EP3869172A1 - Capteur de pression à face d 'accouplement profilée - Google Patents

Capteur de pression à face d 'accouplement profilée Download PDF

Info

Publication number
EP3869172A1
EP3869172A1 EP21156434.9A EP21156434A EP3869172A1 EP 3869172 A1 EP3869172 A1 EP 3869172A1 EP 21156434 A EP21156434 A EP 21156434A EP 3869172 A1 EP3869172 A1 EP 3869172A1
Authority
EP
European Patent Office
Prior art keywords
fluid flow
flow container
sensing
insert
sensing insert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21156434.9A
Other languages
German (de)
English (en)
Inventor
Bradley Huntzinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of EP3869172A1 publication Critical patent/EP3869172A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0023Fluidic connecting means for flowthrough systems having a flexible pressure transmitting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices

Definitions

  • the present disclosure relates generally to pressure sensors, and more particularly, to disposable pressure sensors.
  • Disposable pressure sensors may be incorporated into fluid delivery tubes, such as in fluid delivery tubes utilized in the medical industry, for example, for delivering fluid to patients.
  • fluid delivery tubes utilized in the medical industry, for example, for delivering fluid to patients.
  • These disposable sensors have historically been universally applied, such that the sensors are not provided specifically for interaction with specific fluid delivery tubes. Accordingly, the interface between the disposable sensor and the fluid delivery tube may create areas of turbulent fluid flow, which may encourage the undesirable formation of bubbles within the fluid delivery tubes.
  • a pressure sensor assembly configured for sensing a fluid pressure within a fluid flow container.
  • the pressure sensor assembly includes a contoured sensing insert.
  • the contoured sensing insert includes an outer sensing insert having an open interior through-hole and a top contoured surface configured to be secured at least partially within the fluid flow container.
  • the top contoured surface has a surface contour corresponding with an interior wall contour of the fluid flow container.
  • the contoured sensing insert also includes an inner sensing medium defined within the through-hole of the outer sensing insert.
  • the inner sensing medium defines a conforming contoured surface at least substantially matching the surface contour of the top contoured surface.
  • the fluid flow container defines a tubular shape configured with a thorough hole configured to receive a flow of fluid during operation.
  • the conforming contoured surface of the inner sensing medium is configured for direct contact with a fluid flowing through the fluid flow container.
  • the top contoured surface of the outer sensing insert and the conforming contoured surface of the inner sensing medium are configured to fit flush with an interior curvature of the through-hole of the fluid flow container.
  • the outer sensing insert further defines an annular protrusion surrounding an exterior surface of the outer sensing insert.
  • the annular protrusion is configured to engage a coupling gasket to operably couple the outer sensing insert with the fluid flow container.
  • at least one of the coupling gasket or the inner sensing medium includes a silicone rubber material.
  • the outer sensing insert includes a silicone compatible plastic.
  • the outer sensing insert defines a bottom surface opposite the top contoured surface, wherein a base element is attached to the bottom surface.
  • a sensing die is attached to the base element, such that the sensing die is positioned within the inner sensing medium.
  • a method of manufacturing a pressure sensor assembly includes providing an outer sensing insert having an open interior through-hole and a top contoured surface configured to be secured at least partially within the fluid flow container.
  • the top contoured surface has a surface contour corresponding with an interior wall contour of the fluid flow container.
  • the method also includes dispensing an inner sensing medium within the through-hole of the outer sensing insert to define a conforming contoured surface at least substantially matching the surface contour of the top contoured surface.
  • the method further includes curing the inner sensing medium within the through-hole of the outer sensing insert.
  • the method also includes securely coupling the outer sensing insert to a fluid flow container via a coupling gasket.
  • the top contoured surface and the conforming contour surface are approximately flush with an interior surface of the fluid flow container.
  • the fluid flow container defines a tubular shape configured with a thorough hole configured to receive a flow of fluid during operation.
  • the conforming contoured surface of the inner sensing medium is configured for direct contact with a fluid flowing through the fluid flow container.
  • the outer sensing insert further defines an annular protrusion surrounding an exterior surface of the outer sensing insert.
  • the annular protrusion is configured to engage a coupling gasket to operably couple the outer sensing insert with the fluid flow container.
  • at least one of the coupling gasket or the inner sensing medium includes a liquid silicone rubber.
  • the outer sensing insert includes a silicone compatible plastic.
  • the method also includes attaching a bottom surface of the outer sensing insert opposite the top contoured surface to a base element. In some embodiments, the method also includes attaching the sensing die to the base element, wherein the sensing die is positioned within the inner sensing medium.
  • component or feature may,” “can,” “could,” “should,” “would,” “preferably,” “possibly,” “typically,” “optionally,” “for example,” “often,” or “might” (or other such language) be included or have a characteristic, that particular component or feature is not required to be included or to have the characteristic. Such component or feature may be optionally included in some embodiments, or it may be excluded.
  • Embodiments of the present disclosure generally relate to force sensors that may be configured for sensing fluid pressures, for example, within a fluid flow tube or other contained volume of fluid (e.g., a flowing volume of fluid).
  • Embodiments of the present disclosure may be used in various applications, such as in medical applications.
  • various embodiments are directed to pressure sensors configured for direct interaction with a fluid (e.g., a fluid provided in a medical context) via coupling between the pressure sensor and a fluid flow.
  • a fluid e.g., a fluid provided in a medical context
  • Such embodiments address various needs within industries, such as in the medical industry, in which there is an increasing need for disposable medical equipment that allows for accurate measurements while maintaining low costs.
  • Various embodiments of the present disclosure allow for an improved interaction between the pressure sensor and the fluid flow path for which a pressure is being measured, which may provide a consistent (and laminar, for example) flow along the fluid flow path, with minimal interference of the fluid flow that may otherwise result in trapped bubbles in the fluid.
  • bubbles e.g., gas bubbles, such as air bubbles
  • bubbles within a liquid fluid flow may be highly undesirable, as the liquid fluid may be passed directly into a patient's body (e.g., into a patient's blood stream), where bubbles may create substantial and/or severe medical problems for the patient.
  • the disclosed pressure sensor assembly as described herein may be suitable for use in use in approximately 0 to 300 mmHg pressure environments (e.g., about 0 to 6 psi with a proof pressure of 100 psi). It should be understood that various pressure sensor assemblies provided in accordance with certain embodiments may be usable within narrow pressure ranges (e.g., only high pressure ranges, only low pressure ranges and/or the like), for example, due to the configuration of the sensor die itself, however it should be understood that the embodiments discussed herein may be usable in any of a variety of pressure ranges.
  • FIG. 1 illustrates an example pressure sensor assembly secured within a fluid flow container 100 in accordance with certain embodiments.
  • the pressure sensor assembly 10 may include a contoured sensing insert 110.
  • the contoured sensing insert 110 may be configured to engage with a fluid flow container 100.
  • the pressure sensor assembly may be secured within the fluid flow container 100 (e.g., a round fluid delivery tube) having an at least substantially circular exterior cross sectional shape (having a corresponding exterior radius of curvature) and defining a corresponding at least substantially circular interior passage (having a corresponding interior radius of curvature) 101.
  • the fluid flow container 100 may have an at least substantially uniform wall thickness (measured between an exterior surface of the fluid flow container 100 and an interior surface of the fluid flow container 100).
  • the fluid flow container 100 may have other cross-sectional shapes, such has having a uniform or non-uniform radius of curvature (e.g., elliptical, oval-shaped, oblong, and/or the like).
  • at least a portion of the interior surface of the fluid flow container 100 may have a uniform radius of curvature (e.g., the portion interacting with the pressure sensor assembly).
  • the fluid flow container 100 may define a sidewall aperture 104 extending through a sidewall of the fluid flow container 100 (e.g., through both the exterior surface and the interior surface of the fluid flow container 100) configured to receive a contoured sensing insert 110 therein.
  • the contoured sensing insert 110 may be positioned such that a sensing die within or in communication with the contoured sensing insert may determine the pressure of the fluid flowing through the fluid flow container 100.
  • the contoured sensing insert 110 may be attached to a substrate 410 configured with a sensing die and the like.
  • FIG. 2A illustrates an outer sensing insert configured to be coupled with the fluid flow container 100 (e.g., within a sidewall aperture 104) to enable direct contact between a fluid flowing within the fluid delivery tube and an inner sensing medium 250 as discussed herein.
  • the outer sensing insert 105 may comprise a hollow tubular shape extending between a lower end and an upper end. The outer sensing insert 105 may thus define an exterior surface of the outer sensing insert 105 and an interior surface of the outer sensing insert 105 surrounding a through-hole 225 of the outer sensing insert 105.
  • the lower end of the outer sensing insert 105 may be configured to be secured relative to additional sensor components (e.g., a substrate, such as a printed circuit board (PCB), having a sensing die disposed thereon, such that the outer sensing insert 105 surrounds the sensing die).
  • additional sensor components e.g., a substrate, such as a printed circuit board (PCB), having a sensing die disposed thereon, such that the outer sensing insert 105 surrounds the sensing die.
  • the upper end of the outer sensing insert 105 may define an interface surface 200 corresponding with a contour of the interior of the fluid flow container 100.
  • the interface surface 200 of the illustrated embodiment defines a radius of curvature at least substantially matching the radius of curvature of the interior surface of the fluid flow container 100 into which the sensor assembly is placed.
  • the interface surface 200 of the outer sensing insert 105 creates an at least substantially smooth composite sidewall of the fluid delivery tube, thereby providing at least substantially uninterrupted fluid flow through the fluid delivery tube and across the interface surface 200 of the outer sensing insert 105.
  • the interface surface 200 may be provided specifically for the size and/or configuration of the fluid delivery tube (e.g., the shape of the interface surface 200 may be made during the molding process based on the specific fluid delivery tube being used).
  • the outer sensing insert 105 may be orientation dependent, such that the fluid flow container interface surface 200 may define a first curved surface 200A and a second curved surface 200B that, as shown in FIGS.
  • the fluid flow container interface surface 200 may also define a first level surface 200C and a second level surface 200D configured to interface with the sidewall aperture of the fluid flow container and separating the first curved surface 200A and the second curved surface 200B.
  • first curved surface 200A and the second curved surface 200B may be continuously connected, thereby providing a single, continuous curved surface around the perimeter of the outer sensing insert 105.
  • various embodiments of the outer sensing insert 105 includes a cylindrical base 220 configured with a through-hole configured approximately perpendicular to the fluid flow container interface surface 200.
  • the exterior surface of the outer sensing insert 105 defines an annular protrusion 210 configured to securely engage (e.g., via interference fit) a coupling gasket or other coupling material (e.g., an adhesive, a gel, and/or the like) as discussed in reference to FIGS. 3A and 3B .
  • the annular protrusion may also define a curved surface 230 corresponding to the curved surfaces 200A and 200B of the fluid flow container interface surface 200.
  • the outer sensing insert 105 may comprise a silicone compatible plastic, such that a silicone gel may bind, adhere, or otherwise stick to interior surface of the outer sensing insert 105.
  • the outer sensing insert 105 comprise a plastic resin (e.g., Valox Resin HX420HP).
  • the outer sensing insert 105 may be configured within the through-hole 225 of the outer sensing insert 105 configured to receive the inner sensing medium 250.
  • the inner sensing medium 250 may have a shape corresponding with the interior surface of the outer sensing insert 105.
  • the inner sensing medium 250 may additionally define a lower end (e.g., which may cover and/or otherwise contact a sensing die, a substrate (e.g., a PCB), and/or other components located at a lower end of the sensor assembly (not shown).
  • the inner sensing medium 250 may additionally define a top surface, positioned opposite the lower end and having a shape corresponding with the shape of the upper end of the outer sensing insert 105.
  • the top surface of the inner sensing medium 250 may define a contour (e.g., a curvature) corresponding with (e.g., at least substantially matching) the contour (e.g., the curvature) of the first curved surface 200A and the second curved surface 200B, such that the composite upper surface of the sensing assembly is at least substantially continuous, having a smooth curved surface without abrupt changes in contour (e.g., formed by corners, lips, ridges, burrs, and/or the like).
  • the height of the curvature may be based on the curvature of the fluid flow container 100.
  • the size of the outer sensing insert 105 may depend on the size of the entire sensor assembly 10 (e.g., the size of the components may be scaled based on the application used).
  • the inner sensing medium 250 may comprise a resilient polymer (e.g., a silicone rubber material) configured to bond with the outer sensing insert 105 and fill the through-hole 225 of the outer sensing insert 105.
  • the inner sensing medium 250 have be in a resilient solid form at room temperature, and may be dispensed in situ within the outer sensing insert 105 by providing the inner sensing medium 250 into the through hole of the outer sensing insert 105 in liquid form.
  • the inner sensing medium 250 may be further characterized as having sufficient adhesion characteristics while in liquid form to enable the liquid inner sensing medium material to adhere to the interior sidewalls of the outer sensing insert 105 and to take the shape of the first curved surface 200A and the second curved surface 200B. Moreover, the inner sensing medium 250 may be further characterized as having sufficient surface tension and cohesive characteristics while in liquid form such that the liquid inner sensing medium material maintains a contoured upper surface so as to provide an upper surface having a contour matching the contour of the first curved surface 200A and the second curve surface 200B.
  • the inner sensing medium 250 may be a Silpuran liquid silicone rubber (e.g., Silpuran 2130). As discussed in reference to FIG.
  • the inner sensing medium 250 may be configured to translate the pressure of the fluid flowing through the fluid flow container 100 to a sensing element (e.g., a sensing die).
  • a sensing element e.g., a sensing die
  • the bottom surface 235 of the outer sensing insert 105 may be attached to another surface such that the inner sensing medium 250 may be bound by the surface.
  • FIGS. 3A and 3B illustrate cut-away views of the mating between the fluid flow tube and the sensing insert.
  • FIG. 3A illustrates a cross-section of the through-hole 101 of the fluid flow container 100 with the contoured sensing insert 110 is operably coupled.
  • the outer sensing insert 105 may be oriented such that the first curved surface 200A and the second curved surface 200B are in alignment with the curvature of the interior surface of the through-hole 101.
  • the outer sensing insert 105 may be operably coupled to the fluid flow container via coupling gasket 300, which may provide adhesive characteristics to secure the outer sensing insert 105 within the sidewall aperture 104 of the fluid flow container 100.
