EP3898159A1 - Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise - Google Patents

Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise

Info

Publication number
EP3898159A1
EP3898159A1 EP19817366.8A EP19817366A EP3898159A1 EP 3898159 A1 EP3898159 A1 EP 3898159A1 EP 19817366 A EP19817366 A EP 19817366A EP 3898159 A1 EP3898159 A1 EP 3898159A1
Authority
EP
European Patent Office
Prior art keywords
wick
wicks
fibrous material
grooved
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19817366.8A
Other languages
German (de)
English (en)
Inventor
Gilles Hochstetter
Thibaut SAVART
Arthur Pierre BABEAU
Axel SALINIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3898159A1 publication Critical patent/EP3898159A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/125Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/18Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length in the form of a mat, e.g. sheet moulding compound [SMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/089Prepregs fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2507/00Use of elements other than metals as filler
    • B29K2507/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/007Narrow strips, e.g. ribbons, tapes, bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/52Sports equipment ; Games; Articles for amusement; Toys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor

Definitions

  • the present invention relates to a process for manufacturing a fibrous material pre-impregnated with a thermoplastic polymer in a fluidized bed.
  • the invention relates to a process for manufacturing a prepreg fibrous material comprising a step of prepreg of a non-sized or slightly sized fibrous material for the preparation of an impregnated fibrous material, in particular to core, of reduced and controlled porosity, with a view to obtaining ribbons of impregnated fibrous material, of calibrated dimensions, directly usable for the manufacture of three-dimensional composite parts.
  • fibrous material means an assembly of reinforcing fibers. Before its pre-impregnation and its shaping, it is in the form of wicks.
  • strip is used to denote strips of fibrous material whose width is greater than or equal to 400mm.
  • ribbon is used to designate ribbons of calibrated width and less than or equal to 400mm.
  • wick is also used to refer to the fibrous material.
  • Such prepreg fibrous materials are especially intended for the production of light composite materials for the manufacture of mechanical parts having a three-dimensional structure and having good mechanical and thermal properties.
  • these fibrous materials are capable of removing electrostatic charges. They therefore have properties compatible with the manufacture of parts, particularly in the fields of mechanics, civil or military aeronautics, and nautical, automotive, oil and gas, in particular offshore, storage of gas, energy, health and medical, military and armaments, sports and leisure, and electronics.
  • the use of non-sized fibers is a necessity for aeronautics and offshore.
  • thermosetting or thermoplastic resin type thermosetting or thermoplastic resin type
  • the sizes are often degraded by the processes of impregnation, in particular during the pre-impregnation stages (molten route, passage into a solvent solution, etc.) and / or during the stages of melting the thermoplastic matrix, in particular when it has a high melting point (for a semi -crystalline or a high Tg (for an amorphous or thermosetting) .
  • the chemical compatibility between the polymer of the matrix and the size is not always optimal; the resulting grip strength can be modified in positive as negative compared to that observed with a non-sized fiber.
  • international application WO20181 15736 describes a process for pre-impregnating a fibrous material in a fluidized bed, the powder level of which depends on the residence time in the fluid bed and the tension on the wick (s) is controlled using a creel present before the tank comprising the fluidized bed.
  • the use of at least one fixture (in particular a cylindrical roller of convex, concave or cylindrical shape) in the fluidized bed makes it possible to improve the prepreg compared to the methods of the prior art and the fibrous material used can be sized or not sized.
  • rollers used are smooth or grooved (or notched).
  • the article by Gibson A. et al. describes a step of pre-impregnation in a fluidized bed of a fibrous material with a thermoplastic polymer comprising smooth rollers in the fluidized bed with control of the fiber content by means a vibrating system placed at the tank outlet.
  • the invention therefore aims to remedy the drawbacks of the prior art.
  • the subject of the invention is therefore a method of manufacturing a prepreg fibrous material comprising a fibrous material made of continuous fibers and at least one thermoplastic polymer matrix, comprising a prepreg step, in particular homogeneous, of said fibrous material having in the form of a wick or of several parallel wicks with at least one thermoplastic polymer matrix in the form of a powder, said pre-impregnation step being carried out on a non-sized fibrous material in a tank comprising a fluidized bed provided with cylindrical grooved rollers .
  • the invention also relates to a unidirectional ribbon of impregnated fibrous material, in particular ribbon wound on a reel, characterized in that it is obtained by a process as defined above.
  • the invention further relates to a use of the ribbon as defined above in the manufacture of three-dimensional parts.
  • Said manufacture of said composite parts relates to the fields of transport, in particular automobile, oil and gas, in particular offshore, gas storage, civil or military aeronautics, nautical, rail; renewable energies, in particular wind, tidal, energy storage devices, solar panels; thermal protection panels; sports and recreation, health and medical, security and electronics.
  • the invention also relates to a three-dimensional composite part, characterized in that it results from the use of at least one unidirectional ribbon of impregnated fibrous material as defined above.
  • the subject of the invention is a process for manufacturing a prepreg fibrous material comprising a fibrous material made of continuous fibers and at least one thermoplastic polymer matrix, characterized in that said prepreg fibrous material is produced in a single unidirectional ribbon or in a plurality of parallel unidirectional ribbons and in that said method comprises a step of prepregnation, in particular homogeneous, of said fibrous material in the form of a wick (81 a) or of several parallel wicks by said at least a thermoplastic polymer matrix in the form of a powder, said pre-impregnation step being carried out by the dry process in a tank (20) comprising a fluidized bed (22) comprising at least one engorged loading part (82),
  • said wick (81 a) or said wicks being in contact with part or all of the surface of said at least one siphoned fitting piece (82) and said wick (81 a) or said wicks comprising up to 0, 1% by weight of size,
  • thermoplastic polymer matrix in said fibrous material being carried out by controlling the residence time of said fibrous material in the powder and by constant control of the tension of said wick (81a) or said wicks when it (s) penetrate (s) into the fluidized bed.
  • the process of the invention is to the exclusion of any electrostatic process under voluntary charge.
  • the term “sizing” designates the surface treatments applied to fibrous materials during their manufacture. It can also designate a fleeting pretreatment as a preamble to the pre-impregnation step, whether it is done directly in line with the impregnation or not. It can also designate a fleeting pretreatment as a preamble to the pre-impregnation step, whether it is done directly in line with the impregnation or not.
  • thermosetting or thermoplastic resin type are generally organic in nature (thermosetting or thermoplastic resin type) and very often formulated for the prepreg of the reinforcing fibers with polymers with a low melting point Tf or thermosetting with a low point Tg.
  • Said fibrous material can therefore comprise up to 0.1% by weight of a material of an organic nature (such as thermosetting or thermoplastic resin) called size.
  • a material of an organic nature such as thermosetting or thermoplastic resin
  • the size can be an organic liquid such as water, a low or high alcohol molecular weight (ethanol, methanol, isopropanol for example), a ketone (acetone etc ...) which will play the role of fleeting size; that is to say that it will be present a short time in contact with the fiber to allow its manipulation in the “dry” state (ie before the prepreg) and that it will then be extracted from the composite material so as not to disturb the final characteristics of the composite.
  • a low or high alcohol molecular weight ethanol, methanol, isopropanol for example
  • a ketone acetone etc
  • said wick (81 a) or said wicks is (are) not sized, in particular in the case of an amorphous thermoplastic resin having a high Tg or of a semi-crystalline resin with high melting point: in these cases l he size degrades when subjected to the high temperature of the transformation processes imposed by the nature of these resins.
  • said wick (81 a) or said wicks is (are) either substantially devoid of sizing because the fibrous material has been de-sized beforehand or is devoid of sizing because the original fibrous material is not sized.
  • the mean diameter D50 by volume of the particles of thermoplastic polymer powder is from 30 to 300 ⁇ m, in particular from 50 to 200 ⁇ m, more particularly from 70 to 200 ⁇ m.
  • the expression "residence time in the powder” means the time during which the wick is in contact with said powder in the fluidized bed.
  • the inventors unexpectedly found that when a non-sized fibrous material is used for the prepreg step in a fluidized bed, the control of the residence time in the powder was no longer sufficient to prepreg the fibrous material. by the thermoplastic polymer matrix, in particular in a homogeneous manner with a powder rate (resin) well controlled and that the pre-impregnation step required the presence of one or more roll (s) filled in the fluidized bed with simultaneous control the tension of said fibrous material at the inlet of the fluidized bed.
  • Te critical tension
  • a tension Te ’beyond which impregnation becomes impossible because the tension then blocks the development of the wick in the fluidized bed.
  • Te is ⁇ to Te ’.
  • Tmin is the voltage below which the twists appear.
  • the tension T of said wick (81 a) or of said wicks when it (s) enters the fluidized bed is less than Te.
  • the tension T of said wick (81 a) or of said wicks when it (s) enters the fluidized bed is greater than Tmin.
  • the tension T of said wick (81 a) or said wicks when it (s) penetrates (s) in the fluidized bed is less than Te and greater than Tmin.
  • the fibrous material after passage through the fluidized bed is called prepreg fibrous material and after heating and / or calendering, it is called impregnated fibrous material.
  • the fiber content and porosity measurements are carried out on the impregnated fibrous material, and therefore after heating and / or calendering.
  • homogeneous means that the prepreg is uniform and that there are no dry fibers on the surface of the prepreg fibrous material.
  • thermoplastic or “thermoplastic polymer” is understood to mean a material which is generally solid at room temperature, which can be semi-crystalline or amorphous, and which softens during a temperature increase, in particular after passing its glass transition temperature (Tg). and flows at a higher temperature when it is amorphous, or which may exhibit a frank melting on passing its so-called melting temperature (Tf) when it is semi-crystalline, and which becomes solid again when the temperature decreases below its crystallization temperature (for a semi-crystalline) and below its glass transition temperature (for an amorphous).
  • Tg glass transition temperature
  • Tf melting temperature
  • the Tg and the Tf are determined by differential scanning calorimetry (DSC) according to the standard 1 1357-2: 2013 and 1 1357-3: 2013 respectively.
  • thermoplastic polymer or a mixture of thermoplastic polymers.
  • This polymer or mixture of thermoplastic polymers is ground in powder form, in order to be able to use it in a device such as a tank, in particular in a fluidized bed.
  • thermoplastic polymer or mixture of thermoplastic polymers further comprises carbonaceous fillers, in particular carbon black or carbonaceous nanofillers, preferably chosen from carbonaceous nanofillers, in particular graphenes and / or carbon nanotubes and / or carbon nanofibrils or their mixtures.
  • carbonaceous fillers in particular carbon black or carbonaceous nanofillers, preferably chosen from carbonaceous nanofillers, in particular graphenes and / or carbon nanotubes and / or carbon nanofibrils or their mixtures.
  • said thermoplastic polymer comprises at least one additive, in particular chosen from a catalyst, an antioxidant, a thermal stabilizer, a UV stabilizer, a light stabilizer, a lubricant, a filler, a plasticizer, a flame-retardant agent, a nucleating agent , a chain extender and a dye or a mixture thereof.
  • the thermoplastic polymer or mixture of thermoplastic polymers may also comprise liquid crystal polymers or cyclized poly (butylene terephthalate), or mixtures containing it, such as the CBT100 resin sold by the company CYCLICS CORPORATION. These compounds make it possible in particular to fluidify the polymer matrix in the molten state, for better penetration into the core of the fibers.
  • thermoplastic polymers forming part of the prepreg matrix of the fibrous material can be chosen from:
  • PA aliphatic, cycloaliphatic polyamides
  • PPA polyphthalamides
  • PAEK polyarylether ketone family
  • PEEK poly (ether ether ketone)
  • PAEKK polyarylether ketone ketones
  • PEKK poly (ketone ether ketone)
  • polyarylsulfides in particular polyphenylene sulfides (PPS),
  • polyarylsulfones in particular polyphenylene sulfones (PPSU)
  • polystylenes in particular polypropylene (PP);
  • PVDF poly (vinylidene fluoride)
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • thermoplastic polymer when said thermoplastic polymer is in a mixture, it is added in the form of powder obtained beforehand by “dry blend” or ground compound or directly in the tank in the form of “dry blend in situ”.
  • it is added in the form of powder obtained beforehand by “dry blend” or directly in the tank in the form of “dry blend in situ” and the mixture is a mixture of PEKK and PEI.
  • the proportion by weight of polymer P1 and P2 is between 1 -99% and 99-1%.
  • the PEKK / PEI mixture is comprised from 90-10% to 60-40% by weight, in particular from 90-10% to 70-30% by weight.
  • the thermoplastic polymer may correspond to the final non-reactive polymer which will impregnate the fibrous material or to a reactive prepolymer, which will also impregnate the fibrous material, but is capable of reacting on itself or with another prepolymer, depending on the end of the chain worn. by said prepolymer, after pre-impregnation, or even with a chain extender and in particular during heating at the level of the fittings in the oven and / or during the implementation of the tape in the final process for manufacturing the composite part.
  • said prepolymer can comprise or consist of, at least one reactive prepolymer (polyamide) carrying on the same chain (that is to say on the same prepolymer), of two terminal functions X 'and Y' respectively coreactive functions between them by condensation, more particularly with X 'and Y' being amine and carboxy or carboxy and amine respectively.
  • said prepolymer can comprise or consist of, at least two polyamide prepolymers reactive with each other and each carrying two terminal functions X ′ or Y ′, identical (identical for the same prepolymer and different between the two prepolymers), said function X 'of a prepolymer being able to react only with said function Y' of the other prepolymer, in particular by condensation, more particularly with X 'and Y' being amine and carboxy or carboxy and amine respectively.
  • said prepolymer can comprise or consist of, at least one prepolymer of said thermoplastic polyamide polymer, carrying n terminal reactive functions X, chosen from: -NH2, -C02H and -OH, preferably NH2 and -C02H with n being 1 to 3, preferably 1 to 2, more preferably 1 or 2, more particularly 2 and at least one chain extender Y-A'-Y, with A 'being a hydrocarbon biradical, of non-polymeric structure, carrying of 2 identical reactive terminal functions Y, reactive by polyaddition with at minus a function X of said prepolymer a1), preferably of molecular mass less than 500, more preferably less than 400.
  • n terminal reactive functions X chosen from: -NH2, -C02H and -OH, preferably NH2 and -C02H with n being 1 to 3, preferably 1 to 2, more preferably 1 or 2, more particularly 2 and at least one chain extender Y-A'-Y, with A 'being a
  • the number average molecular weight Mn of said final polymer of the thermoplastic matrix is preferably in a range from 10,000 to 40,000, preferably from 12,000 to 30,000. These Mn values can correspond to inherent viscosities greater than or equal to 0.8 such as determined in m-cresol according to ISO standard 307: 2007 but by changing the solvent (use of m-cresol instead of sulfuric acid and the temperature being 20 ° C).
  • Said reactive prepolymers according to the two options mentioned above have a number average molecular weight Mn ranging from 500 to 10,000, preferably from 1000 to 6000, in particular from 2500 to 6000.
  • the Mn are determined in particular by calculation from the rate of the terminal functions determined by potentiometric titration in solution and the functionality of said prepolymers.
  • the Mn masses can also be determined by size exclusion chromatography or by NMR.
  • the polyamide can be a homopolyamide or a copolyamide or a mixture of these.
  • the polymers constituting the matrix are chosen from Polyamides (PA), in particular chosen from aliphatic polyamides, in particular PA1 1 and PA12, cycloaliphatic polyamides, and semi-aromatic polyamides (polyphthalamides) optionally modified by urea units, and their copolymers, Polymethyl methacrylate (PPMA) and its copolymers, Polyether imides (PEI), Poly (phenylene sulfide) (PPS), Poly (phenylene sulfone) (PPSU), Polyetherketone ketone (PEKK), Polyetheretherketone (PEEK), fluorinated polymers such as poly (vinylidene fluoride) (PVDF).
  • PA Polyamides
  • PA Polyamides
  • the VDF content must be greater than 80% by mass, or even better 90% by mass, to ensure good mechanical strength to the structural part, especially when it is subjected to thermal and chemical stresses.
  • the comonomer can be a fluorinated monomer such as for example vinyl fluoride.
  • PAEK PolyArylEtherKetone
  • PEK polyether ketones
  • PEEK poly (ether ketone)
  • PAEK PolyArylEtherKetone
  • PAEK PolyArylEtherKetone
  • PEK polyether ketones
  • PEEK poly (ether ether ketone)
  • PEEK poly (ether ketone)
  • PAs Tg high temperature glass transition PAs Tg
  • thermoplastic polymer is a polymer whose glass transition temperature is such that Tg> 80 ° C or a semi-crystalline polymer whose melting temperature Tf> 150 ° C.
  • thermoplastic polymer is:
  • polyamide 6 PA-6
  • PA-6 polyamide 1 1
  • PA-12 polyamide 12
  • PA-66 PA-66
  • PA-46 polyamide 46
  • PA-610 PA-610
  • PA-612 polyamide 1010
  • PA-1012 polyamide 1012
  • PA-1012 polyamide 1012
  • a semi-aromatic polyamide optionally modified by urea units, in particular a semi-aromatic polyamide of formula X / YAr, as described in EP1505099, in particular a semi-aromatic polyamide of formula A / XT in which A is chosen from a unit obtained from an amino acid, a unit obtained from a lactam and a unit corresponding to the formula (diamine in Ca).
  • (Cb diacid) with a representing the number of carbon atoms in the diamine and b representing the number of carbon atoms in the diacid, a and b each being between 4 and 36, advantageously between 9 and 18, the unit (Ca diamine) being chosen from aliphatic diamines, linear or branched, cycloaliphatic diamines and alkylaromatic diamines and unit (Cb diacid) being chosen from aliphatic diacids, linear or branched, cycloaliphatic diacids and aromatic diacids ;
  • XT denotes a motif obtained from the polycondensation of a Cx diamine and terephthalic acid, with x representing the number of carbon atoms of the Cx diamine, x being between 6 and 36, advantageously between 9 and 18, in particular a polyamide of formula A / 6T, A / 9T, A / 10T or A / 1 1 T, A being as defined above, in particular a polyamide PA 6 / 6T, a PA 66 / 6T, a PA 6I / 6T, a PA MPMDT / 6T, PA MXDT / 6T, PA PA1 1 / 10T, PA 1 1 / 6T / 10T, PA MXDT / 10T, PA MPMDT / 10T, PA BACT / 10T, PA BACT / 6T , PA BACT / 10T / 6T, a PA 1 1 / BACT / 10T, PA 1 1 / BACT / 6T a PA 1 1
  • T corresponds to terephthalic acid
  • MXD corresponds to m-xylylene diamine
  • MPMD corresponds to methylpentamethylene diamine
  • BAC corresponds to bis (am inomethyl) cyclohexane.
  • fibers of which said fibrous material is made are in particular fibers of mineral, organic or vegetable origin.
  • said fibrous material can therefore comprise up to 0.1% by weight of a material of an organic nature (such as thermosetting or thermoplastic resin) called size.
  • said wick (81 a) or said wicks is (are) not sized.
  • said wick (81 a) or said wicks is (are) either substantially devoid of size (s) because the fibrous material has previously been de-sized or is devoid of size (s) because the material original fibrous is not sized.
  • fibers of mineral origin mention may be made of carbon fibers, glass fibers, basalt fibers, silica fibers, or silicon carbide fibers for example.
  • fibers of organic origin mention may be made of fibers based on a thermoplastic or thermosetting polymer, such as semi-aromatic polyamide fibers, aramid fibers or polyolefin fibers for example.
  • they are based on amorphous thermoplastic polymer and have a glass transition temperature Tg greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is amorphous, or greater than the Tf of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is semi-crystalline.
  • thermoplastic polymers are based on semi-crystalline thermoplastic polymer and have a melting temperature Tf greater than the Tg of the polymer or mixture of thermoplastic polymer constituting the prepreg matrix when the latter is amorphous, or greater than the Tf of polymer or mixture of thermoplastic polymer constituting the matrix prepreg when the latter is semi-crystalline.
  • Tf melting temperature
