EP3850707B1 - Spiralsegmentantenne - Google Patents

Spiralsegmentantenne Download PDF

Info

Publication number
EP3850707B1
EP3850707B1 EP19765248.0A EP19765248A EP3850707B1 EP 3850707 B1 EP3850707 B1 EP 3850707B1 EP 19765248 A EP19765248 A EP 19765248A EP 3850707 B1 EP3850707 B1 EP 3850707B1
Authority
EP
European Patent Office
Prior art keywords
antenna
spiral segment
loop
spiral
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19765248.0A
Other languages
English (en)
French (fr)
Other versions
EP3850707A1 (de
Inventor
Cédric MARTEL
Jérôme MASSIOT
Olivier Pascal
Nathalie RAVEU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Office National dEtudes et de Recherches Aerospatiales ONERA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP3850707A1 publication Critical patent/EP3850707A1/de
Application granted granted Critical
Publication of EP3850707B1 publication Critical patent/EP3850707B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems

Definitions

  • the present invention relates to an antenna with one or more segment(s) of spiral(s) for emitting radiation, in particular radiofrequency (RF) radiation, the frequency of which can be between 300 MHz (megahertz) and 30 GHz (gigahertz). It may relate in particular to an antenna of the “ultra-wide band” or UWB type for “Ultra-Wide Band” in English.
  • RF radiofrequency
  • UWB antenna emits radiation of determined frequency mainly from a restricted zone of this antenna, which is called the radiative zone for the frequency considered. This radiative zone varies according to the frequency of the radiation emitted, and therefore according to the frequency of each spectral component of the antenna feed signal.
  • an antenna as considered in the present description comprises at least one guide path for a progressive electromagnetic wave, from an electrical power supply input to which the power supply signal is applied.
  • the radiative zones which are associated with different values of the frequency of the radiation emitted are distributed along the guide path of the progressive wave, according to the shape of this path.
  • radiation will designate the electromagnetic radiation which is emitted by the antenna and which propagates freely in space outside the antenna, for the purpose of long-distance signal transmission.
  • the term “progressive wave” will designate the electromagnetic wave which propagates along the guide path of the antenna, while being confined in this path.
  • the article by Gregor Lasser et al. “A Spiral Antenna for Amplitude-Only Direction Finding,” 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, July 9, 2017, pp. 927-928 , describes a slit-antenna in the form of two segments of spirals.
  • This slot-antenna is equipped with resistors to connect the two edges of each slot near the periphery of the antenna to each other. These resistors are located upstream of the connection of each segment of spiral to a peripheral loop of the antenna with respect to a direction of progressive wave propagation along each segment of spiral during operation of the antenna in transmission .
  • the article entitled “Self Matched Spiral Printed Antenna with Unidirectional Pattern”, by J. Massiot et al., 7th European Conference on Antennas and Propagation (EuCAP), 2013, IEEE, pp. 1237-1240 proposes to reduce the reflection of the traveling wave on the outer end of each part of the guide path in the form of a spiral by arranging an electrical resistor which connects the last two turns of this part of the spiral path together. This electrical resistance is placed at a distance from the outer end of the spiral path part which is equal to one quarter of an effective wavelength value of the traveling wave, for a frequency value in the band antenna transmission.
  • this solution is not optimal, and is not satisfactory for certain applications which require good transmission efficiency of the antenna up to the start of its transmission band, that is to say for values frequencies that are close to the lower limit of the antenna's transmission band, expressed in terms of frequency.
  • an object of the present invention consists in improving a spiral antenna of the type which has just been described, in order to increase its transmission efficiency at the start of the transmission band.
  • the invention provides a novel antenna for emitting radiation from at least one traveling electromagnetic wave which propagates along a guide path which is determined by a structure of the antenna, this guide path forming a transmission line dedicated to the progressive wave and having at least one part of the path in the form of a spiral segment up to a terminal end of this spiral segment.
  • the antenna of the invention can be of the ultra-wideband type.
  • the guide path further comprises a continuous loop which surrounds each spiral segment, and the terminal end of each spiral segment is connected to the loop at a connection point of this spiral segment.
  • an electrical signal which is transmitted to a feed input of the antenna produces a progressive wave which propagates along each spiral segment, then which is transmitted to the loop at the level of the connection point of this segment of spiral.
  • the part of the progressive wave which is transmitted to the loop at each connection point then participates in producing radiation.
  • the loop constitutes at least part of a radiative zone of the antenna.
  • this radiative zone corresponds to frequency values which are close to the lower limit of the transmission band of the antenna, expressed in terms of frequency. The performance of the antenna at the start of the transmission band is thus improved.
  • connection of the spiral segment to the loop forms a Wilkinson divider, which is arranged to be traversed in a wave meeting direction by the wave progressive transmitted by this spiral arm.
