EP3842556B1 - Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel - Google Patents

Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel Download PDF

Info

Publication number
EP3842556B1
EP3842556B1 EP19383203.7A EP19383203A EP3842556B1 EP 3842556 B1 EP3842556 B1 EP 3842556B1 EP 19383203 A EP19383203 A EP 19383203A EP 3842556 B1 EP3842556 B1 EP 3842556B1
Authority
EP
European Patent Office
Prior art keywords
fenb
crfenb
inoculant
base alloy
nickel base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19383203.7A
Other languages
German (de)
English (en)
Other versions
EP3842556A1 (fr
Inventor
Fernando Santos
Ana Magaña
Hegoi Andonegi
David García
Andrea Niklas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fundacion Azterlan
Original Assignee
Fundacion Azterlan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundacion Azterlan filed Critical Fundacion Azterlan
Priority to EP19383203.7A priority Critical patent/EP3842556B1/fr
Priority to ES19383203T priority patent/ES2958763T3/es
Publication of EP3842556A1 publication Critical patent/EP3842556A1/fr
Application granted granted Critical
Publication of EP3842556B1 publication Critical patent/EP3842556B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C3/00Removing material from alloys to produce alloys of different constitution separation of the constituents of alloys

Definitions

  • the present invention is encompassed within the sector of metallurgical industry. Particularly it is related to an inoculation process for a nickel base alloy to achieve grain refinement.
  • the process of the present invention comprises using a mixture of Co 3 FeNb 2 and CrFeNb(Ni) as inoculant, where such compounds are introduced inside the melt nickel base alloy encapsulated, and the inoculation step is carried out at a temperature from 1450 to 1500 °C for a period from 5 to 30 seconds.
  • the inoculant process described in this document can produce a fine and equiaxial grain size, which promotes high mechanical properties such as tensile stress, yield stress and elongation and, at the same time, this process can provide a complete filling of the mold.
  • the invention further comprises the manufacture of the encapsulated inoculant and adaption for its introduction inside the melt nickel base alloy.
  • Nickel base alloys and, in particular, the so-called nickel base superalloys are frequently used for elevated mechanical strength and high temperature performance applications, mainly for aeronautics and energy sectors ( G. Marahleh, A. R. I. Kheder, H. F. Hamad, CREEP-LIFE PREDICTION OF SERVICE-EXPOSED TURBINE BLADES, Materials Science, Vol. 42, No. 4, 2006 ).
  • Some components for engines are manufactured by conventional casting in an open-air furnace but most of them by investment casting process using a Vacuum Induction Melting (VIM) furnace as equipment for the melting, casting and pouring of the melt.
  • VIP Vacuum Induction Melting
  • Common problems associated to the investment casting are high pouring temperature ( ⁇ 1450°C) of the melt and the use of preheated mold, both practices assure a good filling of the components but result in long solidification time and thus coarse and columnar grain sizes.
  • Inoculation process is a well-known technology for the modification of internal microstructure of metallic alloys.
  • Addition of FeSi to cast iron, and Titanium and Boron to AlSi7Mg alloys are some traditional examples of inoculation processes for grain refinement performed in metallic alloys with great mechanical properties improvement and reduction of porosity.
  • the demands of better performance have led to the development of methods to obtain fine and uniform grain sizes in the microstructure.
  • WO2015108599 A2 describes a method of preparing superalloy metals having a crystallographic texture controlled micro structure by electron beam melting.
  • the method therein described comprises the steps of providing a metal alloy powder composition, providing a seed crystal, and processing the metal alloy powder composition in the presence of the seed crystal to provide a superalloy metal having a textured or single crystal micro structure.
  • the process further comprises providing an inoculant prior to the processing step.
  • Said inoculant may be an oxide or iron-based inoculant, in particular, the inoculant may be Co 3 FeNb 2 , CrFeNb, CoAl 2 O 4 or combinations thereof.
  • GB414053 A describes a high vacuum furnace that can be used in the production and refining of Ni based alloys.
  • US3343828 A describes improvements in vacuum furnaces used in the production of Ni based alloys.
  • US4094666 A relates to a method for refining molten iron, steel, nickel alloy or chromium alloy by adding a compressed and deformed composite clad containing deoxidizing agent or desulfurizing agent. More particularly, this patent document refers to a method for refining molten iron and steels by adding the composition clads containing calcium, calcium base alloys, magnesium or magnesium base alloy having a low vaporizing temperature as the core at a high feeding rate (column 1, lines 5-14).