  • the organic fibers constituting the fibrous material during the impregnation by the thermoplastic matrix of the final composite.
  • the fibers of vegetable origin mention may be made of natural fibers based on flax, hemp, lignin, bamboo, notably spider silk, sisal, and other cellulosic fibers, in particular viscose. These fibers of vegetable origin can be used pure, treated or else coated with a coating layer, in order to facilitate the adhesion and the impregnation of the thermoplastic polymer matrix.
  • the fibrous material can also be a fabric, braided or woven with fibers.
  • organic fibers can be mixed with the mineral fibers to be pre-impregnated with thermoplastic polymer powder and form the pre-impregnated fibrous material.
  • the strands of organic fibers can have several grammages. They can also have several geometries.
  • the fibers may be in the form of short fibers, which then make up the felts or nonwovens which may be in the form of strips, sheets, or pieces, or in the form of continuous fibers, which make up the 2D fabrics, the braids or unidirectional (UD) or non-woven fibers.
  • the fibers constituting the fibrous material can also be in the form of a mixture of these reinforcing fibers of different geometries. Preferably, the fibers are continuous.
  • the fibrous material consists of continuous fibers of carbon, glass or silicon carbide or a mixture thereof, in particular carbon fibers. It is used in the form of a wick or several wicks.
  • the impregnated materials are also called “ready to use”, and are obtained from the prepreg fibrous material, after melting the powder or the powder mixture.
  • the polymer or mixture of thermoplastic impregnation polymers is distributed so as to obtain a minimum of porosities, that is to say a minimum of voids between the fibers.
  • porosities can act as stress concentration points, during a mechanical tensile stress for example, and which then form points of initiation of rupture of the impregnated fibrous material and weaken it mechanically.
  • a reduction in porosity therefore improves the resistance mechanical and homogeneity of the composite material formed from these pre-impregnated fibrous materials.
  • the content of fibers in said impregnated fibrous material is from 45 to 65% by volume, preferably from 50 to 60% by volume, in particular from 54 to 60% by volume.
  • the measurement of the impregnation rate can be carried out by image analysis (use of a microscope or of a digital camera or camera, in particular), of a cross section of the ribbon, by dividing the surface of the ribbon impregnated by the polymer. by the total surface of the product (impregnated surface plus porosity surface).
  • image analysis use of a microscope or of a digital camera or camera, in particular
  • the cut ribbon in its transverse direction in a standard polishing resin and to polish with a standard protocol allowing the observation of the sample under the microscope magnification at least 6 times .
  • the porosity rate of said impregnated fibrous material obtained after melting the powder present in the prepreg wick and impregnation at the heart of the fibers is between 0% and 30%, in particular from 1% to 10%, in particular of 1% to 5%.
  • the porosity rate corresponds to the closed porosity rate and can be determined either by electron microscopy or as the relative difference between the theoretical density and the experimental density of said pre-impregnated fibrous material as described in the examples part of the present invention.
  • FIG. 1 An example of a unit for implementing the manufacturing process is described in international application WO 2015/121583 and is shown in FIG. 1, with the exception of the tank (otherwise called pre-impregnation tank which in the case of l
  • the invention comprises a fluidized bed provided with a grooved locking piece (FIG. 3) which can be a cylindrical grooved roller (FIG. 4)).
  • the groove can be of any shape and has a width less than the width that the wick would have if the roller were smooth and cylindrical, of equal diameter the diameter at the bottom of the groove, under the same conditions of fluidization of the powder and tension of the wick.
  • the cylindrical roller can be fixed or in controlled rotation, that is to say not free. Several rollers can be present and if they are in controlled rotation, they can be co-rotating or counter-rotating.
  • the pre-impregnation step of the fibrous material is carried out by passing one or more wicks in a continuous pre-impregnation device, comprising a tank (20), comprising a fluidized bed (22) of polymer powder.
  • the polymer (s) or polymer powder is suspended in a gas G (air for example) introduced into the tank and circulating in the tank through a hopper 21.
  • the wick (s) are circulated in this fluidized bed 22.
  • the tank may have any shape, in particular cylindrical or rectangular, in particular a rectangular parallelepiped or a cube, advantageously a rectangular parallelepiped.
  • the tank can be an open or closed tank.
  • it is open.
  • the tank is then equipped with a sealing system so that the polymer powder cannot escape from said tank.
  • thermoplastic polymer matrix is in the form of powder, in particular in suspension in a gas, in particular air, but cannot be in dispersion in a solvent or in water.
  • Each wick to be impregnated is unwound from a device (10) with reels (1 1) under the traction generated by cylinders (not shown).
  • the device (10) comprises a plurality of reels (1 1), each reel making it possible to unwind a wick to be impregnated.
  • the device (10) comprises a plurality of reels (1 1), each reel making it possible to unwind a wick to be impregnated.
  • Each reel (1 1) is provided with a brake (not shown) so as to apply tension to each wick of fibers.
  • an alignment module (12) allows the strands of fibers to be arranged parallel to each other. In this way the strands of fibers cannot be in contact with one another, which makes it possible to avoid mechanical degradation of the fibers by friction between them.
  • the wick of fibers or the wicks of parallel fibers then pass into a tank (20), comprising in particular a fluidized bed (22), provided with a siphoning piece which is a cylindrical roller comprising several grooves (one per wick ) (23) in the case of FIG. 1.
  • the wick of fibers or the wicks of parallel fibers then comes out of the tank after impregnation after checking the residence time in the powder and by constant control of the tension of said wick (81 a) or said wicks when it ( s) enters the fluidized bed.
  • the tension of said wick (81 a) or of said wicks when it (s) penetrates into the fluidized bed is up to 1000 g.
  • the tension of said wick can be measured either manually and intermittently at several points of the line using a tensiometer, or by means of strain gauges integrated in elements in contact with the wicks.
  • the tension of said wick (81 a) or said wicks when it (s) penetrates into the fluidized bed is between 100 and 1000 g, in particular from 200 to 1000 g, more particularly from 300 to 850 g.
  • said pre-impregnation step is carried out with simultaneous development of said wick (81 a) or said wicks between the inlet and the outlet of said fluidized bed (22).
  • the minimum width of said wick (81 a) or of said wicks is greater than the width of the groove of said sip.
  • the tension applied to the wick (or wicks) of fibers must be sufficient so that the minimum width of the free wick is greater than the width of the groove, so as to always fill the entire throat with the fiber wick .
  • the minimum width of the wick means the width that the wick would have under the same conditions of tension and fluidization of the powder, on a smooth roller of the same diameter as that of the bottom of the grooves. This width can advantageously be measured by different methods, even on rollers completely immersed in the powder, such as with pressure sensors, position sensors (LVDT type) on a smooth roller and then be transposed to the use of a grooved roller whose groove width will be less than the minimum value recorded using the sensors.
  • the choice of the tension and throat width couple will be optimum when the tension will be minimum and the wicking of the wick will be good, however beyond 100g, preferably beyond 200g, at the outlet of the creel, so as to avoid training and / or passing twists.
  • the inventors have unexpectedly found that when a non-sized fibrous material is used for the prepreg step in a fluidized bed, the control of time of stay in the powder was no longer sufficient to impregnate the fibrous material with the thermoplastic polymer matrix, in particular at the core and in a homogeneous manner with a rate of powder (resin) well controlled and that the pre-impregnation step required the presence of one or more grooved fixtures, in particular one or more roller (s) engorged in the fluidized bed with simultaneous control of the tension of said fibrous material at the inlet of the fluidized bed.
  • the fixture can have any shape from the moment it is engorged and the wick can pass through the throat.
  • the size of the grooves is just less than the minimum width of the fiber wick.
  • the wick (s) pre-impregnated with powder is (are) directed (s) then to a heating calendering device, with the possibility of preheating before calendering and possible post-calendering heating.
  • this pre-impregnation step can be completed by a step of covering the wick or pre-impregnated wicks, just at the outlet of the tank (20) pre-impregnating with the powder in a fluidized bed (22). , and just before the step of shaping by calendering.
  • the exit airlock of the tank (20) (fluidized bed 22) can be connected to a covering device (30) which may include a covering angle head, as also described in patent EP0406067.
  • the covering polymer can be identical to or different from the polymer powder in a fluidized bed. Preferably, it is of the same nature.
  • Such a covering not only makes it possible to complete the step of prepregnating the fibers in order to obtain a final volume rate of polymer in the desired range and to avoid the presence on the surface of the prepreg wick, of a rate of fibers locally. too large, which would harm the welding of the tapes during the manufacture of the composite part, in particular for obtaining so-called “ready-to-use” fibrous materials of good quality, but also for improving the performance of the composite material obtained.
  • under voluntary load means that a potential difference is applied between the fibrous material and the powder.
  • the load is notably controlled and amplified.
  • the grains of powders then permeate the fibrous material by attraction of the charged powder opposite the fiber.
  • the powder can be electrically charged, negatively or positively, by various means (potential difference between two metal electrodes, mechanical friction on metal parts, etc.) and charge the fiber inversely (positively or negatively).
  • the method of the invention does not exclude the presence of electrostatic charges which could appear by friction of the fibrous material on the elements of the processing unit before or at the level of the tank but which are in any event of the involuntary charges.
  • the level of fibers in said impregnated fibrous material is from 45 to 65% by volume, preferably from 50 to 60% by volume, in particular from 54 to 60% by volume.
  • the fiber content in said impregnated fibrous material is between 50 and 60%, in particular from 54 to 60% by volume.
  • the residence time in the powder is from 0.01 s to 10 s, preferably from 0.1 s to 5 s, and in particular from 0.1 s to 3 s.
  • the residence time of the fibrous material in the powder is essential for controlling the level of resin, of said fibrous material. Below 0.1 s, the resin content will be too low for then, during the powder melting step, being able to impregnate the fibers at heart.
  • the rate of polymer matrix impregnating the fibrous material is too high and the mechanical properties of the impregnated fibrous material will be poor.
  • the tank used in the process of the invention comprises a fluidized bed and said pre-impregnation step is carried out with simultaneous development of said wick or said wicks between the inlet and the outlet of said tank.
  • outlet of said tank corresponds to the vertical tangent of the edge of the tank which comprises the fluidized bed.
  • the distance between the inlet and the outlet therefore corresponds to the diameter in the case of the cylinder, to the side in the case of a cube or to the width or length in the case of a rectangular parallelepiped.
  • the flourishing consists in singling out as much as possible each filament constituting said wick of the other filaments which surround it in its closest space. It corresponds to the transverse spread of the wick.
  • the transverse spread or the width of the wick increases between the inlet of the fluidized bed (or of the tank comprising the fluidized bed) and the outlet of the fluidized bed (or of the tank comprising the fluidized bed) and thus allows a homogeneous prepreg of the fibrous material.
  • the fluidized bed can be opened or closed, in particular it is open.
  • the fluidized bed comprises at least one fitting piece, said wick or said wicks being in contact with part or all of the surface of said at least one fitting piece.
  • FIG. 3 details a tank (20) comprising a fluidized bed (22) with a fitting piece, adjustable in height (82).
  • the wick (81 a) corresponds to the wick before impregnation which is in contact with part or all of the surface of said at least one mooring piece and therefore runs partially or totally on the surface of the mooring piece ( 82), said system (82) being immersed in the fluidized bed where impregnation takes place. Said wick then emerges from the tank (81 b) after checking the residence time in the powder.
  • Said wick (81a) can be in contact or not with the edge of the tank (83a) which can be a rotary or fixed roller or a parallelepipedic edge.
  • said wick (81a) is in contact or not with the edge of the tank (83a).
  • the edge of the tank (83b) is a roller, in particular cylindrical and rotary.
  • Said wick (81 b) can be in contact or not with the edge of the tank (83b) which can be a roller, in particular cylindrical and rotary or fixed, or a parallelepiped edge.
  • said wick (81b) is in contact with the edge of the tank (83b).
  • the edge of the tank (83b) is a roller, in particular cylindrical and rotary.
  • said wick (81 a) is in contact with the edge of the tank (83a) and the edge of the tank (83b) is a roller, in particular cylindrical and rotary
  • said wick (81 b) is in contact with the edge of the tank (83b), and the edge of the tank (83b) is a roller, in particular cylindrical and rotary.
  • said fitting piece is perpendicular to the direction of said wick or said wicks.
  • said development of said wick or said wicks is carried out at least at the level of said at least one fitting piece.
  • the development of the wick therefore takes place mainly at the level of the fitting piece but can also be carried out at the edge or edges of the tank if there is contact between the wick and said edge.
  • said at least one fitting piece is a grooved cylindrical roller of convex, concave or cylindrical shape.
  • the convex shape is favorable to blooming while the concave shape is unfavorable to blooming although it is done nevertheless.
  • grooved cylindrical roller means that the scrolling wick is supported partially or completely on the surface of said grooved cylindrical roller, which induces the blooming of said wick.
  • said at least one grooved cylindrical roller is of cylindrical shape and the percentage of development of said wick or said wicks between the inlet and the outlet of said fluidized bed is from 1% to 400%, preferably between 30% and 400% preferably between 30% and 150%, preferably between 50% and 150%.
  • the blooming percentage is defined as (Lf-Li) / Li * 100, where Li and Lf are the widths before and after blooming.
  • the development depends on the fibrous material used. For example, the flourishing of a carbon fiber material is much more important than that of a flax fiber.
  • Flourishing is also a function of the number of fibers or filaments in the wick, their average diameter and their cohesion.
  • the diameter of said at least one grooved cylindrical roller is from 3 mm to 500 mm, preferably from 10 mm to 100 mm, in particular from 20 mm to 60 mm. Below 3 mm, the deformation of the fiber induced by the grooved cylindrical roller is too great.
  • the grooved cylindrical roller is cylindrical and not grooved and in particular is metallic.
  • a single grooved cylindrical roller is present in the fluidized bed and said impregnation is carried out at the angle formed by said wick or said wicks between the inlet of said grooved cylindrical roller and the vertical tangent to said grooved cylindrical roller.
  • the angle formed by said wick or said wicks between the inlet of said grooved cylindrical roller and the vertical tangent to said grooved cylindrical roller allows the formation of an area in which the powder will concentrate thus leading to a "wedge effect" which with the simultaneous development of the wick by said grooved cylindrical roller allows a prepreg on a larger width of wick and therefore an improved prepreg compared to the techniques of the improved prior art.
  • the coupling with the controlled residence time then allows a homogeneous prepreg.
  • the angle is included from 0 to 89 °, preferably 5 ° to 85 °, preferably from 5 ° to 45 °, preferably from 5 ° to 30 °.
  • an angle of 0 to 5 ° is likely to generate risks of mechanical stress, which will lead to breakage of the fibers and an angle of 85 to 89 ° does not create enough mechanical effort to create the "corner effect".
  • a value of the angle equal to 0 ° therefore corresponds to a vertical fiber. It is obvious that the height of the cylindrical grooved cylindrical roller is adjustable, thus making it possible to position the fiber vertically.
  • the edge of the tank (83a) is equipped with a roller, in particular cylindrical and rotary, on which said strand or said strands pass, thereby leading to prior blooming.
  • one or more embarrassments are present downstream of the tank comprising the fluidized bed at the level of which or which the blooming is initiated.
  • the blooming is initiated at the level of said above-mentioned interruptions and continues at the level of the edge of the tank (83a).
  • FIG. 4 describes an embodiment, without being limited to this, with a single grooved cylindrical roller, with a tank (20) comprising a fluidized bed (22) in which a single cylindrical grooved cylindrical roller is present and showing the 'angle ai .
  • the arrows on the fiber indicate the direction of travel of the fiber.
  • the level of said powder in said fluidized bed is at least situated at the mid-height of said grooved cylindrical roller.
  • the angle is as defined above.
  • the fixing piece is at least one grooved cylindrical roller
  • two grooved cylindrical rollers Ri and R2 are in said fluidized bed and said prepreg is carried out at the angle formed by said wick or said wicks between the inlet of said grooved cylindrical roller Ri and the vertical tangent to said grooved cylindrical roller Ri and / or at the angle 02 formed by said wick or said wicks between the inlet of said grooved cylindrical roller R2 and the vertical tangent to said gorged cylindrical roller R2, said gorged cylindrical roller Ri preceding said gorged cylindrical roller R2 and said wick or said wicks being able to pass above (FIG. 5 and 6) or below ( Figure 7 and 8) of the R2 roller.
  • the two grooved cylindrical rollers are of identical or different shape and chosen from a convex, concave or cylindrical shape.
  • the two cylindrical grooved rollers are identical and cylindrical and in particular metallic.
  • the diameter of the two grooved cylindrical rollers can also be the same or different and is as defined above.
  • the diameter of the two grooved cylindrical rollers is identical.
  • the two grooved cylindrical rollers Ri and R2 may be at the same level with respect to each other and with respect to the bottom of the tank (FIGS. 6 and 7) or offset with respect to each other and with respect to at the bottom of the tank, the height of the grooved cylindrical roller Ri being greater than or less than that of the grooved cylindrical roller R2 relative to the bottom of the tank ( Figures 5 and 8).
  • 02 is included from 0 to 90 °.
  • said prepreg is therefore carried out at the angle formed by said wick or said wicks between the inlet of said grooved cylindrical roller Ri and the vertical tangent to said cylindrical grooved roller on one face of said wick and at the level of the angle 02 formed by said wick or said wicks between the entry of said grooved cylindrical roller R2 and the vertical tangent to said cylindrical grooved roller R2 on the opposite face of said wick which is obtained by passing above the roller R2.
  • said wick in this embodiment is subject to blooming at each angle at and 02.
  • FIG. 6 describes an embodiment, without being limited to this, with two engorged cylindrical rollers Ri and R2 , Ri preceding R2, with a tank (20) comprising a fluidized bed (22) in which the two engorged cylindrical rollers cylindrical, at the same level and side by side, are present and showing the case where said one or more wicks emerge between said cylindrical grooved rollers Ri and R2.
  • the angle 0 2 is equal to 0 and said one or more wicks pass over the roller R 2 .
  • the arrows on the fiber indicate the direction of travel of the fiber.
  • said wick or said wicks scroll (s) at the inlet between said cylindrical grooved rollers Ri and R 2 and comes out (ent) after having been in contact with part or all of the surface of said cylindrical grooved roller R 2.
  • said wick or said wicks are (are) in contact at the input with part or all of the surface of said cylindrical grooved roller Ri and spring (ent) outside the cylindrical grooved roller R 2 after being in contact with part or all of the surface of said grooved cylindrical roller R 2 , under the roller R 2 , the angle 0 2 being formed by said drill bit (s) between the inlet of said cylindrical grooved roller R 2 and the vertical tangent to said roller cylindrical grooved R 2 .
  • the angle 0 2 90 °.
  • Said prepreg is therefore carried out at the angle formed by said wick or said wicks between the inlet of said grooved cylindrical roller Ri and the vertical tangent to said cylindrical grooved roller on one face of said wick and at level 'angle 0 2 formed by said wick or said wicks between the inlet of said cylindrical grooved roller R 2 and the vertical tangent to said cylindrical grooved roller R 2 on the same face of said wick but the blooming also makes it possible to pre-impregnate the other face.
