EP3844790B1 - Schaltvorrichtung - Google Patents

Schaltvorrichtung Download PDF

Info

Publication number
EP3844790B1
EP3844790B1 EP19755629.3A EP19755629A EP3844790B1 EP 3844790 B1 EP3844790 B1 EP 3844790B1 EP 19755629 A EP19755629 A EP 19755629A EP 3844790 B1 EP3844790 B1 EP 3844790B1
Authority
EP
European Patent Office
Prior art keywords
switching device
permanent magnet
magnetic
switch
magnetic switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19755629.3A
Other languages
English (en)
French (fr)
Other versions
EP3844790A1 (de
Inventor
Frank Werner
Torsten KLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
TDK Electronics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Electronics AG filed Critical TDK Electronics AG
Publication of EP3844790A1 publication Critical patent/EP3844790A1/de
Application granted granted Critical
Publication of EP3844790B1 publication Critical patent/EP3844790B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/14Contacts characterised by the manner in which co-operating contacts engage by abutting
    • H01H1/20Bridging contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H36/0006Permanent magnet actuating reed switches
    • H01H36/0013Permanent magnet actuating reed switches characterised by the co-operation between reed switch and permanent magnet; Magnetic circuits
    • H01H36/0026Permanent magnet actuating reed switches characterised by the co-operation between reed switch and permanent magnet; Magnetic circuits comprising a biasing, helping or polarising magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/60Contact arrangements moving contact being rigidly combined with movable part of magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/28Relays having both armature and contacts within a sealed casing outside which the operating coil is located, e.g. contact carried by a magnetic leaf spring or reed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • H01H2050/025Details concerning sealing, e.g. sealing casing with resin containing inert or dielectric gasses, e.g. SF6, for arc prevention or arc extinction

Definitions

  • a switching device is specified.
  • the switching device is designed in particular as an electromagnetically acting, remote-controlled switch that can be operated by electrically conductive current.
  • the switching device can be activated via a control circuit and can switch a load circuit.
  • the switching device can be designed as a relay or as a contactor, in particular as a power contactor.
  • the switching device can be designed as a gas-filled power contactor.
  • a possible application of such switching devices, in particular power contactors, is the opening and disconnection of battery circuits, for example in motor vehicles such as electrically or partially electrically operated motor vehicles.
  • motor vehicles such as electrically or partially electrically operated motor vehicles.
  • These can be, for example, purely battery-operated vehicles (BEV: “Battery Electric Vehicle”), hybrid electric vehicles (PHEV: “Plug-in Hybrid Electric Vehicle”) that can be charged via a socket or charging station and hybrid electric vehicles (HEV: "Hybrid Electric Vehicle”) be.
  • BEV Battery Electric Vehicle
  • PHEV plug-in Hybrid Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • both the plus and the minus contact of the battery are separated with the help of a power contactor. This separation takes place in regular operation, for example when the vehicle is at rest and also in the event of a fault such as an accident or the like.
  • the main task of the power contactor is to disconnect the vehicle from the power supply and to interrupt the current flow.
  • a particularly serious error that can occur in such a switch is a so-called “contactor stick” (engl. “stuck”).
  • switching elements "stick” together by welding during switching off or on, so that even if the supply voltage of the switch has been switched off, reliable separation of the load circuit cannot be guaranteed.
  • power contactors are used in circuits with life-threatening voltages, it makes sense to detect the switching position for safety reasons, so that in the event of a contactor adhesive, appropriate measures can be taken to react to this malfunction.
  • One way of detecting the switch position is to use parallel contacts, i.e. auxiliary contacts, to the main contact.
  • the document WO2017129823 discloses a switching device having at least one stationary contact, one movable contact and a magnetic armature and a first permanent magnet and a magnetic switch, the movable contact being movable by means of the magnetic armature, and the first permanent magnet being fixed to the magnetic armature.
  • At least one object of specific embodiments is to specify a switching device, particularly preferably a switching device, in which the disadvantages described can be prevented or at least reduced.
  • a switching device has at least one stationary contact and at least one movable contact.
  • the at least one fixed contact and the at least one movable contact are provided and set up to switch on and off a load circuit that can be connected to the switching device.
  • the movable contact can be moved in the switching device between a non-conducting state, hereinafter also referred to as the inactive or switched-off state, and a conducting state of the switching device, hereinafter also referred to as the active or switched-on state, such that the movable Contact in the non-switching state of the switching device from at least one fixed contact at a distance and is therefore galvanically isolated and in the switching state has a mechanical contact to the at least one fixed contact and is therefore galvanically connected to the at least one fixed contact.
  • the switching device has at least one fixed contact
  • the switching device has at least two fixed contacts, which are arranged separately from one another in the switching device and are electrically conductive in the manner described, depending on the state of the movable contact, by the movable contact connected to each other or electrically separated from each other.
  • Parts of the description that relate to at least one fixed contact also apply equally to several and in particular all of the fixed contacts present in the switching device.
  • the at least one fixed contact and/or the movable contact can, for example, be made with or made of Cu, a Cu alloy, one or more high-melting metals such as W, Ni and/or Cr, or a mixture of the materials mentioned, for example copper with at least another metal, for example W, Ni and/or Cr.
  • the switching device has a housing in which the movable contact and the at least one fixed contact are arranged.
  • the movable contact can be arranged completely in the housing.
  • the fact that a fixed contact is arranged in the housing can mean in particular that the contact area of the fixed contact, which is in mechanical contact with the movable contact in the switched-through state, is arranged inside the housing.
  • a fixed contact arranged in the housing can be electrically contacted from the outside, ie from outside the housing.
  • a part of a stationary contact arranged in the housing can project out of the housing and have a connection option for a supply line outside the housing.
  • the switching device has a switching chamber in which the movable contact and the at least one fixed contact are arranged.
  • the switching chamber can be arranged in particular in the housing.
  • the movable contact can particularly preferably be arranged entirely in the switching chamber.
  • the fact that a fixed contact is arranged in the switching chamber can mean in particular that at least one contact area of the fixed contact, which is in mechanical contact with the movable contact in the switched-through state, is arranged inside the switching chamber.
  • a stationary contact arranged in the switching chamber can be electrically contacted from the outside, ie from outside the switching chamber.
  • a part of a stationary contact arranged in the switching chamber can project out of the switching chamber and have a connection option for a supply line outside the switching chamber.
  • the movable contact can be moved by means of a magnet armature.
  • the magnet armature can have an axis which is connected at one end to the movable contact in such a way that the movable contact can be moved by means of the axis, ie is also moved by the axis when the axis moves.
  • the axis can project into the switching chamber through an opening in the switching chamber.
  • the switching chamber can have a switching chamber floor which has an opening through which the axle protrudes.
  • the magnet armature can be moved by a magnetic circuit in order to bring about the switching operations described above.
  • the magnetic circuit can have a yoke which has an opening through which the axis of the magnet armature protrudes.
  • the armature can a have a magnetic core which can be fixed to an end of the axle opposite the moving contact and which is part of the magnetic circuit.
  • a coil that can be connected to a control circuit can generate a magnetic field in the magnetic circuit, which moves the armature.
  • the axle can preferably include or be made of stainless steel.
  • the yoke and/or the magnetic core can preferably have or be made of pure iron or a low-doped iron alloy.
  • the switching chamber ie in particular the switching chamber wall and/or the switching chamber floor, can at least partially preferably have or be made of a metal oxide ceramic such as Al 2 O 3 or a plastic. Particularly suitable plastics are those with sufficient thermal stability.
  • the switching chamber can have polyetheretherketone (PEEK), a polyethylene (PE) and/or glass-filled polybutylene terephthalate (PBT) as the plastic.
  • PEEK polyetheretherketone
  • PE polyethylene
  • PBT glass-filled polybutylene terephthalate
  • the switching chamber can at least partially also have a polyoxymethylene (POM), in particular with the structure (CH 2 O) n .
  • the contacts are arranged in a gas atmosphere.
  • this can mean that the movable contact is arranged entirely in the gas atmosphere and that at least part of the at least one fixed contact, for example the contact area of the at least one fixed contact, is also arranged in the gas atmosphere.
  • the switching device can have a gas-tight area in which the gas atmosphere is kept hermetically sealed with respect to the environment and in which the described components can be arranged.
  • the gas-tight area can Parts of the housing and / or are formed by additional walls and / or by components within the housing.
  • the gas-tight area can be formed by parts of the switching chamber wall and the yoke in combination with additional wall parts, for example with or made of aluminum or stainless steel.
  • the switching chamber can be arranged in the gas-tight area of the switching device.
  • the magnet armature can also be arranged completely within the gas-tight area.
  • the switching device can particularly preferably be a gas-filled switching device such as a gas-filled contactor.
  • the gas atmosphere can promote the extinguishing of arcs that can occur between the contacts during the switching processes.
  • the gas in the gas atmosphere can preferably have a proportion of at least 50% H 2 .
  • the gas can include an inert gas, particularly preferably N 2 and/or one or more noble gases.
  • the gas ie at least part of the gas atmosphere, can be located in the switching chamber.
  • the switching device has a magnetic switch, ie a switch that can be switched on and off by the action of magnetic fields.
  • the magnetic switch can have a closed state and an open state, between which it is possible to switch back and forth by the action of magnetic fields.
  • the magnetic switch can preferably be a reed switch.
  • the reed switch can have contact tongues, for example in a glass tube with protective gas filling or vacuum, which are mechanically separated from one another, which corresponds to the open state, depending on the acting magnetic field touch, which corresponds to the closed state.
  • the magnetic switch can particularly preferably be an on switch, ie a reed switch which is in an open state when there are no magnetic fields.
  • Such a switch can also be referred to as a NO switch (NO: "normally open").
  • the switching device has a first permanent magnet.
  • the first permanent magnet can in particular be attached to the magnet armature.
  • the first permanent magnet can thus be arranged within the gas-tight area together with the contacts of the switching device and the magnet armature.
  • the first permanent magnet can be arranged on an end of the magnet armature facing away from the movable contact.
  • the first permanent magnet can be attached to the magnetic core and/or to the axis of the magnet armature.
  • the first permanent magnet can be a bar magnet or a disc magnet or a ring magnet.
  • the first permanent magnet can particularly preferably be a ring magnet, which is arranged symmetrically to the axis of the magnet armature.
  • the first permanent magnet By attaching the first permanent magnet to the magnet armature, the first permanent magnet can also be moved by the switching movement of the magnet armature when the switching device is switched.
  • the magnetic switch and the first permanent magnet can in particular be arranged relative to one another such that the magnetic field generated by the first permanent magnet at the location of the magnetic switch is weaker when the switching device is switched on than when the switching device is switched off.
  • the magnetic switch can, for example, be below the first Permanent magnets, ie at the end of the magnet armature to which the first permanent magnet is attached, can be arranged.
  • the magnetic switch can be arranged along an imaginary extension of the axis of the magnet armature in the middle or slightly offset thereto below the magnet armature and the first permanent magnet.
  • the first permanent magnet can be at a greater distance from the magnetic switch than when the switching device is switched off.
  • the switching device has a second permanent magnet which is arranged in a fixed position relative to the magnetic switch.
  • this can mean that the second permanent magnet always remains in the same position relative to the magnetic switch, regardless of the switching state of the switching device.
  • the second permanent magnet can be attached to a part of the housing together with the magnetic switch.
  • the second permanent magnet and the magnetic switch can be arranged outside the gas-tight area. This enables simple contacting of the magnetic switch.
  • the second permanent magnet can be designed and arranged relative to the magnetic switch such that the magnetic field generated by the second permanent magnet is at the location of the magnetic switch such that the magnetic switch is in a closed state in the absence of other magnetic fields.
  • the second permanent magnet can thus generate a magnetic field that maintains the magnetic switch in a closed state in the absence of other magnetic fields.
  • the combination of the magnetic switch and the second permanent magnet can thus form a so-called NC switch (NC: "normally closed”).
  • NC "normally closed”
  • the second permanent magnet can be designed and arranged relative to the magnetic switch in such a way that the magnetic switch is held in a closed state by the second permanent magnet when the switching device is switched on. The second permanent magnet is thus arranged in such a position that the magnetic switch is closed when the switching device is in an switched-on state.
  • the magnet switch and the second permanent magnet can be designed and arranged in such a way that the magnet switch, even when the coil of the switching device, by means of which the magnet armature and thus the movable contact are moved, is in operation, independently of stray fields caused by the coil at the location of the magnet switch in the remains closed.
  • the second permanent magnet can be a bar magnet or a disc magnet or a ring magnet.
  • the first permanent magnet can be designed in such a way that it generates a magnetic field that weakens the magnetic field of the second permanent magnet given sufficient proximity to the magnetic switch and in particular when the switching device is in a switched-off state.
  • the magnetic field of the first permanent magnet can weaken the magnetic field of the second permanent magnet in such a way that the magnetic switch is in the open state.
  • the magnetic field of the second permanent magnet can be influenced and weakened in this way when the first permanent magnet approaches the second permanent magnet and the magnetic switch, which is caused by the opening movement of the magnet armature that the magnetic switch no longer remains in the closed state, but changes to the open state. Accordingly, the magnetic switch can be in an open state when the switching device is in the off state.
  • the first permanent magnet, the second permanent magnet and the magnetic switch which is preferably designed as a switch, can be achieved in the manner described above that the switching state of the switching device matches the switching state of the magnetic switch. So if the load circuit is closed by the contacts of the switching device, the magnetic switch is also closed and vice versa.
  • This can be achieved in particular by a suitable arrangement of the permanent magnets and by a suitable size and orientation of the magnetic fields generated by the permanent magnets, which can be dimensioned in particular in such a way that magnetic interference fields, for example caused by the coil of the magnetic circuit for switching the switching device and by External magnetic fields have no influence on the switching activity of the magnetic switch.
  • the magnetic switch is placed in the closed state permanently, that is to say at least in the absence of further magnetic fields, by the second permanent magnet attached outside the hermetically sealed area. Only when the contacts of the switching device are opened and the first permanent magnet arranged in the gas-tight area approaches the magnetic switch by a movement of the magnet armature is the magnetic switch switched over and is then in an open state corresponding to the inactive state of the contacts of the switching device. So it is possible to check the state of the contacts of the switching device, ie open or closed, recognizable by the state of the magnetic switch. A contactor adhesive can also be clearly identified in this way by the still closed state of the magnetic switch, since when the coil is switched off, ie the control circuit is switched off, the magnetic switch would always have to be in an open state.
  • the switching device described here can thus make do with a simple reed switch designed as a switch as the magnetic switch. Without the second permanent magnet, the magnetic switch, if it is designed as an on switch, would be put into the closed state by the first permanent magnet when the switching device is in the off state, and vice versa. The magnetic switch would thus behave in the opposite way to the state of the switching device, which can be undesirable from the user's point of view, since the magnetic switch should open and close in the same way as the switching device.
  • a reed switch designed as a changeover switch could then be used, which is designed as a double contact switch with an NO contact and an NC contact.
  • Such switches are more expensive and also significantly more susceptible to faults than simple switch-on switches. The latter is also easier to position because simple reed switches are smaller and more robust than reed toggle switches.
  • a switching device 100 is shown, which can be used, for example, for switching high electrical currents and/or high electrical voltages and which can be a relay or contactor, in particular a power contactor.
  • a three-dimensional sectional view is shown, while in Figure 1B a two-dimensional sectional view is shown.
  • the following description applies equally to the Figures 1A and 1B .
  • the geometries shown are only to be understood as examples and not as restrictive and can also be configured alternatively.
  • the switching device 100 has two fixed contacts 2 , 3 and one movable contact 4 in a housing 1 .
  • the movable contact 4 is designed as a contact plate.
  • the fixed contacts 2, 3 together with the movable contact 4 form the switching contacts.
  • the housing 1 serves primarily as protection against accidental contact for the components arranged inside and has or is made of a plastic, for example PBT or glass fiber-filled PBT.
  • the contacts 2, 3, 4 can be, for example, with or made of Cu, a Cu alloy or a mixture of copper with at least one other metal, for example W, Ni and/or Cr.
  • the switching device 100 is shown in a rest state in which the movable contact 4 is spaced from the fixed contacts 2, 3, so that the contacts 2, 3, 4 are galvanically isolated from one another.
  • the design of the switching contacts shown and in particular their geometry are purely exemplary and not to be understood as limiting. Alternatively, the switching contacts can also be designed differently. For example, it can be possible that only one of the switching contacts is designed to be stationary.
  • the switching device 100 has a movable magnet armature 5, which essentially completes the switching movement.
  • the magnet armature 5 has a magnetic core 6, for example with or made of a ferromagnetic material. Furthermore, the magnet armature 5 has an axis 7 which is guided through the magnetic core 6 and is firmly connected to the magnetic core 6 at one end of the axis. At the other end of the axis, opposite the magnetic core 6 , the magnet armature 5 has the movable contact 4 , which is also connected to the axis 7 .
  • the axis 7 can preferably be made with or made of stainless steel.
  • the magnetic core 6 is surrounded by a coil 8 .
  • a current flow in the coil 8 that can be switched on from the outside by a control circuit generates a movement of the magnetic core 6 and thus of the entire magnet armature 5 in the axial direction until the movable contact 4 makes contact with the stationary contacts 2, 3.
  • the armature moves upwards.
  • the magnet armature 5 thus moves from a first position, which corresponds to the idle state shown and at the same time to the isolating, ie non-switching and thus switched-off state, into a second position, which corresponds to the active, ie conducting and therefore switched-on state.
  • contacts 2, 3, 4 are electrically connected to one another.
  • magnet armature 5 is moved back into the first position by one or more springs 10 . In the illustration shown, the magnet armature 5 thus moves downwards again. The switching device 100 is then again in the idle state, in which the contacts 2, 3, 4 are open.
  • contacts 2, 3, 4 When contacts 2, 3, 4 open, an arc can occur that can damage the contact surfaces. As a result, there may be a risk that the contacts 2, 3, 4 will remain “sticky” to one another due to welding caused by the arc and will no longer be separated from one another. The switching device is then therefore still in the switched-on state, although the current in the coil has been switched off and the load circuit would therefore have to be disconnected. In order to prevent the formation of such arcs or to at least support the deletion of arcs that occur, the contacts 2, 3, 4 are arranged in a gas atmosphere, so that the switching device 100 as a gas-filled relay or gas-filled contactor is formed.
  • the contacts 2, 3, 4 are arranged within a switching chamber 11, formed by a switching chamber wall 12 and a switching chamber floor 13, in a gas-tight area 16 formed by a hermetically sealed part.
  • the gas-tight area 16 completely surrounds the magnet armature 5 and the contacts 2, 3, 4, except for parts of the stationary contacts 2, 3 that are intended for external connection.
  • the gas-tight area 16 and thus also the switching chamber 11 are filled with a gas 14 .
  • the gas-tight area 16 is essentially formed by parts of the switching chamber 11, the yoke 9 and additional walls.
  • the gas 14, which can be filled into the gas-tight area 16 through a gas filler neck 15 during the production of the switching device 100, can particularly preferably contain hydrogen, for example with 50% or more H 2 in an inert gas or even with 100% H 2 , since hydrogen-containing gas can promote arc quenching.
  • so-called blowout magnets can be present inside or outside of the switching chamber 11, that is to say permanent magnets which cause the arc gap to be lengthened and can thus improve the quenching of the arcs.
  • the switching chamber wall 12 and the switching chamber floor 13 can be made, for example, with or from a metal oxide such as Al 2 O 3 .
  • plastics with a sufficiently high temperature resistance are also suitable, for example a PEEK, a PE and/or a glass-filled PBT.
  • the switching chamber 11 can at least partially also have a POM, in particular with the structure (CH 2 O) n .
  • the Switching device 100 In order to obtain information about the actual position of the movable contact 4 and thus, for example, with regard to a possible contactor adhesive, the Switching device 100 other components that are in the Figures 1A and 1B for the sake of clarity are not shown and in connection with the Figures 2A to 2C are described.
  • the switching device 100 also has in particular a first permanent magnet 17 , a second permanent magnet 18 and a magnetic switch 19 .
  • Figure 2A are essentially only those components and parts of the switching device 100 of FIG Figures 1A and 1B shown, which form the gas-tight area 16 of the switching device 100.
  • FIGS 2B and 2C simplified excerpts thereof are shown.
  • Figures 2A to 2C shown components and parts as well as in the Figures 2A to 2C compared to the Figures 1A and 1B not shown components and parts of the switching device 100 the components and parts in connection with Figures 1A and 1B are described.
  • the first permanent magnet 17 is arranged together with the contacts 2, 3, 4 and the magnet armature 5 within the gas-tight area 16 and is attached to the end of the magnet armature 5 facing away from the movable contact 4 in particular. As a result, the first permanent magnet 17 can be moved by the magnet armature 5 together with the movable contact 4 .
  • the first permanent magnet 17 can be designed as a ring magnet and attached to the magnetic core 6 of the magnet armature 5 .
  • the first permanent magnet 17 can also be in the form of a bar magnet or disc magnet and, alternatively or additionally, can also be fastened to the axle 7 .
  • the illustrated arrangement of the first permanent magnet 17 symmetrically in The first permanent magnet 17 can also be arranged and fastened in a different position with respect to the axis 7, in particular if this can improve the functionality described below together with the second permanent magnet 18 and the magnetic switch 19.
  • the second permanent magnet 18 is together with the magnetic switch 19 outside of the gas-tight area 16 within the in the Figures 2A to 2C Not shown housing of the switching device 100 arranged.
  • the second permanent magnet 18 and the magnetic switch 19 are each installed in a fixed position in the housing, so that the second permanent magnet 18 is arranged in a fixed position relative to the magnetic switch 19 .
  • the second permanent magnet 18 can, for example, be a bar magnet or, alternatively, a ring or disk magnet.
  • the second permanent magnet 18 and the magnetic switch 19 can be arranged along the direction of movement of the magnet armature 5 below the first permanent magnet 17 . In this case, as shown, an arrangement symmetrical to the axis 7 may be possible.
  • the positions of the second permanent magnet 18 and/or the magnetic switch 19 can also deviate from the positions shown, in particular if this can improve the functionality of the components mentioned.
  • the magnetic switch 5 is designed as a simple reed switch. As in the Figures 2B and 2C is shown, the magnetic switch can have contact tongues 191, for example in a sealed glass tube 192 with protective gas filling or vacuum, depending on the acting magnetic field are mechanically separated from each other, which corresponds to the open state of the magnetic switch 19, or touch, which corresponds to the closed state of the magnetic switch 19.
  • the magnetic switch 5 is designed in particular in the form of an on switch and is therefore in an open switching state in the absence of magnetic fields.
  • the second permanent magnet 18 is designed and arranged relative to the magnetic switch 19 in such a way that the magnetic field generated by the second permanent magnet 18 at the location of the magnetic switch 19 is so large that the magnetic switch 19 is in a closed state at least in the absence of other magnetic fields located.
  • the second permanent magnet 18 thus generates a sufficiently large magnetic field that the magnetic switch 19 is always kept in a closed state in the absence of other magnetic fields.
  • the first permanent magnet 17 is arranged and designed in such a way that it can at least partially compensate for the magnetic field of the second permanent magnet 18 given a sufficiently small distance from the magnetic switch 19 and from the second permanent magnet 18 .
  • the magnetic switch 19 and the first permanent magnet 17 are arranged relative to one another in accordance with the previous description such that the magnetic field generated by the first permanent magnet at the location of the magnetic switch is weaker when the switching device 100 is switched on than when the switching device 100 is switched off.
  • the switched off state of the switching device 100 is the first permanent magnet 17, as in Figure 2C shown, so close to the magnetic switch 19 and the second permanent magnet 18 that the magnetic field of the second permanent magnet 18 is compensated to such an extent that the resulting magnetic field is no longer large enough to keep the magnetic switch 19 in the closed state and the magnetic switch 19 is in an open state. Accordingly, the magnetic switch 19 is in an open state when the switching device 100 is in the off state.
  • the state of the switching device 100 can thus be recognized directly. In particular, it can be easily recognized when the switching device 100 is still in the active state due to a contactor adhesive, although the current for the coil moving the magnet armature 5 has already been switched off and the switching device 100 would accordingly have to be in the non-active state.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Contacts (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

  • Es wird eine Schaltvorrichtung angegeben.
  • Die Schaltvorrichtung ist insbesondere als ein durch elektrisch leitenden Strom betreibbarer, elektromagnetisch wirkender, fernbetätigter Schalter ausgebildet. Die Schaltvorrichtung kann über einen Steuerstromkreis aktiviert werden und kann einen Laststromkreis schalten. Insbesondere kann die Schaltvorrichtung als Relais oder als Schütz, insbesondere als Leistungsschütz, ausgebildet sein. Besonders bevorzugt kann die Schaltvorrichtung als gasgefüllter Leistungsschütz ausgebildet sein.
  • Eine mögliche Anwendung von derartigen Schaltvorrichtungen, insbesondere von Leistungsschützen, ist das Öffnen und Trennen von Batteriestromkreisen, beispielsweise in Kraftfahrzeugen wie etwa elektrisch oder teilelektrisch betriebenen Kraftfahrzeugen. Diese können beispielsweise rein batteriebetriebene Fahrzeuge (BEV: "Battery Electric Vehicle"), über eine Steckdose oder Ladestation aufladbare Hybrid-Elektrofahrzeuge (PHEV: "Plug-in Hybrid Electric Vehicle") und Hybrid-Elektrofahrzeuge (HEV: "Hybrid Electric Vehicle") sein. Dabei werden in der Regel sowohl der Plusals auch der Minuskontakt der Batterie mit Hilfe eines Leistungsschützes getrennt. Diese Auftrennung erfolgt im Regelbetrieb beispielsweise im Ruhezustand des Fahrzeuges sowie auch im Falle einer Störung wie etwa einem Unfall oder ähnlichem. Dabei ist es die Hauptaufgabe des Leistungsschützes, das Fahrzeug spannungsfrei zu schalten und den Stromfluss zu unterbrechen.
  • Ein besonders schwerwiegender Fehlerfall, der bei einem solchen Schalter auftreten kann, ist ein sogenannter "Schützkleber" (engl. "stuck"). In diesem Fall "kleben" schaltende Elemente durch Verschweißung während einer Ab- oder Zuschaltung zusammen, so dass, auch wenn die Versorgungsspannung des Schalters abgeschaltet wurde, keine sichere Trennung des Laststromkreises gewährleistet werden kann. Bei einem Einsatz von Leistungsschützen in Schaltungen mit lebensgefährlichen Spannungen ist daher aus Sicherheitsgründen eine Erkennung der Schaltposition sinnvoll, so dass im Fall eines Schützklebers auf dieses Fehlverhalten mit geeigneten Maßnahmen reagiert werden kann. Eine Möglichkeit der Erkennung der Schaltposition ist die Verwendung von Parallelkontakten, also Hilfskontakten, zum Hauptkontakt. Befinden sich die Hauptkontakte des Schützes jedoch in einem hermetisch abgeschlossenen gasgefüllten Raum, ist die Realisierung solcher Maßnahmen sehr aufwändig, da im Falle von Hilfskontakten auch deren Leitungen leckdicht nach außen geführt werden müssen. Eine andere Möglichkeit bei nicht hermetisch abgeschlossenen gasgefüllten Gehäusen ist die Verwendung eines separaten Schalterelements, insbesondere eines Mikroschalters, das über eine mechanische Kopplung zum Hauptschaltkontakt durch dessen Schaltbewegung mitbetätigt wird. Jedoch unterliegt ein solcher Mikroschalter wie jeder mechanische Schalter den üblichen Verschleißerscheinungen.
  • Das Dokument WO2017129823 offenbart eine Schaltvorrichtung, aufweisend zumindest einen feststehenden Kontakt, einen beweglichen Kontakt und einen Magnettanker und einen ersten Permanentmagnet und einen Magnetschalter wobei der bewegliche Kontakt mittels des Magnettankers bewegbar ist, und der erste Permanentmagnet am Magnettanker befestigt ist.
  • Zumindest eine Aufgabe von bestimmten Ausführungsformen ist es, eine Schaltvorrichtung anzugeben, besonders bevorzugt eine Schaltvorrichtung, bei der beschriebene Nachteile verhindert oder zumindest verringert werden können.
  • Diese Aufgabe wird durch einen Gegenstand gemäß dem unabhängigen Patentanspruch gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen des Gegenstands sind in den abhängigen Ansprüchen gekennzeichnet und gehen weiterhin aus der nachfolgenden Beschreibung und den Zeichnungen hervor.
  • Gemäß einer Ausführungsform weist eine Schaltvorrichtung zumindest einen feststehenden Kontakt und zumindest einen beweglichen Kontakt auf. Der zumindest eine feststehende Kontakt und der zumindest eine bewegliche Kontakt sind dazu vorgesehen und eingerichtet, einen an die Schaltvorrichtung anschließbaren Laststromkreis ein- und auszuschalten. Der bewegliche Kontakt ist in der Schaltvorrichtung entsprechend zwischen einem nicht-durchschaltenden Zustand, im Folgenden auch als nicht-aktiver oder ausgeschalteter Zustand bezeichnet, und einem durchschaltenden Zustand der Schaltvorrichtung, im Folgenden auch als aktiver oder eingeschalteter Zustand bezeichnet, derart bewegbar, dass der bewegliche Kontakt im nicht-durchschaltenden Zustand der Schaltvorrichtung vom zumindest einen feststehenden Kontakt beabstandet und damit galvanisch getrennt ist und im durchschaltenden Zustand einen mechanischen Kontakt zum zumindest einen feststehenden Kontakt aufweist und damit galvanisch mit dem zumindest einen feststehenden Kontakt verbunden ist. Dass die Schaltvorrichtung zumindest einen feststehenden Kontakt aufweist, kann besonders bevorzugt auch bedeuten, dass die Schaltvorrichtung zumindest zwei feststehende Kontakte aufweist, die voneinander getrennt in der Schaltvorrichtung angeordnet sind und die in der beschriebenen Weise je nach Zustand des beweglichen Kontakts durch den beweglichen Kontakt elektrisch leitend miteinander verbunden oder elektrisch voneinander getrennt sein können.
  • Beschreibungsteile, die sich auf zumindest einen feststehenden Kontakt beziehen, gelten gleichermaßen auch für mehrere und insbesondere alle in der Schaltvorrichtung vorhandenen feststehenden Kontakte.
  • Der zumindest eine feststehende Kontakt und/oder der bewegliche Kontakt können beispielsweise mit oder aus Cu, einer Cu-Legierung, einem oder mehreren hochschmelzenden Metallen wie beispielsweise W, Ni und/oder Cr, oder einer Mischung von genannten Materialien, beispielsweise von Kupfer mit zumindest einem weiteren Metall, beispielsweise W, Ni und/oder Cr, sein.
  • Gemäß einer weiteren Ausführungsform weist die Schaltvorrichtung ein Gehäuse auf, in dem der bewegliche Kontakt und der zumindest eine feststehende Kontakt angeordnet sind. Der bewegliche Kontakt kann insbesondere vollständig im Gehäuse angeordnet sein. Dass ein feststehender Kontakt im Gehäuse angeordnet ist, kann insbesondere bedeuten, dass der Kontaktbereich des feststehenden Kontakts, der im durchschaltenden Zustand in mechanischem Kontakt zum beweglichen Kontakt steht, innerhalb des Gehäuses angeordnet ist. Zum Anschluss einer Zuleitung eines durch die Schaltvorrichtung zu schaltenden Stromkreises kann ein im Gehäuse angeordneter feststehender Kontakt von außen, also von außerhalb des Gehäuses, elektrisch kontaktierbar sein. Hierzu kann ein im Gehäuse angeordneter feststehender Kontakt mit einem Teil aus dem Gehäuse herausragen und außerhalb des Gehäuses eine Anschlussmöglichkeit für eine Zuleitung aufweisen.
  • Gemäß einer weiteren Ausführungsform weist die Schaltvorrichtung eine Schaltkammer auf, in dem der bewegliche Kontakt und der zumindest eine feststehende Kontakt angeordnet sind. Die Schaltkammer kann insbesondere im Gehäuse angeordnet sein. Der bewegliche Kontakt kann besonders bevorzugt vollständig in der Schaltkammer angeordnet sein. Dass ein feststehender Kontakt in der Schaltkammer angeordnet ist, kann insbesondere bedeuten, dass zumindest ein Kontaktbereich des feststehenden Kontakts, der im durchschaltenden Zustand in mechanischem Kontakt zum beweglichen Kontakt steht, innerhalb der Schaltkammer angeordnet ist. Zum Anschluss einer Zuleitung eines durch die Schaltvorrichtung zu schaltenden Stromkreises kann ein in der Schaltkammer angeordneter feststehender Kontakt von außen, also von außerhalb der Schaltkammer, elektrisch kontaktierbar sein. Hierzu kann ein in der Schaltkammer angeordneter feststehender Kontakt mit einem Teil aus der Schaltkammer herausragen und außerhalb der Schaltkammer eine Anschlussmöglichkeit für eine Zuleitung aufweisen.
  • Gemäß der Erfindung ist der bewegliche Kontakt mittels eines Magnetankers bewegbar. Der Magnetanker kann hierzu eine Achse aufweisen, die an einem Ende mit dem beweglichen Kontakt derart verbunden ist, dass der bewegliche Kontakt mittels der Achse bewegbar ist, also bei einer Bewegung der Achse durch diese ebenfalls bewegt wird. Die Achse kann insbesondere durch eine Öffnung in der Schaltkammer in die Schaltkammer hineinragen. Insbesondere kann die Schaltkammer einen Schaltkammerboden aufweisen, der eine Öffnung aufweist, durch die die Achse hindurchragt. Der Magnetanker kann durch einen magnetischen Kreis bewegbar sein, um die vorab beschriebenen Schaltvorgänge zu bewirken. Hierzu kann der magnetische Kreis ein Joch aufweisen, das eine Öffnung aufweist, durch die die Achse des Magnetankers hindurch ragt. Weiterhin kann der Magnetanker einen magnetischen Kern aufweisen, der an einem dem beweglichen Kontakt gegenüber liegenden Ende der Achse befestigt sein kann und der Teil des magnetischen Kreises ist. Durch eine Spule, die mit einem Steuerstromkreis verbunden werden kann, kann ein magnetisches Feld im magnetischen Kreis erzeugt werden, durch das der Magnetanker bewegt wird.
  • Die Achse kann bevorzugt Edelstahl aufweisen oder daraus sein. Das Joch und/oder der magnetische Kern kann bevorzugt Reineisen oder eine niedrig dotierte Eisenlegierung aufweisen oder daraus sein. Die Schaltkammer, also insbesondere die Schaltkammerwand und/oder der Schaltkammerboden, kann zumindest teilweise bevorzugt eine Metalloxidkeramik wie beispielsweise Al2O3 oder einen Kunststoff aufweisen oder daraus sein. Als Kunststoffe eignen sich insbesondere solche mit einer ausreichenden Temperaturfestigkeit. Beispielsweise kann die Schaltkammer als Kunststoff Polyetheretherketon (PEEK), ein Polyethylen (PE) und/oder glasgefülltes Polybutylenterephthalat (PBT) aufweisen. Weiterhin kann die Schaltkammer zumindest teilweise auch ein Polyoxymethylen (POM), insbesondere mit der Struktur (CH2O)n, aufweisen.
  • Gemäß einer weiteren Ausführungsform sind die Kontakte in einer Gasatmosphäre angeordnet. Das kann insbesondere bedeuten, dass der bewegliche Kontakt vollständig in der Gasatmosphäre angeordnet ist und dass weiterhin zumindest ein Teil des zumindest einen feststehenden Kontakts, etwa der Kontaktbereich des zumindest einen feststehenden Kontakts, in der Gasatmosphäre angeordnet ist. Die Schaltvorrichtung kann hierzu einen gasdichten Bereich aufweisen, in dem die Gasatmosphäre hermetisch dicht gegenüber der Umgebung gehalten wird und in dem die beschriebenen Komponenten angeordnet sein können. Der gasdichte Bereich kann durch Teile des Gehäuses und/oder durch zusätzliche Wandungen und/oder durch Komponenten innerhalb des Gehäuses gebildet werden. Beispielsweise kann der gasdichte Bereich durch Teile der Schaltkammerwand und des Jochs in Kombination mit zusätzlichen Wandungsteilen, beispielsweise mit oder aus Aluminium oder Edelstahl, gebildet werden. Insbesondere die Schaltkammer kann im gasdichten Bereich der Schaltvorrichtung angeordnet sein. Weiterhin kann auch der Magnetanker vollständig innerhalb des gasdichten Bereichs angeordnet sein. Die Schaltvorrichtung kann entsprechend besonders bevorzugt eine gasgefüllte Schaltvorrichtung wie etwa ein gasgefülltes Schütz sein. Die Gasatmosphäre kann insbesondere eine Löschung von Lichtbögen, die während der Schaltvorgänge zwischen den Kontakten entstehen können, fördern. Das Gas der Gasatmosphäre kann bevorzugt einen Anteil von zumindest 50% H2 aufweisen. Zusätzlich zum Wasserstoff kann das Gas ein inertes Gas aufweisen, besonders bevorzugt N2 und/oder eines oder mehrere Edelgase. Weiterhin kann sich insbesondere das Gas, also zumindest ein Teil der Gasatmosphäre, in der Schaltkammer befinden.
  • Gemäß der Erfindung weist die Schaltvorrichtung einen Magnetschalter auf, also einen Schalter, der durch Einwirkung von Magnetfeldern ein- und ausgeschaltet werden kann. Der Magnetschalter kann insbesondere einen geschlossenen Zustand und einen offenen Zustand aufweisen, zwischen denen durch Einwirkung von Magnetfeldern hin- und hergeschaltet werden kann. Bevorzugt kann der Magnetschalter ein Reedschalter sein. Der Reedschalter kann Kontaktzungen beispielsweise in einem Glasröhrchen mit Schutzgasfüllung oder Vakuum aufweisen, die je nach einwirkendem Magnetfeld mechanisch voneinander getrennt sind, was dem offenen Zustand entspricht, oder sich berühren, was dem geschlossenen Zustand entspricht. Besonders bevorzugt kann der Magnetschalter ein Einschalter sein, also ein Reedschalter, der sich bei Abwesenheit von Magnetfeldern einen offenen Zustand befindet. Ein solcher Schalter kann auch als NO-Schalter (NO: "normally open") bezeichnet werden.
  • Gemäß der Erfindung weist die Schaltvorrichtung einen ersten Permanentmagneten auf. Der erste Permanentmagnet kann insbesondere am Magnetanker befestigt sein. Zusammen mit den Kontakten der Schaltvorrichtung und dem Magnetanker kann der erste Permanentmagnet somit innerhalb des gasdichten Bereichs angeordnet sein. Insbesondere kann der erste Permanentmagnet an einem dem beweglichen Kontakt abgewandten Ende des Magnetankers angeordnet sein. Beispielsweise kann der erste Permanentmagnet am magnetischen Kern und/oder an der Achse des Magnetankers befestigt sein. Der erste Permanentmagnet kann ein Stabmagnet oder ein Scheibenmagnet oder ein Ringmagnet sein. Besonders bevorzugt kann der erste Permanentmagnet ein Ringmagnet sein, der symmetrisch zur Achse des Magnetankers angeordnet sind.
  • Durch die Befestigung des ersten Permanentmagneten am Magnetanker kann der erste Permanentmagnet durch die Schaltbewegung des Magnetankers beim Schalten der Schaltvorrichtung mit bewegbar sein. Der Magnetschalter und der erste Permanentmagnet können insbesondere so zueinander angeordnet sein, dass das vom ersten Permanentmagneten erzeugte Magnetfeld am Ort des Magnetschalters im eingeschalteten Zustand der Schaltvorrichtung schwächer ist als im ausgeschalteten Zustand der Schaltvorrichtung. Entlang der Bewegungsrichtung des Magnetankers kann der Magnetschalter beispielsweise unterhalb des ersten Permanentmagneten, also an dem Ende des Magnetankers, an dem der erste Permanentmagnet befestigt ist, angeordnet sein. Insbesondere kann der Magnetschalter entlang einer gedachten Verlängerung der Achse des Magnetankers mittig oder leicht versetzt dazu unterhalb des Magnetankers und des ersten Permanentmagneten angeordnet sein. Im eingeschalteten Zustand der Schaltvorrichtung kann der erste Permanentmagnet einen größeren Abstand zum Magnetschalter aufweisen als im ausgeschalteten Zustand der Schaltvorrichtung.
  • Gemäß der Erfindung weist die Schaltvorrichtung einen zweiten Permanentmagneten auf, der in einer fixen Position relativ zum Magnetschalter angeordnet ist. Das kann insbesondere bedeuten, dass der zweite Permanentmagnet unabhängig vom Schaltzustand der Schaltvorrichtung stets in einer gleichen Position relativ zum Magnetschalter angeordnet bleibt. Beispielsweise kann der zweite Permanentmagnet zusammen mit dem Magnetschalter an einem Teil des Gehäuses befestigt sein. Insbesondere können der zweite Permanentmagnet und der Magnetschalter außerhalb des gasdichten Bereichs angeordnet sein. Dadurch kann eine einfache Kontaktierung des Magnetschalters ermöglicht werden. Der zweite Permanentmagnet kann derart ausgebildet und relativ zum Magnetschalter angeordnet sein, dass das Magnetfeld, das durch den zweiten Permanentmagneten erzeugt wird, am Ort des Magnetschalters so ist, dass sich der Magnetschalter bei Abwesenheit weiterer Magnetfelder in einem geschlossenen Zustand befindet. Kurz gesagt kann der zweite Permanentmagnet somit ein Magnetfeld erzeugen, durch das der Magnetschalter bei Abwesenheit weiterer Magnetfelder in einem geschlossenen Zustand gehalten wird. Die Kombination aus dem Magnetschalter und dem zweiten Permanentmagneten kann somit einen sogenannten NC-Schalter (NC: "normally closed") bilden. Insbesondere kann der zweite Permanentmagnet so ausgebildet und relativ zum Magnetschalter angeordnet sein, dass der Magnetschalter durch den zweiten Permanentmagneten im eingeschalteten Zustand der Schaltvorrichtung in einem geschlossenen Zustand gehalten wird. Der zweite Permanentmagnet ist also in einer solchen Position angeordnet, dass der Magnetschalter dann geschlossen ist, wenn die Schaltvorrichtung in einem eingeschalteten Zustand ist. Insbesondere können der Magnetschalter und der zweite Permanentmagnet so ausgebildet und angeordnet sein, dass der Magnetschalter auch bei einem Betrieb der Spule der Schaltvorrichtung, mittels derer der Magnetanker und somit der bewegliche Kontakt bewegt werden, unabhängig von durch die Spule am Ort des Magnetschalters hervorgerufene Streufelder im geschlossenen Zustand verbleibt. Der zweite Permanentmagnet kann ein Stabmagnet oder ein Scheibenmagnet oder ein Ringmagnet sein.
  • Weiterhin kann der erste Permanentmagnet derart ausgebildet sein, dass er ein Magnetfeld erzeugt, das bei einer ausreichenden Nähe zum Magnetschalter und insbesondere in einem ausgeschalteten Zustand der Schaltvorrichtung das Magnetfeld des zweiten Permanentmagneten schwächt. Insbesondere kann das Magnetfeld des ersten Permanentmagneten in einem ausgeschalteten Zustand der Schaltvorrichtung das Magnetfeld des zweiten Permanentmagneten derart schwächen, dass sich der Magnetschalter im offenen Zustand befindet. Mit anderen Worten kann das Magnetfeld des zweiten Permanentmagneten bei einer Annäherung des ersten Permanentmagneten an den zweiten Permanentmagneten und den Magnetschalter, die durch die Ausschaltbewegung des Magnetankers bewirkt wird, derart beeinflusst und geschwächt werden, dass der Magnetschalter nicht mehr im geschlossenen Zustand verbleibt, sondern in den offenen Zustand wechselt. Entsprechend kann sich der Magnetschalter in einem offenen Zustand befinden, wenn sich die Schaltvorrichtung im ausgeschalteten Zustand befindet.
  • Durch den ersten Permanentmagnet, den zweiten Permanentmagnet und den Magnetschalter, der bevorzugt als Einschalter ausgebildet ist, kann in der vorab beschriebenen Weise erreicht werden, dass der Schaltzustand der Schaltvorrichtung mit dem Schaltzustand des Magnetschalters übereinstimmt. Ist also der Laststromkreis durch die Kontakte der Schaltvorrichtung geschlossen, ist auch der Magnetschalter geschlossen und umgekehrt. Dies kann insbesondere durch eine geeignete Anordnung der Permanentmagneten und durch eine geeignete Größe und Ausrichtung der von den Permanentmagneten erzeugten Magnetfelder erreicht werden, die insbesondere so dimensioniert sein können, dass magnetische Störfelder, beispielsweise hervorgerufen durch die Spule des magnetischen Kreises zum Schalten der Schaltvorrichtung sowie durch äußere Magnetfelder, keinen Einfluss auf die Schalttätigkeit des Magnetschalters haben. Wie beschrieben wird der Magnetschalter durch den zweiten, außerhalb des hermetisch abgeschlossenen Bereichs angebrachten Permanentmagneten dauerhaft, das heißt zumindest bei Abwesenheit weiterer Magnetfelder, in den geschlossenen Zustand versetzt. Erst bei einem Öffnen der Kontakte der Schaltvorrichtung und einer Annäherung des im gasdichten Bereichs angeordneten ersten Permanentmagneten an den Magnetschalters durch eine Bewegung des Magnetankers wird der Magnetschalter umgeschaltet und ist dann entsprechend dem nicht-aktiven Zustand der Kontakte der Schaltvorrichtung in einem offenen Zustand. Es ist also möglich, den Zustand der Kontakte der Schaltvorrichtung, also offen oder geschlossen, am Zustand des Magnetschalters zu erkennen. Ebenso kann ein Schützkleber auf diese Weise eindeutig am noch geschlossenen Zustand des Magnetschalters identifiziert werden, da bei ausgeschalteter Spule, also ausgeschaltetem Steuerstromkreis, der Magnetschalter stets einen offenen Zustand aufweisen müsste.
  • Die hier beschriebene Schaltvorrichtung kann somit mit einem einfachen, als Einschalter ausgebildeten Reedschalter als Magnetschalter auskommen. Ohne den zweiten Permanentmagneten würde der Magnetschalter, wenn er als Einschalter ausgebildet ist, durch den ersten Permanentmagneten in den geschlossenen Zustand versetzt werden, wenn sich die Schaltvorrichtung im ausgeschalteten Zustand befindet, und umgekehrt. Der Magnetschalter würde sich somit umgekehrt zum Zustand der Schaltvorrichtung verhalten, was aus Anwendersicht unerwünscht sein kann, da sich der Magnetschalter in gleicher Weise wie die Schaltvorrichtung öffnen und schließen soll. Alternativ zu einem Einschalter könnte dann zwar ein als Umschalter ausgebildeter Reedschalter verwendet werden, der als Doppelkontaktschalter mit einem NO-Kontakt und einem NC-Kontakt ausgebildet ist. Solche Schalter sind aber teurer und außerdem deutlich störanfälliger als einfache Einschalter. Letzterer ist weiterhin einfacher zu positionieren, da einfache Reedschalter kleiner und robuster als Reed-Umschalter sind.
  • Weitere Vorteile, vorteilhafte Ausführungsformen und Weiterbildungen ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • Es zeigen:
    • Figuren 1A und 1B schematische Darstellungen eines Beispiels für eine Schaltvorrichtung,
    • Figuren 2A bis 2C schematische Darstellungen eines Teils der Schaltvorrichtung gemäß einem Ausführungsbeispiel.
  • In den Ausführungsbeispielen und Figuren können gleiche, gleichartige oder gleich wirkende Elemente jeweils mit denselben Bezugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, wie zum Beispiel Schichten, Bauteile, Bauelemente und Bereiche, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.
  • In den Figuren 1A und 1B ist eine Schaltvorrichtung 100 gezeigt, die beispielsweise zum Schalten starker elektrischer Ströme und/oder hoher elektrischer Spannungen eingesetzt werden kann und die ein Relais oder Schütz, insbesondere ein Leistungsschütz, sein kann. In Figur 1A ist eine dreidimensionale Schnittdarstellung gezeigt, während in Figur 1B eine zweidimensionale Schnittdarstellung dargestellt ist. Die nachfolgende Beschreibung bezieht sich gleichermaßen auf die Figuren 1A und 1B. Die gezeigten Geometrien sind nur exemplarisch und nicht beschränkend zu verstehen und können auch alternativ ausgebildet sein.
  • Die Schaltvorrichtung 100 weist in einem Gehäuse 1 zwei feststehende Kontakte 2, 3 und einen beweglichen Kontakt 4 auf. Der bewegliche Kontakt 4 ist als Kontaktplatte ausgebildet. Die feststehenden Kontakte 2, 3 bilden zusammen mit dem beweglichen Kontakt 4 die Schaltkontakte. Alternativ zur gezeigten Kontaktanzahl können auch andere Anzahlen von feststehenden und/oder beweglichen Kontakten möglich sein. Das Gehäuse 1 dient vornehmlich als Berührschutz für die im Inneren angeordneten Komponenten und weist einen Kunststoff auf oder ist daraus, beispielsweise PBT oder Glasfasergefülltes PBT. Die Kontakte 2, 3, 4 können beispielsweise mit oder aus Cu, einer Cu-Legierung oder einer Mischung von Kupfer mit zumindest einem weiteren Metall, beispielsweise W, Ni und/oder Cr, sein.
  • In den Figuren 1A und 1B ist die Schaltvorrichtung 100 in einem Ruhezustand gezeigt, in dem der bewegliche Kontakt 4 von den feststehenden Kontakten 2, 3 beabstandet ist, so dass die Kontakte 2, 3, 4 galvanisch voneinander getrennt sind. Die gezeigte Ausführung der Schaltkontakte und insbesondere deren Geometrie sind rein beispielhaft und nicht beschränkend zu verstehen. Alternativ können die Schaltkontakte auch anders ausgebildet sein. Beispielsweise kann es möglich sein, dass nur einer der Schaltkontakte feststehend ausgebildet ist.
  • Die Schaltvorrichtung 100 weist einen beweglichen Magnetanker 5 auf, der im Wesentlichen die Schaltbewegung vollzieht. Der Magnetanker 5 weist einen magnetischen Kern 6 auf, beispielsweise mit oder aus einem ferromagnetischen Material. Weiterhin weist der Magnetanker 5 eine Achse 7 auf, die durch den magnetischen Kern 6 geführt ist und an einem Achsenende fest mit dem magnetischen Kern 6 verbunden ist. Am anderen, dem magnetischen Kern 6 gegenüber liegenden Achsenende weist der Magnetanker 5 den beweglichen Kontakt 4 auf, der ebenfalls mit der Achse 7 verbunden ist. Die Achse 7 kann bevorzugt mit oder aus Edelstahl gefertigt sein.
  • Der magnetische Kern 6 ist von einer Spule 8 umgeben. Ein von außen durch einen Steuerstromkreis aufschaltbarer Stromfluss in der Spule 8 erzeugt eine Bewegung des magnetischen Kerns 6 und damit des gesamten Magnetankers 5 in axialer Richtung, bis der bewegliche Kontakt 4 die feststehenden Kontakte 2, 3 kontaktiert. In der gezeigten Darstellung bewegt sich der Magnetanker nach oben. Der Magnetanker 5 bewegt sich somit von einer ersten Position, die dem gezeigten Ruhezustand und gleichzeitig dem trennenden, also nicht-durchschaltendem und somit ausgeschaltetem Zustand entspricht, in eine zweite Position, die dem aktiven, also durchschaltenden und somit eingeschalteten Zustand entspricht. Im aktiven Zustand sind die Kontakte 2, 3, 4 galvanisch miteinander verbunden. Wird der Stromfluss in der Spule 8 unterbrochen, wird der Magnetanker 5 durch eine oder mehrere Federn 10 wieder in die erste Position bewegt. In der gezeigten Darstellung bewegt sich der Magnetanker 5 somit wieder nach unten. Die Schaltvorrichtung 100 befindet sich dann wieder im Ruhezustand, in dem die Kontakte 2, 3, 4 geöffnet sind.
  • Beim Öffnen der Kontakte 2, 3, 4 kann ein Lichtbogen entstehen, der die Kontaktflächen beschädigen kann. Dadurch kann die Gefahr bestehen, dass die Kontakte 2, 3, 4 durch eine durch den Lichtbogen hervorgerufene Verschweißung aneinander "kleben" bleiben und nicht mehr voneinander getrennt werden. Die Schaltvorrichtung befindet sich dann somit weiter im eingeschalteten Zustand, obwohl der Strom in der Spule abgeschaltet ist und somit der Laststromkreis getrennt sein müsste. Um die Entstehung derartiger Lichtbögen zu verhindern oder um wenigstens die Löschung von auftretenden Lichtbögen zu unterstützen, sind die Kontakte 2, 3, 4 in einer Gasatmosphäre angeordnet, so dass die Schaltvorrichtung 100 als gasgefülltes Relais oder gasgefüllter Schütz ausgebildet ist. Hierzu sind die Kontakte 2, 3, 4 innerhalb einer Schaltkammer 11, gebildet durch eine Schaltkammerwand 12 und einen Schaltkammerboden 13, in einem durch einen hermetisch abgeschlossenen Teil gebildeten gasdichten Bereich 16 angeordnet. Der gasdichte Bereich 16 umgibt den Magnetanker 5 und die Kontakte 2, 3, 4, bis auf zum externen Anschluss vorgesehene Teile der feststehenden Kontakte 2, 3, vollständig. Der gasdichte Bereich 16 und damit auch die Schaltkammer 11 sind mit einem Gas 14 gefüllt. Das gasdichte Bereich 16 wird im Wesentlichen durch Teile der Schaltkammer 11, des Jochs 9 und zusätzliche Wandungen gebildet. Das Gas 14, das durch einen Gasfüllstutzen 15 im Rahmen der Herstellung der Schaltvorrichtung 100 in den gasdichten Bereich 16 eingefüllt werden kann, kann besonders bevorzugt Wasserstoff-haltig sein, beispielsweise mit 50% oder mehr H2 in einem inerten Gas oder sogar mit 100% H2, da Wasserstoff-haltiges Gas die Löschung von Lichtbögen fördern kann. Weiterhin können innerhalb oder außerhalb der Schaltkammer 11 sogenannte Blasmagnete (nicht gezeigt) vorhanden sein, also Permanentmagnete, die eine Verlängerung der Lichtbogenstrecke bewirken und somit das Löschen der Lichtbögen verbessern können. Die Schaltkammerwand 12 und der Schaltkammerboden 13 können beispielsweise mit oder aus einem Metalloxid wie etwa Al2O3 gefertigt sein. Weiterhin eignen sich auch Kunststoffe mit einer ausreichend hohen Temperaturfestigkeit, beispielsweise ein PEEK, ein PE und/oder ein glasgefülltes PBT. Alternativ oder zusätzlich kann die Schaltkammer 11 zumindest teilweise auch ein POM, insbesondere mit der Struktur (CH2O)n, aufweisen.
  • Um Informationen über die tatsächliche Position des beweglichen Kontakts 4 und damit beispielsweise bezüglich eines möglichen Schützklebers zu erhalten, weist die Schaltvorrichtung 100 weitere Komponenten auf, die in den Figuren 1A und 1B der Übersichtlichkeit halber nicht gezeigt sind und die in Verbindung den Figuren 2A bis 2C beschrieben sind. Die Schaltvorrichtung 100 weist insbesondere weiterhin einen ersten Permanentmagneten 17, einen zweiten Permanentmagneten 18 und einen Magnetschalter 19 auf. In Figur 2A sind im Wesentlichen nur diejenigen Komponenten und Teile der Schaltvorrichtung 100 der Figuren 1A und 1B gezeigt, die den gasdichten Bereich 16 der Schaltvorrichtung 100 bilden. In den Figuren 2B und 2C sind vereinfachte Ausschnitte hiervon gezeigt. Soweit nicht anders beschrieben entsprechen die in den Figuren 2A bis 2C gezeigten Komponenten und Teile sowie auch in den Figuren 2A bis 2C im Vergleich zu den Figuren 1A und 1B nicht gezeigte Komponenten und Teile der Schaltvorrichtung 100 den Komponenten und Teilen, die in Verbindung mit den Figuren 1A und 1B beschrieben sind.
  • Der erste Permanentmagnet 17 ist zusammen mit den Kontakten 2, 3, 4 und dem Magnetanker 5 innerhalb des gasdichten Bereichs 16 angeordnet und ist insbesondere am dem beweglichen Kontakt 4 abgewandten Ende des Magnetankers 5 an diesem befestigt. Dadurch kann der erste Permanentmagnet 17 durch den Magnetanker 5 gemeinsam mit dem beweglichen Kontakt 4 bewegt werden.
  • Wie in Figur 2A dargestellt kann der erste Permanentmagnet 17 als Ringmagnet ausgebildet sein und am magnetischen Kern 6 des Magnetankers 5 befestigt sein. Alternativ hierzu kann der erste Permanentmagnet 17 auch als Stab- oder Scheibenmagnet ausgebildet sein und alternativ oder zusätzlich auch an der Achse 7 befestigt sein. Alternativ zur dargestellten Anordnung des ersten Permanentmagneten 17 symmetrisch in Bezug auf die Achse 7 kann der erste Permanentmagnet 17 auch an einer anderen Position angeordnet und befestigt sein, insbesondere wenn dadurch die im Folgenden beschriebene Funktionalität zusammen mit dem zweiten Permanentmagneten 18 und dem Magnetschalter 19 verbessert werden kann.
  • Der zweite Permanentmagnet 18 ist zusammen mit dem Magnetschalter 19 außerhalb des gasdichten Bereichs 16 innerhalb des in den Figuren 2A bis 2C nicht gezeigten Gehäuses der Schaltvorrichtung 100 angeordnet. Insbesondere sind der zweite Permanentmagnet 18 und der Magnetschalter 19 im Gehäuse jeweils an einer festen Position verbaut, so dass der zweite Permanentmagnet 18 in einer fixen Position relativ zum Magnetschalter 19 angeordnet ist. Der zweite Permanentmagnet 18 kann beispielsweise ein Stabmagnet oder alternativ auch ein Ring- oder Scheibenmagnet sein. Wie in den Figuren 2A bis 2C dargestellt können der zweite Permanentmagnet 18 und der Magnetschalter 19 entlang der Bewegungsrichtung des Magnetankers 5 unterhalb des ersten Permanentmagneten 17 angeordnet sein. Hierbei kann wie gezeigt eine Anordnung symmetrisch zur Achse 7 möglich sein. Wie schon in Bezug auf den ersten Permanentmagnet 17 erwähnt können auch die Positionen des zweiten Permanentmagneten 18 und/oder des Magnetschalters 19 von den gezeigten Positionen abweichen, insbesondere wenn hierdurch eine Verbesserung der Funktionalität der genannten Komponenten erreicht werden kann.
  • Der Magnetschalter 5 ist als einfacher Reedschalter ausgebildet. Wie in den Figuren 2B und 2C gezeigt ist, kann der Magnetschalter Kontaktzungen 191 beispielsweise in einem zugeschmolzenen Glasröhrchen 192 mit Schutzgasfüllung oder Vakuum aufweisen, die je nach einwirkendem Magnetfeld mechanisch voneinander getrennt sind, was dem offenen Zustand des Magnetschalters 19 entspricht, oder sich berühren, was dem geschlossenen Zustand des Magnetschalters 19 entspricht. Der Magnetschalter 5 ist insbesondere in Form eines Einschalters ausgebildet und somit bei Abwesenheit von Magnetfeldern in einem offenen Schaltzustand.
  • Der zweite Permanentmagnet 18 ist derart ausgebildet und relativ zum Magnetschalter 19 angeordnet, dass das Magnetfeld, das durch den zweiten Permanentmagneten 18 am Ort des Magnetschalters 19 erzeugt wird, so groß ist, dass sich der Magnetschalter 19 zumindest bei Abwesenheit weiterer Magnetfelder in einem geschlossenen Zustand befindet. Der zweite Permanentmagnet 18 erzeugt somit ein ausreichend großes Magnetfeld, dass der Magnetschalter 19 bei Abwesenheit weiterer Magnetfelder stets in einem geschlossenen Zustand gehalten wird. Der erste Permanentmagnet 17 ist derart angeordnet und ausgebildet, dass er bei einer ausreichend geringen Entfernung vom Magnetschalter 19 und vom zweiten Permanentmagneten 18 das Magnetfeld des zweiten Permanentmagneten 18 zumindest teilweise kompensieren kann. Ist der erste Permanentmagnet 17 hingegen weit genug vom Magnetschalter 19 und vom zweiten Permanentmagneten 18 entfernt, tritt keine oder nur eine derart geringe Kompensation auf, dass der Magnetschalter 19 vom Magnetfeld des zweiten Permanentmagneten 18 im geschlossenen Zustand gehalten wird. Dies ist insbesondere der Fall, wenn sich die Schaltvorrichtung 100 im eingeschalteten Zustand befindet und der Magnetanker 5 mit dem beweglichen Kontakt 4 und dem ersten Permanentmagneten 17 vom Magnetschalter 19 maximal entfernt angeordnet ist. Dieser Zustand ist in Figur 2B gezeigt, wobei in Figur 2B wie in Figur 2C nur die Positionen der Permanentmagneten 17, 18 und des Magnetschalters 19 ohne die übrigen Komponenten der Schaltvorrichtung angedeutet sind. Aufgrund der Anordnung und Ausbildung des zweiten Permanentmagneten 18 ist der Magnetschalter also dann geschlossen, wenn sich auch die Schaltvorrichtung 100 im eingeschalteten Zustand befindet, der bewegliche Kontakt 4 also in mechanischem Kontakt mit den feststehenden Kontakten 2, 3 steht.
  • Der Magnetschalter 19 und der erste Permanentmagnet 17 sind entsprechend der vorherigen Beschreibung so zueinander angeordnet, dass das vom ersten Permanentmagneten erzeugte Magnetfeld am Ort des Magnetschalters im eingeschalteten Zustand der Schaltvorrichtung 100 schwächer ist als im ausgeschalteten Zustand der Schaltvorrichtung 100. Im ausgeschalteten Zustand der Schaltvorrichtung 100 befindet sich der erste Permanentmagnet 17, wie in Figur 2C gezeigt ist, derart nahe am Magnetschalter 19 und am zweiten Permanentmagneten 18, dass das Magnetfeld des zweiten Permanentmagneten 18 derart stark kompensiert wird, dass das resultierende Magnetfeld nicht mehr groß genug ist, um den Magnetschalter 19 im geschlossenen Zustand zu halten und sich der Magnetschalter 19 in einem offenen Zustand befindet. Entsprechend befindet sich der Magnetschalter 19 in einem offenen Zustand, wenn sich die Schaltvorrichtung 100 im ausgeschalteten Zustand befindet.
  • Durch eine Detektion des Zustands des Magnetschalters 19, beispielsweise durch eine Widerstandsmessung, kann somit direkt der Zustand der Schaltvorrichtung 100 erkannt werden. Insbesondere kann leicht erkannt werden, wenn sich die Schaltvorrichtung 100 aufgrund eines Schützklebers noch im aktiven Zustand befindet, obwohl der Strom für die den Magnetanker 5 bewegenden Spule bereits abgeschaltet ist und die Schaltvorrichtung 100 entsprechend im nicht-aktiven Zustand sein müsste.
  • Bezugszeichenliste
  • 1
    Gehäuse
    2, 3
    feststehender Kontakt
    4
    beweglicher Kontakt
    5
    Magnetanker
    6
    magnetischer Kern
    7
    Achse
    8
    Spule
    9
    Joch
    10
    Feder
    11
    Schaltkammer
    12
    Schaltkammerwand
    13
    Schaltkammerboden
    14
    Gas
    15
    Gasfüllstutzen
    16
    gasdichter Bereich
    17
    erster Permanentmagnet
    18
    zweiter Permanentmagnet
    19
    Magnetschalter
    100
    Schaltvorrichtung
    191
    Schaltzunge
    192
    Glasröhrchen

Claims (11)

  1. Schaltvorrichtung (100), aufweisend
    - zumindest einen feststehenden Kontakt (2, 3), einen beweglichen Kontakt (4) und einen Magnetanker (5) und
    - einen ersten Permanentmagneten (17), einen zweiten Permanentmagneten (18) und einen Magnetschalter (19),
    wobei
    - der bewegliche Kontakt mittels des Magnetankers bewegbar ist,
    - der erste Permanentmagnet am Magnetanker befestigt ist,
    - der zweite Permanentmagnet in einer fixen Position relativ zum Magnetschalter angeordnet ist,
    - die Kontakte, der Magnetanker und der erste Permanentmagnet innerhalb eines gasdichten Bereichs (16) angeordnet sind,
    - der Magnetschalter und der zweite Permanentmagnet außerhalb des gasdichten Bereichs angeordnet sind und
    - der erste Permanentmagnet ein Ringmagnet ist, der symmetrisch zu einer Achse des Magnetankers angeordnet ist.
  2. Schaltvorrichtung nach dem vorherigen Anspruch, wobei der Magnetschalter ein Reedschalter ist.
  3. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der Magnetschalter ein Einschalter ist.
  4. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der zweite Permanentmagnet ein Magnetfeld erzeugt, durch das der Magnetschalter bei Abwesenheit weiterer Magnetfelder in einem geschlossenen Zustand gehalten wird.
  5. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der Magnetschalter durch den zweiten Permanentmagneten in einem eingeschalteten Zustand der Schaltvorrichtung in einem geschlossenen Zustand gehalten wird.
  6. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der erste Permanentmagnet ein Magnetfeld erzeugt, das in einem ausgeschalteten Zustand der Schaltvorrichtung das Magnetfeld des zweiten Permanentmagneten schwächt.
  7. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei das Magnetfeld des ersten Permanentmagneten in einem ausgeschalteten Zustand der Schaltvorrichtung das Magnetfeld des zweiten Permanentmagneten derart schwächt, dass der Magnetschalter in einem offenen Zustand vorliegt.
  8. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der erste Permanentmagnet an einem dem beweglichen Kontakt abgewandten Ende des Magnetankers angeordnet ist.
  9. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei der Magnetanker einen magnetischen Kern (6) und eine Achse (7) aufweist und der erste Permanentmagnet am magnetischen Kern und/oder an der Achse befestigt ist.
  10. Schaltvorrichtung nach einem der vorherigen Ansprüche, wobei im gasdichten Bereich ein Gas (14) enthalten ist, das H2 enthält.
  11. Schaltvorrichtung nach dem vorherigen Anspruch, wobei das Gas einen Anteil von zumindest 50% H2 aufweist.
EP19755629.3A 2018-08-28 2019-08-16 Schaltvorrichtung Active EP3844790B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018120987.8A DE102018120987A1 (de) 2018-08-28 2018-08-28 Schaltvorrichtung
PCT/EP2019/072041 WO2020043516A1 (de) 2018-08-28 2019-08-16 Schaltvorrichtung

Publications (2)

Publication Number Publication Date
EP3844790A1 EP3844790A1 (de) 2021-07-07
EP3844790B1 true EP3844790B1 (de) 2023-03-01

Family

ID=67660580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19755629.3A Active EP3844790B1 (de) 2018-08-28 2019-08-16 Schaltvorrichtung

Country Status (4)

Country Link
US (1) US11955301B2 (de)
EP (1) EP3844790B1 (de)
DE (1) DE102018120987A1 (de)
WO (1) WO2020043516A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149362A1 (ja) * 2020-01-23 2021-07-29 三菱電機株式会社 開閉器
CN113948338B (zh) * 2021-08-30 2024-02-09 上海西艾爱电子有限公司 一种陶瓷直流接触器的辅助开关装置及接触器
CN117995610B (zh) * 2024-04-07 2024-07-05 杭州沃镭智能科技股份有限公司 一种可长时间保持闭合或断开的电磁铁开关结构

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE143670C (de)
GB1254066A (en) * 1968-03-20 1971-11-17 Int Standard Electric Corp Polarized sealed contact relay
DD143670A1 (de) * 1979-05-14 1980-09-03 Christian Hesse Mechanisch betaetigtes reed-relais
DE3877599T2 (de) * 1987-03-10 1993-05-13 Toshiba Kawasaki Kk Schalteinrichtung.
US5811896A (en) * 1996-12-06 1998-09-22 Boris Grad Switching device
US7173506B2 (en) * 2003-04-25 2007-02-06 Rochester Gauges, Inc. Dial assembly with magnetically biased reed switch
DE102007002176B4 (de) * 2007-01-15 2018-07-19 Siemens Aktiengesellschaft Erfassungseinrichtung zum Erfassen des Schaltzustands eines elektromagnetischen Schaltgeräts
DE102007028940A1 (de) * 2007-06-22 2009-01-02 Bruno Gruber Schaltvorrichtung mit einem Reed-Kontakt
JP5163318B2 (ja) * 2008-06-30 2013-03-13 オムロン株式会社 電磁石装置
JP5771779B2 (ja) * 2011-03-22 2015-09-02 パナソニックIpマネジメント株式会社 電磁開閉装置
JP2012199115A (ja) * 2011-03-22 2012-10-18 Panasonic Corp 電磁開閉装置
JP5778989B2 (ja) * 2011-05-19 2015-09-16 富士電機機器制御株式会社 電磁接触器
CH708237A2 (de) * 2013-06-18 2014-12-31 Markus Bräm Manipulationssicherer Schalter und manipulationssicheres Verfahren insbesondere zur Überwachung von Türen, Fenstern etc.
DE102014212132A1 (de) * 2014-06-25 2015-12-31 Te Connectivity Germany Gmbh Schaltanordnung
CN204011293U (zh) * 2014-07-17 2014-12-10 昆山国力真空电器有限公司 直流接触器用辅助触点
DE102016107127A1 (de) * 2016-01-29 2017-08-03 Epcos Ag Relais

Also Published As

Publication number Publication date
DE102018120987A1 (de) 2020-03-05
US20210287864A1 (en) 2021-09-16
EP3844790A1 (de) 2021-07-07
WO2020043516A1 (de) 2020-03-05
US11955301B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
EP3408859B1 (de) Relais
EP3844790B1 (de) Schaltvorrichtung
DE102018120984B4 (de) Schaltvorrichtung
DE102020114385B4 (de) Schaltvorrichtung
DE102019106832B4 (de) Kontaktanordnung für eine Schaltvorrichtung und Schaltvorrichtung
WO2019201916A1 (de) Schaltvorrichtung
DE102015200507A1 (de) Schalt- und Schutzeinrichtung für Hochvolt-Bordnetze
WO2019201806A1 (de) Schaltvorrichtung
WO2019166445A1 (de) Schaltvorrichtung
DE102019122961A1 (de) Passive Auslösemechanismen zur Verwendung mit Schaltvorrichtungen, die pyrotechnische Merkmale enthalten
DE102018110920B4 (de) Schaltvorrichtung
WO2021063616A1 (de) Schaltvorrichtung
EP1829065A1 (de) Verfahren und vorrichtung zum sicheren betrieb eines schaltgerätes
WO2019215093A1 (de) Schaltvorrichtung
EP4352771A1 (de) Schaltvorrichtung
EP4315378A1 (de) Schaltvorrichtung
DE102012005031A1 (de) Installationsschaltgerät
DE102023108928A1 (de) Schaltvorrichtung
WO2023217963A1 (de) Schaltvorrichtung mit hauptkontakte und zumindest zwei hilfskontakten
DE102022104711A1 (de) Schaltvorrichtung
WO2021239367A1 (de) Schaltvorrichtung
DE102018114559A1 (de) Schaltvorrichtung
DE202018006329U1 (de) Schaltvorrichtung
EP3433871B1 (de) Vorrichtung zur messung eines zustands eines elektrischen schalters, elektrischer schalter und verfahren zur messung eines zustands eines elektrischen schalters
DE202021102567U1 (de) Kontaktanordnung für eine Schaltvorrichtung und Schaltvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20210204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1551577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007106

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007106

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

26N No opposition filed

Effective date: 20231204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230816

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240820

Year of fee payment: 6