  • connection of each spiral segment to the loop is sized to increase the transmit efficiency of the antenna near the lower limit of its transmission band, expressed in terms of frequency.
  • the antenna can be structured to determine several guide path portions which are identical and each in the form of a spiral segment. Each spiral segment extends to a terminal end where it is connected to the loop separately from the other spiral segments. Then the antenna can be configured so that all of the spiral segment guide path portions simultaneously transmit respective traveling waves to the loop.
  • each segment of spiral can be connected to the loop tangentially to the corresponding connection point. Furthermore, it can also be connected to the loop by a respective bridging structure, separately from each other spiral segment, and each spiral segment with the corresponding bridging structure can advantageously reproduce the characteristics which have been indicated above, independently of every other spiral segment.
  • an antenna 100 which is in accordance with the invention is formed in a first metal surface, for example in a metal plate 10. It is constituted by segments of slots which are arranged relative to each other to constitute an antenna of the type ultra-wideband.
  • the antenna 100 can comprise several segments of identical spirals which each extend from an input E for supplying the antenna with an electrical signal.
  • the antenna 100 comprises two segments of spirals 11 and 12, which are intended to be supplied by opposite or identical electric currents at the input E, according to the mode of radiation which is desired.
  • the power inlet E is therefore located at the starting point of each spiral segment 11, 12, and the two spiral segments 11 and 12 intersect alternately centrifugal radial directions which originate from the location of the inlet. power supply E.
  • the antenna 100 comprises an additional slot segment 13, in the form of a loop which surrounds the spiral segments.
  • the additional slot segment 13 is referred to directly as a loop in the remainder of this description, and each spiral-shaped slot segment is referred to as a spiral segment.
  • loop 13 is circular.
  • Spiral segment 11 is connected to loop 13 at connection point PR1
  • spiral segment 12 is connected to loop 13 at connection point PR2.
  • the antenna 100 comprises only two segments of spirals, but it is understood that it may comprise any number: one, three, four, etc.
  • these segments of spirals must be supplied with respective electric currents at the level of the supply input E, which are phase shifted relative to each other in a way that is consistent with the distribution of connection points on the loop 13.
  • the configuration of the supply input E ensures that the two segments of spirals 11 and 12 are supplied with respective electric currents which are opposite, and the two connection points PR1 and PR2 are diametrically opposed on the loop 13.
  • each slot segment 11-13 forms part of a guide path for a traveling electromagnetic wave, the latter comprising varying electric currents which appear at the edges of the slot.
  • Such an antenna 100 produces a coupling between the progressive electromagnetic waves which are guided in the segments of slots 11-13 and an electromagnetic radiation external to the antenna 100. This coupling is maximum in areas of the antenna 100 which depend on the frequency value common to the traveling waves which are guided in the slot segments, and equal to the frequency value of the emitted radiation. These zones are called radiative zones. That which corresponds to the frequency value f is superimposed on the circle which has as its center the midpoint of the power input E, and which has a circumferential length substantially equal to a multiple of the effective wavelength of each progressive wave having the frequency value f.
  • the reference ZR designates such a radiative zone, which is marked in broken lines in the figure 1 .
  • each slot segment can have an Archimedean spiral shape, for which the radial distance increases linearly with the polar coordinate angle.
  • the loop 13 is supplied with a progressive wave by the two segments of spirals 11 and 12 at the connection points PR1 and PR2, so that a resulting progressive wave propagates along the loop 13 when an electrical signal is injected into the two segments of spirals 11 and 12 at the supply input E.
  • the loop 13 then constitutes a radiative zone for a frequency value of the emitted radiation which is close to the lower limit of the transmission band of the antenna 100, since it surrounds the segments of spirals 11 and 12.
  • each segment of spiral 11, 12 is connected to the loop 13 tangentially, or substantially tangentially, with respect thereto.
  • each segment of spiral 11, 12 is also advantageous for this segment of spiral 11, 12 to be connected to the loop 13 by a Wilkinson divider structure, or by a connection structure whose structural and electrical characteristics are close to those of a Wilkinson divider.
  • a Wilkinson divisor is well known to those skilled in the art, so its effectiveness in suppressing reflection need not be demonstrated again here.
  • Each Wilkinson divisor structure is implemented as shown by the picture 2 , to join the progressive wave which is guided by the spiral segment 11 or 12 with that which is guided by the loop 13.
  • Such a connection structure is now described for the spiral segment 11, it being understood that another structure connection, separate but identical, is used for each other spiral segment of the antenna 100.