  • said wick in this embodiment is subject to blooming at each angle at and 0 2 .
  • FIG. 7 shows an exemplary embodiment with two cylindrical grooved rollers Ri and R 2 at the same level relative to each other.
  • the distance between the two cylindrical grooved rollers Ri and R 2 is 0.15 mm at the length equivalent to the maximum dimension of the tank, preferably between 10mm and 50mm and the height difference between the two grooved cylindrical rollers Ri and R 2 is between 0 and the height corresponding to the maximum height of the tank subtracted from the diameters of the two grooved cylindrical rollers, preferably between 0, 15mm at the height corresponding to the maximum height of the tank subtracted from the diameters of the two grooved cylindrical rollers, more preferably at a height difference between 10mm and 300mm, R 2 being the upper grooved cylindrical roller.
  • the level of said powder in said fluidized bed is at least located at the mid-height of said two siphoned cylindrical rollers.
  • FIG. 8 describes an embodiment, without being limited to this, with two engorged cylindrical rollers Ri and R 2 , Ri preceding R 2 , with a tank (20) comprising a fluidized bed (22) in which two cylindrical rollers cylindrical sips at different levels are present and showing the angle at and 0 2.
  • the diameter of the cylindrical grooved rollers Ri and R 2 is presented as identical in FIGS. 5, 6, 7 and 8 but the diameter of each cylindrical grooved cylindrical roller can be different, the diameter of the cylindrical grooved roller Ri being able to be greater or less than that of the grooved cylindrical roller R 2 in the range as defined above.
  • the diameter of the two grooved cylindrical rollers is identical. It would not go beyond the scope of the invention if the grooved cylindrical roller Ri was greater than the grooved cylindrical roller R 2 .
  • At least one third cylindrical grooved roller R 3 is also present and located between the cylindrical grooved rollers Ri and R 2 in the height direction ( figure 9).
  • said wick or said wicks are (are) in contact at the input with part or all of the surface of said grooved cylindrical roller Ri then with part or all of the surface of said cylindrical grooved roller R 3 and comes out (ent) after have been in contact with part or all of the surface of said grooved cylindrical roller R 2 .
  • said prepreg is carried out on one face of said wick or said wicks at the angle formed by said wick or said wicks between the inlet of said at least one grooved cylindrical roller Ri and the vertical tangent to the cylindrical roller grooved Ri as well as at the angle 0 3 formed by said drill bit (s) and the vertical tangent to the grooved cylindrical roller R 3 and on the other face only at the angle 0 2 formed by said drill bit or said wicks and the vertical tangent to the grooved cylindrical roller R 2 .
  • the angle 02 formed by said wick or said wicks between the inlet of said at least one roller cylindrical grooved R2 and the vertical tangent to said cylindrical grooved roller R2, is included from 180 ° to 45 °, in particular from 120 ° to 60 °.
  • the angle 03 is comprised from 0 ° to 180 °, advantageously from 45 ° to 135 °.
  • FIG. 9 describes an embodiment, without being limited thereto, with a tank (20) comprising a fluidized bed (22) with two cylindrical rollers engorged Ri and R2, Ri preceding R2, and a third cylindrical roller engorged R3 and showing the angles ai , 02 and 03.
  • the diameter of the cylindrical grooved rollers Ri, R2 and R3 is presented as identical in FIG. 9 but the diameter of each cylindrical grooved cylindrical roller can be different, or two cylindrical grooved rollers can have the same diameter and the third a different diameter greater or lower, in the range as defined above.
  • the diameter of the three engorged cylindrical rollers is identical.
  • a second control of the development of said wick or said wicks is carried out at the level of the grooved cylindrical roller R3 and a third control of the development is carried out at the level of the grooved cylindrical roller R3.
  • the residence time in this third variant is as defined above.
  • the level of said powder in said fluidized bed is at least located at the mid-height of said grooved cylindrical roller R2. It would not go beyond the scope of the invention if in this third variant, said wick or said wicks is (are) in contact with a part or all of the surface of said grooved cylindrical roller Ri and then with part or all from the surface of said grooved cylindrical roller R2 and comes out after being in contact with part or all of the surface of said cylindrical grooved roller R3 ⁇
  • the present invention relates to a process as defined above, characterized in that a single thermoplastic polymer matrix is used and the thermoplastic polymer powder is fluidizable.
  • fluidizable means that the air flow rate applied to the fluidized bed is between the minimum fluidization flow rate (Umf) and the minimum bubbling flow rate (Umf) as shown in FIG. 12.
  • the volume diameter D90 of the particles is between 50 and 500 ⁇ m, advantageously from 120 to 300 ⁇ m.
  • the volume diameter D10 of the particles is from 5 to 200 ⁇ m, advantageously from 35 to 100 ⁇ m.
  • the diameter by volume of the powder particles is included in the ratio D90 / D10, that is to say comprised from 1.5 to 50, advantageously from 2 to 10.
  • the mean diameter D50 by volume of the particles of thermoplastic polymer powder is from 30 to 300 ⁇ m, in particular from 50 to 200 ⁇ m, more particularly from 70 to 200 ⁇ m.
  • the particle volume diameters (D10, D50 and D90) are defined according to ISO 9276: 2014.
  • the “D50” corresponds to the volume average diameter, that is to say the value of the particle size which divides the population of particles examined exactly in two.
  • the “D90” corresponds to the value at 90% of the cumulative curve of the particle size distribution by volume.
  • a creel is present before the tank comprising a fluidized bed for controlling the tension of said wick or said wicks at the inlet of the tank comprising a fluidized bed.
  • one or more embarrassments are present after the tank comprising the fluidized bed.
  • grooved rollers at the inlet and outlet of the tank containing the fluidized bed can be used.
  • the present invention relates to a method as defined above, characterized in that it further comprises at least one step of heating of the thermoplastic matrix allowing the melting or maintaining of the melting of said thermoplastic polymer after prepreg,
  • said at least one heating step being carried out by means of at least one connecting piece (E) conductive or not of heat and at least one heating system, with the exception of a heating calender,
  • said wick or said wicks being in contact with part or all of the surface of said at least one mooring piece (E) and running partially or completely over the surface of said at least one mooring piece (E) at heating system level.
  • the mooring piece (E) was positioned in an oven comprising a heating system, for example by IR but that said mooring piece was not positioned exactly under the elements heating for example by IR.
  • the oven had a convection heating mode and an IR heating system.
  • said docking piece (E) placed in this oven or in the environment of this oven was equipped with an independent heating means as a resistor for heating said room d 'embarrage (E), independently for example of the radiation of IR lamps and the natural convection of the oven and that, taking into account the speed of the line, the polymer present in the ribbons or wicks is still in the molten state when it comes into contact with said lashing part.
  • the height between the heating system and the fittings is from 1 to 100 cm, preferably from 2 to 30 cm, in particular from 2 to 10 cm.
  • a first heating step can be immediately consecutive to the pre-impregnation step or other steps can take place between the pre-impregnation step and the heating step.
  • the first stage of implementation by a heating system provided with at least one locking piece (E) does not correspond to a heating calender, and is always carried out before the calendering stage which is necessary to smooth and format the ribbon.
  • said first heating step is immediately consecutive to the pre-impregnation step.
  • immediate consecutive means that there is no intermediate step between the pre-impregnation step and said heating step.
  • a single heating step is carried out, immediately following the pre-impregnation step.
  • said at least one heating system is chosen from an infrared lamp, a UV lamp and convection heating if the interlocking piece is heat conductive.
  • the fibrous material being in contact with the fixture (s) in the heating system, and the fixture being conductive, the heating system is therefore also carried out by conduction.
  • said at least one heating system is chosen from an infrared lamp.
  • said at least one heating system is chosen from microwave heating, laser heating, and high frequency heating (HF).
  • the non-heating and non-conductive embedding piece (E) does not absorb the wavelength of the microwave, laser or HF heating system.
  • said at least one heating system is chosen from microwave heating.
  • said at least one fitting piece (E) is a compression roller R’i of convex, concave or cylindrical shape.
  • compression rollers corresponding to the embedding pieces (E) or those used for the pre-impregnation step may be identical or different, whether in terms of material or shape and its characteristics (diameter, length, width, height ... depending on the shape).
  • the convex shape is favorable to blooming while the concave shape is unfavorable to blooming although it is done nevertheless.
  • the at least one fitting piece (E) can also be an alternation of convex and concave shape.
  • the scrolling of the wick on a compression roller of convex shape causes the blooming of said wick then the scrolling of the wick on a compression roller of concave shape causes the retraction of the wick and so on allowing if need to improve the homogeneity of the impregnation, especially at heart.
  • compression roller means that the scrolling wick is supported partially or completely on the surface of said compression roller, which induces the blooming of said wick.
  • the rollers can be controlled rotation or fixed.
  • a step of shaping the lock or said parallel locks of said impregnated fibrous material is carried out.
  • a calendering system as described in WO 2015/121583 can be used.
  • it is carried out by calendering by means of at least one heating calender in the form of a single unidirectional ribbon or ply or of a plurality of parallel unidirectional ribbons or ply with, in the latter case, said heating calender comprising a plurality of grooves calendering, preferably up to 200 calendering grooves, in accordance with the number of said ribbons and with a pressure and / or a spacing between the rollers of said calender regulated by a controlled system.
  • This step is always carried out after the heating step if there is only one or between the first heating step and the second heating step when the two coexist.
  • the calendering step is carried out by means of a plurality of heating calenders, mounted in parallel and / or in series with respect to the direction of travel of the strands of fibers.
  • said (or said) heating calender (s) comprises (include) a heating system integrated by induction or by microwaves, preferably by microwaves, coupled to the presence of carbonaceous fillers in said thermoplastic polymer or mixture of polymers thermoplastics.
  • a belt press is present between the heating system and the calender.
  • a heating die is present between the heating system and the grille.
  • a belt press is present between the heating system and the calender and a heating die is present between the band press and the calender.
  • the calendering step is carried out by means of a plurality of heating calenders, mounted in parallel and / or in series with respect to the direction of travel of the strands of fibers.
  • said (or said) heating calender (s) comprises (include) a heating system integrated by induction or by microwaves, preferably by microwaves, coupled to the presence of carbonaceous fillers in said thermoplastic polymer or mixture of polymers thermoplastics.
  • said heating grille (s) is (are) coupled to an additional heating device, located before and / or after said (each) grille, in particular a device microwave or induction heating coupled to the presence of carbonaceous charges in said polymer or in said mixture of polymers, or an infrared IR or laser heating device or by direct contact with another heat source such as a flame or a hot gas .
  • an additional heating device located before and / or after said (each) grille, in particular a device microwave or induction heating coupled to the presence of carbonaceous charges in said polymer or in said mixture of polymers, or an infrared IR or laser heating device or by direct contact with another heat source such as a flame or a hot gas .
  • said pre-impregnation step (s) is (are) supplemented by a step of covering said single wick or said plurality of parallel wicks after pre-impregnation with the powder, said covering step being carried out before said calendering step, with a molten thermoplastic polymer, which may be identical to or different from said polymer in the form of powder in a fluidized bed, said molten polymer preferably being of the same nature as said polymer in powder form fluidized bed, preferably with said covering being effected by extrusion at a right angle relative to said single wick or to said plurality of parallel wicks.
  • the present invention relates to a unidirectional ribbon or web of pre-impregnated fibrous material, in particular ribbon or web wound on a reel, characterized in that it (it) is obtained by a process such as defined above.
  • the ribbon or the sheet has a width (I) and a thickness (ep) suitable for removal by robot in the manufacture of three-dimensional parts, and preferably has a width (I) of at least 5 mm and up to 600mm, preferably between 50 and 600 mm and even more preferably between 50 and 300mm.
  • Removal by robot can be carried out with or without slitting.
  • the thermoplastic polymer of the ribbon or the sheet is a polyamide chosen from, in particular, an aliphatic polyamide as chosen PA 6, PA 1 1, PA 12, PA 66, PA 46, PA 610, PA 612, PA 1010, PA 1012 , PA 1 1/1010 or PA 12/1010 or a semi-aromatic polyamide such as PA MXD6 and PA MXD10 or chosen from PA 6 / 6T, PA 66 / 6T, PA 6I / 6T, PA MPMDT / 6T, PA MXDT / 6T, PA PA1 1 / 10T, PA 1 1 / 6T / 10T, PA MXDT / 10T, PA MPMDT / 10T, PA BACT / 10T, PA BACT / 6T, PA BACT / 10T / 6T, PA BACT / 6T / 1 1 a PA 1 1 / BACT / 10T, a PA 1 1 / MPMDT / 10T and a PA 1 1 1 1
  • the present invention relates to the use of the method as defined above, for the manufacture of ribbons or calibrated plies suitable for the production of three-dimensional composite parts, by automatic removal of said ribbons or tablecloths using a robot.
  • the present invention relates to the use of the ribbon or the sheet of impregnated fibrous material, as defined above, in the manufacture of three-dimensional composite parts.
  • Said impregnated tape is therefore obtained from a prepreg tape after the heating step described above.
  • said manufacture of said composite parts relates to the fields of transport, in particular automobile, oil and gas, in particular offshore, gas storage, civil or military aeronautics, aerospace, nautical, rail; renewable energies, in particular wind, tidal, energy storage devices, solar panels; thermal protection panels; sports and recreation, health and medical, security and electronics.
  • the present invention relates to a three-dimensional composite part, characterized in that it results from the use of at least one unidirectional ribbon of impregnated fibrous material as defined above.
  • the fibrous material is chosen from carbon fiber and glass fiber.
  • the thermoplastic polymer used to impregnate the carbon fiber is chosen from a polyamide, in particular an aliphatic polyamide such as PA 1 1, PA 12, PA 1 1/1010 or PA 12/1010, or a semi-aromatic polyamide, particular a PA MXD6 and a PA MXD10 or selected from PA 6 / 6T, a PA 66 / 6T, a PA 6I / 6T, a PA MPMDT / 6T, a PA MXDT / 6T, a PA PA1 1 / 10T, a PA 1 1 / 6T / 10T, PA MXDT / 10T, PA MPMDT / 10T, PA BACT / 10T, PA BACT / 6T, PA BACT / 10T / 6T, PA BACT / 6T / 1 1, PA 1 1 / BACT / 10T, a PA 1 1 / MPMDT / 10
  • the thermoplastic polymer used to impregnate the glass fiber is chosen from a polyamide, in particular an aliphatic polyamide such as PA 1 1, PA 12, PA 1 1/1010 or PA 12/1010, or a semi-aromatic polyamide, particular a PA MXD6 and a PA MXD10 or selected from PA 6 / 6T, a PA 66 / 6T, a PA 6I / 6T, a PA MPMDT / 6T, a PA MXDT / 6T, a PA PA1 1 / 10T, a PA 1 1 / 6T / 10T, PA MXDT / 10T, PA MPMDT / 10T, PA BACT / 10T, PA BACT / 6T, PA BACT / 10T / 6T, PA BACT / 6T / 1 1, PA 1 1 / BACT / 10T, a PA 1 1 / MPMDT / 10T and a PA 1 1 / MXDT / 10T
  • FIG. 1 presents a diagram of a unit for implementing the process for manufacturing a prepreg fibrous material according to the invention.
  • Figure 2 shows a sectional diagram of two rollers constituting a calender as used in the unit of Figure 1.
  • FIG. 3 details a tank (20) comprising a fluidized bed (22) with a siphoned interlocking piece, adjustable in height (82).
  • the edge of the tank inlet is equipped with a rotary roller 83a on which the wick 81 a runs and the edge of the tank outlet is equipped with a rotary roller 83b on which the wick 81 b travels.
  • the roller being perpendicular to the direction of travel of the drill bit, the groove of the roller is only visible when viewed from the front or from above.
  • FIG. 4 presents an embodiment with a single grooved cylindrical roller, with a tank (20) comprising a fluidized bed (22) in which a single cylindrical grooved cylindrical roller is present and showing the angle a-i.
  • the arrows on the fiber indicate the direction of travel of the fiber.
  • the roller being perpendicular to the direction of travel of the wick, the groove of the roller is only visible in front or top view.
  • FIG. 5 shows an embodiment, without being limited to this, with two cylindrical grooved rollers Ri and R2 , Ri preceding R2, with a tank (20) comprising a fluidized bed (22) in which the two cylindrical grooved rollers cylindrical are at different heights from the bottom of the tank (R2 at a height H2 above Ri at a height H1) are present and showing the angle at and a 2.
  • the arrows at the fiber wick indicate the direction of travel of the wick.
  • FIG. 8 shows an exemplary embodiment with a tank (20) comprising a fluidized bed (22) in which two cylindrical cylindrical grooved rollers Ri and R2, Ri preceding R2, at different levels are present and showing the angle in and 02 and the wick passing under the roller R2.
  • FIG. 9 shows an embodiment with a tank (20) comprising a fluidized bed (22) with two cylindrical grooved rollers Ri and R2, Ri preceding R2, and a cylindrical grooved roller R3 and showing the angles at, 02 and 03.
  • the fibers are then impregnated to the core by said resin after melting said powder present in said pre-impregnated wick, after heating and passing through a series of tying-up, followed by calendering, to form said final ribbon.
  • FIG. 11 presents the evolution of the mass percentage of MPMDT / 10T impregnated in the wick as a function of time in Comparative Example 1.
  • the fibers are then impregnated to the core by said resin after melting of said powder present in said pre-impregnated wick, after heating and passing through a series of ties, followed by calendering, to form said final ribbon.
  • FIG. 13 shows the evolution of the mass percentage of MPMDT / 10T impregnated in the wick as a function of the time of Example 2.
  • Figure 14 shows the fluidization as a function of the air flow.
  • the air flow applied to the fluidized bed must be between the minimum fluidization flow (Umf) and the minimum bubbling flow (Umf)
  • Comparative Example 1 General Procedure for Preimpregnating a Fibrous Material (Non-Sized Carbon Fiber) with an MPMDT / 10T Powder
  • the fibrous material (12K carbon fiber wick) was homogeneously pre-impregnated with an MPMDT / 10T polyamide powder with a particle size distribution defined above according to this operating mode and the ribbon obtained from this pre-impregnated wick, after melting the powder and passing through a series of tying-up followed by a calendering is presented in figure 10 in order to obtain a 1 ⁇ 4 ”tape.
  • the fibrous material (12K carbon fiber wick) was homogeneously pre-impregnated with an MPMDT / 10T polyamide powder with a particle size distribution defined above according to this operating mode and the ribbon obtained from this wick impregnated, after melting the powder and passing through a series of tying-up followed by a calendering is presented in figure 12 to obtain a 1 ⁇ 4 ”tape.
  • the porosity was determined by image analysis on a 1 ⁇ 2 ”carbon fiber wick impregnated with MPMDT / 10T). It is 5%.
  • Example 4 Determination of the porosity rate the relative difference between theoretical density and experimental density (general method)
  • thermoplastic matrix The density of the thermoplastic matrix
  • the number of samples must be at least 30 for the result to be representative of the material studied.
  • the measurement of the fiber content is determined according to ISO 1172: 1999 or by thermogravimetric analysis (ATG) as determined for example in the document B. Benzler, Ap additionslabor, Mettler Toledo, Giesen, UserCom 1/2001.
  • the measurement of the carbon fiber content can be determined according to ISO 14127: 2008.
  • the porosity is then the relative difference between theoretical density and experimental density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Procédé de fabrication d'un matériau comprenant un matériau fibreux en fibres continues et une matrice polymère thermoplastique, ledit matériau étant réalisé en un ruban unidirectionnel, ledit procédé comprenant une étape de pré-imprégnation d'une mèche (81a) dudit matériau fibreux par ladite matrice sous forme de poudre, ladite étape de pré-imprégnation étant effectuée dans un lit fluidisé (22) comprenant une pièce d'embarrage gorgée (82), ladite mèche (81a) étant en contact avec la surface de ladite pièce d'embarrage (82) et comprenant jusqu'à 0,1% en poids d'ensimage, le contrôle du taux de matrice étant effectué par contrôle du temps de séjour dans la poudre et par contrôle constant de la tension de ladite mèche (81 a) lorsqu'elle pénètre dans le lit fluidisé.