  • the method for refining molten iron and steel bath therein described comprises feeding a compressed and deformed composite clad material of a solidified core encased in a sheath in wire and rod form having a sufficient rigidity obtained by clading a core consisting essentially of at least one element of metallic calcium, metallic magnesium, calcium base alloys and magnesium base alloys, with a sheath of iron and mechanically compressing and deforming the resulting clad, into the molten iron and steel bath at a feeding rate of 20-500 m/min, a rate of feeding fast enough to avoid forming a fume or a flame of calcium or magnesium, whereby substantially 100% of the added calcium or magnesium is effectively reacted with said molten iron and steel bath, while deoxidizing, desulfurizing, spherodizing of graphite and inoculating said molten iron and steel bath are effectively carried out.
  • the present invention provides an improved inoculation process, which is able to achieve successful grain refinement of castings at industrial pouring temperatures, preferable from 1450°C to 1500°C.
  • the chemical composition of the encapsulated inoculant used in this process does not introduce strange elements or modify seriously the chemical composition of the nickel base alloy.
  • the invention disclosed in this patent application refers to an inoculation process of a nickel base alloy, wherein the process is carried out in a vacuum furnace and comprises:
  • the inoculation process of the present invention can successfully achieve grain refinement of the nickel base alloy, more specifically the inoculated nickel base alloy, obtained by such process.
  • the ratio between the mean length (L) and the mean width (W) has been evaluated for the definition of the columnar or equiaxial morphology of the grain.
  • the approach taken for the grain refinement measurement is defined by two parameters: the grain size value and the grain morphology, which should correspond to mean grain length (L) below 2 mm and L/W ratio equal or below 1.5 for equiaxial grain, respectively.
  • the pouring of the inoculated nickel base alloy takes place immediately after the inoculation period has finished, this means that steps b) and c) shall be done consecutively, without any delay between them.
  • the inoculation process described herein is carried out in a vacuum furnace, preferably a Vacuum Induction Melting (VIM) furnace.
  • VIM Vacuum Induction Melting
  • this process can be carried out by introduction of the encapsulated inoculant inside a melt of a nickel base alloy in a VIM furnace, which comprises internally communicated two chambers (charging and main chamber) with vacuum pressure, which can be measured by Pirani and Penning gauges.
  • the encapsulated inoculant can be placed in the charging chamber and the main chamber is used for the melting and inoculation process of the nickel base alloy.
  • the vacuum furnace (in particular, VIM furnace) wherein the inoculation process is to be carried out has been modified, so that it further comprises means for introducing the encapsulated inoculant inside the melt of nickel base alloy, such as, for example a pulley system.
  • the melt of nickel base alloy to be inoculated in the process of the invention comprises Ni, Cr, Co, Nb and Fe. These elements are present in the inoculant mixture used in the process herein described and, therefore, such process can provide the desired grain refinement without introducing strange elements or significantly modifying the chemical composition of the alloy.
  • the melt of nickel base alloy provided in step a) of the inoculation process more preferably comprises:
  • the melt of nickel base alloy to be inoculated in the process described is an alloy, commonly known as IN718, which comprises:
  • the melt of a nickel base alloy of step a) can be obtained by any suitable means known by the skilled person in the art.
  • such melt can be obtained by melting one or more nickel base alloy ingots or, alternatively, the melt of a nickel base alloy can be obtained from raw materials of the elements comprised such alloy, preferably, raw materials with purity between 99-100 wt. %.
  • step a) of the inoculation process can comprise progressively heating either the nickel base alloy ingots or raw materials of the alloying elements in vacuum conditions, for example, at a pressure from 5 ⁇ 10 -3 to 5 ⁇ 10 -4 mbar, until the melt of nickel base alloy is obtained.
  • the temperature of the alloy can be continuously measured by a Spectropyrometer (FAR Associates FMP2 multi-wavelength pyrometer) instead of a conventional two-color optical pyrometer or immersion thermocouple.
  • Spectropyrometer FAR Associates FMP2 multi-wavelength pyrometer
  • the advantage of the Spectropyrometer is that the emissivity behavior is determined from data collected every measurement by means of the use of hundreds of narrow wavebands which allows accurate temperature control.
  • the encapsulated inoculant preferably comprises a mixture of
