EP3870894B1 - Leuchteinheit für einen kfz-scheinwerfer - Google Patents

Leuchteinheit für einen kfz-scheinwerfer Download PDF

Info

Publication number
EP3870894B1
EP3870894B1 EP19773113.6A EP19773113A EP3870894B1 EP 3870894 B1 EP3870894 B1 EP 3870894B1 EP 19773113 A EP19773113 A EP 19773113A EP 3870894 B1 EP3870894 B1 EP 3870894B1
Authority
EP
European Patent Office
Prior art keywords
light
prism
lamp unit
diaphragm
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19773113.6A
Other languages
English (en)
French (fr)
Other versions
EP3870894A1 (de
Inventor
Josef Hechenberger
Bernhard Mandl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3870894A1 publication Critical patent/EP3870894A1/de
Application granted granted Critical
Publication of EP3870894B1 publication Critical patent/EP3870894B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24-F21S41/28
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/16Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having blurred cut-off lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/17Arrangement or contour of the emitted light for regions other than high beam or low beam
    • F21W2102/18Arrangement or contour of the emitted light for regions other than high beam or low beam for overhead signs

Definitions

  • the invention relates to a lighting unit for a lighting device of a motor vehicle, in particular for a motor vehicle headlight, comprising: at least one low beam module for generating a low beam light distribution largely below a horizontal light-dark boundary depicted essentially in front of the motor vehicle, at least one high beam module for generating a high beam - Light distribution largely above the cut-off line, imaging optics downstream of the low-beam module and the high-beam module in the optical beam direction to generate an overall light distribution of the light modules with an optical axis and a focal surface oriented essentially normal to the optical axis, and a screen that has a screen edge has and extends to generate the horizontal light-dark boundary in a light image generated by the lighting unit substantially to the focal surface of the imaging optics.
  • Lighting devices and light modules for motor vehicles which are set up to generate different light distributions and light-dark boundaries by means of appropriate control and to project them onto the road, are well known. According to a well-known principle, these different light distributions and light-dark boundaries are suppressed by means of a beam shield, with which a part of the emitted light beams is blanked out in a targeted manner.
  • a beam shield By means of the aperture, among other things, a sharp cut-off between light and dark can be obtained in a light image generated by the low-beam function, so that blinding of preceding or oncoming road users is largely avoided.
  • Luminous units according to the structure mentioned at the outset are well known.
  • the low beam module which is arranged on top in the motor vehicle when installed
  • the high beam module which is arranged on the underside in the motor vehicle when installed, interact via the common screen body and the common imaging optics, so that the imaging optics images the intermediate light images of both the low beam module and the high beam module and the screen images the beam paths of both modules affected.
  • Lighting units of this type generally have the disadvantage in common that they do not intentionally mix or overlap the light beams of the light beams attached on the top allow the low beam module and the high beam module mounted on the underside.
  • the critical area is here in that edge area of the beam diaphragm, which is in particular in the center and is formed along the focal curve of the imaging optics (e.g. projection lens).
  • a lighting unit for a lighting device of a motor vehicle in particular for a motor vehicle headlight, of the type mentioned at the outset in that the screen has a substantially flat, opaque screen area and, on the screen edge in the area of the focal surface, a light-transmissive screen area with a geometric structure made of a transparent material, wherein the geometric structure comprises at least one prismatic body with an essentially triangular cross-sectional area, the at least one prismatic body extends longitudinally and the longitudinal extent runs essentially transversely to the optical axis, the at least one prismatic body has a first, a second and a third prismatic surface , wherein the first prism surface is substantially aligned with the planar opaque panel area, the second prism surface faces the opaque panel area and with the first prism surface encloses an interior angle ⁇ 1 ⁇ ⁇ , and the third prism surface faces away from the opaque diaphragm area and encloses an interior angle ⁇ 2 ⁇ ⁇ with the first prism surface, where
  • the light beams generated by the low beam module are totally reflected by the prism structure on the screen edge in the area of the apron, so that the generation of disturbing scattered light in the area above the HH line is prevented, whereas those light beams generated by the high beam module pass through the prism structure in a transmissive manner and are deflected at this prism structure in such a way that the dark gap between the low beam and the high beam in the light image is closed when the high beam function is switched on (see also 7 , in which the beam paths are shown schematically, as well as a description of this).
  • the problem related to the burning glass effect is solved, since thanks to the transparent aperture area, which includes the geometric prism structure, the light rays, eg sunlight, are no longer absorbed, but penetrate the material and diverge.
  • the light beams that are totally reflected by the prism structure and that are generated by the low-beam module are refracted, resulting in a softer transition or a desired gradient generated at the light-dark boundary. This means that no further measures, such as a microstructure on the imaging optics, need to be taken in order to produce a desired gradient to soften the light-dark boundary.
  • the invention thus solves several current lighting problems of lighting units that have a low-beam module, a high-beam module and a beam shield for generating a horizontal light-dark boundary.
  • the diaphragm which has an essentially flat appearance, can lie essentially horizontally in the optical axis or be slightly inclined relative to the optical axis, in a manner known per se.
  • the screen can also have a kink along a horizontal line, so that the screen body does not have a continuous flat boundary surface.
  • the geometric structure may comprise a single large prism or two or more smaller prisms, the large prism or the two or more smaller prisms having to comply with the technical characteristics in terms of arrangement and internal angles defined above or in claim 1 (see also 9 and description of it). It was found that geometric structures other than the prism structure defined herein, for example a wedge shape with an internal angle ⁇ 1 or an internal angle ⁇ 2 of 45°, do not bring the desired advantages and, for example, total reflection also for the high beam or an undesired transmission of the low beams bring yourself
  • the heights of the lined-up prisms can increase steadily, which has the advantage that a smaller triangular prism that is closer to the focal point shades proportionately fewer high-beam light rays that are emitted by the first prism surfaces triangular prisms enter the transparent geometric structure of the aperture. For example, fewer high-beam rays are totally reflected at a second prism face of a smaller height prism closer to the focal point than enter via a first prism face of a triangular prism of greater height.
  • the increase in the heights of the triangular prisms advantageously follows a parabolic curve.
  • Imaging optics for headlights are well known per se to those skilled in the art.
  • the imaging optics can be constructed in a manner known per se and can comprise, for example, a projection lens or a multi-stage lens system; furthermore, lens-reflector combinations are also possible.
  • the geometric structure comprises at least two prismatic bodies arranged one behind the other in the optical beam direction, the first prismatic surfaces of which adjoin one another longitudinally and are aligned with one another.
  • the geometric structure is preferably formed from exactly two prismatic bodies arranged one behind the other in the optical beam direction, the first prismatic surfaces of which adjoin one another longitudinally and are aligned with one another; Due to the necessary geometric dimensions with regard to the prism surface and the basic thickness of the diaphragm, a geometric structure with exactly two prismatic bodies arranged in the optical direction of the beam has proven to be particularly advantageous because, on the one hand, the above-mentioned technical problems to be solved due to the distance of the geometric structure to the focal surface or .to the focal point of the imaging optics can be optimally solved, and this variant is also technically easy to implement.
  • the at least one prism body has two areas that merge into one another in the longitudinal direction, which are offset in height from one another and are connected to one another via a preferably inclined transition area through which the optical axis runs. This makes it possible to achieve an increase in asymmetry in the light distribution (see Fig.10 and description of it).
  • the opaque panel area can at least partially have a reflective surface.
  • the screen is made in one piece from the light-transmitting material and the opaque screen area is vaporized in a manner known per se, e.g. vaporized with a metal such as aluminum, or is mirrored.
  • the opaque panel area is made of an opaque material (e.g. metal or opaque plastic) and the translucent panel area, which encompasses the geometric structure, is an insert made of the translucent material (e.g. glass or translucent/transparent plastic), or the panel is made of a a multi-component injection molding process using transparent and opaque plastic materials, e.g. by a two-component injection molding process using an opaque and a transparent plastic material.
  • an opaque material e.g. metal or opaque plastic
  • the translucent panel area which encompasses the geometric structure
  • the translucent material e.g. glass or translucent/transparent plastic
  • the panel is made of a multi-component injection molding process using transparent and opaque plastic materials, e.g. by a two-component injection molding process using an opaque and a transparent plastic material.
  • the transparent material is preferably plastic or glass.
  • the second and/or third prismatic surface is designed to be essentially planar.
  • the second and/or third prism surface is curved, preferably the third prism surface is curved inwards.
  • These variants have the advantage that the gradient of the light-dark boundary can also be positively influenced, so that a smooth transition of the light-dark boundary can be realized (see also 11 and 12 as well as a description of this).
  • the cross-sectional area of the at least one prismatic body remains the same in the longitudinal extent.
  • the cross-sectional area of the at least one prism body increases in the longitudinal extension; in this way, the gradient of the light-dark boundary towards the edge areas of the light distribution is further softened, so that the roadsides can be illuminated in a particularly pleasant manner for the motor vehicle driver.
  • the at least one low-beam module and the at least one high-beam module each comprise at least one light source, with each light source being assigned a collimator in the optical beam direction and the collimator being set up to reduce the beam angle of the light beams generated by the light source and thereby increase the beam characteristics design.
  • the lighting unit can be a collimator module, for example, which comprises the at least one low-beam module and the at least one high-beam module, and wherein the low-beam and high-beam modules are assigned a plurality of light sources and a collimator is connected downstream of each light source in the optical beam direction.
  • the aperture is located downstream of the collimator module in the optical beam direction.
  • a projection lens or a multi-stage lens system can be provided as imaging optics.
  • the collimator can be designed, for example, as a TIR collimator lens (TIR—Total Internal Reflection).
  • TIR collimator lenses are well known to a person skilled in the art (e.g. TIR lens Bern from Auer Lighting GmbH, DE); these are optically transparent bodies made of a transparent material with a refractive index greater than that of air, e.g. glass or plastic; In doing so, essentially all of the light refracted on the light coupling-out surface of the TIR collimator lens spreads further through the air, preferably in a predetermined direction with a reduction in divergence compared to the light propagation in front of the light coupling-in surface.
  • the collimator is designed as a reflector, i.e. as a surface that reflects light (mainly visible) and deflects light rays propagating through the air in a preferably predetermined direction.
  • the components of the low-beam module and/or high-beam module that shape the light distribution can also be designed in the form of polyellipsoid reflector arrangements based on the projection headlight type, as is well known to those skilled in the art.
  • the screen has at least one light window, with at least one light path running outwards from the low beam and/or high beam modules through the at least one light window and through the imaging optics.
  • the at least one light window can be arranged in the opaque screen area of the screen and delimited by it, with the light window being designed as a recess in the opaque screen area of the screen or consisting of a light-transmitting material.
  • a further subject of the invention is a motor vehicle headlight which comprises at least one lighting unit according to the invention.
  • the motor vehicle headlight is a headlight.