Description

PROCEDE DE FABRICATION D’UN MATERIAU FIBREUX PRE-IMPREGNE DE POLYMERE THERMOPLASTIQUE EN LIT FLUIDISE
La présente invention concerne un procédé de fabrication d’un matériau fibreux pré imprégné de polymère thermoplastique en lit fluidisé.
Plus particulièrement, l’invention se rapporte à un procédé de fabrication d’un matériau fibreux pré-imprégné comprenant une étape de pré-imprégnation d’un matériau fibreux non ensimé ou faiblement ensimé pour la préparation d’un matériau fibreux imprégné, notamment à cœur, de porosité réduite et contrôlée, en vue de l’obtention de rubans de matériau fibreux imprégné, de dimensions calibrées, directement utilisables pour la fabrication de pièces composites tridimensionnelles. Dans la présente description, on entend par « matériau fibreux » un assemblage de fibres de renfort. Avant sa pré-imprégnation et sa mise en forme, il se présente sous forme de mèches. Après sa mise en forme et l’imprégnation, notamment à cœur des mèches de fibres, il se présente sous forme de rubans (ou tapes), de bandes, ou de nappes. Lorsque les fibres de renfort sont continues, leur assemblage constitue un tissu ou un non tissé (NCF). Lorsque les fibres sont courtes, leur assemblage constitue un feutre ou un mat de fibre.
Dans la présente description, on utilise le terme « bande » pour désigner des bandes de matériau fibreux dont la largeur est supérieure ou égale à 400mm. On utilise le terme « ruban » pour désigner des rubans de largeur calibrée et inférieure ou égale à 400mm.
Le terme « mèche » est également employé pour désigner le matériau fibreux.
De tels matériaux fibreux pré-imprégnés sont notamment destinés à la réalisation de matériaux composites légers pour la fabrication de pièces mécaniques ayant une structure à trois dimensions et possédant de bonnes propriétés mécaniques, et thermiques. Lorsque les fibres sont en carbone ou que la résine est chargée d’additifs adaptés, ces matériaux fibreux sont capables d’évacuer des charges électrostatiques. Ils possèdent donc des propriétés compatibles avec la fabrication de pièces notamment dans les domaines de la mécanique, de l’aéronautique civile ou militaire, et nautique, de l’automobile, du pétrole et du gaz, en particulier l’offshore, du stockage de gaz, de l’énergie, de la santé et du médical, de l’armée et de l’armement, des sports et loisirs, et de l’électronique. Cependant, l’utilisation de fibres non ensimées est une nécessité pour l’aéronautique et l’offshore. En effet, en particulier pour fabriquer des pièces structurelles et/ou soumises à des environnements chimiques/thermiques extrêmes, il est nécessaire que non seulement le polymère utilisé soit capable de résister aux contraintes de la pièce ; mais il est aussi nécessaire que l’interface fibre/matrice soit la meilleure possible pour une meilleure résistance du composite, aussi bien en transmission d’efforts mécaniques de la résine vers les fibres que de résistance chimique par exemple. Les forces de ces liens entre la matrice et les fibres sont dictées par la qualité d’imprégnation du matériau (porosité limitée) et par la nature des liens physico-chimiques voire mécaniques entre la fibre et la matrice polymère.
Dans le but d’améliorer les liens physico-chimiques entre polymère et fibres, les fabricants de fibres utilisent des ensimages dont la composition et le taux peuvent varier. Or, étant généralement de nature organique (type résine thermodurcissable ou thermoplastique) et très souvent formulés pour l’imprégnation des fibres par des polymères à bas point de fusion ou thermodurcissables à bas point de Tg, les ensimages sont souvent dégradés par les procédés d’imprégnation, notamment pendant les étapes de pré-imprégnation (voie fondue, passage en solution solvantée etc... ) et/ou pendant les étapes de fusion de la matrice thermoplastique, notamment lorsqu’elle présente un haut point de fusion (pour un semi-cristalin ou une haute Tg (pour un amorphe ou un thermodurcissable). En outre, la compatibilité chimique entre le polymère de la matrice et l’ensimage n’est pas toujours optimale ; la force d’accroche résultante pouvant être modifiée en positif comme en négatif en comparaison de celle observée avec une fibre non ensimée.
Cela pose donc un certain nombre de difficultés pour la fabrication de tapes au moyen d’un procédé de pré-imprégnation par une poudre (ou un mélange de poudres) sèche(s), en particulier dans le cas où chaque mèche est pré-imprégnée de poudre séparément des autres. Dans la plupart des cas, la ou les mèches sont guidées par des pièces d’embarrages (généralement sous forme de rouleaux) placés dans une cuve contenant soit le lit fluidisé, soit une dispersion aqueuse.
Ainsi la demande internationale WO20181 15736 décrit-elle un procédé de pré imprégnation d’un matériau fibreux en lit fluidisé dont le taux de poudre dépend du temps de séjour dans le lit fluide et la tension sur la ou les mèches est contrôlée à l’aide d’un cantre présent avant la cuve comprenant le lit fluidisé. L’utilisation d’au moins un embarrage (en particulier un rouleau cylindrique de forme convexe, concave ou cylindrique) dans le lit fluidisé permet d’améliorer la pré imprégnation par rapport aux procédés de l’art antérieur et le matériau fibreux utilisé peut être ensimé ou non ensimé.
Il n’est nullement précisé dans cette demande si les rouleaux utilisés sont lisses ou gorgés (ou crantés).
L’article de Gibson A. et al. (composites manufacturing, Vol. 3, N°4 (1992)) décrit une étape de pré-imprégnation en lit fluidisé d’un matériau fibreux par un polymère thermoplastique comprenant des rouleaux lisses dans le lit fluidisé avec contrôle du taux de fibre au moyen d’un système vibrant placé en sortie de cuve.
Néanmoins, lorsque ces rouleaux sont lisses, le fait que les fibres soient non ensimées conduit à un épanouissement de la mèche de fibres très important et surtout très fluctuant, ce qui impacte directement le taux de poudre emporté par la ou les mèches de fibres et rend ce taux variable et incontrôlé.
Dans des conditions de faible tension, que les fibres soit ensimées ou non, le contrôle du temps de séjour ne suffit plus pour contrôler le taux de poudre et la trop faible tension provoque une torsion et/ou un enroulement des mèches (twist).
Cependant, dans le cas des fibres non ensimées, une tension trop importante des fibres provoque l’endommagement de ces dernières au contact des rouleaux et produisent beaucoup de fibrilles coupées (fuzz en anglais) qui polluent le lit fluidisé et perturbent la qualité de la fluidisation et donc la qualité de pré-imprégnation du tape.
Il est par conséquent nécessaire de pouvoir contrôler le taux de poudre avec des fibres non ensimées et ce de manière continue dans le temps sans les endommager. L’invention a donc pour but de remédier aux inconvénients de l’art antérieur.
L’invention a donc pour objet un procédé de fabrication d’un matériau fibreux pré imprégné comprenant un matériau fibreux en fibres continues et au moins une matrice polymère thermoplastique, comprenant une étape de pré-imprégnation, en particulier homogène, dudit matériau fibreux se présentant sous forme d’une mèche ou de plusieurs mèches parallèles par au moins une matrice polymère thermoplastique se présentant sous forme de poudre, ladite étape de pré imprégnation étant effectuée sur un matériau fibreux non ensimé dans une cuve comprenant un lit fluidisé muni de rouleaux cylindriques gorgés. L’invention se rapporte également à un ruban unidirectionnel de matériau fibreux imprégné, en particulier ruban enroulé sur bobine, caractérisé en ce qu’il est obtenu par un procédé tel que défini ci-dessus.
L’invention porte en outre sur une utilisation du ruban tel que défini ci-dessus dans la fabrication de pièces en trois dimensions. Ladite fabrication desdites pièces composites concerne les domaines des transports, en particulier automobile, du pétrole et du gaz, en particulier l’offshore, du stockage de gaz, aéronautique civile ou militaire, nautique, ferroviaire ; des énergies renouvelables, en particulier éolienne, hydrolienne, les dispositifs de stockage d’énergie, les panneaux solaires ; des panneaux de protection thermique ; des sports et loisirs, de la santé et du médical, de la sécurité et de l’électronique.
L’invention concerne également une pièce composite en trois dimensions, caractérisée en ce qu’elle résulte de l’utilisation d’au moins un ruban unidirectionnel de matériau fibreux imprégné tel que défini ci-dessus.
L’invention a pour objet un procédé de fabrication d’un matériau fibreux pré-imprégné comprenant un matériau fibreux en fibres continues et au moins une matrice polymère thermoplastique, caractérisé en ce que ledit matériau fibreux pré-imprégné est réalisé en un ruban unique unidirectionnel ou en une pluralité de rubans parallèles unidirectionnels et en ce que ledit procédé comprend une étape de pré-imprégnation, en particulier homogène, dudit matériau fibreux se présentant sous forme d’une mèche (81 a) ou de plusieurs mèches parallèles par ladite au moins une matrice polymère thermoplastique se présentant sous forme de poudre, ladite étape de pré imprégnation étant effectuée par voie sèche dans une cuve (20) comprenant un lit fluidisé (22) comprenant au moins une pièce d’embarrage gorgée (82),
ladite mèche (81 a) ou lesdites mèches étant en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage gorgée (82) et ladite mèche (81 a) ou lesdites mèches comprenant jusqu'à 0, 1 % en poids d’ensimage,
et le contrôle du taux de ladite au moins une matrice polymère thermoplastique dans ledit matériau fibreux étant effectué par contrôle du temps de séjour dudit matériau fibreux dans la poudre et par contrôle constant de la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé.
Avantageusement, le procédé de l’invention est à l’exclusion de tout procédé électrostatique en charge volontaire. Le terme « ensimage » désigne les traitements de surface appliqués aux matériaux fibreux lors de leur fabrication. Il peut aussi désigner un prétraitement fugace en préambule de l’étape de pré-imprégnation, qu’il soit fait directement en ligne avec l’imprégnation ou non. Il peut aussi désigner un prétraitement fugace en préambule de l’étape de pré-imprégnation, qu’il soit fait directement en ligne avec l’imprégnation ou non.
Ils sont généralement de nature organique (type résine thermodurcissable ou thermoplastique) et très souvent formulés pour la pré-imprégnation des fibres de renfort par des polymères à bas point de fusion Tf ou thermodurcissables à bas point de Tg.
Ces ensimages sont également utiles pour protéger les fibres sèches d’un endommagement lors d’un contact avec un système de guidage.
Ledit matériau fibreux peut donc comprendre jusqu'à 0, 1 % en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Dans le cas d’un prétraitement fugace réalisé par l’imprégnateur par exemple en préambule de l’étape la pré-imprégnation des fibres de renfort, l’ensimage peut être un liquide organique comme de l’eau, un alcool à bas ou haut poids moléculaire (éthanol, méthanol, isopropanol par exemple), une cétone (acétone etc... ) qui jouera le rôle d’ensimage fugace ; c’est-à-dire qu’il sera présent un court laps de temps en contact avec la fibre pour permettre sa manipulation à l’état « sec » (i.e. avant la pré imprégnation) et qu’il sera ensuite extrait du matériau composite pour ne pas perturber les caractéristiques finales du composite.
Avantageusement, ladite mèche (81 a) ou lesdites mèches est(sont) non ensimées en particulier dans le cas d’une résine thermoplastique amorphe présentant une haute Tg ou d’une résine semi-cristalline à haut point de fusion : dans ces cas l’ensimage se dégrade lorsqu’il est soumis à la haute température des procédés de transformation imposée par la nature de ces résines.
Cela signifie que ladite mèche (81 a) ou lesdites mèches est(sont) soit substantiellement dépourvue d’ensimage par ce que le matériau fibreux a été au préalable dé-ensimé ou soit dépourvue d’ensimage parce que le matériau fibreux d’origine est non ensimé.
Pour le dé-ensimage, plusieurs solutions existent: - chauffage en milieu chargé en humidité car généralement les ensimages sont déposés en solution base aqueuse lors de la fabrication des fibres car généralement c’est un traitement préalable des bobines, sinon il est nécessaire de mettre en ligne avec le procédé de pré-imprégnation :
- une dégradation thermique
- un plongeon dans un solvant de l’ensimage (eau ou autre solvant organique). Avantageusement, le diamètre moyen D50 en volume des particules de poudre de polymère thermoplastique est compris de 30 à 300 pm, notamment de 50 à 200 pm, plus particulièrement de 70 à 200pm.
L’expression « temps de séjour dans la poudre» signifie le temps durant lequel la mèche est en contact avec ladite poudre dans le lit fluidisé.
Les Inventeurs ont trouvé de manière inattendue que lorsqu’un matériau fibreux non ensimé est utilisé pour l’étape de pré-imprégnation en lit fluidisé, le contrôle du temps de séjour dans la poudre n’était plus suffisant pour pré-imprégner le matériau fibreux par la matrice polymère thermoplastique, en particulier de manière homogène avec un taux de poudre (résine) bien contrôlé et que l’étape de pré-imprégnation nécessitait la présence d’un ou plusieurs rouleau(x) gorgés dans le lit fluidisé avec contrôle simultané de la tension dudit matériau fibreux à l’entrée du lit fluidisé.
Il existe une tension critique dénommée Te qui conduit à l’endommagement des fibres (fuzz) et une tension Te’ au-delà de laquelle l’imprégnation devient impossible car la tension bloque alors l’épanouissement de la mèche dans le lit fluidisé. Généralement, dans le cas des fibres non ensimées, Te est < à Te’.
Il existe également une Tmin qui est la tension en dessous de laquelle les twists apparaissent.
Avantageusement, la tension T de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est inférieure à Te.
Avantageusement, la tension T de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est supérieure à Tmin.
Avantageusement, la tension T de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est inférieure à Te et supérieure à Tmin. Dans toute la description, le matériau fibreux après passage dans le lit fluidisé est dénommé matériau fibreux pré-imprégné et après chauffage et/ou calandrage, il est dénommé matériau fibreux imprégné. Les mesures du taux de fibre et de la porosité sont effectuées sur le matériau fibreux imprégné, et donc après chauffage et/ou calandrage.
Le terme « homogène » signifie que la pré-imprégnation est uniforme et qu’il n’existe pas de fibres sèches en surface du matériau fibreux pré-imprégné.
Matrice polymère
On entend par thermoplastique, ou polymère thermoplastique, un matériau généralement solide à température ambiante, pouvant être semi-cristallin ou amorphe, et qui se ramollit lors d’une augmentation de température, en particulier après passage de sa température de transition vitreuse (Tg) et s’écoule à plus haute température lorsqu’il est amorphe, ou pouvant présenter une fusion franche au passage de sa température dite de fusion (Tf) lorsqu’il est semi-cristallin, et qui redevient solide lors d’une diminution de température en dessous de sa température de cristallisation (pour un semi-cristallin) et en dessous de sa température de transition vitreuse (pour un amorphe).
La Tg et la Tf sont déterminées par analyse calorimétrique différentielle (DSC) selon la norme 1 1357-2 :2013 et 1 1357-3 :2013 respectivement.
Concernant le polymère de constitution de la matrice de pré-imprégnation du matériau fibreux, c’est avantageusement un polymère thermoplastique ou un mélange de polymères thermoplastiques. Ce polymère ou mélange de polymères thermoplastiques est broyé sous forme de poudre, afin de pouvoir l’utiliser dans un dispositif tel qu’une cuve, notamment en lit fluidisé.
Le dispositif sous forme de cuve, notamment en lit fluidisé peut être ouvert ou fermé. De manière facultative, le polymère thermoplastique ou mélange de polymères thermoplastiques comprend en outre des charges carbonées, en particulier du noir de carbone ou des nanocharges carbonées, de préférence choisies parmi des nanocharges carbonées, en particulier des graphènes et/ou des nanotubes de carbone et/ou des nanofibrilles de carbone ou leurs mélanges. Ces charges permettent de conduire l’électricité et la chaleur, et permettent par conséquent d’améliorer la lubrification de la matrice polymère lorsqu’elle est chauffée.
Optionnellement, ledit polymère thermoplastique comprend au moins un additif, notamment choisi parmi un catalyseur, un antioxydant, un stabilisant thermique, un stabilisant UV, un stabilisant à la lumière, un lubrifiant, une charge, un plastifiant, un agent ignifugeant, un agent nucléant, un allongeur de chaîne et un colorant ou un mélange de ceux-ci. Selon une autre variante, le polymère thermoplastique ou mélange de polymères thermoplastiques peut en outre comprendre des polymères à cristaux liquides ou du poly(butylène téréphtalate) cyclisé, ou des mélanges en contenant, comme la résine CBT100 commercialisée par la société CYCLICS CORPORATION. Ces composés permettent notamment de fluidifier la matrice polymère à l’état fondu, pour une meilleure pénétration au cœur des fibres. Selon la nature du polymère, ou mélange de polymères thermoplastiques, utilisé pour réaliser la matrice de pré-imprégnation, notamment sa température de fusion, on choisira l’un ou l’autre de ces composés. Les polymères thermoplastiques entrant dans la constitution de la matrice de pré imprégnation du matériau fibreux, peuvent être choisis parmi :
- les polymères et copolymères de la famille des polyamides (PA) aliphatiques, cycloaliphatiques ou des PA semi-aromatiques (encore dénommés polyphtalamides (PPA)),
- les polyurées, en particulier aromatiques,
- les polymères et copolymères de la famille des acryliques comme les polyacrylates, et plus particulièrement le polyméthacrylate de méthyle (PMMA) ou ses dérivés
- les polymères et copolymères de la famille des polyaryléther cétones (PAEK) comme le poly(éther éther cétone) (PEEK), ou les polyaryléther cétones cétones (PAEKK) comme le poly(éther cétone cétone) (PEKK) ou leurs dérivés,
- les polyéther-imides (PEI) aromatiques,
- les polyarylsulfures, en particulier les polyphénylène sulfures (PPS),
- les polyarylsulfones, en particulier les polyphénylène sulfones (PPSU),
les polyoléfines, en particulier le polypropylène (PP);
- l’acide polylactique (PLA),
- l’alcool polyvinylique (PVA),
- les polymères fluorés, en particulier le poly(fluorure de vinylidène) (PVDF), ou le polytétrafluoroéthylène (PTFE) ou le polychlorotrifluoroéthylène (PCTFE), et leurs mélanges.
Avantageusement, lorsque ledit polymère thermoplastique est en mélange, il est additionné sous forme de poudre obtenue au préalable par « dry blend » ou compound broyé ou directement dans la cuve sous forme de « dry blend in situ». Avantageusement, il est additionné sous forme de poudre obtenue au préalable par « dry blend » ou directement dans la cuve sous forme de « dry blend in situ» et le mélange est un mélange de PEKK et de PEI.
Avantageusement, lorsque ledit polymère est un mélange de deux polymères P1 et P2, la proportion en poids de polymère P1 et P2 est comprise de 1 -99% à 99-1 %. Avantageusement, le mélange PEKK/PEI est compris de 90-10% à 60-40% en poids, en particulier de 90-10% à 70-30% en poids.
Le polymère thermoplastique peut correspondre au polymère final non réactif qui imprégnera le matériau fibreux ou à un prépolymère réactif, qui imprégnera également le matériau fibreux, mais est susceptible de réagir sur lui-même ou avec un autre prépolymère, en fonction des fins de chaîne portées par ledit prépolymère, après pré-imprégnation, ou encore avec un allongeur de chaîne et notamment lors d’un chauffage au niveau des embarrages dans le four et/ou lors de la mise en oeuvre de la tape dans le procédé final de fabrication de la pièce composite.
Selon une première possibilité, ledit prépolymère peut comprendre ou être constituée de, au moins un prépolymère (polyamide) réactif porteur sur la même chaîne (c'est- à-dire sur le même prépolymère), de deux fonctions terminales X’ et Y’ fonctions respectivement coréactives entre elles par condensation, plus particulièrement avec X’ et Y’ étant amine et carboxy ou carboxy et amine respectivement. Selon une deuxième possibilité, ledit prépolymère peut comprendre ou être constituée de, au moins deux prépolymères polyamides réactifs entre eux et porteurs chacun respectivement de deux fonctions terminales X’ ou Y’, identiques (identiques pour même prépolymère et différentes entre les deux prépolymères), ladite fonction X’ d’un prépolymère pouvant réagir seulement avec ladite fonction Y’ de l’autre prépolymère, en particulier par condensation, plus particulièrement avec X’ et Y’ étant amine et carboxy ou carboxy et amine respectivement.
Selon une troisième possibilité, ledit prépolymère peut comprendre ou être constituée de, au moins un prépolymère dudit polymère polyamide thermoplastique, porteur de n fonctions réactives terminales X, choisies parmi : -NH2, -C02H et -OH, de préférence NH2 et -C02H avec n étant 1 à 3, de préférence de 1 à 2, plus préférentiellement 1 ou 2, plus particulièrement 2 et au moins un allongeur de chaîne Y-A’-Y, avec A’ étant un biradical hydrocarboné, de structure non polymère, porteur de 2 fonctions réactives terminales Y identiques, réactives par polyaddition avec au moins une fonction X dudit prépolymère a1 ), de préférence de masse moléculaire inférieure à 500, plus préférentiellement inférieure à 400.
La masse moléculaire moyenne en nombre Mn dudit polymère final de la matrice thermoplastique est de préférence dans une plage allant de 10000 à 40000, de préférence de 12000 à 30000. Ces valeurs Mn peuvent correspondre à des viscosités inhérentes supérieures ou égales à 0,8 telle que déterminées dans le m-crésol selon la norme ISO 307:2007 mais en changeant le solvant (utilisation du m-crésol à la place de l’acide sulfurique et la température étant de 20°C).