  • the Co 3 FeNb 2 and CrFeNb(Ni) contained in the encapsulated inoculant are powders with a particle size from 1 to 80 ⁇ m.
  • the encapsulated inoculant comprises a mixture of:
  • the above-mentioned particle size distribution provided is particularly advantageous because an improved grain refinement effect can be achieved. More specifically, the combination of the powder size of the inoculants, time used for inoculation and temperature of the molten metal during inoculation are relevant to achieve a better effectiveness of the inoculation process. The control of these features results in the repeatability of the process.
  • Inoculants used in the process of the invention i.e., Co 3 FeNb 2 and CrFeNb(Ni), preferably have an amount of C lower than 0.05 %wt. Carbon is an impurity that might be present on the raw materials used to manufacture these inoculant. A higher amount of C in the inoculant could give rise to carbide formation, which could negatively affect mechanical properties of the inoculated nickel base alloy.
  • the powders of Co 3 FeNb 2 and CrFeNb(Ni) are introduced inside the melt nickel base alloy encapsulated in a sealed container of a material compatible with the nickel base alloy, i.e., a material not comprising significant amounts of any elements strange to the nickel base alloy.
  • a material compatible with the nickel base alloy i.e., a material not comprising significant amounts of any elements strange to the nickel base alloy.
  • such material is iron based and, more preferably, the sealed container of the encapsulated inoculant is made of an iron base alloy comprising
  • the container where the inoculants are encapsulated may have different dimensions and different forms such as tubular form. In the process of the invention, however, it is preferable that such container will be as small as possible, with the proviso that the inoculant powders can be stored into the container. Additionally, the thickness of the container's walls are lower than 2 mm, so that the minimum amount of the container's material is incorporated at the nickel base alloy in the inoculation process.
  • the container of the encapsulated inoculant has to be sealed, so that the inoculant powders cannot left the container prior to the introduction of said encapsulated inoculant inside the melt nickel base alloy.
  • Any conventional sealing means can be used, for example, pressure and/or spot welding.
  • the total content of Co 3 FeNb 2 and CrFeNb(Ni) contained in the encapsulated inoculant introduced inside the melt nickel base alloy is from 0.1 wt. % to 0.8 wt. %, preferably from 0.4 wt. % to 0.6 wt. %, of the weight of the melt nickel base alloy weight in step a).
  • the total content of Co 3 FeNb 2 and CrFeNb(Ni) in the encapsulated inoculant is 0.6 wt. % of the weight of the nickel base alloy weight in step a), both Co 3 FeNb 2 and CrFeNb(Ni) are powders with a particle size from 1 to 80 ⁇ m, and the encapsulated inoculant is introduced, preferably for a period of 10 seconds, inside the melt mixture of alloying elements at a temperature of 1485 °C.
  • a power supply of the vacuum furnace is reduced or, preferably, switched off to avoid electromagnetic stirring.
  • the inventors have found that a high electromagnetic stirring during the inoculation step can jeopardize grain refinement, among other things due to quick dissolution of the inoculants.
  • a reduced power supply in the heating process to obtain the melt of nickel base alloy can be used or, preferably, the power supply required to achieve a melt in a suitable time can be reduced or even switched off, once the melt is obtained.
  • An important advantage of the inoculation process of the present invention is that the mixture of inoculant powders with the required particle size of between 1 ⁇ m and 80 ⁇ m are contained in the encapsulated inoculant within a sealed container and, therefore, they can be properly introduced inside the melt of nickel base alloy, preferably in the central part of said melt, without electromagnetic stirring. If such powders would be left (un-encapsulated) on the surface of the melt, they would be mixed with the slag and, therefore, the inoculant compounds could not disperse thought the melt alloy.
  • Another important advantage of using encapsulated inoculants is that the dissolution rate of the inoculant powder can be reduced, so that a greatest grain refinement effect is achieved with the process of the present invention.
  • An alumina crucible can be used to obtain the melt of nickel base alloy.
  • such crucible is preferably a high alumina crucible with a content of alumina higher than 60 wt. %, because this material avoids the formation of impurities during the procedure.
  • the mold can be positioned close to the alumina crucible, in particular, the distance between the mold and the alumina crucible containing the melt inoculated nickel base alloy is about 300 mm, so that turbulence when pouring can be avoided.
  • the encapsulated inoculant is manufactured by the following method:
  • the encapsulated inoculant comprises a handling system, which can be used for introducing it inside the melt of nickel base alloy, for example, using any suitable means incorporated to the vacuum furnace such as a pulley system.
  • the handling system can be a wire of similar material than the container.
  • a material compatible with the nickel base alloy as defined in this document in relation with the material of the container is particularly preferred.
  • the method for manufacturing it further comprises attaching the handling system to the container.
  • Co 3 FeNb 2 and CrFeNb(Ni) powders to be used as inoculant can be separately manufactured using conventional methods.
  • these inoculants can be manufactured, for example in the 20 kg single chamber Consarc VIM furnace, by a method comprising the following steps:
  • the cast inoculated can be sectioned and specimen can be prepared by conventional grinding and polishing methods. Then, ADLER chemical etching (40-60% hydrogen chloride, 5-25% iron trichloride, 2-5% diammonium tetrachlorocuprate) for nickel alloys can be used to reveal grain structure.
  • the average grain length and width size can be obtained according to the length and the width of 10-25 grain measurement performed in two 11 mm ⁇ 8 mm regions of the central area of the cast part (metallic sample of 30 mm ⁇ 30 mm ⁇ 35 mm) with 10X magnification in a Olympus SZH binocular magnifier.
  • the ratio between the mean length (L) and the mean width (W) has been also evaluated for the definition of the columnar or equiaxial morphology of the grain.
  • the approach taken for the grain refinement method is defined by two parameters: the grain size and the grain morphology which should correspond to mean grain length below 2 mm and L/W ratio equal or below 1.5 for equiaxial grain, respectively.
  • Table 4 Amount and powder size range of the inoculant compounds Amount (g) from 1 ⁇ m to 20 ⁇ m of Co 3 FeNb 2 4.5 from above 20 ⁇ m to 80 ⁇ m of Co 3 FeNb 2 4.5 from 1 ⁇ m to 20 ⁇ m of CrFeNb(Ni) 4.5 from above 20 ⁇ m to 80 ⁇ m of CrFeNb(Ni) 4.5
  • the encapsulated inoculant prepared in Example 4 has been placed in the charging chamber of the VIM furnace.
  • a defined mold for the 30 ⁇ 30 ⁇ 35 mm part has been positioned close to the crucible (in particular, at the distance of 300 mm) to avoid the turbulence when pouring the mold, as shown in Figure 4 .
  • the VIM furnace has been vacuum pumped to 5 ⁇ 10 -4 mbar pressure and then the melt of the alloy has been obtained by manual control of the power settings to allow slow heating of the crucible following this sequence: 5 KW for 20 minutes, 10 KW for 10 minutes and 15 KW for 10 minutes.
  • the power has been slightly increased to 18 KW to reach the preferred temperature range for industrial process (1480-1490 °C).
  • the temperature of the nickel base alloy during the heating process has been continuously measured by a Spectropyrometer (FAR Associates FMP2 multi-wavelength pyrometer), showing the temperature at the end of the heating process in Figure 5 .
  • the solid materials have been progressively melted until reaching 1484 °C, at this moment the power of the furnace has been switched off and the encapsulated inoculant (obtained as described in Example 4) has been introduced into the molten alloy.
  • the container of the encapsulated inoculant has been melted in approximately 10 seconds and then the inoculant powders have been left for 5-10 seconds inside the metal.
  • the inoculated alloy has been poured into the mold and left for natural cooling inside the furnace.
  • the cast inoculated 30 ⁇ 30 ⁇ 35 mm part has been sectioned as presented in Figure 6 and specimen has been prepared by conventional grinding and polishing methods.
  • grinding has been carried out according to the use of SiC papers in this order: P80, P220, P1200 and P2400 and polishing with diamond paste of 3, 0.25 and 0.04 ⁇ m.
  • ADLER chemical etching 40-60% hydrogen chloride, 5-25% iron trichloride, 2-5% diammonium tetrachlorocuprate
  • the average grain size has been obtained according to the length and the width of 10-25 grains.
  • Grain size measurements have been carried out in two 11mm ⁇ 8mm regions ( Figure 7 and Figure 8 ) of 0.6 wt. % inoculated cast part. Images have been taken with 10X magnification by a Olympus SHZ binocular magnifier. The ratio between the mean length (L) and the mean width (W) has been also measured for the definition of the morphology (columnar or equiaxial) of the grain. Mean values of length and width and the morphology of the grains from both regions are detailed in Table 6. It is demonstrated that the requirements of grain size below 2 mm and ratio morphology equal or below 1.5 are fulfilled and therefore grain refinement has been successfully achieved.
  • Figure 9 shows an image of a non inoculated cast part with large grains up to 4 mm length and columnar grain microstructure with approximate ratio of 3 between the length and the width.
  • Table 6 Mean grain size measurements from Zone 1 and Zone 2 of 0.6 wt. % inoculated cast part Mean length ( ⁇ m) Mean width ( ⁇ m) Grain morphology (Length/Width) Zone 1 915 625 Equiaxial 1.46 Zone 2 1010 680 Equiaxial 1.49