  • the motor vehicle headlight according to the invention is expediently constructed according to headlight construction principles which are known per se and comprises a housing with a light exit opening which is covered by a lens or a cover plate.
  • Modern motor vehicle headlights often have a number of light modules which, taken individually or in combination, can take on individual light functions. These light modules are often arranged in close proximity to one another in the headlight housing.
  • the motor vehicle headlight according to the invention can therefore also include other light modules, e.g such as the light distribution of a daytime running light, a turn signal light, etc.
  • Another object of the invention is a motor vehicle comprising at least one lighting unit according to the invention and/or a motor vehicle headlight according to the invention.
  • the term "motor vehicle” (motor vehicle) as used herein refers to single or multi-track motorized land vehicles such as motorcycles, cars, trucks and the like.
  • Lighting unit 100 comprises a low-beam module 101, a high-beam module 102 and imaging optics in the form of a projection lens 103 with an optical axis 104 and one essentially normal to the optical axis 104, which are connected downstream of the low-beam module 101 and the high-beam module 102 to generate an overall light distribution of the light module in the optical beam direction oriented focal surface 116, also known as the Petzval surface.
  • the low-beam module 101 is set up to generate a low-beam light distribution for the most part below a horizontal light-dark boundary that is imaged essentially in front of the motor vehicle.
  • the high-beam module 102 is set up to generate a high-beam light distribution largely above the cut-off line.
  • the lighting unit includes 100 an essentially horizontal diaphragm 105, which has a diaphragm edge 106 and extends to generate the horizontal light-dark boundary in a light image generated by the lighting unit 100 essentially up to the focal surface 116 of the downstream projection lens 103.
  • the aperture edge 106 reaches up to the focal surface 116 or up to the focal point F of the projection lens 103 .
  • the low beam module 101 and the high beam module 102 together form a collimator module that is constructed according to generally known principles and does not need to be explained in more detail at this point (see also the description of collimators, eg TIR collimator lenses, above).
  • the low-beam module 101 and the high-beam module 102 each comprise a plurality of light sources, not shown in detail, for example embodied as LEDs, each light source being assigned a collimator, also not shown in detail, in the optical beam direction.
  • Each collimator is designed to reduce the divergence of the light rays generated by the light source.
  • the collimator module includes other optical components such as lenses or reflectors.
  • the low-beam module 101 and the high-beam module 102 can also be constructed according to other construction principles and are not limited to the 1 and 2 collimator structure shown schematically limited.
  • the low-beam module and/or the high-beam module can have reflectors based on the classic PES (poly-ellipsoid system) headlight type that is well known in the art.
  • the features of the lighting unit 100 according to the invention can be found in the panel 105, which is described in more detail in the following figures.
  • FIG. 3 shows the aperture 105 of the Figures 1 and 2 illustrated lighting unit 100 in a perspective view
  • 4 shows a plan view of the panel 105
  • figure 5 shows a section through aperture 105
  • 6 shows the geometric prismatic structure of the aperture of in Figures 1 and 2 illustrated lighting unit in detail.
  • the panel 105 has an essentially flat, opaque panel area 107 and on the panel edge 106 in the area of the focal surface 116 a light-transmitting panel area 108 with a geometric structure 109 made of a light-transmitting material. It goes without saying that the opaque screen area 107 can have a reflective surface, at least in part.
  • the opaque screen area 107 is made of metal and the light-permeable screen area 108 comprising the geometric structure 109 is an insert made of the light-permeable material.
  • the screen 105 in one piece from the light-transmitting material and the opaque screen area 107 is vapour-deposited in a manner known per se, e.g. with a metal such as aluminum, with the light-transmissive screen area 108 being recessed and therefore not being vapor-coated.
  • the translucent material is plastic. Instead of plastic, glass can also be chosen as the opaque material.
  • the geometric structure 109 of the exemplary aperture 105 comprises two prism bodies 110, each with a substantially triangular cross-sectional area.
  • Each prismatic body 110 extends longitudinally and the longitudinal extent runs essentially transversely to the optical axis 104.
  • Each prismatic body has a first, a second and a third prismatic surface, with the first prismatic surface 111 being essentially aligned with the flat, opaque screen area 107, and the second prismatic surface 112 faces the opaque diaphragm area 107 and encloses an interior angle ⁇ 1 ⁇ ⁇ with the first prism surface 111, and the third prism surface 113 faces away from the opaque diaphragm area 107 and encloses an interior angle ⁇ 2 ⁇ ⁇ with the first prism surface 111, where ⁇ is the critical angle of total internal reflection of the light-transmitting material, the interior angles ⁇ 1 and ⁇ 2 are the same or different, and provided that the interior angle ⁇ 1 and the interior angle ⁇ 2 are not 45°,
  • FIG. 7 illustrates the beam path of the light beams emitted by the low beam module or the high beam module, through one of the two prism bodies 110 of the screen 105 used according to the invention.
  • the light beams 114 generated by the low beam module 101 enter the prism body 110 through the second prism surface 112 and are first prismatic surface 111 is totally reflected and exits through the third prismatic surface 113, so that the generation of interfering scattered light in the area above the HH line is suppressed.
  • the light beams 117 generated by the high beam module 102 enter through the first prism surface 111, are transmitted through the prism body and are slightly deflected when exiting through the third prism surface 113, so that the gap between the low beam and the high beam in the light image of the high beam function (ie low beam and high beam are switched on) is closed.
  • the diaphragm 105 has a light window 115 which is arranged in the opaque diaphragm area 107 of the diaphragm 105 and is delimited by this.
  • the light window 115 is created by closing a window-shaped recess in the opaque panel area 107 with an insert plate made of transparent plastic.
  • the light path from the low and/or high beam modules may be through the light window 115 and out through the projection lens.
  • the light path through the light window 115 runs exclusively from the low beam module 101 through the light window 115 and through the imaging optics 101 to the outside. This is in 8 shown, which is a detailed view of a section through the aperture in 1 and 2 represents and the beam path of the light beams 114, which are emitted by the low beam module 101, through the aperture 105 arranged in the light window 115 ("sign light”) illustrates.
  • Figure 8a shows an enlarged view of the 8 , wherein the optical path of the light beams 117, which are emitted by the high-beam module 102, is also shown.
  • the light beams 117 from the high-beam module are totally reflected at the lower boundary surface 118 of the light window 115, which is inclined relative to the optical axis 104 (in Figure 8a the totally reflected light rays are marked with 117*).
  • the light rays 117 to the perpendicular n on the boundary surface 118 have an angle of incidence greater than the angle of total reflection.
  • triangular prisms 210 or 310 are each arranged in the translucent area on the diaphragm edge of a diaphragm used according to the invention and in relation to the focal surface or focal point F of the imaging optics (e.g. a projection lens 103 1 and 2 ) positioned in the lighting unit according to the invention.
  • imaging optics e.g. a projection lens 103 1 and 2
  • the triangular prisms 210 or 310 each comprise a first prism surface 211 or 311, a second prism surface 212 or 312 and a third prism surface 213 or 313. As in 9 is clearly visible, the respective first prism surface 211 or 311 of the triangular prisms 210 or 310 runs essentially parallel to the optical axis 204.
  • the second prism faces 312 of the five small triangular prisms 310 are parallel to the second prism face 212 of the large triangular prism 210; the third prism faces 313 of the small triangular prisms 310 lie parallel to the third prism face 213 of the large triangular prism 210.
  • the diaphragm edge 206 or 306 is defined by the prism edge formed from prism faces 211 and 213 or 311 and 313 (in the case of the small triangular prisms 310 by the outermost , the imaging optics nearest prism 310). In 9 the diaphragm edge 206 or 306 extends exactly up to the focal point F of the imaging optics/projection lens.
  • the small dirt prisms 310 shown all have the same height H'.
  • H' the height of the arrayed prisms
  • a smaller triangular prism that is closer to the focal point shades proportionately fewer high beams that enter the transparent geometric structure of the diaphragm through the first prism surfaces of the triangular prisms.
  • fewer high-beam rays are totally reflected at a second prism face of a smaller height prism closer to the focal point than enter via a first prism face of a triangular prism of greater height.
  • the increase in the heights of the triangular prisms advantageously follows a parabolic curve.
  • the panel 405 is constructed essentially like the panel 105 described above.
  • the panel 405 has an essentially flat, opaque panel area 407 and, on the panel edge 406 in the area of the focal surface, a transparent panel area 408 with a geometric structure 409 comprising two prismatic bodies 410 made of a transparent material.
  • the prism body 410 have in the longitudinal direction, two regions 410a and 410b that merge into one another, which are offset in height from one another and are connected to one another via an inclined transition region 410c, through which the optical axis 404 runs.
  • the opaque area 407 also comprises two areas 407a and 407b which merge into one another and are offset in height relative to one another and are connected to one another via an inclined transition area 407c through which the optical axis 404 runs. This makes it possible to realize an increase in asymmetry in the light distribution.
  • prism bodies 410 include first, second, and third prism faces (in 10 not provided with reference numbers for reasons of space), the second prism surface faces the opaque diaphragm area 407 and encloses an interior angle ⁇ 1 ⁇ ⁇ with the first prism surface, and the third prism surface faces away from the opaque diaphragm area 407 and encloses an interior angle with the first prism surface ⁇ 2 ⁇ ⁇ , where ⁇ is the critical angle of total reflection of the light-transmitting material, the interior angles ⁇ 1 and ⁇ 2 are the same or different, and provided that the interior angle ⁇ 1 and the interior angle ⁇ 2 are not 45°, respectively.
  • the screen 405 can of course also be provided with a light window 115 for generating a "sign light" function.
  • FIG 11 illustrates a gradient design for softening the light-dark boundary in a low beam distribution with the aid of a screen used according to the invention, which has a prismatic body with curved prismatic surfaces.
  • 12 shows an exemplary light distribution with a light-dark boundary in a two-dimensional angle space based on the lines HH and VV in a gradient configuration according to FIG 11 .
  • One advantage of the invention is that the light beams that are totally reflected on the prism structure and are emitted by the low beam module are refracted in slightly different directions, so that a softer transition or a legally compliant gradient value of the light-dark boundary is generated, with the light-dark boundary is primarily determined by the aperture edge 506 .
  • a third prism surface 513 is a prism body 510 is curved inward, the cross-sectional area being constant in the longitudinal extension.
  • the prismatic body 510 is a component of a screen used according to the invention, which is not shown in detail here, however.
  • a curved third prism surface 513 (and/or a curved second prism surface 512 ) has the advantage that the gradient of the light-dark boundary can be set in a particularly targeted manner and positively influenced, so that the light-dark boundary is split and is shown more broadly. For an observer or the vehicle driver, this results in a particularly soft transition of the light-dark boundary in the light image.
  • the light path of the light beams 516 emitted by the low beam module from the curved third prism surface 513 to the passage through a projection lens 503 is in 11 illustrated by arrows.
  • An exemplary bundle of parallel rays 516 experiences a diverging total reflection bundle of rays 516′ due to different surface normals on the curved third prism surface 513.
  • the divergence ⁇ is further increased by the projection lens 503 due to the different refraction of the light distribution beam 516".
  • the first prism surface 511 leaves the prism body 510 via the curved third prism surface 513.
  • Light is refracted at the two prism surfaces 512 and 513 according to Snell's law of refraction 12 it can be seen that the light-dark boundary HDG, which runs slightly below and parallel to the HH line, is widened wider, causing the gradient to decrease.
  • the invention can be modified in any manner known to those skilled in the art and is not limited to the embodiments shown. Individual aspects of the invention can also be taken up and largely combined with one another. Essential are the ideas on which the invention is based, which, in view of this teaching, can be carried out in a variety of ways by a person skilled in the art and are nevertheless maintained as such, the subject matter of the invention being defined by the appended claims.