Lesdits prépolymères réactifs selon les deux options citées plus haut, ont une masse moléculaire moyenne en nombre Mn allant de 500 à 10000, de préférence de 1000 à 6000, en particulier de 2500 à 6000.
Les Mn sont déterminées en particulier par le calcul à partir du taux des fonctions terminales déterminé par titration potentiométrique en solution et la fonctionnalité desdits prépolymères. Les masses Mn peuvent également être déterminées par chromatographie d’exclusion stérique ou par RMN.
La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1 :201 1 "Plastiques - Matériaux polyamides (PA) pour moulage et extrusion - Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2) et est bien connue de l’homme du métier.
Le polyamide peut être un homopolyamide ou un copolyamide ou un mélange de ceux-ci.
Avantageusement, les polymères de constitution de la matrice sont choisis parmi les Polyamides (PA), en particulier choisis parmi les polyamides aliphatiques, notamment le PA1 1 et le PA12, les polyamides cycloaliphatiques, et les polyamides semi-aromatiques (polyphthalamides) éventuellement modifiés par des motifs urées, et leur copolymères, le Polyméthacrylate de méthyle (PPMA) et ses copolymères, les Polyether imides (PEI), le Poly(sulfure de phénylène) (PPS), le Poly(sulfone de phénylène) (PPSU), le Polyethercétonecétone (PEKK), le Polyetherethercétone (PEEK), les polymères fluorés comme le poly(fluorure de vinylidène) (PVDF).
Pour les polymères fluorés, on peut utiliser un homopolymère du fluorure de vinylidène (VDF de formule CH2=CF2) ou un copolymère du VDF comprenant en poids au moins 50% en masse de VDF et au moins un autre monomère copolymérisable avec le VDF. La teneur en VDF doit être supérieure à 80% en masse, voire mieux 90% en masse, pour assurer une bonne résistance mécanique à la pièce de structure, surtout lorsqu’elle est soumise à des contraintes thermiques et chimiques. Le comonomère peut être un monomère fluoré tel que par exemple le fluorure de vinyle.
Pour des pièces de structure devant résister à des températures élevées, outre les polymères fluorés, on utilise avantageusement selon l’invention les PAEK (PolyArylEtherKetone) tels que les polyéther cétones PEK, le poly(éther éther cétone) PEEK, le poly(éther cétone cétone) PEKK, le Poly(éther cétone éther cétone cétone) PEKEKK ou les PA de haute température de transition vitreuse Tg).
Avantageusement, ledit polymère thermoplastique est un polymère dont la température de transition vitreuse est telle que Tg> 80°C ou un polymère semi- cristallin dont la température de fusion Tf > 150°C.
Avantageusement, ledit polymère thermoplastique est :
un polyamide aliphatique choisi parmi le polyamide 6 (PA-6), le polyamide 1 1 (PA- 1 1 ), le polyamide 12 (PA-12), le polyamide 66 (PA-66), le polyamide 46 (PA-46), le polyamide 610 (PA-610), le polyamide 612 (PA-612), le polyamide 1010 (PA-1010), le polyamide 1012 (PA-1012), ou un mélange de ceux-ci ou un copolyamide de ceux- ci,
un polyamide semi-aromatique, éventuellement modifié par des unités urées, notamment un polyamide semi-aromatique de formule X/YAr, tel que décrits dans EP1505099, notamment un polyamide semi-aromatique de formule A/XT dans laquelle A est choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d’un lactame et un motif répondant à la formule (diamine en Ca). (diacide en Cb), avec a représentant le nombre d’atomes de carbone de la diamine et b représentant le nombre d’atome de carbone du diacide, a et b étant chacun compris entre 4 et 36, avantageusement entre 9 et 18, le motif (diamine en Ca) étant choisi parmi les diamines aliphatiques, linéaires ou ramifiés, les diamines cycloaliphatiques et les diamines alkylaromatiques et le motif (diacide en Cb) étant choisi parmi les diacides aliphatiques, linéaires ou ramifiés, les diacides cycloaliphatiques et les diacides aromatiques;
X.T désigne un motif obtenu à partir de la polycondensation d'une diamine en Cx et de l’acide téréphtalique, avec x représentant le nombre d’atomes de carbone de la diamine en Cx, x étant compris entre 6 et 36, avantageusement entre 9 et 18, notamment un polyamide de formule A/6T, A/9T, A/10T ou A/1 1 T, A étant tel que défini ci-dessus, en particulier un polyamide PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA MPMDT/6T, un PA MXDT/6T, un PA PA1 1/10T, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, un PA 1 1/BACT/10T, PA 1 1/BACT/6T un PA 1 1/MPMDT/10T et un PA 1 1/MXDT/10T, et les copolymères blocs, notamment polyamide/polyéther (PEBA).
T correspond à l’acide téréphtalique, MXD correspond à la m-xylylène diamine, MPMD correspond à la méthylpentaméthylène diamine et BAC correspond au bis(am inométhyl)cyclohexane.
Matériau fibreux :
Concernant les fibres de constitution dudit matériau fibreux, ce sont notamment des fibres d’origine minérale, organique ou végétale.
Comme déjà dit plus haut, ledit matériau fibreux peut donc comprendre jusqu'à 0, 1 % en poids d’un matériau de nature organique (type résine thermodurcissable ou thermoplastique) dénommé ensimage.
Avantageusement, ladite mèche (81 a) ou lesdites mèches est(sont) non ensimées. Cela signifie que ladite mèche (81 a) ou lesdites mèches est(sont) soit substantiellement dépourvue(s) d’ensimage parce que le matériau fibreux a été au préalable dé-ensimé ou soit dépourvue(s) d’ensimage parce que le matériau fibreux d’origine est non ensimé.
Parmi les fibres d’origine minérale, on peut citer les fibres de carbone, les fibres de verre, les fibres de basalte, les fibres de silice, ou les fibres de carbure de silicium par exemple. Parmi les fibres d’origine organique, on peut citer les fibres à base de polymère thermoplastique ou thermodurcissable, telles que des fibres de polyamides semi-aromatiques, des fibres d’aramide ou des fibres en polyoléfines par exemple. De préférence, elles sont à base de polymère thermoplastique amorphe et présentent une température de transition vitreuse Tg supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Avantageusement, elles sont à base de polymère thermoplastique semi-cristallin et présentent une température de fusion Tf supérieure à la Tg du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est amorphe, ou supérieure à la Tf du polymère ou mélange de polymère thermoplastique de constitution de la matrice de pré-imprégnation lorsque ce dernier est semi-cristallin. Ainsi, il n’y a aucun risque de fusion pour les fibres organiques de constitution du matériau fibreux lors de l’imprégnation par la matrice thermoplastique du composite final. Parmi les fibres d’origine végétale, on peut citer les fibres naturelles à base de lin, de chanvre, de lignine, de bambou, de soie notamment d’araignée, de sisal, et d’autres fibres cellulosiques, en particulier de viscose. Ces fibres d’origine végétale peuvent être utilisées pures, traitées ou bien enduites d’une couche d’enduction, en vue de faciliter l’adhérence et l’imprégnation de la matrice de polymère thermoplastique.
Le matériau fibreux peut également être un tissu, tressé ou tissé avec des fibres.
Il peut également correspondre à des fibres avec des fils de maintien.
Ces fibres de constitution peuvent être utilisées seules ou en mélanges. Ainsi, des fibres organiques peuvent être mélangées aux fibres minérales pour être pré imprégnées de poudre polymère thermoplastique et former le matériau fibreux pré imprégné.
Les mèches de fibres organiques peuvent avoir plusieurs grammages. Elles peuvent en outre présenter plusieurs géométries. Les fibres peuvent se présenter sous forme de fibres courtes, qui composent alors les feutres ou les non tissés pouvant se présenter sous la forme de bandes, nappes, ou morceaux, ou sous forme de fibres continues, qui composent les tissus 2D, les tresses ou mèches de fibres unidirectionnelles (UD) ou non tissées. Les fibres de constitution du matériau fibreux peuvent en outre se présenter sous forme d’un mélange de ces fibres de renfort de différentes géométries. De préférence, les fibres sont continues.
De préférence le matériau fibreux est constitué par des fibres continues de carbone, de verre ou de carbure de silicium ou leur mélange, en particulier des fibres de carbone. Il est utilisé sous forme d’une mèche ou de plusieurs mèches.
Les matériaux imprégnés, sont aussi appelés « prêts à l’emploi », et sont obtenus à partir du matériau fibreux pré-imprégné, après fusion de la poudre ou du mélange de poudre. Dans ce type de matériaux imprégnés, le polymère ou mélange de polymères thermoplastiques d’imprégnation est réparti de manière à obtenir un minimum de porosités, c’est à dire un minimum de vides entre les fibres. En effet, la présence de porosités dans ce type de matériaux peut agir comme des points de concentrations de contraintes, lors d’une mise sous contrainte mécanique de traction par exemple, et qui forment alors des points d’initiation de rupture du matériau fibreux imprégné et le fragilisent mécaniquement. Une réduction de la porosité améliore donc la tenue mécanique et l’homogénéité du matériau composite formé à partir de ces matériaux fibreux pré-imprégnés.
Ainsi, dans le cas de matériaux imprégnés dits « prêts à l’emploi », le taux de fibres dans ledit matériau fibreux imprégné est compris de 45 à 65 % en volume, de préférence de 50 à 60% en volume, notamment de 54 à 60% en volume.
La mesure du taux d'imprégnation peut être réalisée par analyse d'image (utilisation de microscope ou d'appareil photo ou de caméra numérique, notamment), d'une coupe transversale du ruban, en divisant la surface du ruban imprégnée par le polymère par la surface totale du produit (surface imprégnée plus surface des porosités). Afin d'obtenir une image de bonne qualité il est préférable d'enrober le ruban découpé dans son sens transversal dans une résine de polissage standard et de polir avec un protocole standard permettant l'observation de l'échantillon au microscope grossissement fois 6 au minimum.
Avantageusement, le taux de porosité dudit matériau fibreux imprégné obtenu après fusion de la poudre présente dans la mèche pré-imprégnée et imprégnation à cœur des fibres, est compris de 0% et 30%, notamment de 1 % à 10%, en particulier de 1 % à 5%.
Le taux de porosité correspond au taux de porosité fermée et peut être déterminée soit par microscopie électronique, soit comme étant l’écart relatif entre la densité théorique et la densité expérimentale dudit matériau fibreux pré-imprégné tel que décrit dans la partie exemples de la présente invention.
Etape de pré-imprégnation :
Un exemple d’unité de mise en œuvre du procédé de fabrication est décrit dans la demande internationale WO 2015/121583 et est représenté figure 1 , à l’exception de la cuve (autrement appelée cuve de pré-imprégnation qui dans le cas de l’invention comprend un lit fluidisé muni d’une pièce d’embarrage gorgée (figure 3) qui peut être un rouleau cylindrique gorgé (figure 4)).
Sur les figures 1 à 9 dans lesquelles la pièce d’embarrage ou le rouleau sont perpendiculaires au lit fluidisé, la gorge n’est pas visible. Elle ne l’est qu’en vue de face (figures 2 et 4).
Tous les rouleaux cylindriques présentés dans les figures 1 à 9 sont gorgés.
La gorge peut être de n’importe quelle forme et présente une largeur inférieure à la largeur qu’aurait la mèche si le rouleau était lisse et cylindrique, d’un diamètre égal au diamètre en fond de gorge, dans les mêmes conditions de fluidisation de la poudre et de tension de la mèche.
Le rouleau cylindrique peut être fixe ou en rotation contrôlée, c’est-à-dire non libre. Plusieurs rouleaux peuvent être présents et s’ils sont en rotation contrôlée, ils peuvent être co-rotatif ou contra-rotatif.
L’étape de pré-imprégnation du matériau fibreux est réalisée par passage d’une ou plusieurs mèches dans un dispositif de pré-imprégnation en continu, comprenant une cuve (20), comprenant un lit fluidisé (22) de poudre polymère.
La poudre de polymère(s) ou polymère est mise en suspension dans un gaz G (de l’air par exemple) introduit dans la cuve et circulant dans la cuve à travers une trémie 21 . La ou les mèches sont mises en circulation dans ce lit fluidisé 22.
La cuve peut avoir toute forme, notamment cylindrique ou parallélépipédique, en particulier un parallélépipède rectangle ou un cube, avantageusement un parallélépipède rectangle.
La cuve peut être une cuve ouverte ou fermée. Avantageusement, elle est ouverte. Dans le cas où la cuve est fermée, elle est alors équipée d’un système d’étanchéité pour que la poudre polymère ne puisse pas sortir de ladite cuve.
Cette étape de pré-imprégnation est donc effectuée par voie sèche, c’est à dire que la matrice polymère thermoplastique est sous forme de poudre, notamment en suspension dans un gaz, en particulier de l’air, mais ne peut pas être en dispersion dans un solvant ou dans l’eau.
Chaque mèche à imprégner est déroulée d’un dispositif (10) à dévidoirs (1 1 ) sous la traction engendrée par des cylindres (non représentés). De préférence, le dispositif (10) comprend une pluralité de dévidoirs (1 1 ), chaque dévidoir permettant de dérouler une mèche à imprégner. Ainsi, il est possible de pré-imprégner plusieurs mèches de fibres simultanément. Chaque dévidoir (1 1 ) est pourvu d’un frein (non représenté) de manière à appliquer une tension sur chaque mèche de fibres. Dans ce cas, un module d’alignement (12) permet de disposer les mèches de fibres parallèlement les unes par rapport aux autres. De cette manière les mèches de fibres ne peuvent pas être en contact les unes avec les autres, ce qui permet d’éviter une dégradation mécanique des fibres par frottement entre elles.
La mèche de fibres ou les mèches de fibres parallèles passent alors dans une cuve (20), comprenant en particulier un lit fluidisé (22), munie d’une pièce d’embarrage gorgée qui est un rouleau cylindrique comportant plusieurs gorges (une par mèche) (23) dans le cas de la figure 1 . La mèche de fibres ou les mèches de fibres parallèles ressort(ent) ensuite de la cuve après imprégnation après contrôle du temps de séjour dans la poudre et par contrôle constant de la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé.
Avantageusement, la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est jusqu’à 1000g.
La tension de ladite mèche peut être mesurée soit de manière manuelle et intermittente en plusieurs points de la ligne grâce à un tensiomètre, soit grâce à des jauges de contraintes intégrées dans des éléments en contact avec les mèches. Avantageusement, la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est comprise de 100 à 1000g, en particulier de 200 à 1000g, plus particulièrement de 300 à 850g.
Dans un mode de réalisation, ladite étape de pré-imprégnation est effectuée avec épanouissement simultané de ladite mèche (81 a) ou desdites mèches entre l’entrée et la sortie dudit lit fluidisé (22).
Avantageusement, la largeur minimum de ladite mèche (81 a) ou desdites mèches est supérieure à la largeur de la gorge de ladite pièce d’embarrage gorgée.
La tension appliquée à la mèche (ou aux mèches) de fibres doit être suffisante pour que la largeur minimum de la mèche libre soit supérieure à la largeur de la gorge, de façon à toujours bien remplir la totalité de la gorge avec la mèche de fibres. On entend par largeur minimum de la mèche la largeur qu’aurait la mèche dans les mêmes conditions de tension et de fluidisation de la poudre, sur un rouleau lisse de même diamètre que celui de fond de gorges. Cette largeur peut avantageusement être mesurée par différentes méthodes, même sur des rouleaux complètement immergés dans la poudre, comme avec des capteurs de pression, des capteurs de position (type LVDT) sur un rouleau lisse pour ensuite être transposée à l’utilisation d’un rouleau gorgé dont la largeur de gorge sera inférieure à la valeur minimale relevée à l’aide des capteurs.
Le choix du couple tension et largeur de gorge sera optimum lorsque la tension sera minimum et que l’imprégnation de la mèche sera bonne, au-delà cependant de 100g, préférentiellement au-delà de 200g, en sortie de cantre, de façon à éviter la formation et/ou le passage de twists.
Les Inventeurs ont trouvé de manière inattendue que lorsqu’un matériau fibreux non ensimé est utilisé pour l’étape de pré-imprégnation en lit fluidisé, le contrôle du temps de séjour dans la poudre n’était plus suffisant pour imprégner le matériau fibreux par la matrice polymère thermoplastique, en particulier à cœur et de manière homogène avec un taux de poudre (résine) bien contrôlé et que l’étape de pré-imprégnation nécessitait la présence d’un ou plusieurs embarrages gorgé, en particulier un ou plusieurs rouleau(x) gorgés dans le lit fluidisé avec contrôle simultané de la tension dudit matériau fibreux à l’entrée du lit fluidisé.
Ils ont également trouvé que le contrôle simultané de la tension dudit matériau fibreux à l’entrée du lit fluidisé de manière à ce que la largeur minimum de ladite mèche soit toujours supérieure à la largeur de la gorge dudit embarrage, en particulier dudit rouleau cylindrique gorgé permettait l’imprégnation dudit matériau fibreux par la matrice polymère thermoplastique, en particulier à cœur et de manière homogène avec un taux de poudre (résine) bien contrôlé.
Par pièce d’embarrage gorgée, il faut entendre tout système sur lequel la mèche à la possibilité de défiler dans la cuve et qui présente une gorge. La pièce d’embarrage peut avoir n’importe quelle forme à partir du moment où elle est gorgée et que la mèche peut défiler dans la gorge.
Avantageusement, la taille des gorges est juste inférieure à la largeur minimum de la mèche de fibres.
Un exemple de pièce d’embarrage, sans restreindre l’invention à celui-ci, est détaillé dans la figure 3.
Cette imprégnation est réalisée afin de permettre à la poudre polymère de pénétrer au cœur de la mèche de fibre et d’adhérer aux fibres suffisamment pour supporter le transport de la mèche poudrée hors de la cuve. La ou les mèches pré-imprégnées par la poudre, est (sont) dirigée(s) ensuite vers un dispositif de calandrage chauffant, avec possibilité de préchauffage avant calandrage et éventuel chauffage post calandrage.
De manière facultative, cette étape de pré-imprégnation peut être complétée par une étape de recouvrement de la mèche ou des mèches pré-imprégnées, juste en sortie de la cuve (20) de pré-imprégnation par la poudre en lit fluidisé (22), et juste avant l’étape de mise en forme par calandrage. Pour cela, le sas de sortie de la cuve (20) (lit fluidisé 22) peut être connecté à un dispositif de recouvrement (30) pouvant comporter une tête d’équerre de recouvrement, comme cela est également décrit dans le brevet EP0406067. Le polymère de recouvrement peut être identique ou différent de la poudre polymère en lit fluidisé. De préférence, il est de même nature. Un tel recouvrement permet non seulement de compléter l’étape de pré-imprégnation des fibres pour obtenir un taux volumique final de polymère dans la gamme souhaitée et éviter la présence à la surface de la mèche pré-imprégnée, d’un taux de fibres localement trop important, qui nuirait au soudage des tapes lors de la fabrication de la pièce composite, notamment pour l’obtention de matériaux fibreux dits « prêts à l’emploi » de bonne qualité, mais également pour améliorer les performances du matériau composite obtenu.
Le procédé de l’invention comme indiqué ci-dessus est avantageusement effectué par voie sèche à l’exclusion d’un procédé électrostatique en charge volontaire.
L’expression « en charge volontaire » signifie qu’une différence de potentiel est appliquée entre le matériau fibreux et la poudre. La charge est notamment contrôlée et amplifiée. Les grains de poudres imprègnent alors le matériau fibreux par attraction de la poudre chargée à l’opposé de la fibre. On peut charger électriquement, négativement ou positivement, la poudre par différents moyens (différence de potentiel entre deux électrodes métalliques, frottement mécanique sur parties métalliques etc... ) et charger la fibre inversement (positivement ou négativement).
Le procédé de l’invention n’exclut pas la présence de charges électrostatiques qui pourraient apparaître par frottement du matériau fibreux sur les éléments de l’unité de mise en œuvre avant ou au niveau de la cuve mais qui sont en tout état de cause des charges involontaires.
Avantageusement, le taux de fibres dans ledit matériau fibreux imprégné est compris de 45 à 65 % en volume, de préférence de 50 à 60% en volume, en particulier de 54 à 60% en volume.
En dessous de 45% de fibres, le renfort n’a pas d’intérêt pour ce qui concerne les propriétés mécaniques.
Au-dessus de 65%, les limites du procédé sont atteintes et les propriétés mécaniques sont reperdues.
Avantageusement, le taux de fibres dans ledit matériau fibreux imprégné est compris de 50 à 60%, en particulier de 54 à 60% % en volume.
Avantageusement, le temps de séjour dans la poudre est compris de 0,01 s à 10s, préférentiellement de 0,1 s à 5s, et en particulier de 0,1 s à 3s.
Le temps de séjour du matériau fibreux dans la poudre est essentiel pour contrôler le taux de résine, dudit matériau fibreux. En deçà de 0, 1 s, le taux de résine sera trop faible pour ensuite, lors de l’étape de fusion de la poudre, pouvoir imprégner à cœur les fibres.
Au-delà de 10s, le taux de matrice polymère imprégnant le matériau fibreux est trop important et les propriétés mécaniques du matériau fibreux imprégné seront mauvaises.
Avantageusement, la cuve utilisée dans le procédé de l’invention comprend un lit fluidisé et ladite étape de pré-imprégnation est effectuée avec épanouissement simultané de ladite mèche ou desdites mèches entre l’entrée et la sortie de ladite cuve.
L’expression « entrée de la dite cuve» correspond à la tangente verticale du bord de la cuve qui comprend le lit fluidisé.
L’expression « sortie de ladite cuve» correspond à la tangente verticale de l’autre bord de la cuve qui comprend le lit fluidisé.
En fonction de la géométrie de la cuve, la distance entre l’entrée et la sortie de celle- ci correspond donc au diamètre dans le cas du cylindre, au côté dans le cas d’un cube ou à la largeur ou la longueur dans le cas d’un parallélépipède rectangle. L’épanouissement consiste à singulariser au maximum chaque filament constitutif de ladite mèche des autres filaments qui l’entourent dans son plus proche espace. Il correspond à l’étalement transverse de la mèche.
En d’autres termes, l’étalement transverse ou la largeur de la mèche augmente entre l’entrée du lit fluidisé (ou de la cuve comprenant le lit fluidisé) et la sortie du lit fluidisé (ou de la cuve comprenant le lit fluidisé) et permet ainsi une pré-imprégnation homogène du matériau fibreux.
Le lit fluidisé peut être ouvert ou fermé, en particulier il est ouvert.
Avantageusement, le lit fluidisé comprend au moins une pièce d’embarrage, ladite mèche ou lesdites mèches étant en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage.
La figure 3 détaille une cuve (20) comprenant un lit fluidisé (22) avec une pièce d’embarrage, réglable en hauteur (82).
La mèche (81 a) correspond à la mèche avant imprégnation qui est en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage et défile donc partiellement ou totalement à la surface de la pièce d’embarrage (82), ledit système (82) étant immergé dans le lit fluidisé où l’imprégnation s’effectue. Ladite mèche ressort ensuite de la cuve (81 b) après contrôle du temps de séjour dans la poudre.
La dite mèche (81 a) peut être en contact ou non avec le bord de la cuve (83a) qui peut être un rouleau rotatif ou fixe ou un bord parallélépipédique.
Avantageusement, la dite mèche (81 a) est en contact ou non avec le bord de la cuve (83a).
Avantageusement, le bord de la cuve (83b) est un rouleau, notamment cylindrique et rotatif.
La dite mèche (81 b) peut être en contact ou non avec le bord de la cuve (83b) qui peut être un rouleau, notamment cylindrique et rotatif ou fixe, ou un bord parallélépipédique.
Avantageusement, la dite mèche (81 b) est en contact avec le bord de la cuve (83b). Avantageusement, le bord de la cuve (83b) est un rouleau, notamment cylindrique et rotatif.
Avantageusement, la dite mèche (81 a) est en contact avec le bord de la cuve (83a) et le bord de la cuve (83b) est un rouleau, notamment cylindrique et rotatif et la dite mèche (81 b) est en contact avec le bord de la cuve (83b), et le bord de la cuve (83b) est un rouleau, notamment cylindrique et rotatif.
Avantageusement, ladite pièce d’embarrage est perpendiculaire à la direction de ladite mèche ou desdites mèches.
Avantageusement, ledit épanouissement de ladite mèche ou desdites mèches est effectué au moins au niveau de ladite au moins une pièce d’embarrage.
L’épanouissement de la mèche s’effectue donc principalement au niveau de la pièce d’embarrage mais peut également s’effectuer au niveau du ou des bords de la cuve s’il y a contact entre la mèche et ledit bord.
Dans un autre mode de réalisation, ladite au moins une pièce d’embarrage est un rouleau cylindrique gorgé de forme convexe, concave ou cylindrique.
La forme convexe est favorable à l’épanouissement alors que la forme concave est défavorable à l’épanouissement bien qu’il s’effectue néanmoins.
L’expression « rouleau cylindrique gorgé » signifie que la mèche qui défile s’appuie partiellement ou totalement sur la surface dudit rouleau cylindrique gorgé, ce qui induit l’épanouissement de la dite mèche.
Avantageusement, ledit au moins un rouleau cylindrique gorgé est de forme cylindrique et le pourcentage d’épanouissement de ladite mèche ou desdites mèches entre l’entrée et la sortie dudit lit fluidisé est compris de 1 % à 400%, préférentiellement entre 30% et 400% préférentiellement entre 30% et 150%, préférentiellement entre 50% et 150%. Le pourcentage d’épanouissement est défini comme (Lf-Li)/Li*100, ou Li et Lf sont les largeurs avant et après épanouissement. L’épanouissement est fonction du matériau fibreux utilisé. Par exemple, l’épanouissement d’un matériau en fibre de carbone est beaucoup plus important que celui d’une fibre de lin.
L’épanouissement est aussi fonction du nombre de fibres ou filaments dans la mèche, de leur diamètre moyen et de leur cohésion.
Le diamètre dudit au moins un rouleau cylindrique gorgé est compris de 3 mm à 500 mm, préférentiellement de 10 mm à 100 mm, en particulier de 20 mm à 60 mm. Au-dessous de 3 mm, la déformation de la fibre induite par le rouleau cylindrique gorgé est trop importante.
Avantageusement, le rouleau cylindrique gorgé est cylindrique et non cannelé et en particulier est métallique.
Lorsque la pièce d’embarrage est au moins un rouleau cylindrique gorgé, selon une première variante, un seul rouleau cylindrique gorgé est présent dans le lit fluidisé et ladite imprégnation est effectuée au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé et la tangente verticale audit rouleau cylindrique gorgé.
L’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé et la tangente verticale audit rouleau cylindrique gorgé permet la formation d’une zone dans laquelle la poudre va se concentrer conduisant ainsi à un « effet de coin » qui avec l’épanouissement simultané de la mèche par ledit rouleau cylindrique gorgé permet une pré-imprégnation sur une largeur plus importante de mèche et donc une pré-imprégnation améliorée comparée aux techniques de l’art antérieur améliorée. Le couplage avec le temps de séjour contrôlé permet alors une pré-imprégnation homogène.
Avantageusement, l’angle en est compris de 0 à 89°, préférentiellement 5° à 85°, préférentiellement de 5° à 45°, préférentiellement de 5° à 30°.
Néanmoins, un angle en compris de 0 à 5° est susceptible d’engendrer des risques de sollicitation mécanique, ce qui conduira à la casse des fibres et un angle en compris de 85° à 89° ne crée pas suffisamment d’effort mécanique pour créer « l’effet de coin ». Une valeur de l’angle en égale à 0° correspond donc à une fibre verticale. Il est bien évident que la hauteur du rouleau cylindrique gorgé cylindrique est réglable permettant ainsi de pouvoir positionner la fibre verticalement.
On ne sortirait pas du cadre de l’invention si la paroi de la cuve était percée de manière à pouvoir permettre la sortie de la mèche.
Avantageusement, le bord de la cuve (83a) est équipé d’un rouleau, notamment cylindrique et rotatif sur lequel défile ladite mèche ou les dites mèches conduisant ainsi à un épanouissement préalable.
Avantageusement, un ou plusieurs embarrages sont présents en aval de la cuve comprenant le lit fluidisé au niveau duquel ou desquels l’épanouissement est initié. Avantageusement, l’épanouissement est initié au niveau du ou desdits embarrages ci-dessus définis et se poursuit au niveau du bord de la cuve (83a).
L’épanouissement est alors maximum après passage au niveau du ou des rouleaux cylindriques gorgés.
La figure 4 décrit un mode de réalisation, sans être limité à celui-ci, à un seul rouleau cylindrique gorgé, avec une cuve (20) comprenant un lit fluidisé (22) dans lequel un seul rouleau cylindrique gorgé cylindrique est présent et montrant l’angle a-i.
Les flèches au niveau de la fibre indiquent le sens de défilement de la fibre.
Avantageusement, le niveau de ladite poudre dans ledit lit fluidisé est au moins situé à la mi-hauteur dudit rouleau cylindrique gorgé.
Il est bien évident que « l’effet de coin » provoqué par l’angle en favorise la pré imprégnation sur une face mais l’épanouissement de ladite mèche obtenu grâce au rouleau cylindrique gorgé permet aussi d’avoir une pré-imprégnation sur l’autre face de ladite mèche. Autrement dit, ladite pré-imprégnation est favorisée sur une face de ladite mèche ou desdites mèches au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit au moins un rouleau cylindrique gorgé Ri et la tangente verticale au rouleau cylindrique gorgé Ri mais l’épanouissement permet aussi de pré-imprégner l’autre face.
L’angle en est tel que défini ci-dessus.
Selon une deuxième variante, lorsque la pièce d’embarrage est au moins un rouleau cylindrique gorgé, alors deux rouleaux cylindriques gorgés Ri et R2 sont dans ledit lit fluidisé et ladite pré-imprégnation est effectuée au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé Ri et la tangente verticale audit rouleau cylindrique gorgé Ri et/ou au niveau de l’angle 02 formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2, ledit rouleau cylindrique gorgé Ri précédant ledit rouleau cylindrique gorgé R2 et ladite mèche ou lesdites mèche pouvant passer au-dessus (figure 5 et 6) ou en dessous (figure 7 et 8) du rouleau R2.
Avantageusement, les deux rouleaux cylindriques gorgés sont de forme identique ou différente et choisie parmi une forme convexe, concave ou cylindrique.
Avantageusement, les deux rouleaux cylindriques gorgés sont identiques et cylindriques et en particulier métalliques.
Le diamètre des deux rouleaux cylindriques gorgés peut aussi être identique ou différent et est tel que défini ci-dessus.
Avantageusement, le diamètre des deux rouleaux cylindriques gorgés est identique. Les deux rouleaux cylindriques gorgés Ri et R2 peuvent être au même niveau l’un par rapport à l’autre et par rapport au fond de la cuve (figures 6 et 7) ou décalés l’un par rapport à l’autre et par rapport au fond de la cuve, la hauteur du rouleau cylindrique gorgé Ri étant supérieure ou inférieure à celle du rouleau cylindrique gorgé R2 par rapport au fond de la cuve (figures 5 et 8).
Avantageusement, lorsque les deux rouleaux sont à des hauteurs différentes et que la mèche passe au-dessus du rouleau R2, alors 02 est compris de 0 à 90°.
Avantageusement, ladite pré-imprégnation s’effectue donc au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé Ri et la tangente verticale audit rouleau cylindrique gorgé sur une face de ladite mèche et au niveau de l’angle 02 formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2 sur la face opposée de la dite mèche ce qui s’obtient en passant au-dessus du rouleau R2.
Avantageusement, ladite mèche dans ce mode de réalisation est sujette à un épanouissement au niveau de chaque angle en et 02.
La figure 6 décrit un mode de réalisation, sans être limité à celui-ci, à deux rouleaux cylindriques gorgés Ri et R2, Ri précédant R2, avec une cuve (20) comprenant un lit fluidisé (22) dans lequel les deux rouleaux cylindriques gorgés cylindriques, au même niveau et côte à côte, sont présents et montrant le cas où ladite ou lesdites mèches ressortent entre lesdits rouleaux cylindriques gorgés Ri et R2. Dans ce cas, l’angle 02 est égal à 0 et ladite ou lesdites mèches passent par-dessus le rouleau R2.
Les flèches au niveau de la fibre indiquent le sens de défilement de la fibre.
De manière alternative, ladite mèche ou lesdites mèches défile(nt) en entrée entre lesdits rouleaux cylindriques gorgés Ri et R2et ressort(ent) après avoir été en contact avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R2.
Avantageusement, ladite mèche ou lesdites mèches est(sont) en contact en entrée avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé Ri et ressort(ent) à l’extérieur du rouleau cylindrique gorgé R2 après avoir été en contact avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R2, sous le rouleau R2, l’angle 02 étant formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2. Dans ce cas, l’angle 02 = 90°.
Ladite pré-imprégnation s’effectue donc au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé Ri et la tangente verticale audit rouleau cylindrique gorgé sur une face de ladite mèche et au niveau de l’angle 02 formé par ladite mèche ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2 sur la même face de la dite mèche mais l’épanouissement permet aussi de pré imprégner l’autre face.
Avantageusement, ladite mèche dans ce mode de réalisation est sujette à un épanouissement au niveau de chaque angle en et 02.
La figure 7 présente un exemple de mode de réalisation avec deux rouleaux cylindriques gorgés Ri et R2 au même niveau l’un par rapport à l’autre.
Selon un autre mode de réalisation de la deuxième variante, lorsque deux rouleaux cylindriques gorgés sont présents alors la distance entre les deux rouleaux cylindriques gorgés Ri et R2 est comprise de 0,15 mm à la longueur équivalente à la dimension maximale de la cuve, préférentiellement comprise de 10mm à 50mm et la différence de hauteur entre les deux rouleaux cylindriques gorgés Ri et R2 est comprise de 0 à la hauteur correspondant à la hauteur maximale de la cuve soustraite des diamètres des deux rouleaux cylindriques gorgés, préférentiellement comprise de 0, 15mm à la hauteur correspondant à la hauteur maximale de la cuve soustraite des diamètres des deux rouleaux cylindriques gorgés, plus préférentiellement à une différence de hauteur comprise entre 10mm et 300mm, R2 étant le rouleau cylindrique gorgé supérieur.
Avantageusement, lorsque deux rouleaux cylindriques gorgés sont présents et au même niveau l’un par rapport à l’autre, le niveau de ladite poudre dans ledit lit fluidisé est au moins situé à la mi-hauteur desdits deux rouleaux cylindriques gorgés.
La figure 8 décrit un mode de réalisation, sans être limité à celui-ci, à deux rouleaux cylindriques gorgés Ri et R2, Ri précédant R2, avec une cuve (20) comprenant un lit fluidisé (22) dans lequel deux rouleaux cylindriques gorgés cylindriques à des niveaux différents sont présents et montrant l’angle en et 02.
Le diamètre des rouleaux cylindriques gorgés Ri et R2 est présenté comme identique sur les figures 5, 6, 7 et 8 mais le diamètre de chaque rouleau cylindrique gorgé cylindrique peut être différent, le diamètre du rouleau cylindrique gorgé Ri pouvant être supérieur ou inférieur à celui du rouleau cylindrique gorgé R2 dans la gamme telle que définie ci-dessus.
Avantageusement, le diamètre des deux rouleaux cylindriques gorgés est identique. On ne sortirait pas du cadre de l’invention si le rouleau cylindrique gorgé Ri était supérieur au rouleau cylindrique gorgé R2.
Selon une troisième variante, lorsque deux rouleaux cylindriques gorgés sont présents et à des niveaux différents, alors au moins un troisième rouleau cylindrique gorgé R3 est de plus présent et situé entre les rouleaux cylindriques gorgés Ri et R2 dans le sens de la hauteur (figure 9).
Avantageusement ladite mèche ou lesdites mèches est(sont) en contact en entrée avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé Ri puis avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R3 et ressort(ent) après avoir été en contact avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R2.
Avantageusement, ladite pré-imprégnation est effectuée sur une face de ladite mèche ou desdites mèches au niveau de l’angle en formé par ladite mèche ou lesdites mèches entre l’entrée dudit au moins un rouleau cylindrique gorgé Ri et la tangente verticale au rouleau cylindrique gorgé Ri ainsi qu’au niveau de l’angle 03 formé par ladite mèche ou lesdites mèches et la tangente verticale au rouleau cylindrique gorgé R3 et sur l’autre face qu’au niveau de l’angle 02 formé par ladite mèche ou lesdites mèches et la tangente verticale au rouleau cylindrique gorgé R2. Avantageusement, lorsque deux rouleaux cylindriques gorgés sont présents à des niveaux différents et qu’au moins un troisième rouleau cylindrique gorgé R3 est de plus présent, alors l’angle 02 formé par ladite mèche ou lesdites mèches entre l’entrée dudit au moins un rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2, est compris de 180° à 45°, en particulier de 120° à 60°.
Avantageusement, l’angle 03 est compris de 0° à 180°, avantageusement de 45° à 135°.
La figure 9 décrit un mode de réalisation, sans être limité à celui-ci, avec une cuve (20) comprenant un lit fluidisé (22) à deux rouleaux cylindriques gorgés Ri et R2, Ri précédant R2, et un troisième rouleau cylindrique gorgé R3 et montrant les angles a-i, 02 et 03.
Le diamètre des rouleaux cylindriques gorgés Ri, R2 et R3 est présenté comme identique sur la figure 9 mais le diamètre de chaque rouleau cylindrique gorgé cylindrique peut être différent, ou deux rouleaux cylindriques gorgés peuvent avoir le même diamètre et le troisième un diamètre différent supérieur ou inférieur, dans la gamme telle que définie ci-dessus.
Avantageusement, le diamètre des trois rouleaux cylindriques gorgés est identique. Avantageusement, dans cette troisième variante, un deuxième contrôle de l’épanouissement de ladite mèche ou desdites mèches est effectué au niveau du rouleau cylindrique gorgé R3 et un troisième contrôle de l’épanouissement est effectué au niveau du rouleau cylindrique gorgé R3.
Le temps de séjour dans cette troisième variante est tel que défini ci-dessus.
Avantageusement, dans cette troisième variante, le niveau de ladite poudre dans ledit lit fluidisé est au moins situé à la mi-hauteur dudit rouleau cylindrique gorgé R2. On ne sortirait pas du cadre de l’invention si dans cette troisième variante, ladite mèche ou lesdites mèches est(sont) en contact en entrée avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé Ri puis avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R2 et ressort(ent) après avoir été en contact avec une partie ou la totalité de la surface dudit rouleau cylindrique gorgé R3·
Selon un mode de réalisation avantageux, la présente invention concerne un procédé tel que ci-dessus défini caractérisé en ce que une seule matrice polymère thermoplastique est utilisée et la poudre de polymère thermoplastique est fluidisable. Le terme « fluidisable » signifie que le débit d’air appliqué au lit fluidisé est compris entre le débit minimum de fluidisation (Umf) et le débit minimum de bullage (Umf) tel que représenté figure 12.
En dessous du débit minimum de fluidisation, il n’y pas de fluidisation, les particules de poudre de polymère tombent dans le lit et ne sont plus en suspension et le procédé selon l’invention ne peut fonctionner.
Au-dessus du débit minimum de bullage, les particules de poudre s’envolent et la composition du lit fluidisé constante ne peut plus être maintenue constante.
Avantageusement, le diamètre en volume D90 des particules est compris 50 à 500 pm, avantageusement de 120 à 300 pm.
Avantageusement, le diamètre en volume D10 des particules est compris de 5 à 200 pm, avantageusement de 35 à 100 pm.
Avantageusement, le diamètre en volume des particules de poudre est compris dans le ratio D90/D10, soit compris de 1 ,5 à 50, avantageusement de 2 à 10.
Avantageusement, le diamètre moyen D50 en volume des particules de poudre de polymère thermoplastique est compris de 30 à 300 pm, notamment de 50 à 200 pm, plus particulièrement de 70 à 200pm.
Les diamètres en volume des particules (D10, D50 et D90) sont définis selon la norme ISO 9276 :2014.
Le « D50 » correspond au diamètre moyen en volume, c’est à dire la valeur de la taille de particule qui divise la population de particules examinée exactement en deux. Le « D90 » correspond à la valeur à 90% de la courbe cumulée de la distribution granulométrique en volume.
Le « D10 » correspond à la correspond à la taille de 10% du volume des particules. Selon un autre mode de réalisation du procédé selon l’invention, un cantre est présent avant la cuve comprenant un lit fluidisé pour le contrôle de la tension de ladite mèche ou desdites mèches à l’entrée de la cuve comprenant un lit fluidisé.
Optionnellement, dans le procédé selon l’invention, un ou plusieurs embarrages sont présents après la cuve comprenant le lit fluidisé.
Optionnellement, des rouleaux gorgés en entrée et en sortie de la cuve contenant le lit fluidisé peuvent être utilisés.
Etape de chauffage
Dans un autre mode de réalisation, la présente invention concerne un procédé tel que défini ci-dessus caractérisé en ce qu’il comprend de plus au moins une étape de chauffage de la matrice thermoplastique permettant la fusion ou le maintien en fusion dudit polymère thermoplastique après pré-imprégnation,
ladite au moins une étape de chauffage étant effectuée au moyen d’au moins une pièce d’embarrage (E) conductrice ou non de la chaleur et d’au moins un système de chauffage, à l’exception d’une calandre chauffante,
ladite mèche ou lesdites mèches étant en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage (E) et défilant partiellement ou totalement à la surface de ladite au moins une pièce d’embarrage (E) au niveau du système de chauffage.
On ne sortirait pas du cadre de l’invention si la pièce d’embarrage (E) était positionnée dans un four comportant un système de chauffage, par exemple par IR mais que ladite pièce d’embarrage n’était pas positionnée exactement sous les éléments chauffant par exemple par IR. On ne sortirait pas de l’invention si le four comportait un mode de chauffage par convection et un système de chauffage par IR.
On ne sortirait pas de l’invention non plus si ladite pièce d’embarrage (E) placée dans ce four ou dans l’environnement de ce four, était équipée d’un moyen de chauffage autonome comme une résistance permettant de chauffer ladite pièce d’embarrage (E), indépendamment par exemple du rayonnement des lampes IR et de la convection naturelle du four et que, compte tenu la vitesse de la ligne, le polymère présent dans les rubans ou les mèches soit encore à l’état fondu lorsqu’il arrive en contact avec ladite pièce d’embarrage. La hauteur entre le système de chauffage et les embarrages est comprise de 1 à 100 cm, préférentiellement de 2 à 30 cm, en particulier de 2 à 10 cm.
Une première étape de chauffage peut être immédiatement consécutive à l’étape de pré-imprégnation ou alors d’autres étapes peuvent intervenir entre l’étape de pré imprégnation et l’étape de chauffage.
Néanmoins, la première étape de mise en œuvre par un système de chauffage muni d’au moins une pièce d’embarrage (E) ne correspond pas à une calandre chauffante, et est toujours effectuée avant l’étape de calandrage qui est nécessaire pour lisser et mettre en forme le ruban.
Avantageusement, ladite première étape de chauffage est immédiatement consécutive à l’étape de pré-imprégnation. L’expression « immédiatement consécutive » signifie qu’il n’y a pas d’étape intermédiaire entre l’étape de pré imprégnation et ladite étape de chauffage.
Avantageusement, une seule étape de chauffage est effectuée, immédiatement consécutive à l’étape de pré-imprégnation. Avantageusement, ledit au moins un système de chauffage est choisi parmi une lampe infrarouge, une lampe UV et un chauffage par convection si la pièce d’embarrage est conductrice de la chaleur.
Le matériau fibreux étant en contact avec le ou les embarrage(s) dans le système de chauffage, et l’embarrage étant conducteur, le système de chauffage s’effectue donc également par conduction.
Avantageusement, ledit au moins un système de chauffage est choisi parmi une lampe infrarouge.
Avantageusement, si la pièce d’embarrage n’est pas conductrice de la chaleur, ledit au moins un système de chauffage est choisi parmi un chauffage micro-onde, un chauffage laser, et un chauffage Hautes Fréquences (HF).
La pièce d’embarrage (E) non chauffante et non conductrice de la chaleur n’absorbe pas à la longueur d’onde du système de chauffage micro-onde, laser ou HF.
Avantageusement, ledit au moins un système de chauffage est choisi parmi un chauffage micro-onde.
Avantageusement, ladite au moins une pièce d’embarrage (E) est un rouleau de compression R’i de forme convexe, concave ou cylindrique.
Il faut noter que les rouleaux de compression correspondant aux pièces d’embarrage (E) ou celles utilisées pour l’étape de pré-imprégnation peuvent être identiques ou différents que ce soit au niveau du matériau ou de la forme et ses caractéristiques (diamètre, longueur, largeur, hauteur ... en fonction de la forme).
La forme convexe est favorable à l’épanouissement alors que la forme concave est défavorable à l’épanouissement bien qu’il s’effectue néanmoins.
La au moins une pièce d’embarrage (E) peut également être une alternance de forme convexe et concave. Dans ce cas, le défilement de la mèche sur un rouleau de compression de forme convexe provoque l’épanouissement de ladite mèche puis le défilement de la mèche sur un rouleau de compression de forme concave provoque la rétractation de la mèche et ainsi de suite permettant si besoin d’améliorer l’homogénéité de l’imprégnation, notamment à cœur.
L’expression « rouleau de compression » signifie que la mèche qui défile s’appuie partiellement ou totalement sur la surface dudit rouleau de compression, ce qui induit l’épanouissement de ladite mèche.
Les rouleaux peuvent être en rotation contrôlée ou fixes.
Ils sont gorgés et le fond de la gorge peut être lisse ou striée. Etape de mise en forme
Optionnellement une étape de mise en forme de la mèche ou desdites mèches parallèles dudit matériau fibreux imprégné est effectuée.
Un système de calandrage tel que décrit dans WO 2015/121583 peut être utilisé. Avantageusement, elle est effectuée par calandrage au moyen d’au moins une calandre chauffante sous forme de ruban ou nappe unique unidirectionnel ou d’une pluralité de rubans ou nappe parallèles unidirectionnels avec, dans ce dernier cas, ladite calandre chauffante comportant une pluralité de gorges de calandrage, de préférence jusqu’à 200 gorges de calandrage, en conformité avec le nombre desdits rubans et avec une pression et/ou un écartement entre les rouleaux de ladite calandre régulés par un système asservi.
Cette étape est toujours effectuée après l’étape de chauffage s’il n’y en a qu’une ou bien entre la première étape de chauffage et la deuxième étape de chauffage lorsque les deux coexistent.
Avantageusement, l’étape de calandrage est réalisée au moyen d’une pluralité de calandres chauffantes, montées en parallèle et/ou en série par rapport au sens de défilement des mèches de fibres.
Avantageusement, ladite (ou lesdites) calandre(s) chauffante(s) comprend (comprennent) un système de chauffage intégré par induction ou par microondes, de préférence par microondes, couplé à la présence de charges carbonées dans ledit polymère thermoplastique ou mélange de polymères thermoplastiques.
Selon un autre mode de réalisation, une presse à bande est présente entre le système de chauffage et la calandre.
Selon encore un autre mode de réalisation, une filière chauffante est présente entre le système de chauffage et la calandre.
Selon un autre mode de réalisation, une presse à bande est présente entre le système de chauffage et la calandre et une filière chauffante est présente entre la presse à bande et la calandre.
Avantageusement, l’étape de mise en forme de ladite mèche ou desdites mèches parallèles dudit matériau fibreux pré-imprégné, par calandrage au moyen d’au moins une calandre chauffante sous forme de ruban ou nappe unique unidirectionnel ou d’une pluralité de rubans ou nappes parallèles unidirectionnels avec, dans ce dernier cas, ladite calandre chauffante comportant une pluralité de gorges de calandrage, de préférence jusqu’à 300 gorges de calandrage, en conformité avec le nombre desdits rubans et avec une pression et/ou un écartement entre les rouleaux de ladite calandre régulés par un système asservi.
Avantageusement, l’étape de calandrage est réalisée au moyen d’une pluralité de calandres chauffantes, montées en parallèle et/ou en série par rapport au sens de défilement des mèches de fibres.
Avantageusement, ladite (ou lesdites) calandre(s) chauffante(s) comprend (comprennent) un système de chauffage intégré par induction ou par microondes, de préférence par microondes, couplé à la présence de charges carbonées dans ledit polymère thermoplastique ou mélange de polymères thermoplastiques.
Dans un mode de réalisation, ladite (ou lesdites) calandre(s) chauffante(s) est (sont) couplée(s) à un dispositif de chauffage complémentaire, situé avant et/ou après ladite (chaque) calandre, en particulier un dispositif de chauffage par microondes ou induction couplé à la présence de charges carbonées dans ledit polymère ou dans ledit mélange de polymères, ou un dispositif de chauffage infrarouge IR, ou Laser ou par contact direct avec une autre source de chaleur comme une flamme ou un gaz chaud.
Dans un autre mode de réalisation, ladite ou lesdites étape(s) de pré-imprégnation est(sont) complétée(s) par une étape de recouvrement de ladite mèche unique ou de ladite pluralité de mèches parallèles après pré-imprégnation par la poudre, ladite étape de recouvrement étant réalisée avant ladite étape de calandrage, par un polymère thermoplastique fondu, pouvant être identique ou différent dudit polymère sous forme de poudre en lit fluidisé, ledit polymère fondu étant de préférence de même nature que ledit polymère sous forme de poudre en lit fluidisé, de préférence avec ledit recouvrement s’effectuant par extrusion en tête d’équerre par rapport à ladite mèche unique ou à ladite pluralité de mèches parallèles.
Selon un autre aspect, la présente invention concerne un ruban ou une nappe unidirectionnel de matériau fibreux pré-imprégné, en particulier ruban ou nappe enroulé sur bobine, caractérisé en ce qu’il(elle) est obtenu(e) par un procédé tel que défini ci-dessus.
Avantageusement, le ruban ou la nappe a une largeur (I) et une épaisseur (ep) adaptées à une dépose par robot dans la fabrication de pièces en trois dimensions, et de préférence a une largeur (I) d’au moins 5 mm et pouvant aller jusqu’à 600mm, de préférence comprise entre 50 et 600 mm et de manière encore plus préférée comprise entre 50 et 300mm.
La dépose par robot peut être effectuée avec ou sans refente.
Avantageusement, le polymère thermoplastique du ruban ou de la nappe est un polyamide choisi parmi notamment un polyamide aliphatique tel que choisi PA 6, PA 1 1 , PA 12, PA 66, PA 46, PA 610, PA 612, PA 1010, PA 1012, PA 1 1/1010 ou PA 12/1010 ou un polyamide semi-aromatique tel que un PA MXD6 et un PA MXD10 ou choisi parmi PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA MPMDT/6T, un PA MXDT/6T, un PA PA1 1/10T, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, PA BACT/6T/1 1 un PA 1 1/BACT/10T, un PA 1 1/MPMDT/10T et un PA 1 1/MXDT/10T, un PVDF, un PEEK, PEKK et un PEI ou un mélange de ceux-ci.
Selon un autre aspect, la présente invention concerne l’utilisation du procédé tel que défini ci-dessus, pour la fabrication de rubans ou de nappes calibrés adaptés à la fabrication de pièces composites en trois dimensions, par dépose automatique desdit(e)s rubans ou nappes au moyen d’un robot.
Selon un autre aspect, la présente invention concerne l’utilisation du ruban ou de la nappe de matériau fibreux imprégné, tel que défini(e) ci-dessus, dans la fabrication de pièces composites en trois dimensions.
Ledit ruban imprégné est donc obtenu à partir d’un ruban pré-imprégné après l’étape de chauffage décrite ci-dessus.
Avantageusement, ladite fabrication desdites pièces composites concerne les domaines des transports, en particulier automobile, du pétrole et du gaz, en particulier l’offshore, du stockage de gaz, aéronautique civile ou militaire, aérospatiale, nautique, ferroviaire ; des énergies renouvelables, en particulier éolienne, hydrolienne, les dispositifs de stockage d’énergie, les panneaux solaires ; des panneaux de protection thermique ; des sports et loisirs, de la santé et du médical, de la sécurité et de l’électronique.
Selon encore un autre aspect, la présente invention concerne une pièce composite en trois dimensions, caractérisée en ce qu’elle résulte de l’utilisation d’au moins un ruban unidirectionnel de matériau fibreux imprégné tel que défini ci-dessus.
Modes de réalisation avantageux du procédé de l’invention
Avantageusement, le matériau fibreux est choisi parmi la fibre de carbone et la fibre de verre. Avantageusement, le polymère thermoplastique utilisé pour imprégner la fibre de carbone est choisi parmi un polyamide, notamment un polyamide aliphatique tel que PA 1 1 , PA 12, PA 1 1/1010 ou PA 12/1010, ou un polyamide semi-aromatique, en particulier un PA MXD6 et un PA MXD10 ou choisi parmi PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA MPMDT/6T, un PA MXDT/6T, un PA PA1 1/10T, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, PA BACT/6T/1 1 , un PA 1 1/BACT/10T, un PA 1 1/MPMDT/10T et un PA 1 1/MXDT/10T, un PVDF, un PEEK, PEKK et un PEI ou un mélange de ceux-ci. Avantageusement, le polymère thermoplastique utilisé pour imprégner la fibre de verre est choisi parmi un polyamide, notamment un polyamide aliphatique tel que PA 1 1 , PA 12, PA 1 1/1010 ou PA 12/1010, ou un polyamide semi-aromatique, en particulier un PA MXD6 et un PA MXD10 ou choisi parmi PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA MPMDT/6T, un PA MXDT/6T, un PA PA1 1/10T, un PA 1 1/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, PA BACT/10T/6T, PA BACT/6T/1 1 , un PA 1 1/BACT/10T, un PA 1 1/MPMDT/10T et un PA 1 1/MXDT/10T, un PVDF, un PEEK, PEKK et un PEI ou un mélange de ceux-ci. Avantageusement, le taux de fibres dans ledit matériau fibreux, constitué de fibre de carbone ou de verre, imprégné est compris de 45 à 65% en volume, de préférence de 50 à 60% en volume, en particulier de 54 à 60% en volume.
Description des figures
La figure 1 présente un schéma d’une unité de mise en oeuvre du procédé de fabrication d’un matériau fibreux pré-imprégné selon l’invention.
La figure 2 présente un schéma en coupe de deux rouleaux constitutifs d’une calandre telle qu’utilisée dans l’unité de la figure 1 .
La figure 3 détaille une cuve (20) comprenant un lit fluidisé (22) avec une pièce d’embarrage gorgée, réglable en hauteur (82). Le bord de l’entrée de la cuve est équipé d’un rouleau rotatif 83a sur lequel défile la mèche 81 a et le bord de la sortie cuve est équipé d’un rouleau rotatif 83b sur lequel défile la mèche 81 b.
Le rouleau étant perpendiculaire au sens de défilement de la mèche, la gorge du rouleau n’est visible qu’en vue de face ou de dessus.
La figure 4 présente décrit un mode de réalisation à un seul rouleau cylindrique gorgé, avec une cuve (20) comprenant un lit fluidisé (22) dans lequel un seul rouleau cylindrique gorgé cylindrique est présent et montrant l’angle a-i.
Les flèches au niveau de la fibre indiquent le sens de défilement de la fibre. Le rouleau étant perpendiculaire au sens de défilement de la mèche, la gorge du rouleau n’est visible qu’en vue de face ou de dessus.
La figure 5 présente un mode de réalisation, sans être limité à celui-ci, à deux rouleaux cylindriques gorgés Ri et R2, Ri précédant R2, avec une cuve (20) comprenant un lit fluidisé (22) dans lequel les deux rouleaux cylindriques gorgés cylindriques sont à des hauteurs différentes par rapport au fond de la cuve (R2 à une hauteur H2 au-dessus de Ri à une hauteur H1) sont présents et montrant l’angle en et a2.
Les flèches au niveau de la mèche de fibre indiquent le sens de défilement de la mèche.
La figure 6 présente un exemple de mode de réalisation avec une cuve (20) comprenant un lit fluidisé (22) dans lequel les deux rouleaux cylindriques gorgés Ri et R2 sont cylindriques, au même niveau l’un par rapport à l’autre et côte à côte et montrant l’angle a-i, et l’angle 02 = 0° et la mèche passant entre les 2 rouleaux)
La figure 7 présente un exemple de mode de réalisation avec une cuve (20) comprenant un lit fluidisé (22) dans lequel les deux rouleaux cylindriques gorgés Ri et R2 sont cylindriques, au même niveau l’un par rapport à l’autre et côte à côte et montrant l’angle a-i, et l’angle 02 = 90°et la mèche passant au-dessous de R2.
La figure 8 présente un exemple de mode de réalisation avec une cuve (20) comprenant un lit fluidisé (22) dans lequel deux rouleaux cylindriques gorgés cylindriques Ri et R2, Ri précédant R2, à des niveaux différents sont présents et montrant l’angle en et 02 et la mèche passant sous le rouleau R2.
La figure 9 présente un mode de réalisation avec une cuve (20) comprenant un lit fluidisé (22) à deux rouleaux cylindriques gorgés Ri et R2, Ri précédant R2, et un rouleau cylindrique gorgé R3 et montrant les angles en, 02 et 03.
La figure 10 présente une photo prise au microscope électronique à balayage d’une vue en coupe d’un ruban de fibre de carbone ¼”, obtenu à partir d’une mèche de fibres de carbone de 12K pré-imprégnées de façon homogène par une poudre de polyamide PA MPMDT/10T (67/33 %molaire) de D50 = 1 15pm selon le procédé de WO20181 15736 (tel que décrit dans l’exemple comparatif 1 ) avec un rouleau non gorgé (lisse) et avec une faible tension à l’entrée du lit fluidisé de 800g.
Les fibres sont ensuite imprégnées à coeur par ladite résine après fusion de ladite poudre présente dans ladite mèche pré-imprégnées, après chauffage et passage sur une série d’embarrage, suivi d’un calandrage, pour former ledit ruban final. L’analyse d’image faite sur un nombre d’image statistiquement représentatif dudit ruban, donne un taux de porosité de 3 % en excluant les bords du ruban.
La figure 1 1 présente l’évolution du pourcentage massique de MPMDT/10T imprégné dans la mèche en fonction du temps de l’exemple comparatif 1 .
La figure 12 présente une photo prise au microscope électronique à balayage d’une vue en coupe d’un ruban de fibre de carbone ¼”, obtenu à partir d’une mèche de fibres de carbone de 12K pré-imprégnées de façon homogène par une poudre de polyamide PA MPMDT/10T (67/33 %molaire) de D50 = 1 15pm selon le procédé de l’invention et tel que décrit dans l’exemple comparatif 2) c'est-à-dire avec un rouleau gorgé et avec une faible tension à l’entrée du lit fluidisé de 800g. Les fibres sont ensuite imprégnées à coeur par ladite résine après fusion de ladite poudre présente dans ladite mèche pré-imprégnées, après chauffage et passage sur une série d’embarrage, suivi d’un calandrage, pour former ledit ruban final
après chauffage et calandrage) avec un rouleau gorgé avec une faible tension à l’entrée du lit fluidisé de 800g de l’exemple 2.
L’analyse d’image donne un taux de porosité de 1 ,5 % en excluant les bords du tape. La figure 13 présente l’évolution du pourcentage massique de MPMDT/10T imprégné dans la mèche en fonction du temps de l’exemple 2.
La figure 14 présente la fluidisation en fonction du débit d’air. Le débit d’air appliqué au lit fluidisé doit être compris entre le débit minimum de fluidisation (Umf) et le débit minimum de bullage (Umf)
Les exemples suivants illustrent de façon non limitative la portée de l’invention.
Exemple 1 comparatif : mode opératoire générale de pré-imprégnation d’un matériau fibreux (fibre de carbone non ensimée) par une poudre de MPMDT/10T
(67/33 % molaire) en lit fluidisé avec un seul rouleau cylindrique lisse et avec une faible tension de la mèche (800q) à l’entrée du lit fluidisé.
Le mode opératoire suivant a été effectué:
- Un rouleau cylindrique lisse dans la cuve (L= 500 mm, l= 500mm, H= 600mm), diamètre 25 mm.
- Tension de la mèche à l’entrée du lit fluidisé : 800g
- Temps de séjour de 0,3 sec dans la poudre
- Angle en de 25° - Epanouissement environ 100 % (soit une largeur multipliée par 2) pour une mèche en fibre de carbone d’Hexcel 12K AS4.
- D50 =1 15 pm, (D10=49pm, D90= 207pm) pour la poudre de MPMDT/10T.
- bord de la cuve équipé d’un rouleau fixe.
Le matériau fibreux (mèche de fibre de carbone de 12K) a été pré-imprégné de façon homogène par une poudre de polyamide MPMDT/10T de granulométrie ci-dessus définie selon ce mode opératoire et le ruban obtenu à partir de cette mèche pré imprégnée, après fusion de la poudre et passage sur une série d’embarrage suivi d’un calandrage est présenté dans la figure 10 afin d’obtenir un ruban de ¼”.
Les résultats obtenus montrent que le taux de polymère imprégné n’est pas stable au cours du temps (voir figure 1 1 ). La largeur de mèche dans et en sortie du lit fluide varient.
Exemple 2 : mode opératoire générale de pré-imprégnation d’un matériau fibreux (fibre de carbone non ensimée) par une poudre de polyamide en lit fluidisé avec un seul rouleau cylindrique gorgé avec une faible tension de la mèche en entrée du lit fluidisé (800q)
Le mode opératoire suivant a été effectué:
- Un rouleau cylindrique gorgé dans la cuve (L= 500 mm, l= 500mm, H= 600mm), diamètre 25 mm en fond de gorge, 5mm de profondeur de gorge.
- Tension de la mèche à l’entrée du lit fluidisé : 800g
- Temps de séjour de 0,3 sec dans la poudre
- Angle en de 25°
- Epanouissement environ 100 % (soit une largeur multipliée par 2) pour une mèche en fibre de carbone non ensimée d’Hexcel 12K AS4
- D50 =1 15 pm, (D10=49pm, D90= 207pm) pour la poudre de MPMDT/10T (67/33 % molaire).
- bord de la cuve équipé d’un rouleau fixe.
Le matériau fibreux (mèche de fibre de carbone de 12K) a été pré-imprégné de façon homogène par une poudre de polyamide MPMDT/10T de granulométrie ci-dessus définie selon ce mode opératoire et le ruban obtenu à partir de cette mèche pré- imprégnée, après fusion de la poudre et passage sur une série d’embarrage suivi d’un calandrage est présenté dans la figure 12 pour d’obtenir une tape de ¼”.
On observe qu’en présence d’un rouleau gorgé dans la poudre, et en utilisant une tension faible pour la fibre en entrée de lit fluide, le taux de polymère imprégné est stable au cours du temps (cf figure 13).
De plus, on n’observe pas de fuzz créé avant pré-imprégnation du fait de la faible tension appliquée à la fibre en entrée de lit fluide favorisant ainsi la bonne santé matière de la tape.
Cela démontre l’efficacité du procédé de pré-imprégnation par une poudre sèche en lit fluidisé avec un rouleau cylindrique gorgé avec une fibre non ensimée et contrôle du temps de séjour et de la tension dans la poudre par opposition à un rouleau lisse.
Exemple 3 : Détermination du taux de porosité par analyse d’image
La porosité a été déterminée par analyse d’image sur une mèche de fibre de carbone ½” imprégnée par du MPMDT/10T). Elle est de 5%.
Exemple 4 : Détermination du taux de porosité l’écart relatif entre densité théorique et densité expérimentale (méthode générale)
a) Les données requises sont :
La densité de la matrice thermoplastique
La densité des fibres
Le grammage du renfort :
• masse linéique (g/m) par exemple pour une tape ¼ de pouce (issu d’un seul rowing)
• masse surfacique (g/m2) par exemple pour une tape plus large ou un tissu b) Mesures à réaliser :
Le nombre d’échantillons doit être au minimum de 30 pour que le résultat soit représentatif du matériau étudié.
Les mesures à réaliser sont :
La dimension des échantillons prélevés:
o Longueur (si masse linéique connue)
o Longueur et largeur (si masse surfacique connue).
La densité expérimentale des échantillons prélevés : o Mesures de masse dans l’air et dans l’eau.
La mesure du taux de fibres est déterminée selon ISO 1 172 : 1999 ou par analyse thermogravimétrique (ATG) telle que déterminé par exemple dans le document B. Benzler, Applikationslabor, Mettler Toledo, Giesen, UserCom 1/2001 . La mesure du taux de fibres de carbone peut être déterminée selon ISO 14127 :2008.
Détermination du taux de fibres massique théorique :
a) Détermination du taux de fibres massique théorique :
Avec
mi la masse linéique de la tape,
L la longueur de l’échantillon et
Meair la masse de l’échantillon mesuré dans l’air.
La variation du taux massique de fibres est supposée être directement liée à une variation du taux de matrice sans prendre en compte la variation de la quantité des fibres dans le renfort. b) Détermination de la densité théorique :
Avec dm et df les densités respectives de la matrice et des fibres.
La densité théorique ainsi calculée est la densité accessible s’il n’y a aucune porosité dans les échantillons. c) Evaluation de la porosité :
La porosité est alors l’écart relatif entre densité théorique et densité expérimentale.

Claims

REVENDICATIONS
1. Procédé de fabrication d’un matériau fibreux pré-imprégné comprenant un matériau fibreux en fibres continues et au moins une matrice polymère thermoplastique, caractérisé en ce que ledit matériau fibreux pré-imprégné est réalisé en un ruban unique unidirectionnel ou en une pluralité de rubans parallèles unidirectionnels et en ce que ledit procédé comprend une étape de pré-imprégnation, en particulier homogène, dudit matériau fibreux se présentant sous forme d’une mèche (81 a) ou de plusieurs mèches parallèles par ladite au moins une matrice polymère thermoplastique se présentant sous forme de poudre, ladite étape de pré-imprégnation étant effectuée par voie sèche dans une cuve (20) comprenant un lit fluidisé (22) comprenant au moins une pièce d’embarrage gorgée (82),
ladite mèche (81 a) ou lesdites mèches étant en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage gorgée (82) et ladite mèche (81 a) ou lesdites mèches comprenant jusqu'à 0,1 % en poids d’ensimage,
et le contrôle du taux de ladite au moins une matrice polymère thermoplastique dans ledit matériau fibreux étant effectué par contrôle du temps de séjour dudit matériau fibreux dans la poudre et par contrôle constant de la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé.
2. Procédé selon la revendication 1 , caractérisé en ce que ladite mèche (81a) ou lesdites mèches est(sont) non ensimées.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la tension de ladite mèche (81a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est jusqu’à 1000g.
4. Procédé selon la revendication 3, caractérisé en ce que la tension de ladite mèche (81 a) ou desdites mèches lorsqu’elle(s) pénètre(nt) dans le lit fluidisé est comprise de 100 à 1000g, en particulier de 200 à 1000g, plus particulièrement de 300 à 850g.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que la largeur minimum de ladite mèche (81 a) ou desdites mèches est supérieure à la largeur de la gorge de ladite pièce d’embarrage gorgée.
6. Procédé selon l’une des revendications 1 à 5, caractérisé en ce que ladite étape de pré-imprégnation est effectuée avec épanouissement simultané de ladite mèche (81a) ou desdites mèches entre l’entrée et la sortie dudit lit fluidisé (22).
7. Procédé selon l’une des revendications 1 à 6, caractérisé en ce que le diamètre moyen D50 en volume des particules de poudre de polymère thermoplastique étant compris de 30 à 300 pm, notamment de 50 à 200 pm, plus particulièrement de 70 à 200pm.
8. Procédé selon l’une des revendications 1 à 7, caractérisé en ce que le taux de fibres dans ledit matériau fibreux imprégné est compris de 45 à 65 % en volume, de préférence de 50 à 60% en volume, notamment de 54 à 60%.
9. Procédé selon l’une des revendications 1 à 8, caractérisé en ce que le temps de séjour dans la poudre est compris de 0,01 s à 10s, préférentiellement de 0, 1 s à 5s, et en particulier de 0, 1 s à 3s.
10. Procédé selon l’une des revendications 1 à 9, caractérisé en ce que ladite pièce d’embarrage gorgée est un rouleau cylindrique gorgé et le pourcentage d’épanouissement de ladite mèche (81a) ou desdites mèches entre l’entrée et la sortie de ladite cuve étant compris de 1 % à 400%, préférentiellement entre 30% et 400% préférentiellement entre 30% et 150%, préférentiellement entre 50% et 150%.
11. Procédé selon la revendication 10, caractérisé en ce que un seul rouleau cylindrique gorgé est présent dans le lit fluidisé (22) et ladite pré-imprégnation est effectuée au niveau de l’angle CM formé par ladite mèche (81a) ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé et la tangente verticale audit rouleau cylindrique gorgé.
12. Procédé selon la revendication 1 1 , caractérisé en ce que l’angle en est compris de 0 à 89°, préférentiellement 5° à 85°, préférentiellement de 5° à 45°, préférentiellement de 5° à 30°.
13. Procédé selon la revendication 10, caractérisé en ce que deux rouleaux cylindriques gorgés Ri et R2 sont présents dans ledit lit fluidisé (22) et ladite pré-imprégnation est effectuée au niveau de l’angle en formé par ladite mèche (81 a) ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé Ri et la tangente verticale audit rouleau cylindrique gorgé et/ou au niveau de l’angle 0(2 formé par ladite mèche (81 a) ou lesdites mèches entre l’entrée dudit rouleau cylindrique gorgé R2 et la tangente verticale audit rouleau cylindrique gorgé R2, ledit rouleau cylindrique gorgé Ri (dans le sens de défilement du procédé) précédant ledit rouleau cylindrique gorgé R2 et ladite mèche (81 a) ou lesdites mèche pouvant passer au-dessus ou en dessous du rouleau R2.
14. Procédé selon la revendication 13, caractérisé en ce que les deux rouleaux cylindriques gorgés Ri et R2 sont distants de 0, 15 mm à la longueur équivalente à la dimension maximale de la cuve (20), préférentiellement distants de 10mm à 50mm et en ce que la différence de hauteur entre les deux rouleaux cylindriques gorgés Ri et R2 est comprise de 0 à la hauteur correspondant à la hauteur maximale de la cuve (20) soustraite des diamètres des deux rouleaux cylindriques gorgés, préférentiellement comprise de 0, 15mm à la hauteur correspondant à la hauteur maximale de la cuve (20) soustraite des diamètres des deux rouleaux cylindriques gorgés, plus préférentiellement à une différence de hauteur comprise entre 10mm et 300mm, R2 étant le rouleau cylindrique gorgé supérieur.
15. Procédé selon l’une des revendications 1 à 14, caractérisé en ce qu’une seule matrice polymère thermoplastique est utilisée et la poudre de polymère thermoplastique est fluidisable.
16. Procédé selon l’une des revendications 1 à 15, caractérisé en ce qu’il comprend de plus au moins une étape de chauffage de la matrice thermoplastique permettant la fusion ou le maintien en fusion dudit polymère thermoplastique après pré-imprégnation,
ladite au moins une étape de chauffage étant effectuée au moyen d’au moins une pièce d’embarrage (E) conductrice ou non de la chaleur et d’au moins un système de chauffage, à l’exception d’une calandre chauffante,
ladite mèche ou lesdites mèches étant en contact avec une partie ou la totalité de la surface de ladite au moins une pièce d’embarrage (E) et défilant partiellement ou totalement à la surface de ladite au moins une pièce d’embarrage (E) au niveau du système de chauffage.
17. Procédé selon l’une des revendications 1 à 16, caractérisé en ce qu’il comprend de plus une étape de mise en forme de ladite mèche ou desdites mèches parallèles dudit matériau fibreux pré-imprégné, par calandrage au moyen d’au moins une calandre chauffante sous forme de ruban unique unidirectionnel ou d’une pluralité de rubans ou nappes parallèles unidirectionnels avec, dans ce dernier cas, ladite calandre chauffante comportant une pluralité de gorges de calandrage, de préférence jusqu’à 300 gorges de calandrage, en conformité avec le nombre desdits rubans et avec une pression et/ou un écartement entre les rouleaux de ladite calandre régulés par un système asservi.
18. Procédé selon la revendication 17, caractérisé en ce que l’étape de calandrage est réalisée au moyen d’une pluralité de calandres (51 , 52, 53) chauffantes, montées en parallèle et/ou en série par rapport au sens de défilement des mèches (81a) de fibres.
19. Procédé selon l’une des revendications 17 ou 18, caractérisé en ce que ladite (ou lesdites) calandre(s) chauffante(s) (51 , 52, 53) comprend (comprennent) un système de chauffage intégré par induction ou par microondes, de préférence par microondes, couplé à la présence de charges carbonées dans ledit polymère thermoplastique ou mélange de polymères thermoplastiques.
20. Procédé selon l’une des revendications 17 à 19, caractérisé en ce que ladite (ou lesdites) calandre(s) chauffante(s) (51 , 52, 53) est (sont) couplée(s) à un dispositif de chauffage complémentaire rapide (41 , 42, 43), situé avant et/ou après ladite (chaque) calandre (51 , 52, 53), en particulier un dispositif de chauffage par microondes ou induction couplé à la présence de charges carbonées dans ledit polymère ou dans ledit mélange de polymères, ou un dispositif de chauffage infrarouge IR, ou Laser ou par contact direct avec une autre source de chaleur comme une flamme ou un gaz chaud.
21. Procédé selon l’une des revendications 1 à 20, caractérisé en ce que ladite ou lesdites étape(s) de pré-imprégnation est(sont) complétée(s) par une étape de recouvrement de ladite mèche (81a) unique ou de ladite pluralité de mèches parallèles après pré-imprégnation par la poudre, ladite étape de recouvrement étant réalisée avant ladite étape de calandrage, par un polymère thermoplastique fondu, pouvant être identique ou différent dudit polymère sous forme de poudre en lit fluidisé (22), ledit polymère fondu étant de préférence de même nature que ledit polymère sous forme de poudre en lit fluidisé (22), de préférence avec ledit recouvrement s’effectuant par extrusion en tête d’équerre par rapport à ladite mèche (81 a) unique ou à ladite pluralité de mèches parallèles.
22. Procédé selon l’une des revendications 1 à 21 , caractérisé en ce que ledit polymère thermoplastique comprend en outre des charges carbonées, en particulier du noir de carbone ou des nanocharges carbonées, de préférence choisies parmi des nanocharges carbonées, en particulier des graphènes et/ou des nanotubes de carbone et/ou des nanofibrilles de carbone ou leurs mélanges.
23. Procédé selon l’une des revendications 1 à 22, caractérisé en ce que le dit polymère thermoplastique comprend en outre des polymères à cristaux liquides ou du poly(butylène téréphtalate) cyclisé, ou des mélanges en contenant comme additifs.
24. Procédé selon l’une des revendications 1 à 23, caractérisé en ce que ledit au moins polymère thermoplastique est sélectionné parmi : les polyaryl éther cétones (PAEK), en particulier le poly(éther éther cétone) (PEEK) ; les polyaryl éther cétone cétone (PAEKK), en particulier le poly(éther cétone cétone) (PEKK) ; les polyéther-imides (PEI) aromatiques ; les polyaryl sulfones, en particulier les polyphénylène sulfones (PPSU) ; les polyarylsulfures, en particulier les polyphénylène sulfures (PPS) ; les polyamides (PA), en particulier polyamides aromatiques éventuellement modifiées par unités urées ; les PEBA, les polyacrylates en particulier le polyméthacrylate de méthyle (PMMA) ; les polyoléfines, en particulier le polypropylène, l’acide polylactique (PLA), l’alcool polyvinylique (PVA), et les polymères fluorés en particulier le polyfluorure de vinylidène (PVDF) ou le polytétrafluoroéthylène (PTFE) ou le polychlorotrifluoroéthylène (PCTFE); et leurs mélanges, notamment un mélange de PEKK et de PEI, de préférence de 90-10% en poids à 60-40% en poids, en particulier de 90-10% en poids à 70-30% en poids.
25. Procédé selon la revendication 24, caractérisé en ce que ledit au moins polymère thermoplastique est un polymère dont la température de transition vitreuse est telle que Tg > 80°C ou un polymère semi-cristallin dont la température de fusion Tf > 150°C.
26. Procédé selon l’une des revendications 1 à 25, caractérisé en ce que ledit matériau fibreux comprend des fibres continues sélectionnées parmi les fibres de carbone, de verre, de carbure de silicium, de basalte, de silice, les fibres naturelles en particulier de lin ou de chanvre, de lignine, de bambou, de sisal, de soie, ou cellulosiques en particulier de viscose, ou les fibres thermoplastiques amorphes de température de transition vitreuse Tg supérieure à la Tg dudit polymère ou dudit mélange de polymères lorsque ce dernier est amorphe ou supérieure à la Tf dudit polymère ou dudit mélange de polymères lorsque ce dernier est semi-cristallin, ou les fibres thermoplastiques semi-cristallines de température de fusion Tf supérieure à la Tg dudit polymère ou dudit mélange de polymères lorsque ce dernier est amorphe ou supérieure à la Tf dudit polymère ou dudit mélange de polymères lorsque ce dernier est semi-cristallin, ou un mélange de deux ou de plusieurs desdites fibres, de préférence un mélange de fibres de carbone, de verre ou de carbure de silicium, en particulier des fibres de carbone.
27. Ruban unidirectionnel de matériau fibreux imprégné, en particulier ruban enroulé sur bobine, caractérisé en ce qu’il est obtenu par un procédé tel que défini selon l’une des revendications 16 à 26.
28. Ruban selon la revendication 27, caractérisé en ce qu’il a une largeur (I) et une épaisseur (ep) adaptées à une dépose par robot dans la fabrication de pièces en trois dimensions, sans besoin de refente, et de préférence a une largeur (I) d’au moins 5 mm et pouvant aller jusqu’à 400mm, de préférence comprise entre 5 et 50 mm et de manière encore plus préférée comprise entre 5 et 15mm.
29. Ruban selon l’une des revendications 27 ou 28, caractérisé en ce que le polymère thermoplastique est un polyamide choisi parmi notamment un polyamide aliphatique tel que choisi PA 6, PA 11 , PA 12, PA 66, PA 46, PA 610, PA 612, PA 1010, PA 1012, PA 11/1010 ou PA 12/1010 ou un polyamide semi-aromatique tel que un PA MXD6 et un PA MXD10 ou choisi parmi PA 6/6T, un PA 66/6T, un PA 6I/6T, un PA MPMDT/6T, un PA MXDT/6T, un PA PA11/10T, un PA 11/6T/10T, un PA MXDT/10T, un PA MPMDT/10T, un PA BACT/10T, un PA BACT/6T, un PA BACT/10T/6T, un PA BACT/6T/11 , un PA 11/BACT/10T, un PA 11/MPMDT/10T et un PA 11/MXDT/10T, un PVDF, un PEEK, PEKK et un PEI ou un mélange de ceux-ci.
30. Utilisation du procédé tel que défini selon l’une des revendications 16 à 26, pour la fabrication de rubans calibrés adaptés à la fabrication de pièces composites en trois dimensions, par dépose automatique desdits rubans au moyen d’un robot.
31. Utilisation du ruban de matériau fibreux imprégné, tel que défini selon l’une des revendications 27 à 29, dans la fabrication de pièces composites en trois dimensions.
32. Utilisation selon la revendication 31 , caractérisée en ce que ladite fabrication desdites pièces composites concerne les domaines des transports, en particulier automobile, du pétrole et du gaz, en particulier l’offshore, du stockage de gaz, aéronautique civile ou militaire, nautique, ferroviaire ; des énergies renouvelables, en particulier éolienne, hydrolienne, les dispositifs de stockage d’énergie, les panneaux solaires ; des panneaux de protection thermique ; des sports et loisirs, de la santé et du médical, de la sécurité et de l’électronique.
33. Pièce composite en trois dimensions, caractérisée en ce qu’elle résulte de l’utilisation d’au moins un ruban unidirectionnel de matériau fibreux imprégné tel que défini selon l’une des revendications 27 à 29.
EP19817366.8A 2018-12-18 2019-12-16 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise Withdrawn EP3898159A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18306720.6A EP3670128B1 (fr) 2018-12-18 2018-12-18 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
PCT/EP2019/085282 WO2020126996A1 (fr) 2018-12-18 2019-12-16 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise

Publications (1)

Publication Number Publication Date
EP3898159A1 true EP3898159A1 (fr) 2021-10-27

Family

ID=65278142

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18306720.6A Active EP3670128B1 (fr) 2018-12-18 2018-12-18 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
EP19817366.8A Withdrawn EP3898159A1 (fr) 2018-12-18 2019-12-16 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18306720.6A Active EP3670128B1 (fr) 2018-12-18 2018-12-18 Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise

Country Status (6)

Country Link
US (1) US20220063137A1 (fr)
EP (2) EP3670128B1 (fr)
JP (1) JP2022512441A (fr)
KR (1) KR20210104819A (fr)
CN (1) CN113226682B (fr)
WO (1) WO2020126996A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112976611B (zh) * 2021-03-06 2022-05-27 韩塑希埃孚黑色科技(上海)有限公司 一种大宽幅碳纤维布的自动生产线

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH518165A (de) * 1970-04-07 1972-01-31 Ici Ltd Kontinuierliches Verfahren zur Herstellung von faserverstärktem thermoplastischem Material
JPH01263005A (ja) * 1988-04-14 1989-10-19 Kobe Steel Ltd Frtp連続プリプレグ製造装置
EP0300321B1 (fr) * 1987-07-11 1994-03-09 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Procédé pour la fabrication continue de feuilles pré-imprégnées thermoplastiques renforcées de fibres et dispositif pour l'exécution de celui-ci
FR2648957B1 (fr) 1989-06-22 1991-11-15 France Etat Armement Materiau composite a caracteristiques modulables par preimpregnation d'une fibre continue
JPH0584737A (ja) * 1991-09-27 1993-04-06 Sekisui Chem Co Ltd 熱成形用繊維強化樹脂積層シートの製造方法
JPH0740341A (ja) * 1993-06-29 1995-02-10 Sekisui Chem Co Ltd 繊維複合シートの製造方法
JP3480990B2 (ja) * 1994-07-29 2003-12-22 積水化学工業株式会社 繊維複合シートの製造方法
JPH1058448A (ja) * 1996-08-20 1998-03-03 Sekisui Chem Co Ltd 繊維複合シートの製造方法
FR2858626B1 (fr) 2003-08-05 2005-10-07 Atofina Polyamides semi aromatiques souple a faible reprise en humidite
FR3017329B1 (fr) 2014-02-13 2016-07-29 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
FR3027546B1 (fr) * 2014-10-24 2017-07-21 Porcher Ind Meches poudrees par procede electrostatique
FR3061066B1 (fr) * 2016-12-22 2020-02-14 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
FR3061069B1 (fr) * 2016-12-22 2020-05-01 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre seche
FR3061068B1 (fr) * 2016-12-22 2020-02-14 Arkema France Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre

Also Published As

Publication number Publication date
CN113226682A (zh) 2021-08-06
JP2022512441A (ja) 2022-02-03
CN113226682B (zh) 2024-05-24
EP3670128A1 (fr) 2020-06-24
EP3670128B1 (fr) 2022-07-20
KR20210104819A (ko) 2021-08-25
US20220063137A1 (en) 2022-03-03
WO2020126996A1 (fr) 2020-06-25

Similar Documents

Publication Publication Date Title
EP3393738B1 (fr) Procédé de fabrication d&#39;un matériau fibreux pré-imprégné de polymère thermoplastique en lit fluidise
EP3418019B1 (fr) Procede de fabrication d&#39;un materiau fibreux impregne de polymere thermoplastique
EP3617254B1 (fr) Materiau fibreux impregne de polymere thermoplastique
EP3558612B1 (fr) Procede de fabrication d&#39;un materiau fibreux pre-impregne de polymere thermoplastique sous forme de poudre
EP3418015B1 (fr) Procede de fabrication d&#39;un materiau fibreux impregne de polymere thermoplastique
WO2018115738A1 (fr) Procédé de fabrication d&#39;un matériau fibreux pré-imprégné de polymère thermoplastique sous forme de poudre sèche
WO2018115739A1 (fr) Procede de fabrication d&#39;un materiau fibreux pre-impregne de polymere thermoplastique par projection
EP3768768A1 (fr) MATERIAU FIBREUX IMPREGNE DE POLYMERE THERMOPLASTIQUE D&#39;EPAISSEUR INFERIEURE OU EGALE A 100µM ET SON PROCEDE DE PREPARATION
EP3670128B1 (fr) Procede de fabrication d&#39;un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
EP3898786A1 (fr) Materiau fibreux impregne de polymere thermoplastique de masse moleculaire et de viscosite optimum et son procede de preparation
WO2020126995A1 (fr) Procede de fabrication d&#39;un materiau fibreux impregne de polymere thermoplastique
WO2020126997A1 (fr) Procede de fabrication d&#39;un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
WO2019243747A1 (fr) Procede de fabrication d&#39;un materiau fibreux pre-impregne de polymere thermoplastique en lit fluidise
WO2022129781A1 (fr) Procédé de fabrication d&#39;un matériau fibreux en fibres continues imprégné de polymère thermoplastique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231128