  • a bridging structure SP1 is added to connect the spiral segment 11 to the loop 13, upstream of the connection point PR1 with respect to the direction of propagation of the progressive wave which is guided by the spiral segment 11 coming from the supply input E.
  • the connection constituted by the bridging structure SP1 between the spiral segment 11 and the loop 13 is effective for transmitting between them a part of the traveling wave which is guided by the spiral segment 11 or the loop 13.
  • the bridging structure SP1 can be constituted by an additional slot segment which connects the last turn of the spiral segment 11 to the loop 13. This additional slot segment can be oriented radially, and can be short compared to the length d effective wave of the traveling wave part it transmits.
  • the bridging structure SP1 and the connection point PR1 thus limit two intermediate parts of the guide path: the intermediate part 11i along the spiral segment 11, and the intermediate part 13i along the loop 13.
  • the intermediate parts 11i and 13i preferably each have a length which is substantially equal to a quarter of a determined effective wavelength value, relating to the progressive wave which is guided in the antenna 100.
  • This effective wavelength value can correspond to the radiation which is mainly emitted by the loop 13 as radiative zone.
  • the common length value of the two intermediate zones 11i and 13i can be substantially equal to a quarter of the circumferential length of the loop 13. More generally, it can be equal to L 13 /(4 ⁇ n), where L 13 is the circumferential length of loop 13, and n is a positive integer.
  • the bridging structure SP1 can be designed to produce a determined impedance value for the traveling wave portion it transmits.
  • the spiral segment 11 and the loop 13 each have the same characteristic impedance value Z 0 apart from the intermediate parts 11i and 13i.
  • the respective slot segments that constitute spiral segment 11 and loop 13 have geometric, electrical, and dielectric parameters that are identical. From these parameters, a person skilled in the art knows how to determine the characteristic impedance value of a slot segment, for the traveling wave that it transmits.
  • the impedance value which is thus desired for the bridging structure SP1 can be produced by placing an appropriate electrical resistance R1 between the opposite edges of the additional slot segment of this bridging structure SP1.
  • Electrical resistance R1 may be equal or substantially equal to 2 ⁇ Z 0 . It can be constituted by a discrete component which is attached to the antenna 100, for example by welding its two terminals each to one of the two edges of the additional slot segment of the bridging structure SP1.
  • the electrical resistor R1 can also be constituted by a segment of resistive film of a commercially available model, which is added locally between the two edges of the slot.
  • the characteristic impedance values of the intermediate portions 11i and 13i, which are effective for the traveling wave guided by each of they can be adjusted.
  • the spiral segment 11 and the loop 13 each still have the common characteristic impedance value Z 0 apart from the intermediate parts 11i and 13i, the latter can preferably each have a characteristic impedance value which is substantially equal to 2 1/2 ⁇ Z 0 .
  • Such a characteristic impedance value adjustment can in particular be performed by increasing the slot width in the intermediate parts 11i and 13i, relative to a slot width value which is common to the spiral segment 11 and to the loop 13 in outside the intermediate parts 11i and 13i.
  • the antenna 100 has a Wilkinson divider structure between the spiral segment 11 and the loop 13. This structure makes it possible to inject the progressive wave 2 (see the figures 1 and 2 ) which is guided by the spiral segment 11, in the loop 13, to join it with the progressive wave 3 which is guided by the loop 13 upstream of the bridging structure SP1. This results in progressive wave 1 which is guided by loop 13 downstream of connection point PR1.
  • the traveling wave 2 is then weakly reflected, or is not reflected, in the spiral segment 11, by a destructive interference effect which occurs between parts of the traveling wave which are reflected separately at the level of the structure.
  • the references PR2, SP2, 12i and R2 correspond respectively to the references PR1, SP1, 11i and R1, for the spiral segment 12 instead of the spiral segment 11.
  • a second metallic surface for example another metallic plate 20 as represented on the figure 1 , is optional. It is arranged parallel to the plate 10, and located at a short distance from the latter while being electrically insulated. Plate 20 has the function of limiting the emission of radiation by antenna 100 to the side of plate 10 which is opposite that of plate 20. Typically, the distance between plates 10 and 20 can be equal to approximately one twentieth of the wavelength of the radiation which corresponds to the lower limit of the transmission band of the antenna, expressed in terms of frequency, and the space between the two plates may be filled with an electrically insulating material and transparent to radiation. When used, the plate 20 is taken into account to determine the effective wavelength values of the traveling waves which are guided in the antenna 100, and to determine the characteristic impedance values of the guide path portions traveling waves.
  • the inventors have obtained a gain of at least 7 dB (decibel), or even more than 12 dB, on the electrical reflection coefficient of the antenna 100, as commonly designated by S 11 and measured at the entrance power supply E. This gain is effective close to the lower frequency limit of the transmission band of the antenna 100.

Claims (9)

  1. Antenne (100) zum Aussenden von Strahlung aus wenigstens einer progressiven elektromagnetischen Welle, die sich entlang eines durch eine Antennenstruktur bestimmten Führungsweges ausbreitet,
    wobei die Antenne (100) wenigstens ein Spiralsegment und einen gemeinsamen Zufuhreinlass (E) umfasst, der sich am Startpunkt jedes Spiralsegments befindet, Wobei der Führungsweg eine der Wanderwelle gewidmete Übertragungsleitung bildet, und einen Wegabschnitt umfasst, der jedem Spiralsegment bis zu einem Ende des Spiralsegments folgt, und wobei, wenn zwei oder mehr Spiralsegmente (11, 12) vorhanden sind, jedes Spiralsegment abwechselnd zentrifugale radiale Richtungen schneidet, die von der Position des Zufuhreinlasses (E) der Antenne ausgehen,
    wobei der Führungsweg ferner eine durchgehende Schleife (13) umfasst, die jedes Spiralsegment (11, 12) umgibt, und wobei das Abschlussende jedes Spiralsegments an einem Verbindungspunkt (PR1, PR2) des Spiralsegments mit der Schleife verbunden ist, so dass die Antenne derart konfiguriert ist, dass ein elektrisches Signal, das an den Zufuhreinlass (E) der Antenne (100) gesendet wird, eine Wanderwelle erzeugt, die sich entlang jedes Spiralsegments ausbreitet und dann an die Schleife am Verbindungspunkt des Spiralsegments gesendet wird, wobei die Schleife so wenigstens einen Teil einer Strahlungszone der Antenne bildet,
    wobei die Antenne (100) ferner für jedes Spiralsegment (11, 12) eine Brückenstruktur (SP1, SP2) umfasst, die dazu angeordnet ist, das Spiralsegment gegenüber der Übertragung der Wanderwelle und zusätzlich zu dem Verbindungspunkt (PR1, PR2) mit der Schleife (13) stromaufwärts des Verbindungspunkts in Bezug auf eine Ausbreitungsrichtung der Wanderwelle entlang des Spiralsegments zu verbinden,
    und, wobei für das Spiralsegment (11, 12), zwei Längen des Führungsweges zwischen der Brückenstruktur (SP1, SP2) und dem Verbindungspunkt (PR1, PR2), gemessen entlang des Spiralsegments bzw. entlang der Schleife (13), jeweils gleich einem Viertel, +/-20%, eines gleichen Wertes der effektiven Wellenlänge der Wanderwelle sind, der einem Frequenzwert entspricht, der zu einem Übertragungsband der Antenne (100) gehört.
  2. Antenne (100) nach Anspruch 1, wobei jedes Spiralsegment (11, 12) an dem Verbindungspunkt (PR1, PR2) des Spiralsegments tangential mit der Schleife (13) verbunden ist.
  3. Antenne (100) nach Anspruch 1 oder 2, wobei die effektive Wellenlänge der Wanderwelle, die als Referenz für die Längen des Führungsweges zwischen der Brückenstruktur (SP1, SP2) und dem Verbindungspunkt (PR1, PR2) dient, gemessen entlang dem Spiralsegment bzw. entlang der Schleife (13), zwischen dem 0,75/n-fachen und dem 1,25/n-fachen der Länge der Schleife liegt, wobei n eine positive ganze Zahl ist.
  4. Antenne (100) nach einem der vorhergehenden Ansprüche, wobei die Brückenstruktur (SP1, SP2) einen Impedanzwert aufweist, der zwischen dem 1-fachen und 3-fachen eines gemeinsamen charakteristischen Impedanzwertes des Spiralsegments (11, 12) und der Schleife (13) liegt, außerhalb von Zwischenabschnitten (11i, 12i, 13i) des Spiralsegments und der Schleife, die zwischen der Brückenstruktur (SP1, SP2) und dem Verbindungspunkt (PR1, PR2) liegen, wobei der Impedanzwert der Brückenstruktur und der charakteristische Impedanzwert für die Wanderwelle wirksam sind.
  5. Antenne (100) nach Anspruch 4, wobei die Zwischenabschnitte (11i, 12i, 13i) des Spiralsegments (11, 12) und der Schleife (13) jeweilige charakteristische Impedanzwerte aufweisen, die jeweils zwischen dem 0,5 × 21/2-fachen und dem 1,5 × 21/2-fachen des charakteristischen Impedanzwertes liegen, der dem Spiralsegment und der Schleife außerhalb der Zwischenabschnitte gemein ist.
  6. Antenne (100) nach einem der vorhergehenden Ansprüche, die dazu strukturiert ist, mehrere identische Teile des Führungswegs zu bestimmen, die jeweils eine Spiralsegmentform (11, 12) aufweisen, und sich bis zu einem Endpunkt erstrecken, an dem das Spiralsegment getrennt von den anderen Spiralsegmenten an die Schleife (13) angeschlossen ist, und wobei die Antenne (100) so konfiguriert ist, dass alle spiralsegmentförmigen Führungswegabschnitte (11, 12) gleichzeitig jeweilige Wanderwellen an die Schleife (13) übertragen.
  7. Antenne (100) nach Anspruch 6, wobei jedes Spiralsegment (11, 12) getrennt von jedem anderen Spiralsegment durch eine jeweilige Brückenstruktur (SP1, SP2) mit der Schleife (13) verbunden ist und jedes Spiralsegment mit der entsprechenden Brückenstruktur die Merkmale eines der Ansprüche 1 bis 5 unabhängig von jedem anderen Spiralsegment wiedergibt.
  8. Antenne (100) nach einem der vorhergehenden Ansprüche, mit einer Schlitzantennenkonfiguration, die in einer ersten metallischen Oberfläche (10) gebildet ist.
  9. Antenne (100) nach Anspruch 8, ferner umfassend eine zweite metallische Oberfläche (20), die parallel zur ersten metallischen Oberfläche (10) verläuft, von der ersten metallischen Oberfläche elektrisch isoliert ist und in der Nähe der ersten metallischen Oberfläche angeordnet ist, so dass die Strahlung von der Antenne ausschließlich mit einer Senderichtung emittiert wird, die von der zweiten metallischen Oberfläche zur ersten metallischen Oberfläche hin ausgerichtet ist.
EP19765248.0A 2018-09-13 2019-09-06 Spiralsegmentantenne Active EP3850707B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1800953A FR3086107B1 (fr) 2018-09-13 2018-09-13 Antenne en segment de spirale
PCT/EP2019/073830 WO2020053090A1 (fr) 2018-09-13 2019-09-06 Antenne en segment de spirale