Description

  • Die Erfindung betrifft eine Leuchteinheit für eine Beleuchtungseinrichtung eines Kraftfahrzeugs, insbesondere für einen Kraftfahrzeugscheinwerfer, umfassend: zumindest ein Abblendlichtmodul zur Erzeugung einer Abblendlicht-Lichtverteilung größtenteils unterhalb einer im Wesentlichen vor dem Kraftfahrzeug abgebildeten horizontalen Hell-Dunkel-Grenze, zumindest ein Fernlichtmodul zur Erzeugung einer Fernlicht-Lichtverteilung größtenteils oberhalb der Hell-Dunkel-Grenze, eine dem Abblendlichtmodul und dem Fernlichtmodul in optischer Strahlrichtung zur Erzeugung einer Gesamtlichtverteilung der Lichtmodule nachgeschaltete Abbildungsoptik mit einer optischen Achse und einer im Wesentlichen normal zur optischen Achse orientierten Brennfläche, und eine Blende, die eine Blendenkante aufweist und sich zur Erzeugung der horizontalen Hell-Dunkelgrenze in einem durch die Leuchteinheit erzeugten Lichtbild im Wesentlichen bis zur Brennfläche der Abbildungsoptik erstreckt.
  • Beleuchtungseinrichtungen und Lichtmodule für Kraftfahrzeuge, die dazu eingerichtet sind, mittels entsprechender Steuerung verschiedene Lichtverteilungen und Hell-Dunkel-Grenzen zu erzeugen und auf die Fahrbahn zu projizieren, sind hinlänglich bekannt. Diese unterschiedlichen Lichtverteilungen und Hell-Dunkel-Grenzen werden gemäß einem hinlänglich bekannten Prinzip mittels einer Strahlenblende, mit welcher ein Teil der von emittierten Lichtstrahlen gezielt ausgeblendet wird. Mittels der Blende kann unter anderem eine scharfe Hell-Dunkel-Grenze in einem durch die Abblendlichtfunktion erzeugten Lichtbild erhalten werden, sodass eine Blendung von vorausfahrenden bzw. entgegenkommenden Verkehrsteilnehmern weitgehend vermieden wird.
  • Leuchteinheiten gemäß dem eingangs genannten Aufbau sind hinlänglich bekannt. Das im Kraftfahrzeug im eingebauten Zustand oberseitig angeordnete Abblendlichtmodul und das im Kraftfahrzeug im eingebauten Zustand unterseitig angeordnete Fernlichtmodul wirken über den gemeinsamen Blendenkörper und die gemeinsame Abbildungsoptik zusammen, so dass die Abbildungsoptik die Zwischenlichtbilder sowohl des Abblendlichtmoduls als auch des Fernlichtmoduls abbildet und die Blende die Strahlengänge beider Module beeinflusst. Leuchteinheiten dieser Bauart ist generell der Nachteil gemein, dass sie keine gezielte Vermengung bzw. Überlappung der Lichtstrahlen des oberseitig angebrachten Abblendlichtmoduls und des unterseitig angebrachten Fernlichtmoduls ermöglichen. Weil Strahlenblenden nicht unendlich dünn ausgebildet sein können und diese unvermeidbar vorhandene Materialdicke an der Blendenkante der Blende durch die nachgeschaltete Abbildungsoptik im erzeugten Lichtbild abgebildet wird, entsteht bei der Überlagerung der beiden Teillichtverteilungen (d.h. Abblendlicht und Fernlicht) zu einer Gesamtlichtverteilung (Fernlichtfunktion) ein für den Fahrzeuglenker sichtbarer dunkler Spalt im Bereich der Hell-Dunkel-Grenze. Diese störende Inhomogenität in dem auf die Straße projizierten Lichtbild erschwert dem Fahrzeuglenker das Erkennen der Umgebung, wodurch das Unfallrisiko steigt. Im Stand der Technik, zum Beispiel in der DE 602004002043 T2 , der FR 2962786 A1 oder der AT 514161 A1 wird zur Lösung dieses bekannten Problems die Anordnung von Optik-Elementen im Bereich der Brennebene der Projektionslinse zur gezielten Vermengung bzw. Überlappung der ober- und unterhalb der Blende erzeugten Lichtverteilung und zur Beeinflussung der Hell-Dunkel-Grenze vorgeschlagen. Aus der WO 2015014706 A1 ist eine andere Lösung bekannt, worin ein Blendenkörper aus transparentem Material mit einer Spiegelschicht versehen ist, wobei durch die transparent gehaltene Blendenkante zwar die Überlappung zwischen Abblendlicht und Fernlicht verbessert wird, jedoch aufgrund der Transmission des Lichts an der Blendenkante störendes Streulicht im Bereich oberhalb der H-H-Linie generiert wird. Die Dokumente DE 10 2010 046 021 A1 und DE 10 2009 008 631 A1 offenbaren weitere Leuchteinheiten für KFZ-Scheinwerfer.
  • Ein weiterer Nachteil bekannter Strahlenblenden besteht darin, dass diese im vorderen Bereich durch den Brennglaseffekt ausdampfen oder ausbrennen können. Der kritische Bereich befindet sich hier in jenem, insbesondere mittig gelegenen, Kantenbereich der Strahlenblende, der entlang der Fokalkurve der Abbildungsoptik (z.B. Projektionslinse) geformt ist.
  • Es ist eine Aufgabe der Erfindung, ein Lichtmodul gemäß der eingangs genannten Art, unter anderem umfassend ein Abblendlichtmodul, ein Fernlichtmodul, eine zur Erzeugung einer horizontalen Lichtdunkelgrenze eingerichteten Strahlenblende, und eine Abbildungsoptik bereitzustellen, bei welchem der oben beschriebene dunkle Spalt im Lichtbild zwischen Fernlicht und Abblendlicht geschlossen wird, die Generierung störenden Streulichts im Bereich oberhalb der Hell-Dunkel-Linie weitestgehend vermieden wird sowie das oben genannte Problem bezüglich des Brennglaseffekts im kritischen Blendenkantenbereich gelöst wird.
  • Diese Aufgabe wird mit einer Leuchteinheit für eine Beleuchtungseinrichtung eines Kraftfahrzeugs, insbesondere für einen Kraftfahrzeugscheinwerfer, der eingangs genannten Art dadurch gelöst, dass die Blende einen im Wesentlichen flächigen lichtundurchlässigen Blendenbereich und an der Blendenkante im Bereich der Brennfläche einen lichtdurchlässigen Blendenbereich mit einer geometrischen Struktur aus einem lichtdurchlässigen Material aufweist, wobei die geometrische Struktur zumindest einen Prismenkörper mit einer im Wesentlichen dreieckigen Querschnittsfläche umfasst, der zumindest eine Prismenkörper längserstreckt ist und die Längserstreckung im Wesentlichen quer zur optischen Achse verläuft, der zumindest eine Prismenkörper eine erste, eine zweite und eine dritte Prismenfläche aufweist, wobei die erste Prismenfläche im Wesentlichen mit dem flächigen lichtundurchlässigen Blendenbereich fluchtet, die zweite Prismenfläche dem lichtundurchlässigen Blendenbereich zugewandt ist und mit der ersten Prismenfläche einen Innenwinkel α1 ≥ θ einschließt, und die dritte Prismenfläche von dem lichtundurchlässigen Blendenbereich abgewandt ist und mit der ersten Prismenfläche einen Innenwinkel α2 ≥ θ einschließt, wobei θ der Grenzwinkel der Totalreflexion des lichtdurchlässigen Materials ist, die Innenwinkel α1 und α2 gleich oder unterschiedlich sind, und mit der Maßgabe, dass der Innenwinkel α1 bzw. der Innenwinkel α2 nicht 45° ist.
  • Bei der Blende gemäß der Erfindung werden die vom Abblendlichtmodul erzeugten Lichtstrahlen durch die Prismenstruktur an der Blendenkante in den Bereich des Vorfeldes totalreflektiert, so dass die Generierung störenden Streulichts im Bereich oberhalb der H-H-Linie unterbunden wird, wohingegen jene Lichtstrahlen, die von dem Fernlichtmodul erzeugt werden, die Prismenstruktur transmittierend durchschreiten und an dieser Prismenstruktur derart abgelenkt werden, so dass der dunkle Spalt zwischen dem Abblendlicht und dem Fernlicht im Lichtbild bei eingeschalteter Fernlichtfunktion geschlossen wird (siehe hierzu auch Fig. 7, in der die Strahlengänge schematisch dargestellt sind, sowie Beschreibung hierzu).
  • Darüber hinaus wird das Problem bezüglich des Brennglaseffekts gelöst, da dank des transparenten Blendenbereichs, der die geometrische Prismenstruktur umfasst, die Lichtstrahlen, z.B. des Sonnenlichtes, nicht mehr absorbiert werden, sondern das Material durchdringen und divergierend auseinanderlaufen. Ein weiterer Vorteil liegt darin, dass die an der Prismenstruktur totalreflektierten Lichtstrahlen, die vom Abblendlichtmodul erzeugt werden, gebrochen werden, so dass ein weicherer Übergang bzw. ein gewünschter Gradient an der Hell-Dunkel-Grenze erzeugt wird. Somit müssen keine weiteren Maßnahmen, z.B. eine Mikrostruktur auf der Abbildungsoptik, gesetzt werden, um zur Aufweichung der Hell-Dunkel-Grenze einen gewünschten Gradienten zu erzeugen.
  • Somit löst die Erfindung mehrere aktuelle lichttechnische Probleme von Leuchteinheiten, die ein Abblendlichtmodul, ein Fernlichtmodul und eine Strahlenblende zur Erzeugung einer horizontalen Hell-Dunkel-Grenze aufweisen.
  • Die Blende, die eine im Wesentlichen flächige Erscheinungsform besitzt, kann nach an sich bekannter Weise im Wesentlichen horizontal in der optischen Achse liegen oder leicht gegen die optische Achse geneigt sein. Bei bestimmten Varianten kann die Blende auch einen Knick entlang einer horizontalen Linie besitzen, sodass der Blendenkörper keine durchgehende ebene Begrenzungsfläche besitzt. Darüber hinaus ist es auch möglich, einen Asymmetrieanstieg in der Lichtverteilung umzusetzen, indem der zumindest eine Prismenkörper, und gegebenenfalls der Blendenkörper zwei in der Höhe zueinander versetzte Bereiche aufweist, wobei der eine Bereich links und der andere Bereich rechts der optischen Achse liegt und wobei die beiden Bereiche durch einen schrägen Übergangsbereich, durch den die optische Achse verläuft miteinander verbunden sind (siehe Fig.10 und Beschreibung hierzu).
  • Die geometrische Struktur kann ein einziges großes Prisma oder zwei oder mehr kleinere Prismen umfassen, wobei das große bzw. die zwei oder mehr kleinere Prismen die oben bzw. im Anspruch 1 definierten technischen Merkmale hinsichtlich der Anordnung und der Innenwinkel erfüllen müssen (siehe auch Fig. 9 und Beschreibung hierzu). Es wurde festgestellt, dass andere geometrische Strukturen als die hierin definierte Prismenstruktur, beispielsweise eine Keilform mit einem Innenwinkel α1 oder einem Innenwinkel α2 von 45°, nicht die gewünschten Vorteile mit sich bringen und beispielsweise Totalreflexion auch für das Fernlicht oder eine ungewünschte Transmission der Abblendlichtstrahlen mit sich bringen.
  • Bei mehreren aneinandergereihten Drecksprismen können diese dieselbe Höhe aufweisen. Alternativ können die Höhen der aneinandergereihten Prismen stetig ansteigen, was den Vorteil mit sich bringt, dass ein kleineres, näher beim Brennpunkt liegendes Dreiecksprisma anteilsmäßig weniger Fernlichtstrahlen abschattet, welche durch erste Prismenflächen der Dreiecksprismen in die transparente geometrische Struktur der Blende eintreten. Beispielsweise werden weniger Fernlichtstrahlen an einer zweiten Prismenfläche eines näher beim Brennpunkt liegenden Prismas mit kleinerer Höhe totalreflektiert, welche über eine erste Prismenfläche eines Dreiecksprismas mit größerer Höhe eintreten. Die Zunahme der Höhen der Dreiecksprismen folgt vorteilhafterweise einem parabelförmigen Kurvenzug.
  • Abbildungsoptiken für Scheinwerfer sind dem Fachmann an sich wohlbekannt. Die Abbildungsoptik kann nach an sich bekannter Art aufgebaut sein und beispielsweise eine Projektionslinse oder ein mehrstufiges Linsensystem umfassen; ferner sind auch Linsen-Reflektor-Kombinationen möglich.
  • Bei bestimmten Varianten umfasst die geometrische Struktur zumindest zwei in optischer Strahlrichtung hintereinander angeordnete Prismenkörper deren erste Prismenflächen längs aneinander angrenzen und miteinander fluchten.
  • Vorzugsweise ist die geometrische Struktur aus genau zwei in optischer Strahlrichtung hintereinander angeordneten Prismenkörpern gebildet, deren erste Prismenflächen längs aneinander angrenzen und miteinander fluchten; aufgrund der notwendigen geometrischen Abmessungen bezüglich der Prismenfläche und der Grunddicke der Blende hat sich eine geometrische Struktur mit genau zwei in optischer Strahlrichtung angeordneten Prismenkörpern als besonders vorteilhaft herausgestellt, weil dadurch einerseits die oben genannten zu lösenden technischen Aufgaben aufgrund des Abstands der geometrischen Struktur zur Brennfläche bzw. zum Brennpunkt der Abbildungsoptik optimal gelöst werden, und sich diese Variante darüber hinaus technisch leicht realisieren lässt. Unerwünschte Farbeffekte und die Ausbildung einer unscharfen Hell-Dunkel-Grenze, die gegebenenfalls bei einer höheren Prismenkörperanzahl, z.B. bei mehr als drei Prismen, aufgrund des größeren Abstands der Prismenstrukturen zur Brennfläche/Brennpunkt auftreten können, werden bei dieser bevorzugten Variante vermieden.
  • Bei bestimmten Varianten weist der zumindest eine Prismenkörper in Längsrichtung zwei ineinander übergehende Bereiche auf, die in der Höhe zueinander versetzt sind und über einen, vorzugsweise schrägen, Übergangsbereich, durch den die optische Achse verläuft, miteinander verbunden sind. Dadurch ist es möglich, einen Asymmetrieanstieg in der Lichtverteilung zu realisieren (siehe Fig.10 und Beschreibung hierzu).
  • Bei bestimmten Varianten kann der lichtundurchlässige Blendenbereich zumindest zum Teil eine reflektierende Oberfläche aufweisen.
  • Bei bestimmten Ausführungsvarianten ist die Blende einstückig aus dem lichtdurchlässigen Material gefertigt und der lichtundurchlässige Blendenbereich ist nach an sich bekannter Art bedampft, z.B. mit einem Metall wie Aluminium bedampft, oder verspiegelt.
  • Bei anderen Varianten ist der lichtundurchlässige Blendenbereich aus einem lichtundurchlässigen Material (z.B. Metall oder lichtundurchlässiger Kunststoff) gefertigt und der lichtdurchlässige, die geometrische Struktur umfassende Blendenbereich ist ein Einlegeteil aus dem lichtdurchlässigen Material (z.B. Glas oder lichtdurchlässiger/transparenter Kunststoff), oder die Blende ist mittels eines Mehrkomponenten-Spritzgießverfahrens unter Verwendung lichtdurchlässiger und lichtundurchlässiger Kunststoffmaterialien hergestellt, z.B. mittels eines Zweikomponenten-Spritzgießverfahrens unter Verwendung eines lichtundurchlässigen und eines durchlässigen Kunststoffmaterials.
  • Vorzugsweise handelt es sich bei dem transparenten Material um Kunststoff oder Glas.
  • Bei bestimmten Varianten ist die zweite und/oder dritte Prismenfläche im Wesentlichen planar ausgebildet.
  • Bei spezifischen Varianten ist die zweite und/oder dritte Prismenfläche gekrümmt, vorzugsweise ist die dritte Prismenfläche nach innen gekrümmt. Diese Varianten haben den Vorteil, dass damit der Gradient der Hell-Dunkel-Grenze zusätzlich positiv beeinflusst werden kann, so dass ein weicher Übergang der Hell-Dunkel-Grenze realisiert werden kann (siehe auch Fig. 11 und Fig. 12 sowie Beschreibung hierzu). Bei bestimmten Untervarianten ist die Querschnittsfläche des zumindest einen Prismenkörpers in der Längserstreckung gleichbleibend. Bei anderen Untervarianten kann es vorgesehen sein, dass die Querschnittsfläche des zumindest einen Prismenkörpers in der Längserstreckung zunimmt; dergestalt wird der Gradient der Hell-Dunkel-Grenze zu den Randbereichen der Lichtverteilung hin weiter aufgeweicht, so dass die Ausleuchtung der Straßenränder besonders angenehm für den Kraftfahrzeuglenker gestaltet werden kann.
  • Bei vorteilhaften Varianten umfassen das zumindest eine Abblendlichtmodul und das zumindest eine Fernlichtmodul jeweils zumindest eine Lichtquelle, wobei jeder Lichtquelle in optischer Strahlrichtung ein Kollimator zugeordnet ist und der Kollimator dazu eingerichtet ist, den Abstrahlwinkel der von der Lichtquelle erzeugten Lichtstrahlen zu verkleinern und dadurch die Abstrahlcharakteristik zu gestalten. Bei diesen Varianten kann die Leuchteinheit beispielsweise ein Kollimatormodul sein, welches das zumindest eine Abblendlichtmodul und das zumindest eine Fernlichtsmodul umfasst und wobei dem Abblend- und dem Fernlichtmodul eine Mehrzahl an Lichtquellen zugeordnet ist und jeder Lichtquelle in optischer Strahlrichtung ein Kollimator nachgeschaltet ist. Die Blende ist dem Kollimatormodul in optischer Strahlrichtung nachgeschaltet. Als Abbildungsoptik kann eine Projektionslinse oder ein mehrstufiges Linsensystem vorgesehen sein. Der Kollimator kann beispielsweise als eine TIR-Kollimator-Linse (TIR - Total Internal Reflection) ausgebildet sein. Solche TIR-Kollimator-Linsen sind einem Fachmann hinlänglich bekannt (z.B. TIR-Linse Bern von Auer Lighting GmbH, DE); es handelt sich dabei um optisch-transparente Körper, die aus einem transparenten Material gefertigt sind, dessen Brechungsindex größer als der Brechungsindex der Luft ist, z.B. aus Glas oder Kunststoff; dabei breitet sich das im Wesentlichen gesamte an der Lichtauskoppelfläche der TIR-Kollimator-Linse gebrochene Licht durch die Luft weiter aus, vorzugsweise in eine vorgegebene Richtung unter Verkleinerung der Divergenz im Vergleich zur Lichtausbreitung vor der Lichteinkoppelfläche. Denkbar ist auch, dass der Kollimator als ein Reflektor ausgebildet ist, d.h. als eine (vor allem sichtbares) Licht reflektierende Fläche, die sich durch Luft ausbreitende Lichtstrahlen in eine vorzugsweise vorgegebene Richtung umlenkt. Die Lichtverteilung-formenden Bauteile des Abblendlichtmoduls und/oder Fernlichtmoduls können aber auch in Form von Polyellipsoid-Reflektoranordnungen nach dem Projektionsscheinwerfertypus, wie dem Fachmann hinlänglich bekannt ist, ausgeführt sein.
  • Bei vorteilhaften Varianten der Erfindung weist die Blende zumindest ein Lichtfenster auf, wobei zumindest ein Lichtpfad von den Abblendlicht- und oder Fernlichtmodulen durch das zumindest eine Lichtfenster und durch die Abbildungsoptik nach außen verläuft. Durch diese Weiterbildung ist es möglich, die Lichtstrahlen, die durch das Abblendlichtmodul und das Fernlichtmodul erzeugt werden, auf gezielte Art und Weise zusätzlich zu vermengen und Inhomogenitäten im Lichtbild einer Fernlichtfunktion zusätzlich zu minimieren. Darüber hinaus ist eine gezielte Abstrahlung von Lichtstrahlen in Bereiche des Lichtbilds möglich, welche üblicherweise zur Beleuchtung von Verkehrsschildern von besonderer Bedeutung sind (sogenanntes "sign light"). Bei bestimmten Untervarianten kann es vorgesehen sein, dass der zumindest eine Lichtpfad durch das zumindest eine Lichtfenster ausschließlich von dem Abblendlichtmodul durch das zumindest eine Lichtfenster und durch die Abbildungsoptik nach außen verläuft. Bei bestimmten Untervarianten kann das zumindest eine Lichtfenster im lichtundurchlässigen Blendenbereich der Blende angeordnet und von diesem begrenzt sein, wobei das Lichtfenster als Ausnehmung im lichtundurchlässigen Blendenbereich der Blende ausgebildet ist oder aus einem lichtdurchlässigen Material besteht.
  • Ein weiterer Gegenstand der Erfindung ist ein Kraftfahrzeugscheinwerfer, der zumindest eine Leuchteinheit gemäß der Erfindung umfasst. Bei dem Kraftfahrzeugscheinwerfer handelt es sich um einen Frontscheinwerfer. Zweckmäßigerweise ist der erfindungsgemäße Kraftfahrzeugscheinwerfer nach an sich bekannten Scheinwerferbauprinzipien aufgebaut und umfasst ein Gehäuse mit einer Lichtaustrittsöffnung, die mit einer Streuscheibe bzw. einer Abdeckscheibe verdeckt ist. Moderne Kraftfahrzeugscheinwerfer weisen häufig mehrere Lichtmodule auf, die für sich genommen oder im Zusammenwirken einzelne Lichtfunktionen übernehmen können. Diese Lichtmodule sind häufig in unmittelbarer Nähe zueinander in im Scheinwerfergehäuse angeordnet. Der Kraftfahrzeugscheinwerfer gemäß der Erfindung kann daher neben einer erfindungsgemäßen Leuchteinheit, die ein Abblendlichtmodul und ein Fernlichtmodul aufweist, daher auch weitere Lichtmodule umfassen, z.B. eine Tagfahrlichteinheit, eine Blinklichteinheit etc. Dementsprechend können zusätzlich zur Abblendlichtverteilung bzw. Fernlichtverteilung noch weitere Lichtverteilungen durch die weiteren Lichtmodule erzeugt werden, wie die Lichtverteilung eines Tagfahrlichts, eines Blinklichts usw.
  • Ein weiterer Gegenstand der Erfindung ist ein Kraftfahrzeug umfassend zumindest eine Leuchteinheit gemäß der Erfindung und/oder einen Kraftfahrzeugscheinwerfer gemäß der Erfindung. Der Begriff "Kraftfahrzeug" (KFZ) wie hierin verwendet bezieht sich auf einoder mehrspurige motorisierte landgebundene Fahrzeuge wie Motorräder, PKWs, LKWs und dergleichen.
  • Die Erfindung samt weiterer Vorzüge wird im Folgenden anhand von nicht einschränkenden Beispielen und beiliegenden Zeichnungen näher beschrieben, wobei die Zeichnungen zeigen:
    • Fig. 1 zeigt eine schematische Darstellung einer Leuchteinheit gemäß der Erfindung in perspektivischer Ansicht,
    • Fig. 2 zeigt die Leuchteinheit aus Fig. 1 in Seitenansicht,
    • Fig. 3 zeigt die Blende der in Fig. 1 und 2 dargestellten Leuchteinheit in perspektivischer Ansicht,
    • Fig. 4 zeigt eine Draufsicht auf die Blende der in Fig. 1 und 2 dargestellten Leuchteinheit,
    • Fig. 5 zeigt einen Schnitt durch die Blende der in Fig. 1 und 2 dargestellten Leuchteinheit entlang der optischen Achse,
    • Fig. 6 zeigt die geometrische Prismenstruktur der Blende der in Fig. 1 und 2 dargestellten Leuchteinheit,
    • Fig. 7 veranschaulicht den Strahlengang der Lichtstrahlen, die vom Abblendlichtmodul bzw. vom Fernlichtmodul emittiert werden, durch einen dreieckigen Prismenkörper einer erfindungsgemäß eingesetzten Blende,
    • Fig. 8 zeigt eine Detailansicht eines Schnitts durch die Blende in Fig. 1 und Fig. 2 und veranschaulicht den Strahlengang der Lichtstrahlen, die vom Abblendlichtmodul emittiert werden, durch ein in der erfindungsgemäß eingesetzten Blende angeordnetes Lichtfenster ("sign light"),
    • Fig. 8a zeigt eine vergrößerte Ansicht der Fig. 8, wobei in Fig. 8a zusätzlich der Strahlengang der Lichtstrahlen, die vom Fernlichtmodul emittiert werden, dargestellt ist,
    • Fig. 9 veranschaulicht die Anordnung eines großen Dreiecksprismas bzw. mehrerer kleiner Dreiecksprismen einer erfindungsgemäß eingesetzten Blende in Bezug auf den Brennpunkt der Abbildungsoptik,
    • Fig. 10 zeigt eine abgewandelte Variante einer Blende für eine erfindungsgemäße Leuchteinheit,
    • Fig.11 veranschaulicht eine Gradientengestaltung zur Aufweichung der Hell-Dunkel-Grenze bei einer Abblendlichtverteilung mit Hilfe einer erfindungsgemäß eingesetzten Blende, die einen Prismenkörper mit gekrümmten Prismenflächen aufweist, und
    • Fig. 12 zeigt eine beispielhafte Lichtverteilung mit Hell-Dunkel-Grenze in einem zweidimensionalen Winkelraum anhand der Linien H-H und V-V bei einer Gradientengestaltung gemäß Fig. 11.
  • Es versteht sich, dass die hier beschriebenen Ausführungsformen lediglich der Illustration dienen und nicht als für die Erfindung einschränkend aufzufassen sind; vielmehr fallen unter den Schutzbereich der Erfindung sämtliche Ausgestaltungen, die der Fachmann anhand der Beschreibung finden kann, wobei der Schutzbereich durch die Ansprüche festgelegt ist.
  • In den Figuren werden für gleiche oder vergleichbare Elemente zum Zwecke der einfacheren Erläuterung und Darstellung gleiche Bezugszeichen verwendet. Die in den Ansprüchen verwendeten Bezugszeichen sollen ferner lediglich die Lesbarkeit der Ansprüche und das Verständnis der Erfindung erleichtern und haben keinesfalls einen den Schutzumfang der Erfindung beeinträchtigenden Charakter.
  • Fig. 1 zeigt eine schematische Darstellung einer Ausführungsvariante einer Leuchteinheit 100 gemäß der Erfindung in perspektivischer Ansicht. Fig. 2 zeigt die Leuchteinheit 100 aus Fig. 1 in Seitenansicht. Die Leuchteinheit 100 ist zum Einbau in einer Beleuchtungseinrichtung eines Kraftfahrzeugs, insbesondere für einen Kraftfahrzeugscheinwerfer (Frontscheinwerfer) vorgesehen. Die Leuchteinheit 100 umfasst ein Abblendlichtmodul 101, ein Fernlichtmodul 102 sowie eine dem Abblendlichtmodul 101 und dem Fernlichtmodul 102 zur Erzeugung einer Gesamtlichtverteilung des Lichtmoduls in optischer Strahlrichtung nachgeschaltete Abbildungsoptik in Form einer Projektionslinse 103 mit einer optischen Achse 104 und einer im Wesentlichen normal zur optischen Achse 104 orientierten Brennfläche 116, auch bekannt als Petzval-Fläche. Das Abblendlichtmodul 101 ist zur Erzeugung einer Abblendlicht-Lichtverteilung größtenteils unterhalb einer im Wesentlichen vor dem Kraftfahrzeug abgebildeten horizontalen Hell-Dunkel-Grenze eingerichtet. Das Fernlichtmodul 102 ist zur Erzeugung einer Fernlicht-Lichtverteilung größtenteils oberhalb der Hell-Dunkel-Grenze eingerichtet. Ferner umfasst die Leuchteinheit 100 eine im Wesentlichen horizontal liegende Blende 105, die eine Blendenkante 106 aufweist und sich zur Erzeugung der horizontalen Hell-Dunkelgrenze in einem durch die Leuchteinheit 100 erzeugten Lichtbild im Wesentlichen bis zur Brennfläche 116 der nachgeschalteten Projektionslinse 103 erstreckt. Die Blendenkante 106 reicht dabei bis zur Brennfläche 116 bzw. bis zum Brennpunkt F der Projektionslinse 103 heran.
  • Das Abblendlichtmodul 101 und das Fernlichtmodul 102 bilden im gezeigten Beispiel gemeinsam ein Kollimatormodul, das nach allgemein bekannten Prinzipien aufgebaut ist und an dieser Stelle nicht näher erläutert werden muss (siehe auch Beschreibung zu Kollimatoren, z.B. TIR-Kollimator-Linsen, weiter oben). Das Abblendlichtmodul 101 und das Fernlichtmodul 102 umfassen jeweils eine Mehrzahl an nicht näher dargestellten Lichtquellen, z.B. als LEDs ausgeführt, wobei jeder Lichtquelle in optischer Strahlrichtung ein ebenfalls nicht näher dargestellter Kollimator zugeordnet ist. Jeder Kollimator ist dazu eingerichtet, die Divergenz der von der Lichtquelle erzeugten Lichtstrahlen zu verkleinern. Das Kollimatormodul umfasst noch weitere optische Bauteile wie z.B. Linsen oder Reflektoren. Das Abblendlichtmodul 101 und das Fernlichtmodul 102 können jedoch auch nach anderen Bauprinzipien aufgebaut sein und sind nicht auf den in Fig. 1 und Fig. 2 schematisch dargestellten Kollimatoraufbau beschränkt. Alternativ kann das Abblendlichtmodul und / oder das Fernlichtmodul Reflektoren nach dem klassischen und in der Fachwelt hinlänglich bekannten PES (Poly-Ellipsoid-System)-Scheinwerfertyps, aufweisen.
  • Die erfindungsgemäßen Merkmale der Leuchteinheit 100 finden sich in der Blende 105, die in den nachfolgenden Figuren näher beschrieben ist.
  • Fig. 3 zeigt die Blende 105 der in Fig. 1 und 2 dargestellten Leuchteinheit 100 in perspektivischer Ansicht, Fig. 4 zeigt eine Draufsicht auf die Blende 105 und Fig. 5 zeigt einen Schnitt durch Blende 105. Fig. 6 zeigt die geometrische Prismenstruktur der Blende der in Fig. 1 und 2 dargestellten Leuchteinheit im Detail. Die Blende 105 weist einen im Wesentlichen flächigen lichtundurchlässigen Blendenbereich 107 und an der Blendenkante 106 im Bereich der Brennfläche 116 einen lichtdurchlässigen Blendenbereich 108 mit einer geometrischen Struktur 109 aus einem lichtdurchlässigen Material auf. Es versteht sich von selbst, dass der lichtundurchlässige Blendenbereich 107 zumindest zum Teil eine reflektierende Oberfläche aufweisen kann.
  • Im gezeigten Beispiel ist der lichtundurchlässige Blendenbereich 107 aus Metall gefertigt und der lichtdurchlässige, die geometrische Struktur 109 umfassende Blendenbereich 108 ist ein Einlegeteil aus dem lichtdurchlässigen Material. Es ist jedoch auch möglich, die Blende 105 einstückig aus dem lichtdurchlässigen Material zu fertigen und der lichtundurchlässige Blendenbereich 107 ist nach an sich bekannter Art bedampft, z.B. mit einem Metall wie Aluminium bedampft, wobei der lichtdurchlässige Blendenbereich 108 ausgespart ist und daher nicht bedampft ist. Im gezeigten Beispiel ist das lichtdurchlässige Material Kunststoff. Anstelle von Kunststoff kann auch Glas als lichtundurchlässiges Material gewählt werden.
  • Die geometrische Struktur 109 der beispielshaften Blende 105 umfasst zwei Prismenkörper 110, jeweils mit einer im Wesentlichen dreieckigen Querschnittsfläche. Jeder Prismenkörper 110 ist längserstreckt und die Längserstreckung verläuft im Wesentlichen quer zur optischen Achse 104. Jeder Prismenkörper weist eine erste, eine zweite und eine dritte Prismenfläche auf, wobei die erste Prismenfläche 111 im Wesentlichen mit dem flächigen lichtundurchlässigen Blendenbereich 107 fluchtet, die zweite Prismenfläche 112 dem lichtundurchlässigen Blendenbereich 107 zugewandt ist und mit der ersten Prismenfläche 111 einen Innenwinkel α1 ≥ θ einschließt, und die dritte Prismenfläche 113 von dem lichtundurchlässigen Blendenbereich 107 abgewandt ist und mit der ersten Prismenfläche 111 einen Innenwinkel α2 ≥ θ einschließt, wobei θ der Grenzwinkel der Totalreflexion des lichtdurchlässigen Materials ist, die Innenwinkel α1 und α2 gleich oder unterschiedlich sind, und mit der Maßgabe, dass der Innenwinkel α1 bzw. der Innenwinkel α2 nicht 45° ist.
  • Fig. 7 veranschaulicht den Strahlengang der Lichtstrahlen, die vom Abblendlichtmodul bzw. vom Fernlichtmodul emittiert werden, durch einen der beiden Prismenkörper 110 der erfindungsgemäß eingesetzten Blende 105. Die vom Abblendlichtmodul 101 erzeugten Lichtstrahlen 114 treten durch die zweite Prismenfläche 112 in den Prismenkörper 110 ein und werden an der ersten Prismenfläche 111 totalreflektiert und treten durch die dritte Prismenfläche 113 aus, so dass die Generierung störenden Streulichts im Bereich oberhalb der H-H-Linie unterbunden wird. Die Lichtstrahlen 117, die von dem Fernlichtmodul 102 erzeugt werden, treten durch die erste Prismenfläche 111 ein, werden durch den Prismenkörper transmittiert und beim Austritt durch die dritte Prismenfläche 113 leicht abgelenkt, so dass der Spalt zwischen dem Abblendlicht und dem Fernlicht im Lichtbild der Fernlichtfunktion (d.h. Abblendlicht und Fernlicht ist eingeschalten) geschlossen wird.
  • Eine Weiterbildung der Erfindung ist ebenfalls in der Blende 105 dargestellt. Die Blende 105 weist ein Lichtfenster 115 auf, das im lichtundurchlässigen Blendenbereich 107 der Blende 105 angeordnet und von diesem begrenzt ist. Das Lichtfenster 115 wird dadurch geschaffen, indem in eine fensterförmige Ausnehmung im lichtundurchlässigen Blendenbereich 107 eine mit einer Einlegeplatte aus transparentem Kunststoff verschlossen wird. Der Lichtpfad von den Abblendlicht- und/oder Fernlichtmodulen kann durch das Lichtfenster 115 und durch die Projektionslinse nach außen verlaufen. Durch diese Weiterbildung ist es möglich, die Lichtstrahlen, die durch das Abblendlichtmodul und das Fernlichtmodul erzeugt werden, auf gezielte Art und Weise zusätzlich zu vermengen und Inhomogenitäten im Lichtbild einer Fernlichtfunktion zusätzlich zu minimieren. Darüber hinaus ist eine gezielte Abstrahlung von Lichtstrahlen in Bereiche des Lichtbilds möglich, welche üblicherweise zur Beleuchtung von Verkehrsschildern von besonderer Bedeutung sind (sogenanntes "sign light"). Beispielsweise kann es vorgesehen sein, dass der Lichtpfad durch das Lichtfenster 115 ausschließlich von dem Abblendlichtmodul 101 durch das Lichtfenster 115 und durch die Abbildungsoptik 101 nach außen verläuft. Dies ist in Fig. 8 gezeigt, die eine Detailansicht eines Schnitts durch die Blende in Fig. 1 und Fig. 2 darstellt und den Strahlengang der Lichtstrahlen 114, die vom Abblendlichtmodul 101 emittiert werden, durch das in der Blende 105 angeordnete Lichtfenster 115 ("sign light") veranschaulicht. Fig. 8a zeigt eine vergrößerte Ansicht der Fig. 8, wobei zusätzlich der Strahlengang der Lichtstrahlen 117, die vom Fernlichtmodul 102 emittiert werden, dargestellt ist. Die Lichtstrahlen 117 aus dem Fernlichtmodul werden an der zur optischen Achse 104 geneigten unteren Grenzfläche 118 des Lichtfensters 115 totalreflektiert (in Fig. 8a sind die totalreflektierten Lichtstrahlen mit 117* gekennzeichnet). Somit weisen die Lichtstrahlen 117 zum Lot n auf die Grenzfläche 118 einen Einfallswinkel größer als den Winkel der Totalreflexion auf. Dadurch wird verhindert, dass Licht aus dem Fernlichtmodul zum Vorfeld in der Abblendlichtverteilung beiträgt und somit wird die Einhaltung gesetzmäßiger Vorgaben ermöglicht {USA FMVSS-108 TableXVIII UB2: Meßpunkt [4D,V]mit einer Vorgabe an die Lichtstärke <12000 cd Maximum Photometric Intensity}. Die notwendige Neigung kann auch durch eine prismatische Ausgestaltung dieser unteren Grenzfläche 118 erzielt werden.
  • Fig. 9 veranschaulicht zwei beispielhafte alternative Varianten für Dreiecksprismen einer erfindungsgemäß eingesetzten Blende, nämlich einerseits die Anordnung eines einzigen großen Dreiecksprismas 210 mit einer Höhe H und, alternativ dazu, andererseits die Anordnung mehrerer (insgesamt fünf) kleiner Dreiecksprismen 310. Die Dreiecksprismen 210 bzw. 310 sind jeweils im lichtdurchlässigen Bereich an der Blendenkante einer erfindungsgemäß eingesetzten Blende angeordnet und in Bezug auf die Brennfläche bzw. den Brennpunkt F der Abbildungsoptik (z.B. einer Projektionslinse 103 aus Fig. 1 und Fig. 2) in der erfindungsgemäßen Leuchteinheit positioniert. Bezug nehmend auf die Beschreibung zu den Prismenkörpern 110 weiter oben, umfassen die Dreiecksprismen 210 bzw. 310 jeweils eine erste Prismenfläche 211 bzw. 311, eine zweite Prismenfläche 212 bzw. 312 und eine dritte Prismenfläche 213 bzw. 313. Wie in Fig. 9 gut ersichtlich ist, verläuft die jeweils erste Prismenfläche 211 bzw. 311 der Dreiecksprismen 210 bzw. 310 im Wesentlichen parallel zur optischen Achse 204. Wie aus Fig. 9 gut ersichtlich ist, liegen die zweiten Prismenflächen 312 der fünf kleinen Dreiecksprismen 310 parallel zur zweiten Prismenfläche 212 des großen Dreiecksprismas 210; die dritten Prismenflächen 313 der kleinen Dreiecksprismen 310 liegen parallel zur dritten Prismenfläche 213 des großen Dreiecksprismas 210. Die Blendenkante 206 bzw. 306 wird durch die aus Prismenflächen 211 und 213 bzw. 311 und 313 gebildete Prismenkante definiert (bei den kleinen Dreiecksprismen 310 durch das äußerste, der Abbildungsoptik am nächsten gelegene Prisma 310). In Fig. 9 erstreckt sich die Blendenkante 206 bzw. 306 genau bis zum Brennpunkt F der Abbildungsoptik/Projektionslinse.
  • Die in Fig. 9 gezeigten kleinen Drecksprismen 310 weisen alle dieselbe Höhe H' auf. Einem Fachmann auf dem Gebiet wird jedoch einleuchten, dass die Höhen der aneinandergereihten Prismen stetig ansteigen können. Dies hat den Vorteil, dass ein kleineres, näher beim Brennpunkt liegendes Dreiecksprisma anteilsmäßig weniger Fernlichtstrahlen abschattet, welche durch erste Prismenflächen der Dreiecksprismen in die transparente geometrische Struktur der Blende eintreten. Beispielsweise werden weniger Fernlichtstrahlen an einer zweiten Prismenfläche eines näher beim Brennpunkt liegenden Prismas mit kleinerer Höhe totalreflektiert, welche über eine erste Prismenfläche eines Dreiecksprismas mit größerer Höhe eintreten. Die Zunahme der Höhen der Dreiecksprismen folgt vorteilhafterweise einem parabelförmigen Kurvenzug.
  • Fig. 10 zeigt eine abgewandelte Variante einer Blende 405 für eine erfindungsgemäße Leuchteinheit. Die Blende 405 ist im Wesentlichen wie die oben beschriebene Blende 105 aufgebaut. Die Blende 405 weist einen im Wesentlichen flächigen lichtundurchlässigen Blendenbereich 407 und an der Blendenkante 406 im Bereich der Brennfläche einen lichtdurchlässigen Blendenbereich 408 mit einer geometrischen Struktur 409 umfassend zwei Prismenkörper 410 aus einem lichtdurchlässigen Material auf. Die Prismenkörper 410 weisen in Längsrichtung zwei ineinander übergehende Bereiche 410a und 410b auf, die in der Höhe zueinander versetzt sind und über einen schrägen Übergangsbereich 410c, durch den die optische Achse 404 verläuft, miteinander verbunden sind. Ebenso umfasst auch der lichtundurchlässige Bereich 407 zwei ineinander übergehende und in der Höhe zueinander versetzte Bereiche 407a und 407b auf, über einen schrägen Übergangsbereich 407c, durch den die optische Achse 404 verläuft, miteinander verbunden sind. Dadurch ist es möglich, einen Asymmetrieanstieg in der Lichtverteilung zu realisieren. So wie bei den oben beschriebenen Prismenkörpern 110, 210 und 310 umfassen die Prismenkörper 410 eine erste, eine zweite und eine dritte Prismenfläche (in Fig. 10 aus Platzgründen nicht mit Bezugszeichen versehen), die zweite Prismenfläche ist dem lichtundurchlässigen Blendenbereich 407 zugewandt und schließt mit der ersten Prismenfläche einen Innenwinkel α1 ≥ θ ein, und die dritte Prismenfläche ist von dem lichtundurchlässigen Blendenbereich 407 abgewandt ist und schließt mit der ersten Prismenfläche einen Innenwinkel α2 ≥ θ ein, wobei θ der Grenzwinkel der Totalreflexion des lichtdurchlässigen Materials ist, die Innenwinkel α1 und α2 gleich oder unterschiedlich sind, und mit der Maßgabe, dass der Innenwinkel α1 bzw. der Innenwinkel α2 nicht 45° ist. So wie die Blende 105 kann natürlich auch die Blende 405 mit einem Lichtfenster 115 zur Erzeugung einer "Sign Light"-Funktion versehen werden.
  • Fig. 11 veranschaulicht eine Gradientengestaltung zur Aufweichung der Hell-Dunkel-Grenze bei einer Abblendlichtverteilung mit Hilfe einer erfindungsgemäß eingesetzten Blende, die einen Prismenkörper mit gekrümmten Prismenflächen aufweist. Fig. 12 zeigt eine beispielhafte Lichtverteilung mit Hell-Dunkel-Grenze in einem zweidimensionalen Winkelraum anhand der Linien H-H und V-V bei einer Gradientengestaltung gemäß Fig. 11. Ein Vorteil der Erfindung liegt darin, dass die an der Prismenstruktur totalreflektierten Lichtstrahlen, die vom Abblendlichtmodul abgestrahlt werden, in leicht unterschiedliche Richtungen gebrochen werden, so dass ein weicherer Übergang bzw. ein gesetzeskonformer Gradienten-Wert der Hell-Dunkel-Grenze erzeugt wird, wobei die Hell-Dunkel-Grenze primär durch die Blendenkante 506 bestimmt ist. Ein Fahrzeuglenker nimmt dann die Lichtverteilung ohne irritierende Grenzlinie zwischen ausgeleuchteter und dunkler Straßenoberfläche wahr. Somit müssen keine weiteren Maßnahmen, z.B. eine Mikrostruktur auf der Abbildungsoptik, gesetzt werden, um eine gewünschte Aufweichung der Hell-Dunkel-Grenze zu bewirken. In der Fig. 11 ist eine vorteilhafte Weiterbildung der Erfindung dargestellt. Bei dieser Weiterbildung ist eine dritte Prismenfläche 513 eines Prismenkörpers 510 nach innen gekrümmt, wobei die Querschnittsfläche in der Längserstreckung gleichbleibend ist. Der Prismenkörper 510 ist wie oben beschrieben Bauteil einer erfindungsgemäß eingesetzten Blende, die hier jedoch nicht näher dargestellt ist. Der Einsatz einer gekrümmten dritten Prismenfläche 513 (und/oder einer gekrümmten zweiten Prismenfläche 512) hat den Vorteil, dass damit der Gradient der Hell-Dunkel-Grenze besonders gezielt eingestellt und positiv beeinflusst werden kann, so dass die Hell-Dunkel-Grenze aufgespalten und breiter abgebildet wird. Für einen Betrachter bzw. den Fahrzeuglenker ergibt sich dadurch ein besonders weicher Übergang der Hell-Dunkel-Grenze im Lichtbild. Der Lichtpfad der vom Abblendlichtmodul emittierten Lichtstrahlen 516 von der gekrümmten dritten Prismenfläche 513 bis zum Durchtritt durch eine Projektionslinse 503 ist in Fig. 11 anhand von Pfeilen veranschaulicht. Ein beispielhaftes Parallelstrahlbündel 516 erfährt aufgrund unterschiedlicher Flächennormalen auf der gekrümmten dritten Prismenfläche 513 ein divergierendes Totalreflexionsstrahlenbündel 516'. Durch die Projektionslinse 503 wird die Divergenz δ aufgrund der unterschiedlichen Brechung des Lichtverteilung-Strahlenbündels 516" weiter vergrößert. Analoges gilt auch für Lichtstrahlen, die über eine im Allgemeinen gekrümmte zweite Prismenfläche 512 in den Prismenkörper 510 eintreten und nach einer Totalreflexion an der im Allgemeinen planaren ersten Prismenfläche 511 den Prismenkörper 510 über die gekrümmte dritte Prismenfläche 513 verlassen. An den beiden Prismenflächen 512 und 513 wird Licht nach dem Snell'schen Brechungsgesetz gebrochen. Aus Fig. 12 ist ersichtlich, dass die Hell-Dunkel-Grenze HDG, die etwas unterhalb der und parallel zur H-H-Linie verläuft breiter aufgeweitet wird, wodurch der Gradient abnimmt.
  • Die Erfindung kann in beliebiger dem Fachmann bekannter Weise abgeändert werden und ist nicht auf die gezeigten Ausführungsformen beschränkt. Auch können einzelne Aspekte der Erfindung aufgegriffen und weitgehend miteinander kombiniert werden. Wesentlich sind die der Erfindung zugrunde liegenden Gedanken, welche in Anbetracht dieser Lehre durch einen Fachmann in mannigfaltiger Weise ausgeführt werden können und trotzdem als solche aufrechterhalten bleiben, wobei der Gegenstand der Erfindung durch die anliegenden Ansprüche definiert wird.

Claims (15)

  1. Leuchteinheit (100) für einen Kraftfahrzeugscheinwerfer, umfassend:
    zumindest ein Abblendlichtmodul (101) zur Erzeugung einer Abblendlicht-Lichtverteilung größtenteils unterhalb einer im Wesentlichen vor dem Kraftfahrzeug abgebildeten horizontalen Hell-Dunkel-Grenze,
    zumindest ein Fernlichtmodul (102) zur Erzeugung einer Fernlicht-Lichtverteilung größtenteils oberhalb der Hell-Dunkel-Grenze,
    eine dem Abblendlichtmodul (101) und dem Fernlichtmodul (102) in optischer Strahlrichtung zur Erzeugung einer Gesamtlichtverteilung der Lichtmodule nachgeschaltete Abbildungsoptik (103, 503) mit einer optischen Achse (104, 204, 404, 504) und einer im Wesentlichen normal zur optischen Achse (104, 204, 404, 504) orientierten Brennfläche (116), und
    eine Blende (105, 405), die eine Blendenkante (106, 206, 306, 506) aufweist und sich zur Erzeugung der horizontalen Hell-Dunkelgrenze in einem durch die Leuchteinheit (100) erzeugten Lichtbild im Wesentlichen bis zur Brennfläche (116) der Abbildungsoptik (103, 503) erstreckt,
    dadurch gekennzeichnet, dass
    die Blende (105, 405) einen im Wesentlichen flächigen lichtundurchlässigen Blendenbereich (107, 407) und an der Blendenkante (106, 206, 306, 506) im Bereich der Brennfläche (116) einen lichtdurchlässigen Blendenbereich (108, 408) mit einer geometrischen Struktur (109, 409) aus einem lichtdurchlässigen Material aufweist, wobei die geometrische Struktur (109, 409) zumindest einen Prismenkörper (110, 210, 310, 410, 510) mit einer im Wesentlichen dreieckigen Querschnittsfläche umfasst, der zumindest eine Prismenkörper (110, 210, 310, 410, 510) längserstreckt ist und die Längserstreckung im Wesentlichen quer zur optischen Achse (104, 204, 404, 504) verläuft, der zumindest eine Prismenkörper (110, 210, 310, 410, 510) eine erste, eine zweite und eine dritte Prismenfläche aufweist, wobei die erste Prismenfläche (111, 211, 311, 511) im Wesentlichen mit dem flächigen lichtundurchlässigen Blendenbereich (107, 407) fluchtet, die zweite Prismenfläche (112, 212, 312, 512) dem lichtundurchlässigen Blendenbereich (107, 407) zugewandt ist und mit der ersten Prismenfläche (111, 211, 311) einen Innenwinkel α1 ≥ θ einschließt, und die dritte Prismenfläche (113, 213, 313, 513) von dem lichtundurchlässigen Blendenbereich (107, 407) abgewandt ist und mit der ersten Prismenfläche (111, 211, 311) einen Innenwinkel α2 ≥ θ einschließt, wobei θ der Grenzwinkel der Totalreflexion des lichtdurchlässigen Materials ist, die Innenwinkel α1 und α2 gleich oder unterschiedlich sind, und mit der Maßgabe, dass der Innenwinkel α1 bzw. der Innenwinkel α2 nicht 45° ist.
  2. Leuchteinheit nach Anspruch 1, dadurch gekennzeichnet, dass die geometrische Struktur (109, 409) zumindest zwei in optischer Strahlrichtung hintereinander angeordnete Prismenkörper (110, 310, 410) umfasst, deren erste Prismenflächen (111, 311) längs aneinander angrenzen und miteinander fluchten.
  3. Leuchteinheit nach Anspruch 2, dadurch gekennzeichnet, dass die geometrische Struktur (109, 409) aus genau zwei in optischer Strahlrichtung hintereinander angeordneten Prismenkörpern (110, 410) gebildet ist, deren erste Prismenflächen (111) längs aneinander angrenzen und miteinander fluchten.
  4. Leuchteinheit nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zumindest eine Prismenkörper (410) in Längsrichtung zwei ineinander übergehende Bereiche (410a, 410b) aufweist, die in der Höhe zueinander versetzt sind und über einen, vorzugsweise schrägen, Übergangsbereich (410c), durch den die optische Achse (404) verläuft, miteinander verbunden sind.
  5. Leuchteinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Blende einstückig aus dem lichtdurchlässigen Material gefertigt ist und der lichtundurchlässige Blendenbereich bedampft, insbesondere metallbedampft, oder verspiegelt ist.
  6. Leuchteinheit nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der lichtundurchlässige Blendenbereich aus einem lichtundurchlässigen Material gefertigt ist und der lichtdurchlässige, die geometrische Struktur umfassende Blendenbereich ein Einlegeteil aus dem lichtdurchlässigen Material ist, oder die Blende ist mittels eines Mehrkomponenten-Spritzgießverfahrens unter Verwendung lichtdurchlässiger und lichtundurchlässiger Kunststoffmaterialien hergestellt.
  7. Leuchteinheit nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das lichtdurchlässige Material Kunststoff oder Glas ist.
  8. Leuchteinheit nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die zweite und/oder dritte Prismenfläche (112, 113, 212, 213, 312, 313) im Wesentlichen planar ist.
  9. Leuchteinheit nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die zweite und/oder dritte Prismenfläche (512, 513) gekrümmt ist, vorzugsweise ist die dritte Prismenfläche (513) nach innen gekrümmt.
  10. Leuchteinheit nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zumindest eine Abblendlichtmodul (101) und das zumindest eine Fernlichtmodul (102) jeweils zumindest eine Lichtquelle umfassen, wobei jeder Lichtquelle in optischer Strahlrichtung ein Kollimator zugeordnet ist und der Kollimator dazu eingerichtet ist, den Abstrahlwinkel der von der Lichtquelle erzeugten Lichtstrahlen zu verkleinern.
  11. Leuchteinheit nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Blende (101) zumindest ein Lichtfenster (115) aufweist, wobei zumindest ein Lichtpfad von den Abblendlicht- und oder Fernlichtmodulen (101, 102) durch das zumindest eine Lichtfenster (115) und durch die Abbildungsoptik (103) nach außen verläuft.
  12. Leuchteinheit nach Anspruch 11, dadurch gekennzeichnet, dass der zumindest eine Lichtpfad durch das zumindest eine Lichtfenster (115) ausschließlich von dem Abblendlichtmodul (101) durch das zumindest eine Lichtfenster (115) und durch die Abbildungsoptik (103) nach außen verläuft.
  13. Leuchteinheit nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das zumindest eine Lichtfenster (115) im lichtundurchlässigen Blendenbereich (107) der Blende (105) angeordnet und von diesem begrenzt wird, wobei das Lichtfenster (107) als Ausnehmung im lichtundurchlässigen Blendenbereich der Blende ausgebildet ist oder aus einem lichtdurchlässigen Material besteht.
  14. Kraftfahrzeugscheinwerfer mit zumindest einer Leuchteinheit (100) nach einem der Ansprüche 1 bis 13.
  15. Kraftfahrzeug umfassend zumindest eine Leuchteinheit (100) nach einem der Ansprüche 1 bis 13 und/oder einen Kraftfahrzeugscheinwerfer nach Anspruch 14.
EP19773113.6A 2018-10-25 2019-09-26 Leuchteinheit für einen kfz-scheinwerfer Active EP3870894B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18202516.3A EP3643962A1 (de) 2018-10-25 2018-10-25 Leuchteinheit für einen kfz-scheinwerfer
PCT/EP2019/076020 WO2020083601A1 (de) 2018-10-25 2019-09-26 Leuchteinheit für einen kfz-scheinwerfer

Publications (2)

Publication Number Publication Date
EP3870894A1 EP3870894A1 (de) 2021-09-01
EP3870894B1 true EP3870894B1 (de) 2023-03-29

Family

ID=64017310

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18202516.3A Withdrawn EP3643962A1 (de) 2018-10-25 2018-10-25 Leuchteinheit für einen kfz-scheinwerfer
EP19773113.6A Active EP3870894B1 (de) 2018-10-25 2019-09-26 Leuchteinheit für einen kfz-scheinwerfer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18202516.3A Withdrawn EP3643962A1 (de) 2018-10-25 2018-10-25 Leuchteinheit für einen kfz-scheinwerfer

Country Status (6)

Country Link
US (1) US11293612B2 (de)
EP (2) EP3643962A1 (de)
JP (1) JP7231726B2 (de)
KR (1) KR102530959B1 (de)
CN (1) CN112912667B (de)
WO (1) WO2020083601A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011013211B4 (de) * 2011-03-05 2012-12-06 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugscheinwerfer mit einem Mehrfunktions-Projektionsmodul

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046084Y2 (de) * 1987-03-31 1992-02-20
FR2858042B1 (fr) 2003-07-24 2005-09-23 Valeo Vision Module d'eclairage elliptique sans cache realisant un faisceau d'eclairage a coupure et projecteur comportant un tel module
DE102008036192B4 (de) * 2008-08-02 2012-05-03 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugbeleuchtungseinrichtung
DE102009008631B4 (de) * 2009-02-12 2016-11-03 Automotive Lighting Reutlingen Gmbh Projektionsmodul für einen Kraftfahrzeugscheinwerfer
FR2962786B1 (fr) 2010-07-19 2014-11-21 Valeo Vision Module d'eclairage avec reflecteur elliptique incline et inverse
DE102010046021A1 (de) * 2010-09-18 2012-03-22 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugscheinwerfer mit einem Mehrfunktions-Projektionsmodul
DE102011003814A1 (de) 2011-02-08 2012-08-09 Automotive Lighting Reutlingen Gmbh Lichtmodul eines Kraftfahrzeugscheinwerfers
WO2014033834A1 (ja) * 2012-08-28 2014-03-06 三菱電機株式会社 前照灯用光源および前照灯
JP2014107049A (ja) 2012-11-26 2014-06-09 Koito Mfg Co Ltd 車両用前照灯
JP2014120342A (ja) * 2012-12-17 2014-06-30 Koito Mfg Co Ltd 車両用前照灯
AT514161B1 (de) 2013-04-09 2016-05-15 Zizala Lichtsysteme Gmbh Leuchteinheit mit Blende mit zumindest einem Lichtfenster
DE102013108343A1 (de) 2013-08-02 2015-03-19 Hella Kgaa Hueck & Co. Scheinwerfer für Fahrzeuge
KR20160009377A (ko) * 2014-07-16 2016-01-26 에스엘 주식회사 차량용 램프
KR20170066973A (ko) * 2015-12-07 2017-06-15 현대모비스 주식회사 차량용 램프
JP6725282B2 (ja) * 2016-03-25 2020-07-15 スタンレー電気株式会社 車両用灯具
KR101795253B1 (ko) * 2016-05-13 2017-11-08 현대자동차주식회사 이중 광 경로 형성 방식 프로젝션 광학계와 이를 적용한 프로젝션 헤드램프 및 차량
CZ2016655A3 (cs) * 2016-10-19 2018-05-02 Varoc Lighting Systems, s.r.o. Světlomet pro vozidlo
CN106764810B (zh) * 2017-01-12 2022-11-29 华域视觉科技(上海)有限公司 一种具有遮光作用的透明光导体及其应用
CN108488756A (zh) * 2018-06-01 2018-09-04 江苏信利电子有限公司 机动车前大灯及机动车

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011013211B4 (de) * 2011-03-05 2012-12-06 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugscheinwerfer mit einem Mehrfunktions-Projektionsmodul

Also Published As

Publication number Publication date
US11293612B2 (en) 2022-04-05
WO2020083601A1 (de) 2020-04-30
JP7231726B2 (ja) 2023-03-01
KR20210060575A (ko) 2021-05-26
EP3643962A1 (de) 2020-04-29
CN112912667A (zh) 2021-06-04
US20210388960A1 (en) 2021-12-16
KR102530959B1 (ko) 2023-05-10
EP3870894A1 (de) 2021-09-01
JP2022512814A (ja) 2022-02-07
CN112912667B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
DE102014205994B4 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
DE102009053581B3 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2893249B1 (de) Leuchteinheit für einen scheinwerfer
DE602004002043T2 (de) Elliptische Beleuchtungseinheit ohne Lichtblende zur Erzeugung eines Abblendlichtbündels und Scheinwerfer mit einer derartigen Belleuchtungseinheit
EP2799762B1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
DE102009010558B4 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP2784376B1 (de) Kraftfahrzeugleuchte für dynamische Leuchtenfunktionen
EP2523022B1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer zur Erzeugung einer variablen Lichtverteilung und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
DE102011078653B4 (de) Vorsatzoptik zur Bündelung von ausgesandtem Licht mindestens einer Halbleiterlichtquelle
DE112019003756B4 (de) Scheinwerfervorrichtung
EP2719940B1 (de) Lichtmodul
DE102007040760A1 (de) Projektionsmodul eines Fahrzeugscheinwerfers
DE19526023A1 (de) Scheinwerfer
EP3301350B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2500630B1 (de) Transparente Optik bzw. Linse einer KFZ-Beleuchtungseinrichtung
EP3765781B1 (de) Lichtmodul für kraftfahrzeugscheinwerfer
DE102015204735B4 (de) Lichtleiterelement einer Kraftfahrzeug-Beleuchtungseinrichtung und Kraftfahrzeug-Beleuchtungseinrichtung mit einem solchen Lichtleiterelement
EP3870894B1 (de) Leuchteinheit für einen kfz-scheinwerfer
EP3385609B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
DE102012215124A1 (de) Beleuchtungseinrichtung mit Lichtquelle, Lichtleitkörper und Reflektor
DE102004010305A1 (de) Beleuchtungseinrichtung für Kraftfahrzeuge
DE202019106287U1 (de) Linsenanordnung für eine Kraftfahrzeugbeleuchtungseinrichtung sowie eine Kraftfahrzeugbeleuchtungseinrichtung mit einer solchen Linsenanordnung
DE102017119917A1 (de) Lichtleiteranordnung und Kraftfahrzeugbeleuchtungseinrichtung mit einer solchen Lichtleiteranordnung
DE102016101730A1 (de) Lichtmodul einer Beleuchtungseinrichtung eines Kraftfahrzeugs und Beleuchtungseinrichtung mit einem solchen Lichtmodul

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007357

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1556915

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 5

Ref country code: DE

Payment date: 20230920

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007357

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240103