EP3910101B1 - Verfahren zur wartung einer kettenwirkmaschine - Google Patents

Verfahren zur wartung einer kettenwirkmaschine Download PDF

Info

Publication number
EP3910101B1
EP3910101B1 EP20174572.6A EP20174572A EP3910101B1 EP 3910101 B1 EP3910101 B1 EP 3910101B1 EP 20174572 A EP20174572 A EP 20174572A EP 3910101 B1 EP3910101 B1 EP 3910101B1
Authority
EP
European Patent Office
Prior art keywords
determined
bending
bending transducer
characteristic variable
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20174572.6A
Other languages
English (en)
French (fr)
Other versions
EP3910101A1 (de
Inventor
Markus Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karl Mayer Stoll R&D GmbH
Original Assignee
Karl Mayer Stoll R&D GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karl Mayer Stoll R&D GmbH filed Critical Karl Mayer Stoll R&D GmbH
Priority to EP20174572.6A priority Critical patent/EP3910101B1/de
Priority to CN202110345326.8A priority patent/CN113668136B/zh
Priority to TW110114989A priority patent/TWI811669B/zh
Priority to KR1020210061514A priority patent/KR102582937B1/ko
Publication of EP3910101A1 publication Critical patent/EP3910101A1/de
Application granted granted Critical
Publication of EP3910101B1 publication Critical patent/EP3910101B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B27/00Details of, or auxiliary devices incorporated in, warp knitting machines, restricted to machines of this kind
    • D04B27/10Devices for supplying, feeding, or guiding threads to needles
    • D04B27/24Thread guide bar assemblies
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/10Indicating, warning, or safety devices, e.g. stop motions
    • D04B35/18Indicating, warning, or safety devices, e.g. stop motions responsive to breakage, misplacement, or malfunctioning of knitting instruments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B27/00Details of, or auxiliary devices incorporated in, warp knitting machines, restricted to machines of this kind
    • D04B27/10Devices for supplying, feeding, or guiding threads to needles
    • D04B27/24Thread guide bar assemblies
    • D04B27/32Thread guide bar assemblies with independently-movable thread guides controlled by Jacquard mechanisms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B37/00Auxiliary apparatus or devices for use with knitting machines
    • D04B37/06Auxiliary apparatus or devices for use with knitting machines with warp knitting machines