Publications (2)

Publication Number Publication Date
EP3850707A1 EP3850707A1 (de) 2021-07-21
EP3850707B1 true EP3850707B1 (de) 2022-10-26

Family

ID=65494148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19765248.0A Active EP3850707B1 (de) 2018-09-13 2019-09-06 Spiralsegmentantenne

Country Status (6)

Country Link
US (1) US11616304B2 (de)
EP (1) EP3850707B1 (de)
CN (1) CN112771723B (de)
FR (1) FR3086107B1 (de)
IL (1) IL281268B2 (de)
WO (1) WO2020053090A1 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442369A (en) * 1992-12-15 1995-08-15 West Virginia University Toroidal antenna
US6184844B1 (en) * 1997-03-27 2001-02-06 Qualcomm Incorporated Dual-band helical antenna
US5936594A (en) * 1997-05-17 1999-08-10 Raytheon Company Highly isolated multiple frequency band antenna
US5923305A (en) * 1997-09-15 1999-07-13 Ericsson Inc. Dual-band helix antenna with parasitic element and associated methods of operation
US6653987B1 (en) * 2002-06-18 2003-11-25 The Mitre Corporation Dual-band quadrifilar helix antenna
US7245268B2 (en) * 2004-07-28 2007-07-17 Skycross, Inc. Quadrifilar helical antenna
JP2014027392A (ja) * 2012-07-25 2014-02-06 Toshiba Corp スパイラルアンテナ
US9917356B2 (en) * 2013-09-13 2018-03-13 Lawrence Livermore National Security, Llc Band-notched spiral antenna
EP3091610B1 (de) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antennensystem und antennenmodul mit verminderter interferenz zwischen strahlungsmustern
CN108232447B (zh) * 2018-02-28 2023-09-15 中国人民解放军国防科技大学 一种用于自补结构天线的阻抗变换器

Also Published As

Publication number Publication date
CN112771723B (zh) 2023-05-05
CN112771723A (zh) 2021-05-07
US20220045430A1 (en) 2022-02-10
FR3086107A1 (fr) 2020-03-20
WO2020053090A1 (fr) 2020-03-19
IL281268B1 (en) 2023-06-01
IL281268B2 (en) 2023-10-01
US11616304B2 (en) 2023-03-28
EP3850707A1 (de) 2021-07-21
FR3086107B1 (fr) 2021-12-24
IL281268A (en) 2021-04-29

Similar Documents

Publication Publication Date Title
EP0649181B1 (de) Antenne für tragbares Funkgerät, Verfahren zur Herstellung einer derartigen Antenne und tragbares Funkgerät mit einer derartigen Antenne
EP1407512B1 (de) Antenne
WO2002103843A1 (fr) Antenne fil-plaque multifrequences
FR2822301A1 (fr) Antenne a bande elargie pour appareils mobiles
EP0375506A1 (de) Halbstarre Kabel für Mikrowellenübertragung
EP2422403B1 (de) Breitbandige mehrfachantenne mit geringem querschnitt
FR2856525A1 (fr) Alimentation pour une antenne a reflecteur.
EP3843202A1 (de) Horn für eine zirkular polarisierte duale ka-band-satellitenantenne
EP1466384B1 (de) Einrichtung zum empfangen und/oder emittieren elektromagnetischer wellen mit strahlungs-diversity
FR2742003A1 (fr) Antenne et assemblage d'antennes pour la mesure d'une distribution de champ electromagnetique en micro-ondes
EP3850707B1 (de) Spiralsegmentantenne
EP0110479B1 (de) Dünne Doppelstrahlerrichtantenne für Mikrowellen
EP1540768B1 (de) Helixförmige breitbandantenne
EP2610966B1 (de) Kompakte Breitbandantenne von sehr geringer Dicke und mit doppelten orthogonalen linearen Polarisierungen, die für den V/UHF-Bandbereich konzipiert ist
FR2813995A1 (fr) Coupleur directionnel, dispositif d'antenne et systeme de radar
EP1949496B1 (de) Flachantennensystem mit direktwellenleiterzugang
EP3692598B1 (de) Antenne mit teilweise gesättigtem dispersivem ferromagnetischem substrat
FR2967536A1 (fr) Antenne compacte adaptable en impedance
CA3130188A1 (fr) Antenne large bande, notamment pour systeme d'imagerie a microondes
CA2800949C (fr) Antenne compacte a large bande a double polarisation lineaire
FR2801730A1 (fr) Antenne ciseaux a large bande
FR3086106A1 (fr) Antenne a rejection de bande variable
WO2014029947A1 (fr) Element de surface inductif
FR2769135A1 (fr) Cable coaxial rayonnant
FR2825518A1 (fr) Antenne a plaque

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210310

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019021158

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1527738

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019021158

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 5

Ref country code: GB

Payment date: 20230823

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230822

Year of fee payment: 5

Ref country code: FR

Payment date: 20230822

Year of fee payment: 5

Ref country code: DE

Payment date: 20230822

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL