EP3843111A1 - Hochspannungsisolator mit geometrischem invarstabilisator - Google Patents

Hochspannungsisolator mit geometrischem invarstabilisator Download PDF

Info

Publication number
EP3843111A1
EP3843111A1 EP20189220.5A EP20189220A EP3843111A1 EP 3843111 A1 EP3843111 A1 EP 3843111A1 EP 20189220 A EP20189220 A EP 20189220A EP 3843111 A1 EP3843111 A1 EP 3843111A1
Authority
EP
European Patent Office
Prior art keywords
insulation
invar
stabilizer
geometric
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20189220.5A
Other languages
English (en)
French (fr)
Inventor
Gleb Kravtsov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3843111A1 publication Critical patent/EP3843111A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/28Capacitor type

Definitions

  • the invention relates to high voltage technology, namely high voltage insulators, which allow conductors to pass through a partition, e.g. B. ensure a wall, the housing of an electrical machine or an electrical device, and insulate the conductors therefrom.
  • the invention aims to increase the reliability of isolators by using a geometric stabilizer.
  • the invention achieves the greatest effect when used in insulators with solid (dry) insulation.
  • the solid (dry) insulation consists of insulating paper impregnated with resin.
  • the application of the invention is also effective in isolators designed for use in areas with cold climates.
  • Insulators with oil paper insulation ensure that the conductors can be guided through the partition wall and are insulated from the partition wall.
  • OIP insulation insulation with oil-soaked paper, OIP insulation
  • Such isolators form the largest Part of the high voltage insulators.
  • These shortcomings mainly relate to the inspection and maintenance of the isolators during operation.
  • the deficiencies of the isolators also include the risk of explosion and fire. These deficiencies have been eliminated in solid insulators.
  • a certain type of insulation cannot be considered preferred, as each type has its own positive properties.
  • Oil paper insulation is more effective in difficult climatic working conditions with large temperature fluctuations in the environment.
  • the oil impregnation of the paper gives the insulating layers a certain mobility and prevents mechanical stress. Mechanical stresses can lead to cracks in the insulation.
  • solid insulation can concentrate all the mechanical stresses associated with thermal expansion, the use of solid insulators at low temperatures involves certain risks. This is one of the reasons why the standard IEC 60137: 2008 "Insulated bushings for alternating voltages above 1000V" limits the maximum excess of the temperature of the contact parts of an insulator above the ambient air temperature to a maximum of 65 ° C. At low ambient temperatures, such as B. in the far north, this makes operation more difficult and forces a possible reduction in reliability.
  • the technical task of increasing the reliability of insulators in a wide range of ambient temperature changes can be reduced to a reduction in the mechanical stresses in the insulating material caused by thermal expansion.
  • the object is achieved in that current-carrying elements of an insulator are placed in a shell made of alloys of the Invar group (iron-nickel alloy). The sheath absorbs the forces associated with the thermal expansion of the conductor and closes the transmission these forces act on the insulation.
  • This solution to the problem of increasing the reliability essentially distinguishes the present invention from the previously known solutions in which the increase in reliability is achieved by a special insulation structure.
  • the patent RU 2406174 serve.
  • a special design of the insulating layers ensures increased reliability.
  • the subject of the invention includes a high-voltage insulator which enables the conductors to pass through the partition and insulates the conductors from this partition.
  • the current-carrying part of the insulator has a shell which is formed from an Invar alloy. Inside the sheath there are one or more conductors made of a material with high electrical conductivity. The space around this ladder is filled with elastomer.
  • the novelty of the insulator consists in the use of a geometric stabilizer to compensate for the thermal expansion of the conductor.
  • the role of the geometric stabilizer is taken over by an Invar shell.
  • Invar alloys, iron-nickel alloys with a nickel content of 30 to 40% with chromium, cobalt, copper, titanium or manganese doping are precision alloys with abnormally low coefficients of linear thermal expansion. The exact value of the coefficient of linear expansion depends on the alloy composition, the hardening processes and the mechanical processing methods.
  • the Invar shell retains its stable dimensions when the thermal conditions of the insulator change. This keeps the mechanical influence on the insulation as low as possible. It also prevents insulation damage such as peeling and cracking.
  • the invention is implemented with standard devices and technologies available in the electrical industry for manufacturing insulators.
  • the manufacture of precision alloys is also well established in the industry.
  • the use of known and proven technologies in the invention makes it possible to implement the invention in a short time on an industrial scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Insulating Materials (AREA)
  • Insulators (AREA)

Abstract

Die Erfindung betrifft die Hochspannungstechnik, und zwar Hochspannungs-Einführungs- oder Durchführungsisolatoren. Die Erfindung zielt darauf ab, die Zuverlässigkeit von solchen Isolatoren zu erhöhen. Die Neuheit des Isolators besteht in der Verwendung eines geometrischen Stabilisators zur Kompensation der Wärmeausdehnung des Leiters. Die Rolle des geometrischen Stabilisators wird von einer Invar-Hülle übernommen. Invarlegierungen gehören zu Präzisionslegierungen mit minimalen linearen Wärmeausdehnungskoeffizienten. Die Invar-Hülle behält ihre stabilen Abmessungen, wenn sich thermische Verhältnisse des Isolators ändern. Dadurch kann der mechanische Einfluss auf die Isolierung so gering wie möglich gehalten werden. Außerdem können dadurch solche Schäden an der Isolierung wie Abblättern und Rissbildung vermieden werden. Der größte Effekt wird bei der Verwendung der Erfindung in Isolatoren mit RIP-Isolierung erreicht, die für den Einsatz in Gebieten mit kaltem Klima ausgelegt sind.

Description

  • Die Erfindung betrifft die Hochspannungstechnik, und zwar Hochspannungsisolatoren, die den Durchgang von Leitern durch eine Trennwand, z. B. eine Wand, das Gehäuse einer elektrischen Maschine oder eines elektrischen Geräts, gewährleisten und die Leiter davon isolieren. Die Erfindung zielt darauf ab, die Zuverlässigkeit von Isolatoren durch Verwendung eines geometrischen Stabilisators zu erhöhen. Die größte Wirkung erzielt die Erfindung bei der Verwendung in Isolatoren mit fester (trockener) Isolierung. Die feste (trockene) Isolierung besteht aus mit Harz imprägniertem Isolierpapier. Ebenfalls wirksam ist die Anwendung der Erfindung in Isolatoren, die für den Einsatz in Gebieten mit kaltem Klima ausgelegt sind.
  • Isolatoren mit Ölpapier-Isolierung (Isolierung mit ölgetränktem Papier, OIP-Isolierung) sorgen dafür, dass die Leiter durch die Trennwand geführt werden können und dabei gegen die Trennwand isoliert sind. Solche Isolatoren bilden den größten Teil der Hochspannungsisolatoren. Trotz aller positiven Eigenschaften solcher Isolatoren weisen sie eine Reihe von Mängeln auf. Diese Mängel beziehen sich vor allem auf die Kontrolle und Wartung der Isolatoren während des Betriebs. Zu den Mängeln der Isolatoren gehört auch Explosions- und Brandgefahr. Diese Mängel sind bei festen Isolatoren beseitigt worden. Hier handelt es sich um Isolatoren mit harzbeschichtetem Papier (RBP-Isolierung) oder mit harzimprägniertem Papier (RIP-Isolierung), die seit Ende des vorigen Jahrhunderts im Einsatz sind. Dabei kann eine bestimmte Art der Isolierung nicht als bevorzugt angesehen werden, da jede Art ihre eigenen positiven Eigenschaften hat. So bewährt sich die Ölpapier-Isolierung besser bei schwierigen klimatischen Arbeitsbedingungen mit großen Temperaturschwankungen der Umgebung. Die Ölimprägnierung des Papiers verleiht den Isolierschichten eine gewisse Beweglichkeit und verhindert eine mechanische Beanspruchung. Mechanische Spannungen können zu Rissen der Isolierung führen. Da eine feste Isolierung alle mechanischen Spannungen, die mit der Wärmeausdehnung verbunden sind, in sich konzentrieren kann, birgt die Verwendung von festen Isolatoren bei niedrigen Temperaturen gewisse Risiken. Dies ist einer der Gründe, warum die Norm IEC 60137:2008 "Insulated bushings for alternating voltages above 1000V" die maximale Überschreitung der Temperatur der Kontaktteile eines Isolators über die Umgebungslufttemperatur auf max. 65°C begrenzt. Bei niedrigen Umgebungstemperaturen, wie z. B. im hohen Norden, erschwert dies den Betrieb und zwingt zu einer möglichen Verringerung der Zuverlässigkeit.
  • So kann die technische Aufgabe, die Zuverlässigkeit von Isolatoren in einem weiten Bereich von Umgebungstemperaturänderungen zu erhöhen, auf eine Verringerung der durch Wärmeausdehnung verursachten mechanischen Spannungen im Isoliermaterial reduziert werden. Bei der Erfindung wird die Aufgabe dadurch gelöst, dass stromführende Elemente eines Isolators in eine Hülle aus Legierungen der Invargruppe (Eisen-Nickel-Legierung) eingebracht werden. Die Hülle nimmt die mit der Wärmeausdehnung des Leiters verbundenen Kräfte auf und schließt die Übertragung dieser Kräfte auf die Isolierung aus. Diese Lösung der Aufgabe der Erhöhung der Zuverlässigkeit unterscheidet die vorliegende Erfindung wesentlich von den bisher bekannten Lösungen, bei denen die Erhöhung der Zuverlässigkeit durch eine spezielle Isolierungsstruktur erreicht wird. Als Beispiel für einen Hochspannungsisolator kann das Patent RU 2406174 dienen. Bei diesem Patent sorgt eine spezielle Gestaltung der Isolierschichten für eine erhöhte Zuverlässigkeit.
  • Zum Gegenstand der Erfindung gehört ein Hochspannungsisolator, der den Durchgang der Leiter durch die Trennwand ermöglicht und die Leiter von dieser Trennwand isoliert. Der stromführende Teil des Isolators hat eine Hülle, die aus einer Invar-Legierung ausgebildet ist. Im Inneren der Hülle befinden sich ein oder mehrere Leiter aus einem Material mit hoher elektrischer Leitfähigkeit. Der Raum um diese Leiter ist mit Elastomer gefüllt.
  • Die Neuheit des Isolators besteht in der Verwendung eines geometrischen Stabilisators zur Kompensation der Wärmeausdehnung des Leiters. Die Rolle des geometrischen Stabilisators wird von einer Invar-Hülle übernommen. Invar-Legierungen, Eisen-Nickel-Legierungen mit einem Nickelgehalt von 30 bis 40 % mit Chrom-, Kobalt-, Kupfer-, Titan- oder Mangan-Dotierung sind Präzisionslegierungen mit anomal niedrigen linearen Wärmeausdehnungskoeffizienten. Der genaue Wert des linearen Ausdehnungskoeffizienten hängt von der Legierungszusammensetzung, den Härtungsverfahren und der Verfahren der mechanischen Bearbeitung ab. Die Invar-Hülle behält ihre stabilen Abmessungen, wenn sich thermische Verhältnisse des Isolators ändern. Dadurch wird der mechanische Einfluss auf die Isolierung so gering wie möglich gehalten. Außerdem werden dadurch solche Schäden an der Isolierung wie Abblättern und Rissbildung vermieden.
  • Das Wesen der Erfindung wird anhand von Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    das axonometrische Bild eines Isolatorfragments mit Schicht-für-Schicht-Schnitten, die den Aufbau des Isolators offenbaren,
    Fig. 2
    den Querschnitt des Isolators; das Grundelement bildet ein oder mehrere Leiter 1 aus Metall mit hoher elektrischer Leitfähigkeit; die Leiter gewährleisten den Durchgang des elektrischen Stroms durch den Isolator; die Leiter befinden sich innerhalb des geometrischen Stabilisators 2; der geometrische Stabilisator 2 stellt eine geschlossene Hülle dar; die geschlossene Hülle ist aus einer Invar-Legierung ausgebildet; der Raum zwischen den Leitern und der Hülle ist mit Elastomer 3 gefüllt; das Volumen des Elastomers und seine Lage im Raum zwischen den Leitern und der Hülle werden so gewählt, dass die Wärmeausdehnungen der Leiter durch eine Verringerung des Elastomervolumens kompensiert werden und die äußere Größe des geometrischen Stabilisators nicht vergrößern; auf den geometrischen Stabilisator wird eine Basisisolierung 4 aufgebracht; je nach der Umgebung, in der der Isolator betrieben wird, kann der Isolator neben der Basisisolierung auch eine Außenisolierung 5 aus Porzellan oder Polymer haben,
    Fig. 3
    ein Beispiel für die Anwendung der Erfindung bei der Verwendung zur Einführung von Hochspannung aus einem Luftmedium in ein Öl- oder SF6-Medium, wobei der Querschnitt die innere Struktur des Isolators offenbart; die Trennwand 6 trennt das Luftmedium auf der linken Seite der Trennwand von dem Öl- oder SF6-Medium auf der rechten Seite der Trennwand; die Außenisolierung 5 ist nur für das Luftmedium eingesetzt; der auf der Seite des Luftmediums des Isolators ausgeführte Schnitt zeigt den geometrischen Stabilisator 2; der geometrische Stabilisator 2 befindet sich unter der Basisisolierung 4.
    Kurzbeschreibung der Zeichnungen
  • Fig. 1 axonometrisches Bild eines Isolatorfragments mit Schicht-für-Schicht-Schnitten.
    In der Fig. 1 bezeichnen:
    • Position 1 - Leiter aus Metall mit hoher elektrischer Leitfähigkeit;
    • Position 2 - geometrischen Stabilisator;
    • Position 3 - Elastomer;
    • Position 4 - Basisisolierung;
    • Position 5 - Außenisolierung.
  • Fig. 2 - Querschnitt des Isolators.
    In der Fig. 2 bezeichnen:
    • Position 1 - Leiter aus Metall mit hoher elektrischer Leitfähigkeit;
    • Position 2 - geometrischen Stabilisator;
    • Position 3 - Elastomer;
    • Position 4 - Basisisolierung;
    • Position 5 - Außenisolierung.
  • Fig. 3 ein Beispiel für die Anwendung der Erfindung bei der Verwendung zur Einführung von Hochspannung aus einem Luftmedium in ein Öl- oder SF6-Medium, wobei der Querschnitt die innere Struktur des Isolators offenbart.
    In der Fig. 3 bezeichnen:
    • Position 2 - geometrischen Stabilisator;
    • Position 4 - Basisisolierung;
    • Position 5 - Außenisolierung;
    • Position 6 - Trennwand.
  • Die Erfindung wird mit in der Elektroindustrie verfügbaren Standardgeräten und - technologien zur Herstellung von Isolatoren umgesetzt. Auch die Herstellung von Präzisionslegierungen ist in der Branche gut etabliert. Der Einsatz bekannter und bewährter Technologien in der Erfindung ermöglicht es, die Erfindung in kurzer Zeit im industriellen Maßstab zu realisieren.
  • Informationsquellen
    1. 1. IEC 60137:2008 «Insulated bushings for alternating voltages above 1 000 V»;
    2. 2. RU 2406174 "Hochspannungs-Durchführungsisolator" ("High voltage wall bushing").

Claims (1)

  1. Hochspannungsisolator für den Durchgang von Leitern durch eine Trennwand,
    dadurch gekennzeichnet,
    dass der stromführende Teil des Isolators einen geometrischen Stabilisator aufweist, der als Hülle aus einer Invar-Legierung ausgebildet ist,
    dass im Inneren der Hülle sich ein oder mehrere Leiter aus einem Material mit hoher elektrischer Leitfähigkeit befinden und
    dass der Raum um diese Leiter mit Elastomer gefüllt ist.
EP20189220.5A 2019-12-23 2020-08-03 Hochspannungsisolator mit geometrischem invarstabilisator Withdrawn EP3843111A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019143501A RU2723637C1 (ru) 2019-12-23 2019-12-23 Высоковольтный изолятор с инваровым геометрическим стабилизатором

Publications (1)

Publication Number Publication Date
EP3843111A1 true EP3843111A1 (de) 2021-06-30

Family

ID=71096009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20189220.5A Withdrawn EP3843111A1 (de) 2019-12-23 2020-08-03 Hochspannungsisolator mit geometrischem invarstabilisator

Country Status (3)

Country Link
EP (1) EP3843111A1 (de)
DE (1) DE202020005966U1 (de)
RU (1) RU2723637C1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485940A (en) * 1967-12-26 1969-12-23 Allis Chalmers Mfg Co Post type modular insulator containing optical and electrical components
WO2003096090A1 (fr) * 2002-05-08 2003-11-20 Ykk Corporation Dispositif et procede de production d'un coupleur a fibres optiques conservant une polarisation
US20090223699A1 (en) * 2007-12-17 2009-09-10 Schott Ag Method for manufacturing an electrical leadthrough and an electrical leadthrough manufactured according to said method
RU2406174C2 (ru) 2005-12-14 2010-12-10 Абб Рисерч Лтд Высоковольтный проходной изолятор

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR739473A (fr) * 1932-07-05 1933-01-12 Ohio Brass Co Perfectionnements aux isolateurs électriques
JPS5188031A (de) 1975-01-31 1976-08-02
US3967051A (en) * 1975-05-22 1976-06-29 Westinghouse Electric Corporation Cast resin capacitor bushing having spacer members between the capacitor sections and method of making same
US7023474B2 (en) 2001-05-21 2006-04-04 Polaroid Corporation Method and system for enabling the single use of digital cameras
WO2011032127A2 (en) * 2009-09-14 2011-03-17 Roger Faulkner Underground modular high-voltage direct current electric power transmission system
US9208929B2 (en) 2013-09-20 2015-12-08 Schott Corporation GTMS connector for oil and gas market
ITUB20152903A1 (it) * 2014-08-14 2017-02-05 Schott Ag Passaggio elettrico e suo utilizzo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485940A (en) * 1967-12-26 1969-12-23 Allis Chalmers Mfg Co Post type modular insulator containing optical and electrical components
WO2003096090A1 (fr) * 2002-05-08 2003-11-20 Ykk Corporation Dispositif et procede de production d'un coupleur a fibres optiques conservant une polarisation
RU2406174C2 (ru) 2005-12-14 2010-12-10 Абб Рисерч Лтд Высоковольтный проходной изолятор
US20090223699A1 (en) * 2007-12-17 2009-09-10 Schott Ag Method for manufacturing an electrical leadthrough and an electrical leadthrough manufactured according to said method

Also Published As

Publication number Publication date
RU2723637C1 (ru) 2020-06-17
DE202020005966U1 (de) 2023-09-21

Similar Documents

Publication Publication Date Title
DE1466350A1 (de) Anordnung zur Leiterkopplung fuer Mikrowellen
EP3843111A1 (de) Hochspannungsisolator mit geometrischem invarstabilisator
DE1807996A1 (de) Einleiterwandler
EP2846336B1 (de) Verbindung von mindestens vier elektrischen Leitern
DE1765879B2 (de) Kabelarmatur für ölgefüllte Starkstromkabel
DE202018101141U1 (de) Elektrische Heizvorrichtung
EP3185251B1 (de) Hochspannungsdurchführung mit spannungsteilerabgriff und herstellungsverfahren für eine hochspannungsdurchführung mit spannungsteilerabgriff
DE955792C (de) Isolierende Abstuetzung spannungsfuehrender Teile in elektrischen Anlagen und in mitLuft, OEl oder Isoliermasse gefuellten elektrischen Geraeten und Kabeln
DE2513218C2 (de) Anordnung zum Verhindern von Glimmentladungen an den Elektroden elektrischer Hochspannungseinrichtungen
DE524873C (de) Durchfuehrungsisolator mit Induktionsvorrichtung zur Speisung von Niederspannungsapparaten aus Hochspannungsnetzen
AT144874B (de) Fernmelde- bzw. Signalleitung.
EP0050091A1 (de) Wicklung für elektrische Maschinen oder Apparate
DE102017206518A1 (de) Aufnahmevorrichtung für Vakuumschaltröhren
EP3417467B1 (de) Anordnung zum überspannungsschutz einer mit einer isolierflüssigkeit isolierten elektrischen anlage
DE945706C (de) Richtungskoppler
DE519555C (de) Zusammengesetzter Leiter fuer die UEbertragung von Hochfrequenzsignalstroemen
DE967110C (de) Kondensatorkoerper fuer Muffen und Endverschluesse elektrischer Kabel sowie fuer Durchfuehrungen fuer Hochspannungsgeraete
DE904063C (de) Schaltanlage mit elektronegativen Daempfen
DE339747C (de) Verbindung elektrischer Kabel mit konzentrischem Hilfsleiter
DE635799C (de) Kapazitiver Spannungsteiler
DE102020212640A1 (de) Leiteranordnung
DE695259C (de) Hochspannungs-Messwandler, insbesondere Stromwandleine ohne isolierende Trennfugen ausgefuehrte Huelle vorgesehen ist
DE202017007579U1 (de) Strombalken für eine Anschlussklemme und Anschlussklemme mit einem Strombalken
DE8614853U1 (de) Teilentladungsfestes Deckeldurchführungselement
DE380192C (de) Stromwandler fuer Hochspannung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210920

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230920

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231102