  • the coupling gasket 300 may be a cured or otherwise set silicone rubber material (e.g., provided in a gel/liquid form during application and set/cured thereon) configured to securely couple the outer sensing insert 105 with the sidewall aperture 104 of the fluid flow container.
  • the liquid silicone rubber may cure, such that the coupling gasket 300 is a solid.
  • the coupling gasket 300 may be manufactured via a molding process (e.g., molded over a plastic ring).
  • the coupling gasket may have self-adhesive properties configured to attach to the outer sensing insert 105 and the fluid flow container 100.
  • the coupling gasket 300 may be a Silpuran liquid silicone rubber (e.g., Silpuran 6760/50). As shown, the coupling gasket 300 may be configured to align with the fluid flow container interface surface 200, such that the coupling gasket 300 defines a curvature approximate to the curvature of the through-hole 101. As such, in various embodiments, the contoured sensing insert 110 may fit flush with the interior surface of the through-hole 101 of the fluid flow container 100, such that there is a smooth transition of the fluid during movement through the through-hole. As shown in FIG.
  • the sidewall aperture 104 may be configured to have a varying cross-section, such the first level surface 200C and the second level surface 200D of the fluid flow container interface surface 200 may engage with the sidewall aperture 104, such that the vertical motion of the contoured sensing insert 110 may be reduced.
  • the rotational protrusions 210 may be provided such that the coupling gasket 300 may have more surface to bond thereon.
  • the relative positon of the outer sensing insert 105 with the substrate 410 may assist in orienting the outer sensing insert 105 with the fluid delivery container 100.
  • FIG. 4 illustrates a cut-away view of pressure sensor assembly including a contoured sensing insert with a sensing die operably coupled to a fluid flow container.
  • the sensing element 400 may be defined within the inner sensing medium 250.
  • the sensing element 400 may be attached to a substrate 410, which may be coupled to the bottom surface of the outer sensing insert 105.
  • the sensing element 400 may be a sensing die.
  • the sensing element 400 may be in communication with a processor configured to determine the pressure of the fluid flowing through the fluid flow container 100 based on the deflection of the sensing element 400.
  • the inner sensing medium is configured to translate the pressure of the fluid in the fluid flow container 100
  • the pressure may be approximated based on the reading of the sensing element 400.
  • the sense die itself may be attached to a base element, which itself is secured onto and/or partially within the open end of the outer sensing insert 105, such that the deflection of the inner sensing medium 250 may be transferred to the sensing element 400.
  • the sensing element may include a Wheatstone bridge configured to correlate the level of stress of the surface of the sense die to a force measured by the load cell.
  • the sensing element 400 may be preloaded to experience a set amount of pressure in an instance in which there is no pressure actually applied by the fluid in the fluid flow container.
  • the amount of force may be measured by proxy by the Wheatstone bridge, by measuring the amount of stress of the surface of the sensing element.
  • the Wheatstone bridge produces a differential output voltage from the standard piezoresistive Wheatstone bridge that is proportional to the applied load.
  • the pressure sensor assembly may be attached to a substrate 410.
  • the sensing element 400 may be adhered or otherwise secured to a top surface of the substrate 410, along with the substrate, which is adhered or otherwise secured to the top surface of the substrate 410.
  • the sensing element 400 may be further connected with the PCB via the connected wire bonds.
  • the base surface and the outer sensing insert 105 may be press fitted together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Fluid Pressure (AREA)
EP21156434.9A 2020-02-20 2021-02-10 Capteur de pression à face d 'accouplement profilée Pending EP3869172A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/796,037 US10852166B1 (en) 2020-02-20 2020-02-20 Pressure sensor with contoured mating face

Publications (1)

Publication Number Publication Date
EP3869172A1 true EP3869172A1 (fr) 2021-08-25

Family

ID=73554590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21156434.9A Pending EP3869172A1 (fr) 2020-02-20 2021-02-10 Capteur de pression à face d 'accouplement profilée

Country Status (3)

Country Link
US (2) US10852166B1 (fr)
EP (1) EP3869172A1 (fr)
CN (1) CN113280972B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852166B1 (en) * 2020-02-20 2020-12-01 Honeywell International Inc. Pressure sensor with contoured mating face

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835896A (ja) * 1991-07-16 1996-02-06 Terumo Corp 圧力変換器
EP3392634A2 (fr) * 2017-04-20 2018-10-24 Honeywell International Inc. Ensemble capteur de pression

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960018A (en) * 1973-07-23 1976-06-01 Pcb Piezotronics, Inc. Conformal pressure transducer
US4796400A (en) * 1987-08-24 1989-01-10 Odl, Incorporated Skylight with improved seal
JPH02167441A (ja) * 1988-09-22 1990-06-27 Terumo Corp 使い捨て圧力変換器及び使い捨て圧力変換装置
DK0723143T3 (da) * 1995-01-12 1999-03-01 Endress Hauser Gmbh Co Indretning til måling af tryk eller differenstryk
JPH08199658A (ja) * 1995-01-23 1996-08-06 Inax Corp 便器と排便管の接続構造及びこれに使用するガスケット
US5905196A (en) * 1998-01-07 1999-05-18 Kaltec Scientific, Inc. Rotational viscometer temperature sensor
AU2003902766A0 (en) * 2003-06-02 2003-06-19 Onesteel Manufacturing Pty Ltd Ultrasonic testing of pipe
US7024937B2 (en) * 2003-12-03 2006-04-11 Honeywell International Inc. Isolated pressure transducer
US10557828B2 (en) * 2014-02-17 2020-02-11 Westinghouse Electric Company Llc Ultrasonic phased array transducer for the NDE inspection of the jet pump riser welds and welded attachments
JP2017101393A (ja) * 2015-11-30 2017-06-08 Toto株式会社 配管接続部材
JP6076530B1 (ja) * 2016-04-06 2017-02-08 三菱電機株式会社 温度センサ複合型半導体圧力センサ装置
CN205745698U (zh) * 2016-06-08 2016-11-30 天津市大站管件有限公司 一种可实现自密封的管件
US10100702B2 (en) * 2016-07-19 2018-10-16 Ford Global Technologies, Llc Method and system for exhaust particulate matter sensing
US9945747B1 (en) 2016-10-13 2018-04-17 Honeywell International Inc. Gel filled port pressure sensor for robust media sealing
CN109642672B (zh) * 2016-10-27 2021-03-23 Nok株式会社 密封垫及其制造方法
US10094726B2 (en) * 2017-02-01 2018-10-09 Honeywell International Inc. Membrane isolated, gel-filled force sensor
US20180335360A1 (en) 2017-05-16 2018-11-22 Honeywell International Inc. Ported Pressure Sensor With No Internally Trapped Fluid
JP6902988B2 (ja) * 2017-11-30 2021-07-14 日本ピラー工業株式会社 ガスケットの製造方法
US10852166B1 (en) * 2020-02-20 2020-12-01 Honeywell International Inc. Pressure sensor with contoured mating face

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835896A (ja) * 1991-07-16 1996-02-06 Terumo Corp 圧力変換器
EP3392634A2 (fr) * 2017-04-20 2018-10-24 Honeywell International Inc. Ensemble capteur de pression

Also Published As

Publication number Publication date
CN113280972A (zh) 2021-08-20
US10852166B1 (en) 2020-12-01
CN113280972B (zh) 2023-08-29
US20210262841A1 (en) 2021-08-26
US11579003B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
US7197937B2 (en) Hermetic pressure sensing device
US9470593B2 (en) Media isolated pressure sensor
EP1812095A1 (fr) Unité de membrane, logement pour unité de mesure de pression et unité de mesure de pression
AU2013298167B2 (en) Pressure measurement unit for determining fluid pressure within a medical fluid dispensing device
EP3869172A1 (fr) Capteur de pression à face d 'accouplement profilée
US20130205907A1 (en) Pressure detector
EP0146049A2 (fr) Dispositif de couplage
EP3392634B1 (fr) Ensemble capteur de pression
WO2007110946A1 (fr) Dispositif de detection de la pression
EP1560012B1 (fr) Transducteur de pression
EP3358329A2 (fr) Membrane isolée, capteur de force rempli de gel
WO1986002446A1 (fr) Transducteur de pression
EP3754318B1 (fr) Boîtier de capteur de pression de fluide micromoulé
US11566958B2 (en) Radial seal for disposable force sensor
JP2800083B2 (ja) 圧力トランスデューサ組立体およびその製造方法
JP2002286566A (ja) 半導体圧力センサ及びその調整方法
AU2019273688B2 (en) Baby's bottle comprising milk pump
US20230096042A1 (en) Molded sensor assembly
CN210268693U (zh) 传感器封装结构
US20240230441A9 (en) Pressure Sensor Module and Dispensing Device
US20240133757A1 (en) Pressure Sensor Module and Dispensing Device
US20220003622A1 (en) Pressure detecting unit for a measuring device for measuring a pressure status value of a plant specimen, and method for manufacturing a pressure detecting unit
JPH08136380A (ja) 圧力センサ
AU611324B2 (en) Disposable pressure transducer and disposable pressure transducer apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230905