatment in hydrogen as for catalysts B to E.
  • the pre-impregnation of nickel (5% by weight of Ni) and of copper with a Ni / Cu ratio of 2 makes it possible to obtain a reduced Ni ° of the order of 70% in the end on the catalyst.
  • the pre-impregnation of less NiCu alloy with a nickel content composing the alloy of 2% by weight and copper with a Ni / Cu ratio of 3 makes it possible to obtain Ni ° reduced in the order of 90% at final on the catalyst.
  • the pre-impregnation of nickel (5% by weight of Ni) and of copper with a Ni / Cu ratio of 3 makes it possible to obtain 100% of Ni ° reduced from 170 ° C. in the end on the catalyst.
  • Example 8 Catalytic test: performance in selective hydrogenation of a mixture containing styrene and isoprene (A Hy m)
  • Catalysts A to E described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the feed to be selectively hydrogenated is as follows: 8% wt styrene (supplier Sigma Aldrich®, purity 99%), 8% wt isoprene (supplier Sigma Aldrich®, purity 99%), 84% wt n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis essence.
  • the selective hydrogenation reaction is carried out in a 500 mL autoclave made of stainless steel, fitted with mechanical stirring with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
  • n-heptane supplier VWR®, purity> 99% chromanorm HPLC
  • a quantity of 3 mL of catalyst are added in an autoclave.
  • the autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen.
  • the catalyst is first reduced in situ, at 190 ° C for 90 minutes under hydrogen pressure (temperature rise ramp of 1 ° C / min) for catalysts A to E (which corresponds here to step h) of the preparation process according to the invention according to one embodiment). Then the autoclave is brought to the test temperature equal to 30 ° C.
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane.
  • the consumption of hydrogen is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • catalytic activities measured for catalysts A to E are reported in Table 2 below. They are related to the catalytic activity (A H YDI) measured for catalyst A prepared under conventional reduction conditions (at a temperature of 400 ° C. for 15 hours under a flow of hydrogen). Table 2
EP20700054.8A 2019-01-15 2020-01-08 Verfahren zur herstellung eines selektiven hydrierungskatalysators mit einem schritt zur herstellung einer ni-cu-legierung in der vorimprägnierung Pending EP3911439A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900335A FR3091657B1 (fr) 2019-01-15 2019-01-15 Procédé de préparation d’un catalyseur d’hydrogénation sélective comprenant une étape de formation d’un alliage de NiCu en pré-imprégnation
PCT/EP2020/050329 WO2020148131A1 (fr) 2019-01-15 2020-01-08 Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation

Publications (1)

Publication Number Publication Date
EP3911439A1 true EP3911439A1 (de) 2021-11-24

Family

ID=66867378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20700054.8A Pending EP3911439A1 (de) 2019-01-15 2020-01-08 Verfahren zur herstellung eines selektiven hydrierungskatalysators mit einem schritt zur herstellung einer ni-cu-legierung in der vorimprägnierung

Country Status (6)