Definitions

  • the present invention relates to a method for maintaining a warp knitting machine with at least one bar that has piezoelectric bending transducers to which knitting tools are attached.
  • DE 196 13 385 A1 describes a warp knitting machine with a guide bar which has piezoelectric bending transducers on which knitting tools are attached.
  • a bus line is provided, via which the bending transducers can be individually addressed.
  • EP 1 577 527 A1 describes a method for determining defective actuators of an internal combustion engine, in which a mean value of a measured variable of all actuators of a type present on the cylinders of the internal combustion engine is determined. In addition, upper and lower limit values are formed. If an individual value of the measured variable exceeds one of the two limit values, then the method recognizes this actuator as faulty or defective.
  • the object of the invention is to enable a high productivity of a warp knitting machine.
  • This object is achieved with a method of the type mentioned at the outset in that at least one electrical parameter of the bending transducers is repeatedly determined in the installed state and compared with at least one predetermined limit value.
  • the invention is described below using a bar in which the knitting tools are in the form of guide needles.
  • a bar can also be referred to as a jacquard bar.
  • jacquard bars makes it possible to create patterned warp knits.
  • the guide needles are pivoted against the movement of the bar, for example, so that the corresponding guide needles do not form a stitch. Other movements are possible.
  • the bending transducers can remain installed in the bar when the parameter is determined, the effort involved in determining the parameter is relatively small. If you determine the parameter repeatedly, you can determine whether and, if so, how a bending transducer changes. If the change exceeds a critical level, the bending transducer can be replaced accordingly. Because you can see how the size changes, you can plan this replacement so that you can make the replacement when the warp knitting machine is not in use anyway.
  • nominal voltage is applied to the bending transducer in the neutral position and the parameter is determined in the process. If nominal voltage is applied to the bending transducer, electrical quantities that are present in the warp knitting machine in any case can be used. It is therefore not necessary to carry out a small-signal measurement with a low voltage, for example 12 V, but can work with a higher voltage, for example 200 V, so that the parameter corresponds to the operating conditions. The parameters can thus be determined under real conditions.
  • the parameter is preferably determined from a current curve at the bending transducer, which results after the application of a voltage square-wave signal.
  • a voltage square-wave signal can be generated relatively easily. The evaluation of the current curve is possible with little effort.
  • the bending transducer can be modeled as a series circuit made up of an ideal capacitor and an ohmic resistor. If you now compare the current flow in such an ideal circuit with the real current flow, you can you can determine to what extent the bending transducer can still fulfill its intended task.
  • Parameters that have been determined at different points in time are preferably stored, with the stored parameters being compared with a model and a service life estimate and/or a maintenance suggestion being determined from the comparison.
  • the quality of the respective bending transducer can be deduced from the time course of the parameter, which results from the stored parameters.
  • the parameter is preferably determined when the warp knitting machine is at a standstill or when it is started. If, for example, the parameter is determined each time the warp knitting machine is started, the determination can be automated so that the time profile of the parameter can be reliably recorded in repeated measurements.
  • the at least one parameter of a group of piezoelectric bending transducers is determined first and the parameter of an individual piezoelectric bending transducer is only determined if the parameter of the group shows a deviation from a predetermined limit value that exceeds a predetermined level.
  • This is particularly advantageous when determining the parameter requires a certain amount of time. This is the case, for example, when determining a leakage current.
  • intervention is only required if, for example, the sum of the leakage currents exceeds a predetermined level. In this case, one must assume that at least one of the bending transducers is defective.
  • At least one of the following variables of the bending transducer is preferably determined: capacitance, series resistance, ceramic leakage current, insulation leakage current, switching time, bounce time and/or bounce amplitude. As a rule, it will be sufficient to determine one or two of these quantities. In many cases, however, it is also possible to determine several variables with little effort. From these variables, one can then reliably infer the state of the bending transducer.
  • the parameters of several bending transducers of the warp knitting machine of the same type are preferably compared with one another.
  • the bending transducers of the warp knitting machine of the same type should also behave in the same way. If a bending transducer deviates from the behavior of the other bending transducers, which can be determined by determining the respective parameter, then it is a sign that the bending transducer in question is defective or is at least heading towards a defect.
  • a bar is preferably used in which there are several segments with bending transducers, and the parameter is determined in parallel for the segments. This saves time. All segments can be checked simultaneously, so to speak. This also keeps the control effort low. All segments can be driven with the same voltage pulses, for example.
  • the characteristic variable of the bending transducers it is preferable for the characteristic variable of the bending transducers to be determined in at least one segment in succession.
  • a segment can have 16 or 32 bending transducers, for example. These bending transducers are then checked individually.
  • At least one bending transducer is preferably deflected in two opposite directions. So you can check the two directions of movement of the bending transducer.
  • a time is preferably determined which the bending transducer requires in order to move the knitting tool from the neutral position into a working position.
  • the knitting tool in particular a guide needle, can be in the neutral position at the start of the check, for example, and can reach a stop after being subjected to the above-mentioned voltage pulse. Both the beginning of a movement and the reaching of the stop can be detected, for example, by observing the course of the current.
  • the knitting tool To operate the warp knitting machine, the knitting tool must be able to move from the neutral position to the working position within a specified time. If the bending transducer is no longer able to move the knitting tool in the specified manner in the specified time, then it must be replaced. As a rule, it becomes apparent that a bending transducer is slowing down, so that measures can be taken to replace the corresponding bending transducer or a corresponding segment even before functional inoperability is reached.
  • FIG. 1 1 schematically shows a bar 1 in the form of a jacquard guide bar with a body 2 which can be moved back and forth in the direction of a double arrow 3 .
  • a segment 4 with several knitting tools 5 in the form of guide needles is arranged on the body 2 .
  • Each knitting tool 5 is connected via a piezoelectric bending transducer 6 from 1 shown neutral position against a left stop 7 or against a right stop 8 movable.
  • a left stop 7 of a knitting tool 5 can be a right stop 8 of an adjacent knitting tool 5 .
  • the bar 1 is moved by one needle division to the right, but at the same time the bending converter 6 moves the knitting tool 5 to the left stop 7, then, if the knitting tool 5 is designed as a guide needle, the position of a thread guide eyelet 9 of the guide needle has changed Not changed with respect to a knitting needle, not shown in detail, so that a thread guided by the guide needle in question does not form a stitch.
  • the mode of operation of such a jacquard guide bar is known per se and is therefore not explained further.
  • the segment is shown with four knitting tools 5 and correspondingly four bending transducers 6 .
  • a segment 4 usually has 16 or 32 knitting tools 5 with corresponding bending transducers 6 .
  • the bending transducers 6 When the bending transducers 6 are actuated, they are bent in order to displace the knitting tools 5. This has a negative effect on the service life.
  • the bending transducers are ceramic elements. Repeated deformation can cause cracks or other damage in the ceramic elements. Such damage can result in the force that the bending transducer 6 can generate decreasing. This can mean, for example, that the knitting tools 5 can no longer be moved at the necessary speed.
  • a lame needle can lead to defects in the knitted fabric or collisions of knitting tools. A knitted fabric with defects is usually unusable and must be discarded. When knitting tools collide, not only does damage occur to the knitting tools, but the warp knitting machine must also be shut down in order to repair it.
  • At least one electrical parameter of the bending transducers 6 is repeatedly determined, this determination being able to take place when the bending transducers 6 are installed, so that no complex conversion or expansion measures are required for the determination.
  • the bending transducers 6 are connected to a machine control.
  • the machine control can be used to determine the parameter or parameters.
  • the parameter is determined when the warp knitting machine is at a standstill or when it is started. If the parameter is determined when the warp knitting machine is started, there is a small non-critical delay in terms of time.
  • the parameter is determined when the bending transducers 6 are in a state in which the knitting tools 5 are in the neutral position. In this state, the bending transducer 6 is free from external mechanical stresses.
  • the bending transducer 6 is subjected to nominal voltage in order to determine the parameter. It is therefore possible to use the same voltage that is also used to control the bending transducer 6 during operation.
  • a bending transducer can be represented electrically by a series connection of a capacitor and an ohmic resistor.
  • the parameter can therefore be determined, for example, by recharging a capacitor, which has a known charge, onto the bender 6 and checking whether a voltage is then set on the tested bender that would be set with a voltage divider that having previously charged capacitor and the bending transducer.
  • the parameter is determined not just once, but rather repeatedly and the parameters determined at different points in time are stored.
  • a progression can be determined from the sequence of parameters determined in this way, which have been saved, and an estimate of the service life can be made on the basis of the progression, or a maintenance suggestion can be made.
  • a switching time, a bounce time and/or a bounce amplitude can also be determined.
  • the switching time is a period of time that elapses between the moment a voltage is applied to the bending transducer and the start of a movement.
  • the bounce time is the time at which the knitting tool 5 hits one of the stops 7, 8.
  • the bounce amplitude is the amplitude that results from the springing back of the knitting tool 5 from one of the stops 7 , 8 .
  • the horizontal axis represents the time in milliseconds.
  • the path of the thread guide eyelet 9 of the knitting tool 5 on the one hand and the current consumed by the bending transducer 6 on the other hand are indicated in milliamperes at the top.
  • the current consumed by the bending transducer which is shown in a curve 10, is determined.
  • An ideal current profile is determined, which is represented by a curve 11 and can be represented as the current profile of an ideal component, namely a series connection of ohmic resistance and capacitance.
  • the curve 11 can also be determined from a curve fitting. The electrical characteristics, capacitance, series resistance and leakage current can already be calculated from the parameters of the curve fitting.
  • a curve 15 is drawn in, which represents the path of the thread guide eyelet 9 of the knitting tool 5, i.e. the deflection of the bending transducer 6.
  • a local minimum 16 and a local maximum 17 result here.
  • the difference is 14 ( Curve 12) smallest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)
  • Knitting Of Fabric (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Wartung einer Kettenwirkmaschine mit mindestens einer Barre, die piezo-elektrische Biegewandler aufweist, an denen Wirkwerkzeuge befestigt sind.
  • Ein derartiges Verfahren ist aus DE 44 18 714 C1 bekannt. Defekte Biegewandler können bei der Wartung ausgetauscht werden.
  • Durch Alterung und Defekte der piezo-elektrischen Biegewandler kann es bei der Produktion von Wirkwaren im Laufe der Zeit zu Legungsfehlern oder sogar zu Kollisionen kommen, die zu aufwändigen Reparaturen führen können. In diesem Fall muss die Kettenwirkmaschine außerplanmäßig stillgesetzt werden und die entsprechenden Biegewandler müssen ersetzt werden. Dies führt zu ungewollten Produktionsausfällen.
  • DE 196 13 385 A1 beschreibt eine Kettenwirkmaschine mit einer Legebarre, die piezoelektrische Biegewandler aufweist, an denen Wirkwerkzeuge befestigt sind. Um die piezoelektrischen Biegewandler anzusteuern, ist eine Busleitung vorgesehen, über die die Biegewandler einzeln adressiert werden können.
  • Eine weitere Kettenwirkmaschine mit Jacquard-Steuerung ist aus EP 0 583 631 A1 bekannt.
  • EP 1 577 527 A1 beschreibt ein Verfahren zur Bestimmung von defekten Aktoren einer Brennkraftmaschine, bei der ein Mittelwert einer Messgröße aller an den Zylindern der Brennkraftmaschine vorhandenen Aktoren einer Art bestimmt wird. Außerdem werden obere und untere Grenzwerte gebildet. Wenn ein Einzelwert der Messgröße einen der beiden Grenzwerte überschreitet, dann erkennt das Verfahren diesen Aktor als fehlerhaft oder defekt.
  • Der Erfindung liegt die Aufgabe zugrunde, eine hohe Produktivität einer Kettenwirkmaschine zu ermöglichen.
  • Diese Aufgabe wird mit einem Verfahren der eingangs genannten Art dadurch gelöst, dass man zumindest eine elektrische Kenngröße der Biegewandler im eingebauten Zustand wiederholt ermittelt und mit mindestens einem vorgegebenen Grenzwert vergleicht.
  • Die Erfindung wird im Folgenden anhand einer Barre beschrieben, bei der die Wirkwerkzeuge die Form von Legenadeln haben. Eine derartige Barre kann auch als Jacquard-Barre bezeichnet werden. Sie ist jedoch auch bei anderen Wirkwerkzeugen anwendbar. Die Verwendung von Jacquard-Barren ermöglicht es, gemusterte Kettenwirkwaren herzustellen. Um die Muster zu erzeugen, werden die Legenadeln beispielsweise entgegen der Bewegung der Barre verschwenkt, so dass die entsprechenden Legenadeln keine Masche bilden. Andere Bewegungen sind möglich.
  • Da die Biegewandler in der Barre eingebaut bleiben können, wenn man die Kenngröße ermittelt, ist der Aufwand zum Ermitteln der Kenngröße relativ gering. Wenn man die Kenngröße wiederholt ermittelt, kann man feststellen, ob und ggfs. wie sich ein Biegewandler verändert. Wenn die Veränderung ein kritisches Maß überschreitet, kann man dementsprechend den Biegewandler austauschen. Da man erkennen kann, wie sich die Größe verändert, kann man diesen Austausch planen, so dass man den Austausch dann vornehmen kann, wenn die Kettenwirkmaschine ohnehin nicht in Betrieb ist.
  • Vorzugsweise beaufschlagt man den Biegewandler in Neutralstellung mit Nennspannung und ermittelt dabei die Kenngröße. Wenn man den Biegewandler mit Nennspannung beaufschlagt, kann man elektrische Größen verwenden, die in der Kettenwirkmaschine ohnehin vorhanden sind. Man muss also keine Kleinsignal-Messung mit einer niedrigen Spannung, beispielsweise 12 V, vornehmen, sondern kann mit einer höheren Spannung, beispielsweise 200 V, arbeiten, so dass die Kenngröße den Bedingungen im Betrieb entspricht. Die Kenngrößen können damit unter realen Bedingungen ermittelt werden.
  • Vorzugsweise ermittelt man die Kenngröße aus einem Stromverlauf am Biegewandler, der sich nach Beaufschlagung mit einem Spannungs-Rechtecksignal ergibt. Ein derartiges Rechtecksignal lässt sich relativ einfach erzeugen. Die Auswertung des Stromverlaufs ist mit einem geringen Aufwand möglich.
  • Hierbei ist bevorzugt, dass man eine Differenz aus dem Stromverlauf am Biegewandler und einem idealen Stromverlauf an einer Reihenschaltung aus einem Kondensator und einem Ohm'schen Widerstand bildet. Der Biegewandler lässt sich im Idealfall als eine Reihenschaltung aus einem idealen Kondensator und einem Ohm'schen Widerstand nachbilden. Wenn man nun den Stromverlauf an einer derartigen idealen Schaltung mit dem realen Stromverlauf vergleicht, kann man feststellen, inwieweit der Biegewandler noch seine bestimmungsgemäße Aufgabe erfüllen kann.
  • Vorzugsweise speichert man Kenngrößen, die zu verschiedenen Zeitpunkten ermittelt worden sind, wobei man die gespeicherten Kenngrößen mit einem Modell vergleicht und aus dem Vergleich eine Lebensdauerabschätzung und/oder einen Wartungsvorschlag ermittelt. Aus dem zeitlichen Verlauf der Kenngröße, der sich aus den gespeicherten Kenngrößen ergibt, lässt sich auf die Qualität des jeweiligen Biegewandlers schließen.
  • Vorzugsweise ermittelt man die Kenngröße im Stillstand oder beim Starten der Kettenwirkmaschine. Wenn man beispielsweise bei jedem Start der Kettenwirkmaschine die Kenngröße ermittelt, dann kann man die Ermittlung automatisieren, so dass man zuverlässig den zeitlichen Verlauf der Kenngröße in wiederholten Messungen erfassen kann.
  • Bevorzugterweise ermittelt man zuerst die mindestens eine Kenngröße einer Gruppe von piezo-elektrischen Biegewandlern und ermittelt nur dann die Kenngröße eines einzelnen piezo-elektrischen Biegewandlers, wenn sich in der Kenngröße der Gruppe eine Abweichung von einem vorbestimmten Grenzwert ergibt, die ein vorbestimmtes Maß überschreitet. Dies ist insbesondere dann von Vorteil, wenn die Ermittlung der Kenngröße eine gewisse Zeit benötigt. Dies ist beispielsweise bei der Ermittlung eines Leckstroms der Fall. Wenn man eine Gruppe von piezo-elektrischen Biegewandlern überprüft, dann ist ein Eingriff nur dann erforderlich, wenn beispielsweise die Summe der Leckströme ein vorbestimmtes Maß überschreitet. In diesem Fall muss man davon ausgehen, dass mindestens einer der Biegewandler defekt ist.
  • Vorzugsweise ermittelt man mindestens eine der folgenden Größen des Biegewandlers: Kapazität, Reihenwiderstand, Keramik-Leckstrom, Isolations-Leckstrom, Schaltzeit, Prellzeit und/oder Prellamplitude. In der Regel wird es ausreichen, eine oder zwei dieser Größen zu ermitteln. In vielen Fällen lässt sich aber mit einem geringen Aufwand auch eine Ermittlung von mehreren Größen vornehmen. Aus diesen Größen kann man dann zuverlässig auf den Zustand des Biegewandlers schließen.
  • Vorzugsweise vergleicht man die Kenngrößen von mehreren gleichartigen Biegewandlern der Kettenwirkmaschine miteinander. Die gleichartigen Biegewandler der Kettenwirkmaschine sollten sich an und für sich auch gleichartig verhalten. Wenn ein Biegewandler von dem Verhalten der anderen Biegewandler abweicht, was man durch Ermittlung der jeweiligen Kenngröße feststellen kann, dann ist es ein Zeichen dafür, dass der betreffende Biegewandler defekt ist oder zumindest auf einen Defekt zusteuert.
  • Vorzugsweise verwendet man eine Barre, bei der mehrere Segmente mit Biegewandlern vorhanden sind und nimmt die Ermittlung der Kenngröße bei den Segmenten parallel vor. Dies spart Zeit. Alle Segmente können sozusagen gleichzeitig überprüft werden. Dies hält auch den Steuerungsaufwand gering. Alle Segmente können beispielsweise mit den gleichen Spannungsimpulsen angesteuert werden.
  • Hierbei ist bevorzugt, dass man die Ermittlung der Kenngröße der Biegewandler in mindestens einem Segment nacheinander vornimmt. Ein Segment kann beispielsweise 16 oder 32 Biegewandler aufweisen. Diese Biegewandler werden dann einzeln überprüft.
  • Vorzugsweise lenkt man mindestens einen Biegewandler in zwei entgegengesetzte Richtungen aus. Man kann also die beiden Bewegungsrichtungen des Biegewandlers überprüfen.
  • Bevorzugterweise ermittelt man eine Zeit, die der Biegewandler benötigt, um das Wirkwerkzeug aus der Neutralstellung in eine Arbeitsstellung zu bewegen. Das Wirkwerkzeug, insbesondere eine Legenadel, kann sich beispielsweise zu Beginn der Überprüfung in der Neutralstellung befinden und nach dem Beaufschlagen mit dem oben erwähnten Spannungsimpuls einen Anschlag erreichen. Sowohl den Beginn einer Bewegung als auch das Erreichen des Anschlags kann man beispielsweise durch Beobachten des Stromverlaufs erfassen. Für den Betrieb der Kettenwirkmaschine muss sich das Wirkwerkzeug innerhalb einer vorgegebenen Zeit von der Neutralstellung in die Arbeitsstellung bewegen können. Wenn der Biegewandler nicht mehr in der Lage ist, das Wirkwerkzeug in der vorgegebenen Zeit in entsprechender Weise zu bewegen, dann muss er ausgetauscht werden. In der Regel zeichnet sich bei einem Biegewandler ab, dass er langsamer wird, so dass man schon vor dem Erreichen einer Funktionsunfähigkeit Maßnahmen treffen kann, um den entsprechenden Biegewandler oder ein entsprechendes Segment auszutauschen.
  • Die Erfindung wird anhand eines bevorzugten Ausführungsbeispiels in Verbindung mit der Zeichnung beschrieben. Hierin zeigen:
  • Fig. 1
    eine stark schematisierte Darstellung einer Barre in Form einer Jacquard-Legebarre und
    Fig. 2
    verschiedene Kurven zur Ermittlung einer oder mehrerer Kenngrößen.
  • Fig. 1 zeigt schematisch eine Barre 1 in Form einer Jacquard-Legebarre mit einem Korpus 2, der in Richtung eines Doppelpfeils 3 hin und her bewegbar ist. An dem Korpus 2 ist ein Segment 4 mit mehreren Wirkwerkzeugen 5 in Form von Legenadeln angeordnet. Jedes Wirkwerkzeug 5 ist über einen piezo-elektrischen Biegewandler 6 aus der in Fig. 1 dargestellten Neutralposition gegen einen linken Anschlag 7 oder gegen einen rechten Anschlag 8 bewegbar. Ein linker Anschlag 7 eines Wirkwerkzeugs 5 kann ein rechter Anschlag 8 eines benachbarten Wirkwerkzeugs 5 sein.
  • Wenn im Betrieb die Barre 1 um eine Nadelteilung nach rechts bewegt wird, gleichzeitig aber der Biegewandler 6 das Wirkwerkzeug 5 an den linken Anschlag 7 bewegt, dann hat sich, wenn das Wirkwerkzeug 5 als Legenadel ausgebildet ist, die Position einer Fadenführeröse 9 der Legenadel in Bezug auf eine nicht näher dargestellte Wirknadel nicht verändert, so dass ein von der betreffenden Legenadel geführte Faden keine Masche bildet. Die Betriebsweise einer derartigen Jacquard-Legebarre an sich ist bekannt und wird daher nicht weiter erläutert.
  • Im vorliegenden Beispiel ist das Segment mit vier Wirkwerkzeugen 5 und entsprechend vier Biegewandlern 6 dargestellt. Üblicherweise weist ein Segment 4 aber 16 oder 32 Wirkwerkzeuge 5 mit entsprechenden Biegewandlern 6 auf.
  • Wenn die Biegewandler 6 betätigt werden, dann werden sie verbogen, um die Wirkwerkzeuge 5 zu verlagern. Dies wirkt sich negativ auf die Lebensdauer aus. Die Biegewandler sind in vielen Fällen keramische Elemente. Durch eine wiederholte Verformung können Risse oder andere Beschädigungen in den keramischen Elementen entstehen. Derartige Beschädigungen können dazu führen, dass die Kraft, die der Biegewandler 6 erzeugen kann, abnimmt. Dies kann beispielsweise dazu führen, dass die Wirkwerkzeuge 5 nicht mehr mit der notwendigen Geschwindigkeit bewegt werden kann. Im Fachjargon spricht man von einer "lahmen Nadel". Eine lahme Nadel kann zu Fehlern in der Wirkware oder zu Kollisionen von Wirkwerkzeugen führen. Eine Wirkware mit Fehlern ist in der Regel nicht brauchbar und muss ausgesondert werden. Bei der Kollision von Wirkwerkzeugen entstehen nicht nur Schäden an den Wirkwerkzeugen, sondern die Kettenwirkmaschine muss auch stillgesetzt werden, um sie zu reparieren. Auch dies führt zu Produktionsausfällen. Um derartige Vorkommnisse zu vermeiden, ermittelt man wiederholt mindestens eine elektrische Kenngröße der Biegewandler 6, wobei diese Ermittlung im eingebauten Zustand der Biegewandler 6 erfolgen kann, so dass für die Ermittlung keine aufwändigen Um- oder Ausbaumaßnahmen erforderlich sind.
  • Die Biegewandler 6 sind mit einer Maschinensteuerung verbunden. Die Maschinensteuerung kann verwendet werden, um die Kenngröße oder die Kenngrößen zu ermitteln.
  • Die Ermittlung der Kenngröße erfolgt im Stillstand der Kettenwirkmaschine oder beim Starten. Wenn man die Kenngröße beim Starten der Kettenwirkmaschine ermittelt, ergibt sich eine kleine zeitlich unkritische Verzögerung.
  • Die Ermittlung der Kenngröße erfolgt in einem Zustand der Biegewandler 6, in dem sich die Wirkwerkzeuge 5 in der Neutralstellung befindet. Der Biegewandler 6 ist in diesem Zustand frei von äußeren mechanischen Spannungen.
  • Der Biegewandler 6 wird zur Ermittlung der Kenngröße mit Nennspannung beaufschlagt. Man kann also die gleiche Spannung verwenden, die man auch im Betrieb zum Ansteuern des Biegewandlers 6 verwendet.
  • Zweckmäßigerweise geht man dabei so vor, dass man alle Segmente 4, die an der Barre 1 angeordnet sind, gleichzeitig beaufschlagt. Die Biegewandler 6 eines Segments 4 können dann nacheinander abgearbeitet werden, d.h. man ermittelt die Kenngröße eines jeden Biegewandlers 6 eines Segments 4 in aufeinanderfolgenden Schritten.
  • Ein Biegewandler lässt sich elektrisch durch eine Reihenschaltung aus einem Kondensator und einem Ohm'schen Widerstand darstellen. Man kann daher die Kenngröße beispielsweise so ermitteln, dass man einen Kondensator, der eine bekannte Ladung aufweist, auf den Biegewandler 6 umlädt und dabei überprüft, ob sich dann an dem überprüften Biegewandler eine Spannung einstellt, die sich bei einem Spannungsteiler einstellen würde, der den zuvor aufgeladenen Kondensator und den Biegewandler aufweist.
  • Bevorzugterweise ermittelt man die Kenngröße nicht nur einmal, sondern wiederholt und speichert die zu verschiedenen Zeitpunkten ermittelten Kenngrößen. Aus der Abfolge der so ermittelten Kenngrößen, die man gespeichert hat, kann man einen Verlauf ermitteln und anhand des Verlaufs eine Lebensdauerabschätzung vornehmen oder einen Wartungsvorschlag erstellen.
  • Man kann auch lediglich einen Ohm'schen Widerstand ermitteln, d.h. einen Reihenwiderstand. Weitere Möglichkeiten bestehen darin, den Leckstrom in der Keramik des Biegewandlers 6 zu ermitteln oder einen Leckstrom, der zwischen den beiden Keramikhälften über die hoch isolierende Mittellage fließt, einen so genannten "Isolations-Leckstrom".
  • Man kann auch eine Schaltzeit, eine Prellzeit und/oder eine Prellamplitude ermitteln. Die Schaltzeit ist ein Zeitraum, der von der Beaufschlagung des Biegewandlers mit einer Spannung bis zum Beginn einer Bewegung vergeht. Die Prellzeit ist die Zeit, zu der das Wirkwerkzeug 5 an einem der Anschläge 7, 8 anschlägt. Die Prellamplitude ist die Amplitude, die sich durch das Rückfedern des Wirkwerkzeugs 5 von einem der Anschläge 7, 8 ergibt.
  • Fig. 2 zeigt eine mögliche Vorgehensweise, um eine oder mehrere der oben genannten Größen zu ermitteln. Die horizontale Achse stellt dabei die Zeit in Millisekunden dar. Nach oben ist der Weg der Fadenführeröse 9 des Wirkwerkzeugs 5 einerseits und der vom Biegewandler 6 aufgenommene Strom andererseits in Milliampere angegeben.
  • Man ermittelt den vom Biegewandler aufgenommenen Strom, der in einer Kurve 10 dargestellt ist. Man ermittelt einen idealen Stromverlauf, der durch eine Kurve 11 dargestellt ist und sich als Stromverlauf eines idealen Bauteils, nämlich einer Reihenschaltung aus Ohm'schem Widerstand und Kapazität, darstellen lässt. Alternativ dazu kann man die Kurve 11 auch aus einem curve-fitting ermitteln. Aus den Parametern des curve-fittings können bereits die elektrischen Kenngrößen, Kapazität, Reihenwiderstand und Leckstrom berechnet werden.
  • Durch Subtraktion des gemessenen Stromverlaufs nach Kurve 10 und des idealen Stromverlaufs nach Kurve 11 wird eine Differenz ermittelt, die durch eine Kurve 12 dargestellt ist. Man sieht eine größere Differenz 13 nach einer kurzen Zeit. Hier spielt die Bewegung der Fadenführeröse 9 des Wirkwerkzeugs 5 eine Rolle, die durch einen inversen piezo-elektrischen Effekt eine Spannung erzeugt, die dem Ansteuersignal entgegenwirkt. Dieser Effekt ist auch im Stromverlauf sichtbar.
  • Zum Vergleich ist eine Kurve 15 eingezeichnet, die den Weg der Fadenführeröse 9 des Wirkwerkzeugs 5 darstellt, also die Auslenkung des Biegewandlers 6. Hier ergibt sich ein lokales Minimum 16 und ein lokales Maximum 17. Im Bereich des lokalen Maximums 17 ist die Differenz 14 (Kurve 12) am kleinsten.

Claims (15)

  1. Verfahren zur Wartung einer Kettenwirkmaschine mit mindestens einer Barre (1), die piezo-elektrische Biegewandler (6) aufweist, an denen Wirkwerkzeuge (5) befestigt sind, dadurch gekennzeichnet, dass man zumindest eine elektrische Kenngröße der Biegewandler (6) im eingebauten Zustand wiederholt ermittelt und mit mindestens einem vorgegebenen Grenzwert vergleicht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man den Biegewandler (6) in Neutralstellung mit Nennspannung beaufschlagt und dabei die Kenngröße ermittelt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man die Kenngröße aus einen Stromverlauf (10) am Biegewandler (6) ermittelt, der sich nach Beaufschlagung mit einem Spannungs-Rechtecksignal ergibt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man eine Differenz aus dem Stromverlauf (10) am Biegewandler (6) und einem idealen Stromverlauf (11) an einer Reihenschaltung aus einem Kondensator und einem ohmschen Widerstand bildet.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man Kenngrößen speichert, die zu verschiedenen Zeitpunkten ermittelt worden sind, wobei man die gespeicherten Kenngrößen mit einem Modell vergleicht und aus dem Vergleich eine Lebensdauerabschätzung und/oder einen Wartungsvorschlag ermittelt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Kenngröße im Stillstand oder beim Starten der Kettenwirkmaschine ermittelt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man zuerst die mindestens eine Kenngröße einer Gruppe von piezo-elektrischen Biegewandlern (6) ermittelt und nur dann die Kenngröße eines einzelnen piezo-elektrischen Biegewandlers ermittelt, wenn sich in der Kenngröße der Gruppe eine Abweichung von einem vorbestimmten Grenzwert ergibt, die ein vorbestimmtes Maß überschreitet.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man mindestens eine der folgenden Größen des Biegewandlers ermittelt: Kapazität, Reihenwiderstand, Keramik-Leckstrom, Isolations-Leckstrom, Schaltzeit, Prellzeit und/oder Prellamplitude.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man eine vorbestimmte elektrische Spannung an den Biegewandler (6) anlegt und die sich dabei ergebende Menge einer elektrischen Ladung mit einer zu erwartenden Menge der elektrischen Ladung vergleicht.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man die Kenngrößen von mehreren gleichartigen Biegewandlern (6) der Kettenwirkmaschine miteinander vergleicht.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man die Kenngrößen von gleichartigen Biegewandlern (6) mehrerer Kettenwirkmaschinen miteinander vergleicht.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man eine Barre (1) verwendet, bei der mehrere Segmente (4) mit Biegewandler (6) vorhanden sind und die Ermittlung der Kenngröße bei den Segmenten (4) parallel vornimmt.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man die Ermittlung der Kenngröße der Biegewandler (6) in mindestens einem Segment (4) nacheinander vornimmt.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man mindestens einen Biegewandler (6) in zwei entgegengesetzte Richtungen auslenkt.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass man eine Zeit ermittelt, die der Biegewandler benötigt, um das Wirkwerkzeug (5) aus der Neutralstellung in eine Arbeitsstellung zu bewegen.
EP20174572.6A 2020-05-14 2020-05-14 Verfahren zur wartung einer kettenwirkmaschine Active EP3910101B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20174572.6A EP3910101B1 (de) 2020-05-14 2020-05-14 Verfahren zur wartung einer kettenwirkmaschine
CN202110345326.8A CN113668136B (zh) 2020-05-14 2021-03-31 用于维护经编机的方法
TW110114989A TWI811669B (zh) 2020-05-14 2021-04-26 用於維護經編機的方法
KR1020210061514A KR102582937B1 (ko) 2020-05-14 2021-05-12 경편 기기의 유지 보수 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20174572.6A EP3910101B1 (de) 2020-05-14 2020-05-14 Verfahren zur wartung einer kettenwirkmaschine

Publications (2)

Publication Number Publication Date
EP3910101A1 EP3910101A1 (de) 2021-11-17
EP3910101B1 true EP3910101B1 (de) 2023-01-18

Family

ID=70736649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20174572.6A Active EP3910101B1 (de) 2020-05-14 2020-05-14 Verfahren zur wartung einer kettenwirkmaschine

Country Status (4)

Country Link
EP (1) EP3910101B1 (de)
KR (1) KR102582937B1 (de)
CN (1) CN113668136B (de)
TW (1) TWI811669B (de)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260044A (ja) * 1988-04-05 1989-10-17 Watanabe Kutsushita Kogyo Kk 編機用選針装置
DE4226899C1 (de) * 1992-08-14 1994-01-13 Mayer Textilmaschf Kettenwirkmaschine mit Jacquard-Steuerung
DE4337265C1 (de) * 1993-11-02 1995-03-09 Mayer Textilmaschf Kettenwirkmaschine mit mindestens einer Legebarre
DE4435562C2 (de) * 1994-10-05 1998-12-17 Mayer Textilmaschf Legebarrenanordnung für eine Kettenwirkmaschine
DE19613385C2 (de) * 1996-04-03 2001-08-23 Liba Maschf Kettenwirkmaschine mit mindestens einer Busleitungen aufweisenden Legebarre
JPH11118743A (ja) * 1997-10-15 1999-04-30 Hokuriku Electric Ind Co Ltd 圧電セラミックスの検査方法
DE19946859C2 (de) * 1999-09-30 2003-12-04 Mayer Fa Karl Kettenwirkmaschine mit Musterpresse
CN1272493C (zh) * 2000-09-27 2006-08-30 日本迈耶株式会社 经编机的提花装置
DE102004012491B4 (de) * 2004-03-15 2008-12-24 Continental Automotive Gmbh Verfahren zur Bestimmung von defekten Aktoren einer Brennkraftmaschine
DE102012112782A1 (de) * 2012-12-20 2014-06-26 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren und Vorrichtung zur Bestimmung eines Zustands eines in einem Prozessbehälter integrierten Messaufnehmers
DE102014108987B3 (de) * 2014-06-26 2015-10-22 Karl Mayer Textilmaschinenfabrik Gmbh Wirkware, Verfahren zum Erzeugen einer Wirkware und Kettenwirkmaschine
CN109576894A (zh) * 2018-12-06 2019-04-05 福建宏宇电子科技有限公司 一种移除连接绳的贾卡提花装置
CN110629384A (zh) * 2019-10-08 2019-12-31 浙江理工大学 一种压电选针器感知执行一体式状态检测系统
EP3594613B1 (de) * 2019-11-18 2022-06-29 KARL MAYER STOLL R&D GmbH Sensor für oberflächenverschleissmessung

Also Published As

Publication number Publication date
KR20210141905A (ko) 2021-11-23
KR102582937B1 (ko) 2023-09-26
EP3910101A1 (de) 2021-11-17
CN113668136B (zh) 2023-03-21
CN113668136A (zh) 2021-11-19
TWI811669B (zh) 2023-08-11
TW202146727A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
DE19733560B4 (de) Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
EP1272754A1 (de) Verfahren zur diagnose der spannungsansteuerung für einen piezoelektrischen aktor eines einspritzventils
WO2000019549A1 (de) Verfahren und anordnung zur diagnose eines kapazitiven aktors
WO2001025625A1 (de) Vorrichtung und verfahren zur zündung einer brennkraftmaschine
DE10033196A1 (de) Verfahren bzw. Vorrichtungzur Erkennung eines Fehlerstromes an einem piezoelektrischen Aktor eines Einspritzventils oder an dessen Hochspannung führende Zuleitung
DE102015214683A1 (de) Intelligentes Roboterschweißsystem und Verfahren
EP3910101B1 (de) Verfahren zur wartung einer kettenwirkmaschine
DE19810525A1 (de) Verfahren und Vorrichtung zum Ansteuern kapazitiver Stellglieder
EP3142136B1 (de) Steuerungsvorrichtung zum steuern eines schaltelements
EP3629116B1 (de) Verfahren und vorrichtung für eine verschleissanalyse an einer werkzeugmaschine
DE10031684A1 (de) Flachstrickmaschine
DE10107367B4 (de) Verfahren und Einrichtung zur Diagnose durch Fehlermustererkennung
WO2010102965A1 (de) Verfahren zur überwachung der elektrischen eigenschaften eines getaktet gesteuerten lastkreises und schaltungsanordnung zur durchführung des verfahrens
DE4210378C2 (de) Verfahren zum geregelten Nachstellen einer Strickgarnmenge
DE102018129547A1 (de) Erfassungsverfahren für eine Betätigungseinrichtung und Betätigungseinrichtung mit einem Erfassungssystem
DE10232470A1 (de) Verfahren und Vorrichtung zur Qualitätssicherung von Crimpverbindungen
EP3159443A1 (de) Kettenwirkmaschine
DE10338775B4 (de) Diagnoseeinrichtung für einen Verbrennungsmotor
DE102013217583A1 (de) Bewerten eines Widerstandsschweißvorgangs durch Elektrodenkraftüberwachung
DE102015001512A1 (de) Verfahren zum Stricken eines Schlauchgestricks
DE102021111083B4 (de) Verfahren zum Überwachen des hydraulischen Versorgungssystems einer Kunststoffverarbeitungsmaschine
BE1030869B1 (de) Verfahren zur Ansteuerung eines elektromechanischen Schaltelements
DE291471C (de)
EP3592991A1 (de) Verfahren zum ansteuern eines hydraulischen stellantriebes, steuereinrichtung und stellantriebsteuerung
DE19956381A1 (de) Vorrichtung und Verfahren zur Zündung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D04B 27/32 20060101ALN20220926BHEP

Ipc: D04B 35/18 20060101AFI20220926BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: D04B 27/32 20060101ALN20220930BHEP

Ipc: D04B 35/18 20060101AFI20220930BHEP

INTG Intention to grant announced

Effective date: 20221021

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002374

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1544747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 4

Ref country code: DE

Payment date: 20230530

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230515

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002374

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

26N No opposition filed

Effective date: 20231019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230118

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230514