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Claims (13)

  1. Procédé d'inoculation d'un alliage à base de nickel, dans lequel le procédé est réalisé dans un four sous vide et comprend :
    a) la mise à disposition d'une masse fondue d'alliage à base de nickel dans des conditions de vide, caractérisé par le fait que le procédé d'inoculation comprend en outre :
    b) l'introduction d'un inoculant encapsulé comprenant un mélange de Co3FeNb2 et de CrFeNb(Ni) à l'intérieur de la masse fondue de l'alliage à base de nickel à une température de 1 450 à 1 500 °C pendant une période de 5 à 30 secondes,
    c) le coulage immédiat de l'alliage à base de nickel inoculé de l'étape b) dans un moule, de préférence à une température de 1 450 à 1 500 °C, et
    d) le refroidissement dudit alliage à base de nickel inoculé,
    le mélange de Co3FeNb2 et de CrFeNb(Ni) étant encapsulé dans un récipient scellé à base de fer, ledit récipient ayant des parois d'une épaisseur inférieure à 2 mm,
    la teneur totale en Co3FeNb2 et en CrFeNb(Ni) allant de 0,1 % en poids à 0,8 % en poids de la masse fondue d'alliage à base de nickel, et d
    le Co3FeNb2 et le CrFeNb(Ni) contenus dans l'inoculant encapsulé sont des poudres ayant une taille de particules allant de 1 à 80 µm.
  2. Procédé d'inoculation selon la revendication 1, dans lequel la masse fondue d'alliage à base de nickel comprend du Ni, du Cr, du Co, du Nb et du Fe.
  3. Procédé d'inoculation selon l'une quelconque des revendications 1 à 2, dans lequel la masse fondue d'alliage à base de nickel comprend :
    Ni : 50 % en poids à 65 % en poids,
    Cr : 10 % en poids à 25 % en poids,
    Mo : 2 % en poids à 5 % en poids,
    Co : 0,01 % en poids à 1 % en poids,
    Nb : 0,04 % en poids à 5,5 % en poids, et
    Fe : 1 % en poids à 24 % en poids,
    les pourcentages étant exprimés en poids par rapport au poids total de l'alliage à base de nickel.
  4. Procédé d'inoculation selon l'une quelconque des revendications 1 à 3, dans lequel la masse fondue d'alliage base nickel comprend :
    Ni : 50 % en poids à 55 % en poids,
    Cr : 17 % en poids à 21 % en poids,
    Mo : 2,8 % en poids à 3,3 % en poids,
    Co : 0,01 % en poids à 1 % en poids,
    Nb : 4,75 % en poids à 5,5 % en poids,
    Fe : 12 % en poids à 22 % en poids,
    Ti : 0,65 % en poids à 1,15 % en poids,
    Al : 0,2 % en poids à 0,8 % en poids,
    C : pas plus de 0,08 % en poids,
    Si : pas plus de 0,35 % en poids,
    Mn : pas plus de 0,35 % en poids,
    P : pas plus de 0,015 % en poids,
    S : pas plus de 0,015 % en poids, et
    B : pas plus de 0,006 % en poids,
    les pourcentages étant exprimés en poids par rapport au poids total de l'alliage à base de nickel.
  5. Procédé d'inoculation selon l'une quelconque des revendications 1 à 4, dans lequel l'inoculant encapsulé comprend un mélange
    de 45 à 55 % en poids de Co3FeNb2, et
    de 55 à 45 % en poids de CrFeNb(Ni),
    les pourcentages étant exprimés en poids par rapport au poids total du mélange de Co3FeNb2 et de CrFeNb(Ni).
  6. Procédé d'inoculation selon la revendication 1, dans lequel l'inoculant encapsulé comprend un mélange de :
    20 % en poids à 30 % en poids de poudres de Co3FeNb2 ayant une taille de particules allant de 1 à 20 µm, et
    20 % en poids à 30 % en poids de poudres de Co3FeNb2 ayant une taille de particules allant de plus de 20 à 80 µm,
    étant entendu que le poids total des poudres de Co3FeNb2 est compris entre 45 et 55 % en poids du poids total de Co3FeNb2 et de CrFeNb(Ni) ;