Country Link
US (1) US11779915B2 (de)
EP (1) EP3911439A1 (de)
JP (1) JP7449945B2 (de)
CN (1) CN113646087B (de)
FR (1) FR3091657B1 (de)
WO (1) WO2020148131A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139094A2 (en) * 2018-12-27 2020-07-02 Qatar Foundation For Education, Science And Community Development Catalysts for converting carbon dioxide and methane to synthesis gas
CN114436738A (zh) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 一种高纯度甲基环戊烯的制备方法
CN117417226B (zh) * 2023-10-10 2024-05-03 天水师范学院 一种用于碳三碳四不饱和烃类全加氢的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208405A (en) 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
US5660714A (en) * 1995-07-14 1997-08-26 Exxon Research And Engineering Company Hydroconversion process utilizing a supported Ni-Cu hydroconversion catalyst
ATE237569T1 (de) * 1998-09-03 2003-05-15 Dow Global Technologies Inc Autothermisches verfahren zur herstellung von olefinen
US20040030207A1 (en) * 2002-08-08 2004-02-12 Catalytic Distillation Technologies Selective hydrogenation of acetylenes
US7408089B2 (en) * 2004-03-19 2008-08-05 Catalytic Distillation Technologies Ni catalyst, process for making catalysts and selective hydrogenation process
US20060084830A1 (en) * 2004-10-20 2006-04-20 Catalytic Distillation Technologies Selective hydrogenation process and catalyst
FR2932701B1 (fr) * 2008-06-20 2011-06-17 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
FR2949077B1 (fr) 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte a base de ni et d'un metal du groupe ib pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR2949078B1 (fr) 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte ni/sn pour l'hydrogenation selective d'hydrocarbures polyinsatures
CN102464543B (zh) * 2010-11-12 2014-12-17 中国石油化工股份有限公司 炔烃选择加氢催化剂的应用
FR2984761B1 (fr) * 2011-12-21 2014-12-26 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii prepare au moyen d'au moins un additif organique et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
FR2990882B1 (fr) * 2012-05-24 2015-05-15 IFP Energies Nouvelles Procede de preparation d'un catalyseur a base d'un metal du groupe viii et contenant du silicium et procede d'hydrogenation selective mettant en oeuvre ledit catalyseur
FR3011844A1 (fr) 2013-10-16 2015-04-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
FR3022163B1 (fr) * 2014-06-13 2021-05-07 Ifp Energies Now Catalyseur a base de nickel mesoporeux et macroporeux ayant un diametre median macroporeux superieur a 200 nm et son utilisation en hydrogenation
FR3022160B1 (fr) * 2014-06-13 2021-05-07 Ifp Energies Now Catalyseur a phase active de nickel comalaxee mesoporeux et macroporeux ayant un diametre median macroporeux compris entre 50 et 300 nm et son utilisation en hydrogenation
FR3025728B1 (fr) * 2014-09-11 2018-04-20 IFP Energies Nouvelles Catalyseur mesoporeux a base de nickel et son utilisation en hydrogenation.
CN106179351B (zh) * 2016-06-27 2018-12-11 浙江大学 一种Cu-Ni/Al2O3催化剂的制备方法及其产品和应用

Also Published As

Publication number Publication date
CN113646087A (zh) 2021-11-12
US20220062886A1 (en) 2022-03-03
FR3091657A1 (fr) 2020-07-17
FR3091657B1 (fr) 2023-04-14
CN113646087B (zh) 2023-08-22
JP2022517360A (ja) 2022-03-08
WO2020148131A1 (fr) 2020-07-23
US11779915B2 (en) 2023-10-10
JP7449945B2 (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
EP3154684B1 (de) Mesoporöser und makroporöser nickel-haltiger katalysator mit mittelerem makroporendurchmesser grösser als 20 nm und dessen verwendung hydrierung zur hydrierung von kohlenwasserstoffen
EP3740309B1 (de) Verfahren zur herstellung eines spezifischen katalysators zur selektiven hydrierung und hydrierung aromatischer verbindungen durch kneten
WO2019201617A1 (fr) Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre
EP3911439A1 (de) Verfahren zur herstellung eines selektiven hydrierungskatalysators mit einem schritt zur herstellung einer ni-cu-legierung in der vorimprägnierung
WO2019201618A1 (fr) Procede de preparation d'un catalyseur bimetallique a base de nickel et de cuivre pour l'hydrogenation de composes aromatiques
WO2020148132A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
WO2021018601A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
EP4003591A1 (de) Katalysator mit einer aktiven nickelphase in form von kleinen teilchen und nickel-kupfer-legierung
WO2021018604A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute
WO2018114399A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
FR3080300A1 (fr) Procede de preparation d'un catalyseur bimetallique a base de nickel et de platine ou de palladium
WO2020148134A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
WO2021122061A1 (fr) Catalyseur d'hydrogenation selective obtenu a partir de sels fondus et d'un additif organique
WO2024017703A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
EP3911440A1 (de) Verfahren zur herstellung eines katalysators für die hydrierung von aromaten mit einem schritt der bildung einer ni-cu-legierung in der vorimprägnierung
WO2021239496A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2022002675A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
EP4157521A1 (de) Verfahren zur herstellung eines katalysators mit einer in einer schale verteilten aktiven nickelphase
WO2021239491A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
FR3110863A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus et un alliage nickel cuivre
FR3110865A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
WO2019011566A1 (fr) Procede d'hydrogenation selective mettant en oeuvre un catalyseur obtenu par comalaxage comprenant un support specifique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210816

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)