    20 % en poids à 30 % en poids de poudres de CrFeNb(Ni) ayant une taille de particules allant de 1 à 20 µm, et
    20 % à 30 % en poids de poudres de CrFeNb(Ni) ayant une taille de particules allant de plus de 20 à 80 µm ; étant entendu que le poids total des poudres de CrFeNb(Ni) est compris entre 55 et 45 % en poids du poids total de Co3FeNb2 et de CrFeNb(Ni).
  7. Procédé d'inoculation selon l'une quelconque des revendications 1 à 6, dans lequel aussi bien le Co3FeNb2 que le CrFeNb(Ni) ont une teneur en C inférieure à 0,05 % en poids.
  8. Procédé d'inoculation selon l'une quelconque des revendications 1 à 7, dans lequel le récipient scellé à base de fer comprend :
    C : 0 à 0,08 % en poids,
    S : 0 à 0,03 % en poids,
    P : 0 à 0,045 % en poids,
    B : 0 à 0,045 % en poids, et
    Si : 0 à 0,075 % en poids,
    les pourcentages étant exprimés en poids par rapport au poids total du matériau à base de fer du récipient.
  9. Procédé d'inoculation selon l'une quelconque des revendications 1 à 8, dans lequel la teneur totale en Co3FeNb2 et en CrFeNb(Ni) est comprise entre 0,4 % en poids et 0,6 % en poids de la masse fondue d'alliage à base de nickel.
  10. Procédé d'inoculation selon la revendication 9, dans lequel la teneur totale en Co3FeNb2 et en CrFeNb(Ni) dans l'inoculant encapsulé est de 0,6 % en poids de la masse fondue d'alliage à base de nickel, aussi bien le Co3FeNb2 que le CrFeNb(Ni) sont des poudres ayant une taille de particules allant de 1 à 80 µm, et l'inoculant encapsulé est introduit, de préférence pendant une période de 10 secondes, dans le mélange fondu d'éléments d'alliage à une température de 1 485 °C.
  11. Procédé d'inoculation selon l'une quelconque des revendications 1 à 10, dans lequel l'alimentation électrique du four à vide est réduite ou, de préférence, coupée avant l'introduction de l'inoculant encapsulé dans la masse fondue d'alliage à base de nickel.
  12. Procédé d'inoculation selon l'une quelconque des revendications 1 à 11, dans lequel l'inoculant encapsulé est fabriqué selon la méthode suivante :
    i) la mise à disposition de poudres de Co3FeNb2 ayant une taille de particules allant de 1 à 80 µm ;
    ii) la mise à disposition de poudres de CrFeNb(Ni) ayant une taille de particules allant de 1 à 80 µm ;
    iii) la préparation d'un mélange comprenant entre 45 % en poids et 55 % en poids des poudres de Co3FeNb2 de l'étape i) et entre 55 % en poids et 45 % en poids des poudres de CrFeNb(Ni) de l'étape ii) ;
    iv) l'introduction du mélange préparé à l'étape iii) dans un récipient à base de fer, de préférence un tube, et
    v) le scellage du récipient, de préférence par pression et par soudage par points.
  13. Procédé d'inoculation selon la revendication 12, dans lequel l'inoculant encapsulé comprend un système de manipulation et, de préférence, la méthode de fabrication d'un tel inoculant encapsulé comprend en outre la fixation du système de manipulation au récipient.
EP19383203.7A 2019-12-27 2019-12-27 Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel Active EP3842556B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19383203.7A EP3842556B1 (fr) 2019-12-27 2019-12-27 Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel
ES19383203T ES2958763T3 (es) 2019-12-27 2019-12-27 Proceso de inoculación para el refinado de grano de una aleación a base de níquel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19383203.7A EP3842556B1 (fr) 2019-12-27 2019-12-27 Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel

Publications (2)

Publication Number Publication Date
EP3842556A1 EP3842556A1 (fr) 2021-06-30
EP3842556B1 true EP3842556B1 (fr) 2023-07-05

Family

ID=69167594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19383203.7A Active EP3842556B1 (fr) 2019-12-27 2019-12-27 Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel

Country Status (2)

Country Link
EP (1) EP3842556B1 (fr)
ES (1) ES2958763T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679137B (zh) * 2021-07-31 2023-07-25 中国科学院金属研究所 一种细化k4750镍基高温合金铸造试棒等轴晶晶粒的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB414053A (en) * 1933-01-19 1934-07-19 Harold Smethurst Improvements in and relating to vacuum furnaces
US3343828A (en) * 1962-03-30 1967-09-26 Air Reduction High vacuum furnace
US4094666A (en) * 1977-05-24 1978-06-13 Metal Research Corporation Method for refining molten iron and steels
US6343641B1 (en) * 1999-10-22 2002-02-05 General Electric Company Controlling casting grain spacing
JP5109115B2 (ja) * 2005-04-07 2012-12-26 国立大学法人 長崎大学 ニッケル基超合金及びその製造方法
US20150069042A1 (en) * 2009-11-18 2015-03-12 Daniel F. Serrago Vacuum Oven
US20160273079A1 (en) * 2013-11-04 2016-09-22 United Technologies Corporation Method for preparation of a superalloy having a crystallographic texture controlled microstructure by electron beam melting
RU2017134765A (ru) * 2016-11-29 2019-04-05 Зульцер Мэнэджмент Аг Литейный сплав на основе никеля, отливка и способ изготовления лопастного колеса ротационной машины
CN108950228A (zh) * 2018-07-25 2018-12-07 沈阳金纳新材料股份有限公司 真空反应强度精炼方法及其在制备镍基铁基合金中的应用

Also Published As

Publication number Publication date
ES2958763T3 (es) 2024-02-14
EP3842556A1 (fr) 2021-06-30

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
Jabbar et al. Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering
EP0693567A2 (fr) Alliage d'aluminium à haute résistance et à haute ductilité et son procédé de fabrication
Gao et al. Physical erosion of yttria crucibles in Ti–54Al alloy casting process
Chronister et al. Induction skull melting of titanium and other reactive alloys
Liao et al. Effect of RE addition on solidification process and high-temperature strength of Al− 12% Si− 4% Cu− 1.6% Mn heat-resistant alloy
Čegan et al. Preparation of TiAl-based alloys by induction melting in graphite crucibles
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
Ranganath et al. Microstructure and deformation of TiB+ Ti2C reinforced titanium matrix composites
CN106435318B (zh) 一种高强高韧的钒合金及其制备方法
CN110129596B (zh) 薄带状纳米Al3(Sc,Zr)/Al复合孕育剂的制备方法
EP3842556B1 (fr) Procédé d'inoculation pour le raffinage du grain d'un alliage à base de nickel
Chen et al. A novel method to directional solidification of TiAlNb alloys by mixing binary TiAl ingot and Nb wire
Li et al. Preparation of TiFe based alloys melted by CaO crucible and its hydrogen storage properties
Huang et al. Effects of electromagnetic frequency on the microstructure and mechanical properties of Al70Zn10Mg10Cu5Si5 medium entropy alloy
CN106591743A (zh) 一种高塑性锆基非晶合金及其制备方法
WANG et al. Microstructure and nanohardness of Ti-48% Al alloy prepared by rapid solidification under different cooling rates
CN106011574B (zh) 一种无铪高抗氧化性的Nb-Si基合金及其制备方法
CN110358962B (zh) 一种大尺寸规则坯锭难熔高熵合金及其制备方法
Wang et al. Microstructure refinement and improvement of mechanical properties of Ti46Al8Nb0. 9B alloys by electromagnetic cold crucible continuous solidification
CN107699747A (zh) 一种高Cu含量Al‑Si‑Li‑Cu铸造合金及其制备方法
Akopyan et al. High-tech alloys based on Al–Ca–La (–Mn) eutectic system for casting, metal forming and selective laser melting
RU2680321C1 (ru) Способ получения полуфабриката из сплава на основе ниобия
Zhang et al. Microstructure and enhanced mechanical properties of ZrC/Zr composites added by in-situ Y2O3 reinforced particles
Liu et al. The influence of Mn on the microstructure and mechanical properties of the Al–5Mg–Mn alloy solidified under near-rapid cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220624

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/06 20060101ALI20221221BHEP

Ipc: C22C 3/00 20060101ALI20221221BHEP

Ipc: C22C 19/03 20060101ALI20221221BHEP

Ipc: C22C 19/05 20060101ALI20221221BHEP

Ipc: C22C 1/02 20060101AFI20221221BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230130

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NIKLAS, ANDREA

Inventor name: GARCIA, DAVID

Inventor name: ANDONEGI, HEGOI

Inventor name: MAGANA, ANA

Inventor name: SANTOS, FERNANDO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584894

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019032081

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1584894

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2958763

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019032081

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT