EP3840890B1 - Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill - Google Patents

Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill Download PDF

Info

Publication number
EP3840890B1
EP3840890B1 EP19769145.4A EP19769145A EP3840890B1 EP 3840890 B1 EP3840890 B1 EP 3840890B1 EP 19769145 A EP19769145 A EP 19769145A EP 3840890 B1 EP3840890 B1 EP 3840890B1
Authority
EP
European Patent Office
Prior art keywords
stator
ball mill
rotor
base plate
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19769145.4A
Other languages
German (de)
French (fr)
Other versions
EP3840890A1 (en
Inventor
Johann Knecht
Norbert Patzelt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertical Power Mills Technology Ag
Original Assignee
Vertical Power Mills Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vertical Power Mills Technology Ag filed Critical Vertical Power Mills Technology Ag
Publication of EP3840890A1 publication Critical patent/EP3840890A1/en
Application granted granted Critical
Publication of EP3840890B1 publication Critical patent/EP3840890B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/16Mills in which a fixed container houses stirring means tumbling the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/002Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with rotary cutting or beating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/22Lining for containers

Definitions

  • the invention relates to a vertical ball mill, in particular for pre-grinding of ground material such as minerals, a stator segment for a vertical ball mill and a method for maintaining a vertical ball mill.
  • ground media are used to grind grist.
  • the material to be ground is taken up in a suspension, which is also referred to as turbidity or slurry, and moved in the mill.
  • the grinding bodies are generally spherical and are also referred to as grinding balls or grinding beads.
  • Ground material is understood to mean, in particular, minerals and mineral aggregates, such as metallic ores, but also substances of similar hardness, such as coal ores, recycling materials, etc. The crushing of minerals is described by way of example in the following description.
  • the minerals are mixed with the grinding balls to grind the minerals.
  • a portion of the grinding balls and minerals are raised a predetermined distance by design and fall back from that height into a bed of the rest of the grinding balls and minerals.
  • the falling grinding balls hit lying grinding balls. Minerals that are in between are shattered.
  • a conventional ball mill can, for example, have a horizontal drum, ie a drum rotating about a horizontal axis, in which minerals are comminuted with the aid of grinding balls.
  • gravity is also used as an essential element for generating crushing forces (so-called ā€œgravity induced mills").
  • the presented mineral mill for the fine grinding of pre-ground minerals consists of a vertically oriented stator assembled from two half-shells with fixed ring-shaped grinding discs, which is suspended from a solid platform and a rotor mounted on one side on the shaft with grinding discs arranged In addition to the central rotor, which is driven by geared motors mounted on the platform with an output of up to 5000 kW, the stator also hangs on this platform.
  • the heterogeneous mixture is transported between the rotating grinding discs and stationary grinding discs attached to the housing Water and crushed with grinding media until the ground material reaches the desired grain size and grain distribution. This takes place with a maximum net volume (filling volume) of 30m 3 .
  • the grinding process used (which is sometimes referred to as the HIG process; ultra fine grinding technology) requires pre-treated, multi-stage crushed minerals so that the grinding process can take place at all.
  • the WO 2018/138405 A1 discloses a vertical ball mill in which both the rotor and stator are suspended from a platform.
  • embodiments of the present invention may allow reducing energy input for pre-grinding minerals to increase efficiency, and modifying a structural design of a pre-grinding mill such that, among other things, it is easy to assemble, disassemble, and can be serviced.
  • the approach presented here creates a robust construction that requires less material and is considerably lighter than previous concepts.
  • the construction can be brought relatively easily to the mining sites of the minerals or to a place of use, partially dismantled.
  • required regular maintenance work can be significantly shortened and simplified.
  • the risk of accidents can be reduced by the machine concept.
  • An overhaul of the mill presented can be carried out relatively easily, so that no specially trained technical personnel may be required.
  • the approach presented here can also enable improved process control and easier adaptation to the material quality present in mining.
  • the shredded material can be further processed or refined and/or fed directly to the downstream process. In the case of revisions and repairs, no additional lifting gear is usually required for disassembly and assembly.
  • Spare parts can be at the same level as the main ones to be replaced Components, such as a mill shaft with grinding discs or individual grinding cylinders, can be stored on site to save space. A few people can safely move and position the spare parts horizontally using rails and rollers, for example. This also includes safe and quick emptying of the grinding cylinder without extensive loss of material.
  • a vertical ball mill is proposed, in particular for the pre-grinding of ground material such as minerals.
  • the vertical ball mill has (i) a rotor which is supported axially and radially at an upper end and hangs downwards, (ii) a self-supporting stator which radially encloses the rotor and is unloaded by the weight of the rotor, with a tangentially aligned rotor inside a Shape tolerance approximately cylindrical lateral surface, and (iii) a base plate supporting a weight of the stator.
  • the stator is composed of at least two stator segments which can be separated from one another and are cantilevered in the separate state and can be displaced relative to one another.
  • Each of the stator segments has, on at least one side edge of a wall, a sealing surface for sealing against the respective other stator segment, and on a lower edge a standing surface dimensioned appropriately for the load for sealing against the base plate.
  • Said side edge of the wall here runs from an upper edge of the wall forming the lateral surface to a lower edge of the wall.
  • the stator segment rests upright with the base on the base plate orthogonally within an angular tolerance on a load-bearing surface of the base plate.
  • a self-supporting stator segment for a vertical ball mill according to the approach presented here is presented.
  • This has (i) a wall approximately in the shape of a segment of a cylinder within a shape tolerance, (ii) at least one sealing surface arranged on a side edge of the wall running from an upper edge of the wall to a lower edge of the wall for sealing on another stator segment, and (iii) one on the Lower edge arranged load-fair dimensioned footprint, with which the stator segment can be set up orthogonally on a load-bearing surface of a base plate of the ball mill within an angular tolerance.
  • a self-supporting stator can be assembled from a plurality of stator segments with a lateral surface formed by the walls and circular-cylindrical within a shape tolerance, which in an assembled state can bear standing loads on the baseplate to support a weight of the stator.
  • the stator segment can be lifted off the baseplate using jacks and set down on the jacks using the jacks prior to locating the auxiliaries.
  • a vertical ball mill can be understood to mean a device for comminuting a material to be ground using grinding bodies.
  • the ground material can be, for example, pre-crushed rock or minerals from a mine.
  • the rock or the minerals can, for example, in a crusher, crushed and sieved in a high pressure bed roller mill, an oxy-fuel or semi-autogenous mill before being fed to the vertical ball mill.
  • the vertical ball mill described herein can be used as a milling stage of a raw material recovery.
  • the material to be ground is fed to the ball mill in pieces or as a suspension in a liquid carrier medium or transport medium.
  • the carrier medium can be water, for example.
  • the ground material can contain a proportion of a desired raw material.
  • the ground material can have an ore content.
  • a major portion of the regrind can be deaf, ie lack the desired raw material.
  • the crushing creates small particles that can be further processed in subsequent process steps.
  • the proportion of particles with the desired raw material can be increased, for example, in a subsequent concentration step. For example, in the concentration step, a density difference between particles from the waste material and particles with the desired raw material can be used.
  • the vertical ball mill described herein can have a large filling volume of more than 20 m 3 .
  • mills with a net volume (filling volume) of 20 m 3 to 150 m 3 are required in practice.
  • the vertical ball mill is dimensioned accordingly and is therefore large and heavy.
  • the speed of rotation of the grinding discs can be up to 15 m/s.
  • the power of the drive motors can be up to around 12,500 kW.
  • the grinding bodies can have a spherical shape, for example.
  • the grinding bodies can be made of a low-wear material.
  • the grinding media can have a greater hardness than the ground material.
  • the grinding media can consist, for example, of a metal material, in particular steel, or a ceramic material.
  • the grinding media, the material to be ground and the carrier medium are enclosed in a fluid-tight container.
  • the container is immovably connected to a substrate.
  • the container can thus be referred to as a stator.
  • the grinding media are driven to move in the container by a driving element of the ball mill.
  • the driving element can be referred to as a rotor.
  • the grinding bodies can be moved in the stator on an approximately circular path without any appreciable upward and/or downward movement.
  • the circular path can be perpendicular to a vertical main axis of the ball mill within an angular tolerance get lost.
  • the angle tolerance can be referred to as position tolerance.
  • the angular tolerance can be, for example, 10Ā° or less, preferably 5Ā° or less, particularly preferably 2Ā° or less.
  • the material to be ground is ground or comminuted between the grinding bodies when grinding bodies of different speeds collide and/or roll off one another.
  • a speed differential between the grinding media is achieved by moving the grinding media in close proximity to the rotor at approximately a moving speed of a surface of the rotor. Grinding media in the immediate vicinity of the stator, on the other hand, do not move at all.
  • a speed profile of the grinding media develops between the rotor and the stator. The faster grinding media located closer to the rotor collide or rub against the slower grinding media located closer to the stator.
  • the rotor can be aligned with the main axis within the angular tolerance.
  • the rotor can be rotatable about the main axis.
  • the rotor can be overhung.
  • the rotor can then be unsupported at a lower end. However, additional storage at the lower end need not be ruled out.
  • the rotor can be held in a hanging orientation, i.e. essentially perpendicular to a base, by its own weight.
  • the stator can be open at the top.
  • the rotor can dip essentially vertically from above into the carrier medium with the material to be ground and the grinding bodies.
  • the rotor can be mounted independently of the stator.
  • the stator can be spatially, statically and/or mechanically separated from the rotor or a rotor bearing of the rotor.
  • the stator has a lateral surface that is approximately cylindrical within a shape tolerance.
  • the stator can enclose a cylindrical volume, in particular a circular-cylindrical volume.
  • the stator can preferably have an approximately circular cross-sectional area within the shape tolerance and can therefore be rotationally symmetrical.
  • the stator may also have an oval, triangular, octagonal, n-sided or generally polygonal cross-sectional area.
  • the cross-sectional area may remain the same within a shape tolerance from a bottom edge of the stator to a top edge of the stator.
  • the shape tolerance describes a permissible deviation from a cylindrical shape.
  • the shape tolerance can be, for example, 10% or less, preferably 5% or less, particularly preferably 2% or less based on the overall dimensions of the stator. In other words, the stator can be out of round within the form tolerance.
  • a lateral surface describes an interface for the grinding bodies, the carrier medium and the material to be ground.
  • the lateral surface can be represented by an inner surface of the stator.
  • the lateral surface can be vertical or plumb within the angular tolerance.
  • a base plate transfers the weight of the stator, the grinding bodies, the carrier medium and the material to be ground completely or at least to a large extent into the foundation and is designed to withstand the load.
  • the base plate can be firmly connected to the foundation.
  • the baseplate may have a load bearing surface to interface with the stator.
  • the load bearing surface may have a shape corresponding to the cross-sectional area of the stator within the shape tolerance.
  • the base plate can be flat on one surface or on two opposite surfaces.
  • the base plate may have an insert for reinforcement in the area of the load-bearing surface.
  • the base plate can be made of a metal material.
  • the base plate can be a separate component, for example, and can rest on the foundation.
  • the base plate can also stand on support feet and be arranged at a distance from the foundation.
  • the base plate can be designed as a specially shaped area of the foundation.
  • a stator segment can have an essentially arched basic shape.
  • a wall of the stator segment forms a partial area of the lateral surface.
  • the wall can represent an angular area of the lateral surface. If the stator has two stator segments, both walls can each form an angular range of 180Ā°. With three stator segments, each wall can represent an angular range of 120Ā°. With n>3 stator segments, each wall can represent an angular range of (360/n)Ā°.
  • the stator segments can be divided differently in the circumferential direction.
  • the wall has a wall thickness designed to withstand the load.
  • the wall of the stator segment can be designed structurally, ie in particular due to its wall thickness and/or due to reinforcement measures, to be able to withstand the forces and loads that arise in the mill described, particularly where the stator segments stand up at the bottom.
  • the wall can be equipped with a protective layer on an inside to prevent direct contact between the grinding media and the wall.
  • the wall can have stiffening ribs on the outside.
  • a sealing surface can be aligned transversely to a pulling direction of connecting elements for connecting the stator segments. In the case of a tangential direction of pull, the sealing surface can be aligned radially. In the case of a radial direction of pull, the sealing surface can be oriented tangentially.
  • the standing surface can be aligned transversely to an expected load direction. The stand can be aligned horizontally within the angle tolerance.
  • the sealing surface and/or the standing surface can be formed by stiffening ribs arranged on the edges of the wall.
  • stator segments are mobile or can be lifted off the base plate. A mechanical connection to the base plate can be released beforehand. Due to the mobility of the stator segments, the vertical ball mill can be opened easily. The rotor is easily accessible when the ball mill is open and maintenance work can be carried out easily on the inside of the stator segments.
  • a plurality of horizontal, ring-segment-shaped ribs spaced vertically apart can be arranged on an inner side of the walls of the stator segments.
  • the ribs may form inwardly projecting annular surfaces on the assembled stator, referred to herein as braking surfaces.
  • the rotor may include a plurality of vertically spaced, horizontal disks each having an outer annular surface, referred to herein as a drag surface.
  • the ribs and the discs may be alternately arranged in the vertical direction.
  • An inner diameter of the braking surfaces can be smaller than an outer diameter of the drag surfaces.
  • the braking surfaces and the drag surfaces can thus at least partially overlap in the horizontal direction.
  • a meandering labyrinth can be formed between the ribs and disks.
  • the labyrinth increases a flow resistance for the pulp through the ball mill.
  • the ribs can therefore also be viewed as deflection surfaces.
  • the ribs can be oriented perpendicular to the wall within angular tolerance.
  • the discs can be aligned perpendicular to the rotor shaft within the angular tolerance.
  • the disks can approximate a circular shape within shape tolerance.
  • the discs can also be polygonal.
  • the ribs or the braking surfaces can have a protective layer, for example to ensure direct contact with the grinding balls impede.
  • the discs can also have a protective coating.
  • the protective layer can be replaceable.
  • the ribs which form a common braking surface on the assembled stator, can be arranged at the same height on the stator segments and can have the same width or height.
  • the ribs and disks may be evenly spaced.
  • the discs can have openings between the drag surfaces and the rotor shaft.
  • the drag surfaces on the rotor generally increase a contact surface of the carrier medium, the material to be ground and the grinding bodies with the rotor.
  • the carrier medium, the material to be ground and the grinding bodies can be driven in an improved manner by the drag surfaces.
  • a movement speed of a point on the discs increases in proportion to a distance of the point from the axis of rotation of the rotor. At the outer diameter of the rotor, the drag surfaces are moved with the highest movement speed.
  • the braking surfaces on the stator increase the contact surface of the carrier medium, the material to be ground and the grinding bodies with the stator.
  • the carrier medium, the material to be ground and the grinding bodies can be braked or driven in an improved manner by the braking surfaces or drag surfaces.
  • During operation there is a large difference in speed between the drag surfaces and the braking surfaces. This creates a large speed gradient in the carrier medium, the material to be ground and the grinding media, which leads to high speed differences between the individual grinding media. The high speed differences result in high impact and frictional forces and the ground material is efficiently shredded.
  • a main grinding area of the vertical ball mill can be arranged between the drag surfaces and the braking surfaces.
  • the stator segments can each have stop elements on an outside for lifting and moving the respective stator segment.
  • Attachment elements can be fixed points specially designed for attaching hoists.
  • the stop elements can be dimensioned according to the load.
  • the stop elements can be connected to the wall and/or the reinforcing ribs via a reinforcing structure. For example, the stop elements can be connected via additional ribs.
  • the stop elements can be oversized for safety. Stop members may be specific to one type of hoist. For example, attachment pins for belts, ropes and chains and shackles can be used. Attachment eyes can be provided for hooks. Stop surfaces can be used to introduce compressive forces from lifting equipment.
  • the stator segments can each have stop elements in the area of the lower edge of the wall, which are configured in particular for attaching hydraulic jacks.
  • the stop elements can have, for example, substantially horizontally aligned stop surfaces.
  • the stop elements can also have a special interface geometry. For example, spherical or spherical cap-shaped surfaces on the stop element or lifting device can interact with balls or spherical caps on the lifting device or stop element in order to achieve angle-insensitive support.
  • the stop elements can define corner points of a virtual horizontal polygon, in particular a triangle, whose geometric center lies on a vertical axis through a center of gravity of the stationary stator segment.
  • the geometric center of a triangle is at the intersection of the bisecting lines of the triangle.
  • the geometric center is at an intersection of the diagonals of the quadrilateral.
  • a weight distribution between the stop elements can be predetermined by a position of the stop elements.
  • the ball mill can have a displacement device for laterally displacing the stator segments that are separated from one another, the displacement device having mobile auxiliary devices which are designed to be arranged between the stop elements and parallel rails arranged on the floor when the stator segment is lifted and to be arranged with the To be moved along the rails stator segment.
  • the rails can be firmly connected to the foundation.
  • the auxiliary devices can have plain bearings or rolling bodies to reduce friction when moving. Rolling bodies can be rotatably mounted rollers, for example. The rollers themselves can be fitted with roller or plain bearings. With a plain bearing, the weight of the stator segment is distributed over a large area, which means that a low surface pressure can be achieved.
  • the slide bearing can be lubricated via a lubrication system.
  • a pair of materials between the sliding bearing and the rail can have a low coefficient of friction.
  • the plain bearing can have a sliding surface made of PTFE, POM or a similar material.
  • the stator segment can be moved with the auxiliary devices using a moving device.
  • the movement device can be arranged between the stator segment and a fixed point and tensile forces and/or compressive forces can be transmitted through the rails exert a defined direction of movement.
  • the movement device can, for example, have at least one cable pull, chain pull or hydraulic cylinder.
  • the displacement device can have at least one tilting support for supporting a stop element, which is spaced vertically from the standing surface, on at least one of the rails in order to prevent the stator segment from tilting during lifting and displacement.
  • An anti-tipper can support the stator segment at a relevant distance from the ground.
  • the anti-tilt support can connect the rail to the higher-lying stop element at an oblique angle.
  • the anti-tilt support can be mobile, that is to say it can be moved independently of the stator segment and only then be attached to the stator segment when the stator segment is to be moved.
  • the anti-tipper may be fixed to the stator segment and remain in place during operation.
  • the anti-tipper can be connected to a lower stop element via a lower connection.
  • the bottom connection can prevent the anti-tipper from deflecting sideways.
  • the anti-tipper can also be used to align the vertical flanges.
  • One of the stop elements for lifting the stator segment can be arranged on the anti-tipper. Two more of the stop elements for lifting can then be arranged on the lower edge of the wall, which are arranged essentially on a connecting line through the center of gravity of the stationary stator segment.
  • the stator segment can have at least one working platform.
  • the work platform can be aligned horizontally within a position tolerance on the stationary stator segment.
  • the working platform can run along an outer contour of the stator segment.
  • the lowest work platform can be arranged at overhead height on the stator segment. At least standing height can be maintained as a vertical distance between higher work platforms.
  • a ladder can be arranged on the anti-tipper, via which the work platform is accessible.
  • the work platform and the ladder can have railings and/or fall protection devices.
  • the stator segment can be easily accessible for maintenance work via the working platform. Thanks to the working platform, there is no need for mobile scaffolding during maintenance work.
  • the rails can be embedded in the foundation of the ball mill and can optionally be covered by covering devices when not in use.
  • the rails can be concreted in, for example.
  • the rails can be placed in recesses in the foundation.
  • the covering devices protect the rails from dirt and damage. In particular, one surface of the rails can be protected from damage in this way. An upwardly directed surface of the rails or a covering device covering these rails may be flush with a surface of the foundation.
  • the covering devices can be driven over. Thus, an environment of the vertical ball mill is kept accessible.
  • the ball mill can have an emptying device for emptying the ball mill. Since the grinding bodies remain in the ball mill during operation, the grinding bodies can be drained through the discharge device with residues of the carrier medium and the material to be ground before the stator is opened.
  • the emptying device can be designed, for example, as a flap or slider in the wall of a stator segment.
  • the evacuation means may include a sloping floor within the load bearing surface of the base.
  • One of the stator segments can have an emptying opening of the emptying device in the region of a low point of the sloping floor.
  • a sloping floor allows the grinding media to flow off to the side, driven by gravity, when being emptied.
  • the sloping floor has a slope from a lowest point to a highest point. The slope can be, for example, within an angular tolerance of between 1Ā° and 5Ā°, preferably between 2Ā° and 3Ā°, particularly preferably 2.5Ā°.
  • the inclined floor can be designed as an inclined plane.
  • the sloping floor can also be designed as a three-dimensionally shaped surface aligned with the lowest point.
  • the drain hole provides a through hole through the wall.
  • the drain opening can be designed as a pipe connection.
  • the pipe connection can be standardized, for example.
  • the pipe connection can be designed with a size of DN 150, for example.
  • the discharge opening can have a suitable fitting, such as a slide, a flap, a cock or a valve.
  • One of the stator segments can have at least one flushing opening of the emptying device in the area of a high point of the inclined floor.
  • a flushing fluid in particular a flushing liquid, can be conducted through the flushing opening into the interior of the stator in order to flush it out.
  • the flushing opening can be designed as a pipe connection.
  • the scavenging opening can, for example, have a standardized design.
  • the flushing opening can be designed with a size of DN 100, for example.
  • the Flush port may include any suitable fitting such as a gate, flapper, cock or valve.
  • the flushing opening can be arranged opposite the emptying opening. Rinsing can help empty the ball mill. For example, liquid can be introduced through the flushing opening, which generates a flushing flow over the sloping floor.
  • the ball mill may have a stand separate from the stator. Supports of the frame may be supported on the ball mill foundation laterally spaced from the stator. At least one cross member of the frame can connect the supports to each other above the stator. A bearing device of the rotor can be supported on the cross member.
  • a frame can be provided for the ball mill, which is designed separately from the stator and does not load on the stator, the bearing and drive arrangement being held and supported on a cross member of this frame, so that these components do not weigh on the stator .
  • the frame can, for example, be composed of steel girders, in particular screwed.
  • the frame can be designed as a portal under which the stator is arranged. Because of the frame, the stator can be dismantled without having to modify the rotor. The stator segments can be moved sideways away from the rotor for maintenance work, for example.
  • the ball mill can have a disengaging device for laterally disengaging the rotor, which can be uncoupled at an overhead clutch.
  • the release device can have at least one rail and one coupling device.
  • the coupling device can be designed to be connected to the rotor in the area of the coupling, to be lowered onto the rail with the rotor and to be moved along the rail with the rotor.
  • a disengagement device can move the rotor to an accessible position for maintenance while the drive remains in place.
  • the rotor can be separated from the drive at the clutch.
  • the coupling can be screwed with several screws, for example.
  • a stop member can be coupled to the clutch to lift the disengaged rotor with a crane.
  • the coupling device can have a geometry adapted to a contour of the rotor in the area of the coupling.
  • the coupling device can enclose the rotor shaft.
  • the coupling device can have stop elements for attaching lifting gear.
  • the stop elements can be designed for attaching hydraulic lifters.
  • the rail can also have stop elements for attaching the hydraulic jack.
  • the release device can have two rails which are arranged on both sides of the rotor shaft.
  • the frame can have a maintenance cabin in the area of the rotor coupling.
  • the coupling can be accessible from the service cabin.
  • the maintenance cabin can be used for the protected storage of tools.
  • the maintenance cabin can protect the coupling from environmental influences.
  • FIG. 1 shows a spatial representation of a vertical ball mill 100 according to an embodiment.
  • the ball mill 100 with a filling volume of more than 12 m 3 to around 150 m 3 , it is very large and, in a continuous grinding process, a suspension of coarsely crushed material to be ground in a liquid carrier medium can be produced by moving grinding bodies with an average initial grain size by a factor of around 10 to 100 be crushed to an average target grain size.
  • the grinding media can in particular be metallic and/or ceramic balls with a diameter that is approximately 2 to 50 times larger than the initial grain size.
  • the initial grain size here can be up to 15 millimeters.
  • the grinding bodies can be between 5 millimeters and 50 millimeters in size.
  • the ball mill 100 can thus be used as a comminution stage in a multi-stage digestion process, for example in the extraction of raw materials. There, the grist may contain desired minerals and waste rock to be separated.
  • the ball mill 100 has an overhead rotor for moving the media.
  • a free-standing stator 102 as a container for the suspension and the grinding bodies, radially encloses a working space of the ball mill 100 and the rotor.
  • a working space inside the stator 102 of the ball mill 100 shown here is between 12 cubic meters and 150 cubic meters.
  • the working space is mostly filled with a grinding media bed made up of many grinding media.
  • the suspension with the coarsely crushed material to be ground is fed continuously into the bed of grinding media in a lower area of the working space at a flow rate of between 50 cubic meters per hour and 5000 cubic meters per hour.
  • the ground material is comminuted as it flows through the grinding media bed. In an upper region of the working space, the suspension with the comminuted material to be ground flows out of the bed of grinding media and is discharged from the working space, while the grinding media remain in the working space.
  • a shear flow forms between the stator 102 and the rotor during the grinding process when the rotor is rotating, since a rotor boundary layer of the suspension surrounding the rotor with the grinding media contained therein is entrained by the rotor essentially at an angular velocity of the rotor and a stator boundary layer of the suspension with the is held substantially stationary on the stator 102 by the grinding media contained therein.
  • a speed profile of the shearing flow develops, since the suspension and the grinding media are moved faster the closer they are to the rotor. Due to the course of the speed, there are mass collisions between fast and slow grinding bodies, in which the material to be ground in between is crushed. The comminuted material to be ground is swept upwards in the working chamber by an upward flow of the carrier medium resulting from the flow of the suspension through the bed of grinding media.
  • the stator 102 has a lateral surface 104 that essentially approximates the shape of a cylinder and, in the representation shown in the figure, covers the rotor.
  • the rotor is mounted axially and radially above the stator 102 at an upper end and hangs into the working space.
  • a bearing and drive device 106 of the rotor is supported directly on a foundation 110 of the ball mill 100 via a free-standing frame 108 .
  • the storage and drive device 106 has four electric motors 107 with a total output of between 0.8 megawatts and 12.5 megawatts, which drive the rotor via a common gearbox. Fewer or at least one electric motor can also be used. There is no load bearing contact between the frame 108 and the stator 102 .
  • a drive torque of the bearing and drive device 106 is derived via the frame 108 into the foundation 110 .
  • the stator 102 stands self-supporting on a base plate of the ball mill 100.
  • the base plate supports a weight of the stator 102, a counter torque of the driving torque, and a weight of the grinding media, the minerals, and the carrier medium on the foundation 110.
  • the base plate is in 1 covered by the stator 102.
  • the stator 102 can be divided in particular for maintenance purposes.
  • the stator 102 is composed of two essentially identical stator segments 112 .
  • the stator 102 can also be composed of more than two stator segments 112 .
  • the stator segments 112 are connected to one another via sealing flanges 114 .
  • the sealing flanges 114 run from an upper edge of the stator 102 to a lower edge of the stator along side edges of a wall 116 of the stator segments 112.
  • the sealing flanges 114 can be screwed together, for example.
  • the screws can be loosened again.
  • the adjacent stator segments 112 can also be mechanically detachably connected to one another in some other way.
  • the sealing flanges 114 form sealing surfaces 118 for fluid-tight sealing of the working space. Additional seals can be arranged between sealing surfaces 118 . The sealing surfaces 118 or seals prevent the suspension from escaping at the separation points of the stator 102. Sealing flanges 114 can also be provided with leakage channels. Leakage channels can divert any escaping carrier medium to a collection system.
  • the wall 116 of a stator segment 112 forms a segment of the lateral surface 104 of the stator 102 that approximates the shape of a segment of a cylinder and is reinforced on an outside by a plurality of tangentially aligned stiffening ribs 117 .
  • the wall 116 is reinforced on the outside by a few stiffening ribs 119 running in the axial direction.
  • the sealing flanges 114 essentially correspond to axial stiffening ribs 119 running along the side edges.
  • the stiffening ribs 117, 119 stiffen the stator 112, among other things, against hydrostatic pressure from the carrier medium.
  • the stator segments 112 each have a peripheral standing flange 120 on the lower edge.
  • the standing flange 120 is essentially one along the bottom edge of the Walls 116 running tangential rib.
  • the stator segments 112 are connected to the baseplate via the standing flanges 120, in particular in such a way that forces due to the weight of the stator segments 112 and possibly due to the weight of the grinding bodies and the material to be ground can be dissipated into the baseplate.
  • the standing flanges 120 can be screwed to the base plate.
  • the standing flanges 120 form a standing surface 122 of the stator 102 that is dimensioned appropriately for the load.
  • the entire weight of the stator 102 is supported on the base plate via the base 122 .
  • the standing surface 122 is also a sealing surface 118 and seals against the base plate. A seal can also be arranged between the standing surface 122 and the base plate. Leakage channels can also be formed between the standing surface 122 and the base
  • stator segments 112 In order to access the rotor, the working area can be emptied, i.e. the material to be ground and the grinding media removed. Then the stator segments 112 can be moved laterally. Before moving, a mechanical connection between the stator segments 112 and between the stator segments 112 and the base plate is released. Subsequently, the stator segments 112 can be individually lifted by means of a lifting device in order to be moved laterally free of the base plate. Hydraulic jacks, for example, can be used as the lifting device.
  • Each stator segment 112 has a plurality of stop elements 124 for lifting.
  • the stop elements 124 are arranged in the area of the lower edge of the wall 116 .
  • the stop elements 124 are designed here as consoles that protrude beyond the standing surface 122 and have stop surfaces pointing downwards.
  • the ball mill 100 has a displacement device 126 .
  • the displacement device 126 has three sliding paths 128 per stator segment 112, via which the stator segment 112 can be moved away from the other stator segment 112 in a laterally guided manner.
  • the sliding paths 128 are defined here by rails 130 anchored in the foundation 110 .
  • the rails 130 and foundation 110 are designed to securely support the weight of a stator segment 112 .
  • the auxiliary devices are arranged between the stop elements 124 and the rails 130 and support the weight of the stator segment 112 lowered thereon via the rails 130 .
  • the auxiliary devices maintain a distance between the standing surface 122 and the base plate, even when it is lowered again.
  • the stator segment 112 is moved along the sliding path 128 with the auxiliary devices.
  • the auxiliary devices are designed as sliding shoes, which slide on a surface of the rails 130 by means of a sliding coating and an optional lubricant. Pull systems and/or push systems may be used to move the stator segment 112 along the rails 130 .
  • heavy-duty rollers are arranged between the stop elements 124 and the foundation 110 , which is dimensioned appropriately for the load, in order to move the stator segment 112 , via which rollers the weight of the stator segment 112 is supported directly on the foundation 110 .
  • the stator segment 112 can be moved freely on the heavy-duty rollers.
  • At least one anti-tilt support 132 is arranged on at least one of the stator segments 112 .
  • the anti-tilt support 132 can be firmly attached to the stator segment 112 or, alternatively, can be attached to stop elements 124 of the stator segments 112 provided for this purpose before the displacement.
  • the anti-tipper 132 can be supported on the foundation 110 via a heavy-duty roller. Alternatively, the anti-tipper 132 can be part of the displacement device 126 .
  • the anti-tilt support 132 is then coupled to one of the rails 130 by means of a further auxiliary device 134 .
  • the additional auxiliary device 134 can be designed as a sliding shoe. The additional auxiliary device 134 can be secured against being lifted off the rail 130 .
  • the auxiliary device 134 can at least partially encompass the rail 130 .
  • the auxiliary device 134 can introduce compressive and tensile forces into the rail 130 .
  • the anti-tilt support 132 is adjustable in length in order to be able to compensate for the stroke when raising and lowering the stator segment 112 or to correct an angular position of the stator segment 112 in relation to the other stator segment 112 .
  • the rails 130 are arranged in depressions in the foundation 110 .
  • the rails 130 can be covered during the operation of the ball mill 100, which protects them from damage and dirt better than if they were exposed.
  • FIG. 2 shows a spatial representation of an open vertical ball mill 100 according to an embodiment.
  • the ball mill 100 essentially corresponds to the ball mill in 1 .
  • the stator segments 112 have been separated from one another here.
  • the stator segments 112 were lifted at the stop elements 124 and thereby lifted off the base plate 200.
  • Auxiliary devices 134 have been arranged between the stop elements 124 and the rails 130, on which the stator segments 112 have been placed.
  • the standing areas 122 are at a distance from a load-bearing surface 201 of the base plate 200.
  • stator segments 112 on the auxiliary devices 134 are laterally shifted away from the base plate 200 along the sliding path 128 defined by the rails 130 in order to carry out maintenance work to be able to perform on the rotor 204 and/or an inner side 206 of the stator 102 .
  • the stator segments 112 have been moved in opposite directions.
  • the stator segments 112 can have a plurality of vertically spaced, horizontal, ring-segment-shaped ribs 208.
  • the ribs 208 of both stator segments 112 can be arranged in the same way.
  • Flat sides of each rib 208 act as annular braking surfaces 210 for the suspension during operation of the vertical ball mill 100 .
  • the ribs 208 also act as deflection surfaces in the direction of the rotor 204 for the suspension flowing from bottom to top through the ball mill 100.
  • the ribs 208 are uniformly spaced.
  • the ribs 208 on the inside 206 may, but need not, have a greater height and/or greater vertical spacing than the tangential stiffening ribs 117 on the outside. It is also possible to design the mill cylinder without internal ribs.
  • the rotor 204 is shown separated from the drive and bearing assembly 106 and laterally disengaged.
  • the rotor 204 has a plurality of discs 212 which are arranged on a rotor shaft 205 and are vertically spaced apart and aligned transversely to the rotor shaft 205 .
  • each disc 212 On its flat sides, each disc 212 has two annular drag surfaces 214 for driving the suspension.
  • the discs 212 have openings 213 towards the rotor shaft 205 .
  • Spokes 215 are formed between the drag surfaces 214 and the rotor shaft 205 through the openings 213 .
  • the ribs 208 and the disks 212 can be spaced apart from one another and arranged alternately one above the other in the working space, with the braking surfaces 210 and the drag surfaces 214 being able to overlap at least partially in the horizontal direction. Due to the overlapping of the ribs 208 and the discs 212, a labyrinth is formed between the stator 102 and the rotor 204 in the operational state, which forms a flow path for the suspension extended by the ball mill 100. An embodiment without the inner ribs 208 is also feasible.
  • the rotor 204 has a coupling 216 via which the rotor 204 can be detachably coupled to the bearing and drive device 106 .
  • the frame 108 has a disengagement device 218 for disengaging the rotor 204 .
  • the release device 218 has two rails 130 which are connected to the frame 108 and protrude laterally over the crossbeam of the frame 108 and a coupling device 220 .
  • the rails 130 are arranged on opposite sides of the rotor shaft 205 .
  • the coupling device 220 is connected in the area of the clutch 216 to the rotor 204 coupled to the bearing and drive device 106 .
  • the coupling device 220 is essentially U-shaped and is pushed onto the rotor shaft 205 from the side. An open end of the coupling device 220 is then closed by a latch 222 .
  • the coupling 216 has a larger diameter than the rotor shaft 205.
  • the coupling device 220 is raised until it rests against the coupling 216 and the bearing and drive device 106 is relieved by the weight of the rotor 204 being intercepted by the coupling device 220. Then the clutch 116 is released from the bearing and drive device 106 .
  • the coupler 220 with the rotor 204 detached is then lowered until it rests on the rails 130 .
  • the rotor 204 together with the coupling device 220 is then moved along the rails 130 until the coupling 216 is arranged next to the cross member and is accessible from above.
  • the coupling 216 can then be lifted out of the coupling device 220 using an adapter with a crane.
  • the coupling device 220 can have a sliding coating, for example.
  • the figures 1 and 2 show a ball mill 100 in which a mill drive consisting of motor(s) 107 and gearing serving as a bearing and drive device 106, together with a mill shaft serving as a rotor shaft 205, are arranged at the top of the vertical mill on a platform or a mill frame, which serve as a frame 108 is.
  • the mill shaft carries grinding discs 212 and together with these can be referred to as rotor 204 .
  • the platform at the top of the mill only supports the weight of the rotor, motor and gearbox, resulting in relatively small forces. The Forces are particularly small compared to the acting forces when the whole mill is suspended above.
  • a grinding cylinder of the ball mill 100 acting as a stator 102 with an anti-wear lining and stationary discs in the form of ribs 208 is not structurally connected to the mill drive.
  • the grinding cylinder can be divided into two grinding cylinder halves with stationary disks.
  • a hollow seal is used to seal the vertical flange and the radial flange.
  • a weight of the grinding cylinder, the stationary discs, grinding bodies and the suspension of grinding material and carrier medium, referred to here as pulp, is carried by the anchoring on the ground and diverted into the foundation.
  • the grinding cylinder construction is sufficiently stable to absorb the forces.
  • the base plate 200 is anchored in the concrete on the floor to absorb and dissipate the grinding cylinder forces.
  • An optional wear plate protects the base plate 200 and is supported solely by its own weight or can also be mechanically attached and can be easily removed.
  • a slurry inlet is sideways down and a slurry outlet is sideways up.
  • the interior of the grinding cylinder or the mill cylinder is filled with grinding beads (not shown) up to 80% of the height of the grinding cylinder. There is turbidity in the spaces between the grinding beads and above the bed of grinding beads.
  • the ball mill 100 is emptied through openings on the mill floor.
  • the vertical ball mill 100 presented here can be used in particular for primary grinding, ie for coarse grinding.
  • regrind with a maximum grain size F100 of 10 mm to 15 mm or with an F80 of 250 microns to 5 mm is ground economically to a fineness of P80 of 100 ā‡ m.
  • a variant of the ball mill 100 can be used for fine comminution.
  • a grinding to a product fineness with a P80 of 40 to 300 ā‡ m is referred to here as a fine range.
  • the feed fineness is preferably in the range of less than 500 ā‡ m.
  • the grinding bodies essentially remain in position in the vertical direction. Essentially no lifting work is applied.
  • the grinding takes place in the areas between the Rotor disks 212 and the housing disks formed by the ribs 208.
  • the grinding chamber, and thus the stress on the material to be ground with the grinding media, is very well defined. This increases grinding efficiency.
  • the grinding forces required for grinding are essentially generated by centrifugal forces. Gravity causes a top-to-bottom contact force or squeeze between the grinding media and a top-to-bottom increasing hydrostatic pressure in the stator 102.
  • the grinding forces can be influenced and changed by the speed and mass of the grinding media.
  • the ground material is transported in the vertical ball mill 100 by the drag forces in the pulp which are generated by the feed pump.
  • the residence time and thus the energy input can be influenced by an adjustable delivery rate of the feed pump.
  • the finished product is transported through the openings in the rotor and discharged from the top of the mill in the overflow.
  • a separate external view circuit is generally not required. However, one can be provided if necessary.
  • the fine material from the vertical ball mill 100 presented here achieves a narrow grain size distribution (PSR) that is advantageous for the subsequent treatment stage (flotation, leaching). This corresponds to a steep course of a delicacy curve shown in the RRRS diagram.
  • a narrow particle size distribution is achieved by minimizing over-grinding.
  • the already finished product is removed from the grinding process as quickly as possible. The better this succeeds, the steeper the price-earnings ratio.
  • the grinding chamber of the vertical ball mill 100 is therefore designed in such a way that these requirements are met. This is essentially achieved by openings in the form of openings 213 in rotor disks 212 .
  • a pump conveys the slurry from bottom to top, passes through the openings and the grinding chamber and takes the fines of the ground material with it.
  • the speed is determined by the flow rate of the pump.
  • the flow rate is adjusted in such a way that the product ground to the desired product fineness is transported away and coarser material remains in the grinding chamber of the mill.
  • the material to be ground, which has already reached the required fineness, is removed from the grinding chamber as quickly as possible. This avoids over-grinding.
  • the interior of the grinding cylinder is emptied.
  • the grinding beads and the slurry are drained through openings and pipes in the mill floor and by opening the relevant valves. Due to their own weight, the grinding beads and the slurry leave the grinding chamber through the floor openings.
  • the drain volume can be adjusted through the valves regulated and supported by rotation of the rotor.
  • Pipelines lead the grinding beads and the pulp to a suitable conveyor system, which is installed below the mill floor.
  • the conveying system can be, for example, a conveyor belt, a screw conveyor, a pump or a bucket elevator. The list is not final.
  • the conveyor system transports the milling beads and slurry sideways of the ball mill 100 to a level high enough to be loaded into a bin or truck. This process is continued until the ball mill 100 is completely empty.
  • the slide rails 130 are covered and cleaned. In this case, in particular, a slide rail surface is cleaned.
  • assembly supports or anti-tipping supports 132 are mounted on both halves of the mill cylinder and screwed pipe flange connections of the pulp feed and the pulp discharge pipe are loosened.
  • the vertical and radial flange screws are loosened and three hydraulic cylinders are pushed in for each half of the grinding cylinder.
  • one half of the grinding cylinder is raised by approx. 25mm and three Teflon shoes are attached to the half of the grinding cylinder and another shoe to the assembly support.
  • the grinding cylinder half is lowered with the three hydraulic cylinders until the Teflon sliding shoes stand up on the slide rails. Then the pull and push cylinders on both sides are connected to the tabs provided on the grinding cylinder or the sliding shoes.
  • the assembly support is extended with its hydraulic cylinder until the grinding cylinder half begins to lift. With the two pull and push cylinders, the grinding cylinder half is pulled to the intended maintenance position.
  • a shaft assembly slide or shaft assembly carriage is moved to the installed shaft as a disengaging device 218 .
  • the shaft assembly carriage is lifted about 25mm upwards with four hydraulic cylinders and the shaft clamp is closed and clamped around the shaft shaft. Then the coupling screws are loosened.
  • the shaft assembly carriage is lowered together with the clamped and decoupled shaft using four hydraulic cylinders until the shaft assembly carriage touches the slideway.
  • the shaft assembly carriage with the shaft is moved to a lateral position or a Lifting position, at which the shaft can be lifted with the indoor crane, shifted.
  • a shaft holding device or an eyelet is installed on the shaft coupling. Now the shaft can be lifted off the hook of the indoor crane.
  • the shaft can be stored in a hanging fixture or placed on a dedicated maintenance trailer.
  • FIG 3 shows a spatial representation of a stator segment 112 of a vertical ball mill according to an embodiment.
  • the stator segment 112 essentially corresponds to one of the stator segments 112 in FIGS figures 1 and 2 . Contrary to what is shown in the figures 1 and 2 the stator is composed of three stator segments 112 in the exemplary embodiment shown.
  • the wall 116 forms an arc of 120Ā°.
  • the sealing flange 114 and the sealing surface 118 as well as the base flange 120 and the base 122 are provided with through holes 121 in order to screw them to a correspondingly designed counterpart, i.e. another sealing surface of another stator segment 112 or the load-bearing surface of the base plate.
  • the stator segment 112 shown here has a weight of approximately 30 tons. On the inside 116 nine rib segments are arranged one above the other at regular intervals.
  • the stop elements 124 designed as consoles protrude radially beyond the standing surface 122 and are connected to the wall 116 via two axially aligned stiffening ribs. Two of the stop elements 124 are arranged in the area of the lower corners of the wall 116 .
  • FIGS figures 1 and 2 ball mill shown show a sectional view through a vertical ball mill 100 according to an embodiment.
  • the ball mill 100 essentially corresponds to that in FIGS figures 1 and 2 ball mill shown.
  • the ball mill 100 has an emptying device 400 for emptying the working space.
  • the base plate 200 of the ball mill 100 has a sloping floor 402 as part of the emptying device 400 .
  • a surface enclosed by the load bearing surface 201 supporting the weight of the stator segments 112 is raised above surface 201 and slanted at an angle of approximately 2.5Ā° to 30Ā° from horizontal.
  • One of the stator segments 112 has a drain opening 404 in the region of a low point of the sloping floor 402, ie where a surface of the sloping floor 402 is closest to the load-bearing surface 201.
  • Drain port 404 is here designed as a radially aligned pipe connection flange. In operation, the drain opening 404 is closed by a suitable fitting. The valve is opened for emptying.
  • the foundation 110 has a pit 406 in the area in front of the discharge opening 404, in which transport containers for transporting away the grinding bodies can be placed in order to empty the working space.
  • the grinding bodies with adhering residues of the suspension can be discharged into the transport containers arranged in the pit 406, driven by gravity.
  • the rotor 204 may be driven to eject media deposited on the disks 212 to the outside.
  • the other stator segment 112 has at least one flushing opening 408 in the region of a high point of the sloping floor 402, ie where the surface of the sloping floor 402 projects farthest beyond the load-bearing surface 201.
  • the flushing opening 408 is also designed here as a radially aligned pipe connection flange.
  • the flushing port 408 is located diametrically opposite the drain port.
  • the flushing opening 408 can support the emptying of the working chamber by means of a liquid flow directed onto the emptying opening 404 .
  • the flushing opening 408 is also closed by a suitable fitting during operation.
  • the rotor 204 can also be mounted in the base plate 200 via a radial floating bearing.
  • the rotor shaft has a bearing journal at the lower end, which is mounted in the movable bearing. Changes in the length of the rotor 204 can be compensated for by shifting the floating bearing on the bearing journal.
  • figure 5 shows a sectional view through a vertical ball mill 100 according to an embodiment.
  • the ball mill 100 essentially corresponds to the ball mill in 4 .
  • the base plate 200 covers the pit 406 at least partially.
  • the base plate 200 has the at least one emptying opening 404 here. If the fitting is opened, the contents of the working space flow out through the drain opening 404 .
  • the base plate 200 has a plurality of drainage openings 404 .
  • the drain openings 404 are distributed over the base plate 200 arranged.
  • the multiple purge ports 404 together have an increased total cross-sectional area, thereby purging is rapid.
  • a transport system 500 for conveying the contents of the workspace out of the pit 406 is arranged in the pit 406 .
  • the conveyor system 500 can be designed as a conveyor belt or screw conveyor.
  • the transport system 500 has a delivery head that is sufficient to transport the contents into transport containers parked at ground level.
  • the transport container can also be arranged under the mill so that no conveying device is required.
  • FIG. 6 6 shows a flow diagram of a method 600 for servicing a vertical ball mill according to an embodiment.
  • a ball mill configured specifically for pre-milling minerals may be serviced.
  • the method 600 comprises a step 602 of separating, a step 606 of arranging and a step 610 of relocating.
  • the vertical ball mill has a downwardly hanging rotor which is supported axially and radially at an upper end. Furthermore, the vertical ball mill has a self-supporting stator which radially encloses the rotor and is unloaded by the weight of the rotor.
  • the rotor has a lateral surface which is oriented tangentially to the rotor and approximates a cylindrical shape within a shape tolerance.
  • the vertical ball mill has a base plate that supports a weight of the stator.
  • the stator is composed of at least two stator segments which can be separated from one another and are cantilevered in the separate state and can be displaced relative to one another.
  • Each of the stator segments has, on at least one side edge of the wall running from an upper edge of a wall forming the lateral surface to a lower edge of the wall, a sealing surface for sealing on the respective other stator segment. Furthermore, each of the stator segments has on the lower edge a footprint dimensioned appropriately for the load for sealing to the base plate. The stator segment loads with the base orthogonally standing on a load-bearing surface of the base plate within an angular tolerance.
  • step 602 of separating the stator is separated into the stator segments, with the stator being separated at the sealing surfaces. Mechanical connections between adjacent stator segments can be released for this purpose.
  • auxiliary devices are placed under the stator segment.
  • the auxiliary devices can be positioned and configured in such a way that the entire stator segment can bear a load on the auxiliary devices and can be displaced with them.
  • step 610 of shifting the stator segment and the auxiliary devices are shifted laterally using a shifting device. At least one of the stator segments is in this case displaced essentially horizontally, while its weight preferably still weighs on the foundation of the ball mill via the auxiliary devices.
  • the ball mill with the stator opened in the manner described can then be easily serviced.
  • the working space is easily accessible so that it can be cleaned and/or wearing parts can be replaced.
  • the method 600 includes a step 604 of lifting and a step 608 of setting down.
  • the lifting step 604 at least one of the stator segments is lifted using lifting devices, whereby the stator segment is lifted off the base plate. Raising the stator segment by a few millimeters or a few centimeters can suffice. The lifting can be done in particular with the help of hydraulic lifting devices, which support stop elements on the respective stator segment from below.
  • step 608 of setting down the stator segment is set down on the auxiliaries.
  • stator of the ball mill described here which stands on the base plate and thus indirectly weighs on the foundation, thus makes it possible for the stator to be opened easily and preferably also by less trained personnel and/or under adverse conditions, in order to then service the ball mill to be able to With the configuration described above, maintenance can be performed in a shorter period of time. Since the mill can then be used again more quickly in the production process, productivity is increased.
  • FIG. 7 shows a spatial representation of a closed vertical ball mill 100 according to an embodiment.
  • the ball mill 100 essentially corresponds to the ball mill in 1 .
  • the ball mill 100 on the frame 108 and on the stator 102 has working platforms 700 in several tiers one above the other.
  • the work platforms 700 are secured all around by railings.
  • the Stator segments 112 and the frame 108 have work platforms 700 on two floors.
  • the frame 108 also includes work platforms 700 on two floors above.
  • the ball mill 100 thus extends over four floors.
  • the work platforms 700 of a stator segment 112 are connected to one another via a ladder 702 .
  • the ladder 702 is attached to the anti-tipper 132, which is permanently installed here.
  • the ladder 702 has a safety cage.
  • the anti-tilt support 132 is connected to both work platforms 700 or to a support structure of the work platforms 700 and is aligned essentially parallel to the longitudinal axis of the stator 102 .
  • the anti-tipper 132 is spaced apart from the stator segment 112 by the work platforms 132 . Due to the permanently installed anti-tilt support 132 , the stator 102 has only two stop elements 124 in the area of the sealing flanges 114 . The third stop element 124 is arranged at the lower end of the anti-tilt support 132 .
  • the sealing flanges 114 are easily accessible for maintenance work over their full length via the work platforms 700 of the stator 102 .
  • the work platforms 700 on the frame 108 are accessible via a stair tower 704 .
  • the stair tower is located next to the frame 108.
  • the frame 108 On the third floor, the frame 108 has a maintenance cabin 706 from which protected access to the coupling between the bearing and drive device 106 and the rotor and the release device is possible.
  • the maintenance cabin 706 is surrounded by work platforms 700 all around.
  • the work platform 700 of the fourth floor is essentially arranged on a roof area of the maintenance cabin 706 and extends around the storage and drive device 106 .
  • the storage and drive device 106 has a single electric motor 107 here.
  • the frame 108 is designed as a framework construction.
  • the frame 108 on the side of the stair tower 704 is designed as a three-dimensional framework and has six uprights in two parallel rows.
  • work platforms 700 are arranged on the beams of the truss connecting the uprights.
  • the work platforms 700 of the stator are also accessible from the work platforms 700 of the frame 108 when the ball mill 100 is in the closed state.
  • the frame 108 is designed as a flat truss with three uprights in a row.
  • FIG. 8 shows a spatial representation of an open vertical ball mill 100 according to an embodiment.
  • the ball mill 100 corresponds to im Essentially the ball mill in 7 .
  • the rotor is not shown here for reasons of clarity.
  • the stator segments 112 are shown separated from one another and shifted laterally. Contrary to what is shown in the Figures 1 to 6 the base plate 200 is here raised above a surrounding floor area.
  • the sloping bottom 402 is designed as a sloping end face of a truncated cylinder that protrudes beyond the load-bearing surface 201, ie protrudes into the interior of the stator 102 when the ball mill 100 is closed.
  • the auxiliary devices 134 each have a frame 800 which connects all three stop elements 124 of a stator segment 112 and fixes their relative positions. On the frame 800, the auxiliary devices 134 can simply be lifted, for example with an indoor crane, and moved to a storage location. After separating the stator segments 112 , the stator segments 112 have been lifted at the stop elements 124 in order to detach them from the base plate 200 . The auxiliary devices 134 with their frame 800 have been arranged between the stop elements 124 and the displacement device 126 . The stator segments 112 have then been lowered onto the auxiliaries 134 . The auxiliary devices 134 have their own drive 802 . Using the drive 802, the auxiliary devices 134 with the stator segments 112 mounted thereon have been moved laterally along the displacement device 126 into the maintenance positions.
  • FIG 9 shows a spatial representation of a stator segment 112 of a vertical ball mill according to an embodiment.
  • the stator segment 112 essentially corresponds to one of the stator segments in FIG figures 7 and 8th .
  • the stator segment 112 has in contrast to the stator segments in the Figures 1 to 5 only one stiffening rib 117 on the outside.
  • the stiffening rib 117 is arranged in a lower area of the lateral surface 104 above the axial stiffening ribs 119 of the stop elements 124 .
  • the work platforms 700 run all the way around the lateral surface 104 .
  • work platforms 700 On an inside, that is to say on a side facing lateral surface 104 , work platforms 700 have a cutout in the shape of a semicircular arc for stator segment 112 .
  • the working platforms 700 are angular on an outside, ie on a side facing away from the lateral surface 104 .
  • the working platforms 700 have the railing and a coaming 900 along all outer edges.
  • the coaming 900 stands upwards over a floor surface of the work platforms 700 and prevents objects from falling.
  • the work platforms 700 have a cutout in the area of the sealing flange 114 .
  • the sealing flange 114 is therefore not interrupted by the work platforms 700 .
  • the working platforms 700 on one side of the stator segment 112 extend beyond a plane of the sealing surface 118 or the sealing flange 114 .
  • the sealing flange 114 is accessible from both sides and the stator segment 112 can be connected to the other stator segment, not shown here, in an ergonomic working position.
  • the ladder 702 is arranged on one side of the anti-tilt support 132 and has a passage through the safety cage at the level of the two work platforms 700 .
  • the railing is interrupted in the area of the hatches.
  • FIG. 10 shows a spatial representation of a work platform 700 of a vertical ball mill according to an embodiment.
  • the work platform 700 essentially corresponds to one of the work platforms in 7 .
  • the work platform 700 is rectangular.
  • the working platform 700 has two outer sides like the working platforms in 9 a coaming 900 projecting beyond the floor area and a railing.
  • the work platform 700 has a support structure below the floor surface. In particular, the bottom surface is reinforced by ribs.
  • the ribs have attachment holes on two inner sides of the work platform 700 for attaching the work platform 700 to the ball mill.
  • the working platform 700 has a lifting bracket 1000 sunk into the floor area.
  • the working platform 700 can be quickly and easily assembled and disassembled with the indoor crane using the lifting brackets 1000.
  • FIG 11 shows a spatial representation of a displacement device 126 of a vertical ball mill 100 according to an embodiment.
  • the displacement device 126 essentially corresponds to the displacement device in FIG 8 .
  • the displacement device 126 is placed on the rails 130 .
  • the auxiliary devices 134 are arranged between the stop elements 124 and the rails 130 .
  • the frame 800 is essentially V-shaped and connects the auxiliary devices 134 arranged on the stop elements 124 commonality.
  • the two auxiliary devices 134 arranged on the stator segment 112 each have an electric drive 802 .
  • FIG 12 shows a detailed illustration of a stand flange 120 of a vertical ball mill 100 according to an exemplary embodiment.
  • the stand flange 120 rests on the base plate 200.
  • the base plate 200 corresponds to the representation in FIG 8 .
  • the base flange 120 and the load bearing surface 201 have grooves 1200 arranged in a uniform grid.
  • the slots 1200 in the load-bearing surface 201 are designed as T-slots in order to accommodate T-slot screws (not shown here) for screwing the stator 102 to the base plate 200 .
  • T-slot screws can be removed from the side of the T-slots and the slots 1200 of the stationary flange 120 and thus do not represent an obstacle when the stator segments 112 are moved sideways.
  • FIG. 13 shows a detailed view of a sealing flange 114 of a vertical ball mill 100 according to an embodiment.
  • the ball mill 100 is closed here.
  • the sealing flanges 114 of the stator segments 112 connected to one another are pressed together here by pivotable clamps 1300 .
  • the clamps 1300 have an essentially U-shaped base body 1302 and enclose both sealing flanges 114 from the outside.
  • hinges 1304 are arranged on the outside, on which the clamps 1300 are mounted in a horizontally pivotable manner.
  • the base bodies 1302 each have at least one threaded bore 1306 in which a screw spindle 1308 for pressing the sealing flanges 114 together is rotatably mounted.
  • the sealing flanges 114 are connected to one another by pivotable clamping jaws 1310 .
  • the clamping jaws 1310 are mounted on the hinges 1304 so that they can be pivoted horizontally.
  • the jaws 1310 have a tapered, vertical slot 1312 on.
  • the slot 1312 is wider at its wider end than both sealing flanges 114 together.
  • the slot 1312 is narrower than the sealing flanges 114.
  • the sealing flanges 114 are inserted into the slot 1312 as the jaws 1310 pivot.
  • the clamping jaw 1310 can be wedged on the sealing flanges 114, for example by hammer blows.
  • a wedge can be driven between the clamping jaws 1310 and the lateral surface 104 in order to push the clamping jaws 1310 off the sealing flanges 114.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Description

Gebiet der Erfindungfield of invention

Die Erfindung betrifft eine vertikale KugelmĆ¼hle, insbesondere zum Vor-Mahlen von Mahlgut wie Mineralien, ein Statorsegment fĆ¼r eine vertikale KugelmĆ¼hle und ein Verfahren zum Warten einer vertikalen KugelmĆ¼hle.The invention relates to a vertical ball mill, in particular for pre-grinding of ground material such as minerals, a stator segment for a vertical ball mill and a method for maintaining a vertical ball mill.

Technologischer HintergrundTechnological background

In einer KugelmĆ¼hle werden Mahlkƶrper verwendet, um Mahlgut zu zerkleinern. Das Mahlgut wird hierbei in einer Suspension, welche auch als TrĆ¼be oder Slurry bezeichnet wird, aufgenommen und in der MĆ¼hle bewegt. Die Mahlkƶrper sind im Allgemeinen kugelfƶrmig und werden auch als Mahlkugeln oder Mahlperlen bezeichnet. Unter dem Mahlgut sind insbesondere Mineralien und Mineral-Aggregate zu verstehen, wie metallische Erze, aber auch Stoffe Ƥhnlicher HƤrte wie Kohlenerze, Recyclingmaterialien etc. In der nachfolgenden Beschreibung wird beispielhaft das Zerkleinern von Mineralien beschrieben.In a ball mill, grinding media are used to grind grist. The material to be ground is taken up in a suspension, which is also referred to as turbidity or slurry, and moved in the mill. The grinding bodies are generally spherical and are also referred to as grinding balls or grinding beads. Ground material is understood to mean, in particular, minerals and mineral aggregates, such as metallic ores, but also substances of similar hardness, such as coal ores, recycling materials, etc. The crushing of minerals is described by way of example in the following description.

Bei herkƶmmlichen MĆ¼hlen werden zum Zerkleinern der Mineralien die Mineralien mit den Mahlkugeln vermischt. Ein Teil der Mahlkugeln und der Mineralien wird um eine konstruktionsbedingt vorgegebene Strecke angehoben und stĆ¼rzt aus dieser Hƶhe zurĆ¼ck in ein Bett aus dem Rest der Mahlkugeln und Mineralien. Dabei treffen die herabstĆ¼rzenden Mahlkugeln auf liegende Mahlkugeln. Mineralien, die sich dazwischen befinden, werden zertrĆ¼mmert.In conventional mills, the minerals are mixed with the grinding balls to grind the minerals. A portion of the grinding balls and minerals are raised a predetermined distance by design and fall back from that height into a bed of the rest of the grinding balls and minerals. The falling grinding balls hit lying grinding balls. Minerals that are in between are shattered.

Eine herkƶmmliche KugelmĆ¼hle kann beispielsweise eine liegende, d.h. um eine horizontale Achse rotierende Trommel aufweisen, in der mit Hilfe von Mahlkugeln Mineralien zerkleinert werden. Bei einer RĆ¼hrwerksmĆ¼hle wird ebenfalls die Schwerkraft als ein wesentliches Element zur Erzeugung von ZerkleinerungskrƤften genutzt (sog. "gravity induced mills").A conventional ball mill can, for example, have a horizontal drum, ie a drum rotating about a horizontal axis, in which minerals are comminuted with the aid of grinding balls. In an agitator mill, gravity is also used as an essential element for generating crushing forces (so-called "gravity induced mills").

Bei einer MĆ¼hle, die vorwiegend die Schwerkraft nutzt, bildet sich ein hydrostatischer Druck, der die Mahlung unterstĆ¼tzt. Diese Bauart bedingt, dass die Mahlkƶrper immer wieder angehoben werden. Dazu ist Hebearbeit erforderlich, die beispielsweise durch eine rotierend anzutreibende Schnecke abgegeben wird. Die Mahlung erfolgt im Kugelbett. Die wesentliche Beanspruchung erfolgt durch die Schwerkraft und ein kleinerer Anteil auch durch FliehkrƤfte. Der Anteil der MahlkrƤfte, welcher auf die Schwerkraft zurĆ¼ckzufĆ¼hren ist, kann nicht beeinflusst werden. Das Mahlgut wird durch die Schnecke ebenfalls angehoben und rezirkuliert an der Peripherie nach unten. Der primƤre Transport des Mahlguts erfolgt durch die Schnecke, ein gewisser Anteil durch StrƶmungskrƤfte in der TrĆ¼be. Ein solcher Mahl- bzw. Transportmechanismus kann den Austrag auch groben Gutes verursachen. Dies bedingt in der Regel den Einsatz eines externen Sichtkreislaufes.In a mill that primarily uses gravity, hydrostatic pressure builds up to aid in the grinding. This design means that the grinding media are repeatedly lifted. This requires lifting work, which is done, for example, by a screw that is driven in rotation. The grinding takes place in a ball bed. The main stress is caused by gravity and to a lesser extent by centrifugal forces. The portion of the grinding forces that is due to gravity cannot be influenced. The material to be ground is also lifted by the screw and recirculates downwards at the periphery. The primary transport of the ground material takes place through the screw, a certain proportion through flow forces in the pulp. Such a grinding or transport mechanism can also cause coarse material to be discharged. This usually requires the use of an external view circuit.

Vorrichtungen zum Zerkleinern von Mineralien werden in zahlreichen AusfĆ¼hrungsformen gebaut und lassen sich vereinfacht betrachtet als horizontale und vertikale MĆ¼hlen bezeichnen. Aus der DE 1 901 593 (A1 ) ist eine vertikal angeordnete RĆ¼hrwerksmĆ¼hle mit Mahlhilfskƶrpern zum Homogenisieren, Dispergieren und Zerkleinern von Feststoffen in FlĆ¼ssigkeiten bekannt. In der Grundstoffindustrie (Bergwerke etc.) haben sich ebenfalls vertikal angeordnete MĆ¼hlen bewƤhrt (siehe u.a. WO 2007/019602 A2 ).Devices for crushing minerals are built in numerous forms and can be simply referred to as horizontal and vertical mills. From the DE 1 901 593 (A1 ) is a vertically arranged agitator mill with auxiliary grinding bodies for homogenizing, dispersing and comminuting solids in liquids. In the primary industry (mines, etc.), vertically arranged mills have also proven their worth (see e.g WO 2007/019602 A2 ).

Alternativ dazu gibt es MĆ¼hlen, bei denen die ZerkleinerungskrƤfte Ć¼berwiegend in einem fluidisierten Mahlbett erzeugt werden und durch die Drehzahl eines Rotors erzeugt und verƤndert werden kƶnnen (sog. "fluidized mills"). Eine vertikal ausgerichtete MineralmĆ¼hle zum Fein-Mahlen wurde anlƤsslich der IMCET 2013 ("23rd International Mining Congress and Exhibition of Turkey", Kemer/Antalya/Turkey, April 16 -19, 2013, insbesondere Session 1: "Stirred Milling Technology - A new concept in fine grinding", by I. Roitto et al. "Outotec HIG-mills: a fine grinding technology ") vorgestellt. Die vorgestellte MineralmĆ¼hle zum feinen Zerkleinern von vorgemahlenen Mineralien besteht aus einem aus zwei Halbschalen zusammengefĆ¼gten, vertikal ausgerichteten Stator mit feststehenden ringfƶrmigen Mahlscheiben, der an einer massiven Plattform aufgehƤngt ist und einem an dieser einseitig gelagerten Rotor, auf dessen Welle Mahlscheiben angeordnet sind. Neben dem zentralen Rotor, der durch auf der Plattform gelagerte Getriebemotoren mit einer Leistung von bis 5000 kW angetrieben ist, hƤngt auch der Stator an dieser Plattform. Zwischen den rotierenden Mahlscheiben und stationƤren am GehƤuse befestigten Mahlscheiben wird das heterogene Gemenge mit Wasser und mit Mahlkƶrpern zerkleinert, so lange bis das Mahlgut die gewĆ¼nschte KorngrĆ¶ĆŸe und Kornverteilung erreicht. Dies erfolgt bei einem Nettovolumen (FĆ¼llvolumen) von maximal 30m3. Das dabei verwendete Mahlverfahren (welcher teilweise als HIG process; ultra fine grinding technology bezeichnet wird) setzt, damit der Mahlvorgang Ć¼berhaupt erfolgen kann, vorbehandelte, mehrstufig zerkleinerte Mineralien voraus. Die WO 2018/138405 A1 offenbart eine vertikale KugelmĆ¼hle bei welcher sowohl der Rotor als auch der Stator an einer Plattform hƤngend montiert sind.As an alternative to this, there are mills in which the comminution forces are predominantly generated in a fluidized grinding bed and can be generated and changed by the speed of a rotor (so-called "fluidized mills"). A vertically aligned mineral mill for fine grinding was used on the occasion of the IMCET 2013 ("23rd International Mining Congress and Exhibition of Turkey", Kemer/Antalya/Turkey, April 16 -19, 2013, in particular Session 1: "Stirred Milling Technology - A new concept in fine grinding", by I. Roitto et al "Outotec HIG-mills: a fine grinding technology "). The presented mineral mill for the fine grinding of pre-ground minerals consists of a vertically oriented stator assembled from two half-shells with fixed ring-shaped grinding discs, which is suspended from a solid platform and a rotor mounted on one side on the shaft with grinding discs arranged In addition to the central rotor, which is driven by geared motors mounted on the platform with an output of up to 5000 kW, the stator also hangs on this platform.The heterogeneous mixture is transported between the rotating grinding discs and stationary grinding discs attached to the housing Water and crushed with grinding media until the ground material reaches the desired grain size and grain distribution. This takes place with a maximum net volume (filling volume) of 30m 3 . The grinding process used (which is sometimes referred to as the HIG process; ultra fine grinding technology) requires pre-treated, multi-stage crushed minerals so that the grinding process can take place at all. The WO 2018/138405 A1 discloses a vertical ball mill in which both the rotor and stator are suspended from a platform.

Offenbarung der Erfindung und einiger AusfĆ¼hrungsformenDisclosure of the Invention and Some Embodiments

Vor diesem Hintergrund werden mit dem hier vorgestellten Ansatz eine vertikale KugelmĆ¼hle, insbesondere zum groben Vor-Mahlen von Mineralien, ein Statorsegment fĆ¼r eine vertikale KugelmĆ¼hle und ein Verfahren zum Warten einer vertikalen KugelmĆ¼hle gemƤƟ den unabhƤngigen AnsprĆ¼chen vorgestellt. Vorteilhafte Weiterbildungen und Verbesserungen des hier vorgestellten Ansatzes ergeben sich aus der Beschreibung und sind in den abhƤngigen AnsprĆ¼chen beschrieben.Against this background, with the approach presented here, a vertical ball mill, in particular for coarse pre-grinding of minerals, a stator segment for a vertical ball mill and a method for servicing a vertical ball mill are presented according to the independent claims. Advantageous developments and improvements of the approach presented here result from the description and are described in the dependent claims.

AusfĆ¼hrungsformen der vorliegenden Erfindung kƶnnen in vorteilhafter Weise ermƶglichen, einen Energieeinsatz zum Vor-Mahlen von Mineralien zu verringern und so eine Effizienzsteigerung zu erreichen sowie einen strukturellen Aufbau einer zum Vor-Mahlen einsetzbaren MĆ¼hle derart zu modifizieren, dass diese unter anderem einfach montiert, demontiert und gewartet werden kann.Advantageously, embodiments of the present invention may allow reducing energy input for pre-grinding minerals to increase efficiency, and modifying a structural design of a pre-grinding mill such that, among other things, it is easy to assemble, disassemble, and can be serviced.

Insbesondere schafft der hier vorgestellte Ansatz eine robuste Konstruktion, die in ihrem Aufbau weniger materialintensiv und betrƤchtlich leichter als bisherige Konzepte ausgefĆ¼hrt werden kann. Die Konstruktion kann so verhƤltnismƤƟig einfach teilzerlegt nahe an die Abbaustellen der Mineralien beziehungsweise an einen Einsatzort verbracht werden. Durch den hier vorgestellten Ansatz kƶnnen erforderliche regelmƤƟige Wartungsarbeiten wesentlich verkĆ¼rzt und vereinfacht werden. Durch das Maschinenkonzept kann eine Unfallgefahr verringert werden. Eine Revision der vorgestellten MĆ¼hle kann verhƤltnismƤƟig einfach durchzufĆ¼hren sein, sodass eventuell kein speziell ausgebildetes Fachpersonal erforderlich ist. Der hier vorgestellte Ansatz kann ferner eine verbesserte ProzessfĆ¼hrung und eine erleichterte Anpassung an die im Abbau vorhandene MaterialqualitƤt ermƶglichen. Das zerkleinerte Material kann weiterverarbeitet beziehungsweise verfeinert werden und/oder direkt dem nachgeschalteten Prozess zugefĆ¼hrt werden. Bei Revisionen und Reparaturen ist im Regelfall kein zusƤtzliches Hebezeug zur Demontage und Montage erforderlich.In particular, the approach presented here creates a robust construction that requires less material and is considerably lighter than previous concepts. The construction can be brought relatively easily to the mining sites of the minerals or to a place of use, partially dismantled. With the approach presented here, required regular maintenance work can be significantly shortened and simplified. The risk of accidents can be reduced by the machine concept. An overhaul of the mill presented can be carried out relatively easily, so that no specially trained technical personnel may be required. The approach presented here can also enable improved process control and easier adaptation to the material quality present in mining. The shredded material can be further processed or refined and/or fed directly to the downstream process. In the case of revisions and repairs, no additional lifting gear is usually required for disassembly and assembly.

Ersatzteile kƶnnen auf der gleichen Hƶhe wie die hauptsƤchlich zu ersetzenden Bestandteile, wie beispielsweise eine MĆ¼hlenwelle mit Mahlscheiben oder einzelnen Mahlzylindem, vor Ort raumsparend gelagert werden. Ein horizontales Verschieben und Positionieren der Ersatzteile kann beispielsweise Ć¼ber Schienen und Rollen von wenigen Personen gefahrlos durchgefĆ¼hrt werden. Hierzu gehƶrt auch ein sicheres und schnelles Entleeren des Mahlzylinders ohne weitgehende Materialverluste.Spare parts can be at the same level as the main ones to be replaced Components, such as a mill shaft with grinding discs or individual grinding cylinders, can be stored on site to save space. A few people can safely move and position the spare parts horizontally using rails and rollers, for example. This also includes safe and quick emptying of the grinding cylinder without extensive loss of material.

GemƤƟ einem ersten Aspekt der Erfindung wird eine vertikale KugelmĆ¼hle, insbesondere zum Vor-Mahlen von Mahlgut wie Mineralien, vorgeschlagen. Die vertikale KugelmĆ¼hle weist (i) einen an einem oberen Ende axial und radial gelagerten, nach unten hƤngenden Rotor, (ii) einen den Rotor radial umschlieƟenden, von einem Gewicht des Rotors unbelasteten, selbsttragend stehenden Stator mit einer tangential zum Rotor ausgerichteten, innerhalb einer Formtoleranz nƤherungsweise zylinderfƶrmige MantelflƤche, und (iii) eine ein Gewicht des Stators abstĆ¼tzende Grundplatte auf. Der Stator ist hierbei aus zumindest zwei voneinander trennbaren, in getrenntem Zustand freitragend stehenden, relativ zueinander verlagerbaren Statorsegmenten zusammengesetzt. Jedes der Statorsegmente weist an zumindest einer Seitenkante einer Wand eine DichtflƤche zum Abdichten an dem jeweils anderen Statorsegment, und an einer Unterkante eine belastungsgerecht dimensionierte StandflƤche zum Abdichten an der Grundplatte auf. Die genannte Seitenkante der Wand verlƤuft hierbei von einer Oberkante der die MantelflƤche ausbildenden Wand zu einer Unterkante der Wand. Das Statorsegment lastet stehend mit der StandflƤche auf der Grundplatte innerhalb einer Winkeltoleranz orthogonal auf einer lasttragenden OberflƤche der Grundplatte.According to a first aspect of the invention, a vertical ball mill is proposed, in particular for the pre-grinding of ground material such as minerals. The vertical ball mill has (i) a rotor which is supported axially and radially at an upper end and hangs downwards, (ii) a self-supporting stator which radially encloses the rotor and is unloaded by the weight of the rotor, with a tangentially aligned rotor inside a Shape tolerance approximately cylindrical lateral surface, and (iii) a base plate supporting a weight of the stator. In this case, the stator is composed of at least two stator segments which can be separated from one another and are cantilevered in the separate state and can be displaced relative to one another. Each of the stator segments has, on at least one side edge of a wall, a sealing surface for sealing against the respective other stator segment, and on a lower edge a standing surface dimensioned appropriately for the load for sealing against the base plate. Said side edge of the wall here runs from an upper edge of the wall forming the lateral surface to a lower edge of the wall. The stator segment rests upright with the base on the base plate orthogonally within an angular tolerance on a load-bearing surface of the base plate.

Weiterhin wird gemƤƟ einem zweiten Aspekt der Erfindung ein selbsttragend stehendes Statorsegment fĆ¼r eine vertikale KugelmĆ¼hle gemƤƟ dem hier vorgestellten Ansatz vorgestellt. Dieses weist (i) eine innerhalb einer Formtoleranz nƤherungsweise zylindersegmentfƶrmige Wand, (ii) zumindest eine an einer von einer Oberkante der Wand zu einer Unterkante der Wand verlaufenden Seitenkante der Wand angeordnete DichtflƤche zum Abdichten an einem anderen Statorsegment, und (iii) eine an der Unterkante angeordnete belastungsgerecht dimensionierte StandflƤche, mit der das Statorsegment innerhalb einer Winkeltoleranz orthogonal auf einer lasttragenden OberflƤche einer Grundplatte der KugelmĆ¼hle aufstellbar ist, auf. Aus mehreren Statorsegmenten ist hierbei ein selbsttragend stehender Stator mit einer durch die WƤnde ausgebildeten, innerhalb einer Formtoleranz kreiszylinderfƶrmigen MantelflƤche zusammensetzbar, der in einem zusammengebauten Zustand auf der Grundplatte zum AbstĆ¼tzen eines Gewichts des Stators stehend lasten kann.Furthermore, according to a second aspect of the invention, a self-supporting stator segment for a vertical ball mill according to the approach presented here is presented. This has (i) a wall approximately in the shape of a segment of a cylinder within a shape tolerance, (ii) at least one sealing surface arranged on a side edge of the wall running from an upper edge of the wall to a lower edge of the wall for sealing on another stator segment, and (iii) one on the Lower edge arranged load-fair dimensioned footprint, with which the stator segment can be set up orthogonally on a load-bearing surface of a base plate of the ball mill within an angular tolerance. A self-supporting stator can be assembled from a plurality of stator segments with a lateral surface formed by the walls and circular-cylindrical within a shape tolerance, which in an assembled state can bear standing loads on the baseplate to support a weight of the stator.

Ferner wird gemƤƟ einem dritten Aspekt der Erfindung ein Verfahren zum Warten einer vertikalen KugelmĆ¼hle, insbesondere zum Vor-Mahlen von Mahlgut wie Mineralien vorgestellt. Die vertikale KugelmĆ¼hle kann der zuvor genannten KugelmĆ¼hle gemƤƟ einer AusfĆ¼hrungsform des ersten Aspekts der Erfindung entsprechen und weist wiederum einen an einem oberen Ende axial und radial gelagerten, nach unten hƤngenden Rotor, einen den Rotor radial umschlieƟenden, von einem Gewicht des Rotors unbelasteten, selbsttragend stehenden Stator mit einer tangential zum Rotor ausgerichteten, innerhalb einer Formtoleranz nƤherungsweise zylinderfƶrmige MantelflƤche, und eine ein Gewicht des Stators abstĆ¼tzende Grundplatte auf. Der Stator ist aus zumindest zwei voneinander trennbaren, in getrenntem Zustand freitragend stehenden, relativ zueinander verlagerbaren Statorsegmenten zusammengesetzt. Jedes der Statorsegmente weist an zumindest einer von einer Oberkante einer die MantelflƤche ausbildenden Wand zu einer Unterkante der Wand verlaufenden Seitenkante der Wand eine DichtflƤche zum Abdichten an dem jeweils anderen Statorsegment, und an der Unterkante eine belastungsgerecht dimensionierte StandflƤche zum Abdichten an der Grundplatte auf. Das Statorsegment lastet stehend mit der StandflƤche auf der Grundplatte innerhalb einer Winkeltoleranz orthogonal auf einer lasttragenden OberflƤche der Grundplatte. Das Verfahren weist zumindest die folgenden Verfahrensschritte, vorzugsweise in der angegebenen Reihenfolge, auf:

  • ein Trennen des Stators in die Statorsegmente, wobei der Stator an den DichtflƤchen getrennt wird,
  • ein Anordnen von Hilfseinrichtungen unter zumindest einem der Statorsegmente, und ein laterales Verlagern des Statorsegments und der Hilfseinrichtungen unter Verwendung einer Verlagerungseinrichtung.
Furthermore, according to a third aspect of the invention, a method of servicing a vertical ball mill, particularly for pre-milling of grist such as minerals, is presented. The vertical ball mill may correspond to the aforementioned ball mill according to an embodiment of the first aspect of the invention and in turn has a rotor hanging down axially and radially at an upper end, a rotor radially enclosing, unloaded by a weight of the rotor, self-supporting standing Stator with a tangentially aligned to the rotor, within a shape tolerance approximately cylindrical lateral surface, and a weight of the stator supporting base plate. The stator is composed of at least two stator segments which can be separated from one another and are cantilevered in the separate state and can be displaced relative to one another. Each of the stator segments has, on at least one side edge of the wall running from an upper edge of a wall forming the lateral surface to a lower edge of the wall, a sealing surface for sealing on the other stator segment in each case, and on the lower edge a standing surface dimensioned according to the load for sealing on the base plate. The stator segment rests upright with the base on the base plate orthogonally within an angular tolerance on a load-bearing surface of the base plate. The method has at least the following method steps, preferably in the order given:
  • separating the stator into the stator segments, with the stator being separated at the sealing surfaces,
  • arranging auxiliaries under at least one of the stator segments, and laterally displacing the stator segment and the auxiliaries using a displacement device.

Das Statorsegment kann vor dem Anordnen der Hilfseinrichtungen unter Verwendung von Hebeeinrichtungen von der Grundplatte abgehoben werden und unter Verwendung der Hebeeinrichtungen auf den Hilfseinrichtungen abgesetzt werden.The stator segment can be lifted off the baseplate using jacks and set down on the jacks using the jacks prior to locating the auxiliaries.

Ideen zu AusfĆ¼hrungsformen der vorliegenden Erfindung kƶnnen unter anderem, aber ohne die Erfindung einzuschrƤnken, als auf den nachfolgend beschriebenen Gedanken und Erkenntnissen beruhend angesehen werden.Ideas for embodiments of the present invention can be considered as being based on the ideas and findings described below, among other things, but without limiting the invention.

Unter einer vertikalen KugelmĆ¼hle kann eine Vorrichtung zum Zerkleinern eines Mahlguts unter Verwendung von Mahlkƶrpern verstanden werden. Das Mahlgut kann beispielsweise vorgebrochenes Gestein beziehungsweise Mineralien aus einer Mine sein. Das Gestein beziehungsweise die Mineralien kƶnnen beispielsweise in einem Brecher, einer GutbettwalzenmĆ¼he, einer Autogen- oder einer SemiautogenmĆ¼hle zerkleinert und gesiebt werden, bevor sie der vertikalen KugelmĆ¼hle zugefĆ¼hrt werden.A vertical ball mill can be understood to mean a device for comminuting a material to be ground using grinding bodies. The ground material can be, for example, pre-crushed rock or minerals from a mine. The rock or the minerals can, for example, in a crusher, crushed and sieved in a high pressure bed roller mill, an oxy-fuel or semi-autogenous mill before being fed to the vertical ball mill.

Die hierin beschriebene vertikale KugelmĆ¼hle kann als eine Mahlstufe einer Rohstoffgewinnung verwendet werden. Das Mahlgut wird der KugelmĆ¼hle stĆ¼ckig oder als Suspension in einem flĆ¼ssigen TrƤgermedium beziehungsweise Transportmedium zugefĆ¼hrt. Das TrƤgermedium kann beispielsweise Wasser sein. Das Mahlgut kann einen Anteil eines gewĆ¼nschten Rohstoffs aufweisen. Beispielsweise kann das Mahlgut einen Erzanteil aufweisen. Ein Hauptanteil des Mahlguts kann taub sein, also den gewĆ¼nschten Rohstoff nicht aufweisen. Durch das Zerkleinern entstehen kleine Partikel, die in nachfolgenden Prozessschritten weiterverarbeitet werden kƶnnen. Der Anteil der Partikel mit dem gewĆ¼nschten Rohstoff kann beispielsweise in einem nachfolgenden Konzentrationsschritt erhƶht werden. Beispielsweise kann in dem Konzentrationsschritt ein Dichteunterschied zwischen Partikeln aus dem tauben Material und Partikeln mit dem gewĆ¼nschten Rohstoff ausgenutzt werden.The vertical ball mill described herein can be used as a milling stage of a raw material recovery. The material to be ground is fed to the ball mill in pieces or as a suspension in a liquid carrier medium or transport medium. The carrier medium can be water, for example. The ground material can contain a proportion of a desired raw material. For example, the ground material can have an ore content. A major portion of the regrind can be deaf, ie lack the desired raw material. The crushing creates small particles that can be further processed in subsequent process steps. The proportion of particles with the desired raw material can be increased, for example, in a subsequent concentration step. For example, in the concentration step, a density difference between particles from the waste material and particles with the desired raw material can be used.

Die hierin beschriebene vertikale KugelmĆ¼hle kann ein groƟes FĆ¼llvolumen von mehr als 20 m3 aufweisen. Zum wirtschaftlichen Vor-Mahlen von Mineralien sind in praxi MĆ¼hlen mit einem Nettovolumen (FĆ¼llvolumen) von 20 m3 bis 150 m3 erforderlich. Zum Ermƶglichen des hohen FĆ¼llvolumens ist die vertikale KugelmĆ¼hle entsprechend dimensioniert und daher groƟ und schwer. Die Umdrehungsgeschwindigkeit der Mahlscheiben kann bis 15 m/s betragen. Die Leistung der Antriebsmotoren kann bis etwa 12500 kW betragen.The vertical ball mill described herein can have a large filling volume of more than 20 m 3 . For economical pre-grinding of minerals, mills with a net volume (filling volume) of 20 m 3 to 150 m 3 are required in practice. To enable the high filling volume, the vertical ball mill is dimensioned accordingly and is therefore large and heavy. The speed of rotation of the grinding discs can be up to 15 m/s. The power of the drive motors can be up to around 12,500 kW.

Die Mahlkƶrper kƶnnen beispielsweise Kugelform aufweisen. Die Mahlkƶrper kƶnnen aus einem verschleiƟarmen Material sein. Insbesondere kƶnnen die Mahlkƶrper eine grĆ¶ĆŸere HƤrte aufweisen als das Mahlgut. Die Mahlkƶrper kƶnnen beispielsweise aus einem Metallmaterial, insbesondere Stahl, oder Keramikmaterial bestehen.The grinding bodies can have a spherical shape, for example. The grinding bodies can be made of a low-wear material. In particular, the grinding media can have a greater hardness than the ground material. The grinding media can consist, for example, of a metal material, in particular steel, or a ceramic material.

Die Mahlkƶrper, das Mahlgut sowie das TrƤgermedium werden von einem fluiddichten BehƤlter umschlossen. Der BehƤlter ist im Betrieb unbeweglich mit einem Untergrund verbunden. Der BehƤlter kann somit als Stator bezeichnet werden. Die Mahlkƶrper werden in dem BehƤlter durch ein antreibendes Element der KugelmĆ¼hle zu einer Bewegung angetrieben. Das antreibende Element kann als Rotor bezeichnet werden. Die Mahlkƶrper kƶnnen in dem Stator ohne nennenswerte AufwƤrtsbewegung und/oder AbwƤrtsbewegung auf einer angenƤherten Kreisbahn bewegt werden. Die Kreisbahn kann innerhalb einer Winkeltoleranz senkrecht zu einer vertikalen Hauptachse der KugelmĆ¼hle verlaufen. Die Winkeltoleranz kann als Lagetoleranz bezeichnet werden. Die Winkeltoleranz kann beispielsweise 10Ā° oder weniger, bevorzugt 5Ā° oder weniger, besonders bevorzugt 2Ā° oder weniger betragen.The grinding media, the material to be ground and the carrier medium are enclosed in a fluid-tight container. During operation, the container is immovably connected to a substrate. The container can thus be referred to as a stator. The grinding media are driven to move in the container by a driving element of the ball mill. The driving element can be referred to as a rotor. The grinding bodies can be moved in the stator on an approximately circular path without any appreciable upward and/or downward movement. The circular path can be perpendicular to a vertical main axis of the ball mill within an angular tolerance get lost. The angle tolerance can be referred to as position tolerance. The angular tolerance can be, for example, 10Ā° or less, preferably 5Ā° or less, particularly preferably 2Ā° or less.

Das Mahlgut wird zwischen den Mahlkƶrpern zerrieben beziehungsweise zerkleinert, wenn unterschiedlich schnelle Mahlkƶrper zusammenstoƟen und/oder aneinander abrollen. Ein Geschwindigkeitsunterschied zwischen den Mahlkƶrpern wird erzielt, indem die Mahlkƶrper in unmittelbarer NƤhe zum Rotor nƤherungsweise mit einer Bewegungsgeschwindigkeit einer OberflƤche des Rotors bewegt werden. Mahlkƶrper in unmittelbarer NƤhe zum Stator bewegen sich dagegen nƤherungsweise nicht. Zwischen dem Rotor und dem Stator baut sich so ein Geschwindigkeitsverlauf der Mahlkƶrper aus. Die schnelleren, nƤher am Rotor angeordneten Mahlkƶrper kollidieren bzw. reiben mit den langsameren, nƤher am Stator angeordneten Mahlkƶrpern.The material to be ground is ground or comminuted between the grinding bodies when grinding bodies of different speeds collide and/or roll off one another. A speed differential between the grinding media is achieved by moving the grinding media in close proximity to the rotor at approximately a moving speed of a surface of the rotor. Grinding media in the immediate vicinity of the stator, on the other hand, do not move at all. A speed profile of the grinding media develops between the rotor and the stator. The faster grinding media located closer to the rotor collide or rub against the slower grinding media located closer to the stator.

Der Rotor kann innerhalb der Winkeltoleranz an der Hauptachse ausgerichtet sein. Der Rotor kann um die Hauptachse drehbar sein. Der Rotor kann fliegend gelagert sein. Der Rotor kann dann an einem unteren Ende ungelagert sein. Eine ergƤnzende Lagerung am unteren Ende braucht jedoch nicht ausgeschlossen sein. Der Rotor kann durch sein Eigengewicht in einer hƤngenden Ausrichtung, d.h. im Wesentlichen lotrecht zu einem Untergrund, gehalten werden.The rotor can be aligned with the main axis within the angular tolerance. The rotor can be rotatable about the main axis. The rotor can be overhung. The rotor can then be unsupported at a lower end. However, additional storage at the lower end need not be ruled out. The rotor can be held in a hanging orientation, i.e. essentially perpendicular to a base, by its own weight.

Der Stator kann oben offen sein. Der Rotor kann im Wesentlichen vertikal von oben in das TrƤgermedium mit dem Mahlgut und die Mahlkƶrper eintauchen. Der Rotor kann unabhƤngig vom Stator gelagert sein. Der Stator kann rƤumlich, statisch und/oder mechanisch von dem Rotor bzw. einer Rotorlagerung des Rotors getrennt sein.The stator can be open at the top. The rotor can dip essentially vertically from above into the carrier medium with the material to be ground and the grinding bodies. The rotor can be mounted independently of the stator. The stator can be spatially, statically and/or mechanically separated from the rotor or a rotor bearing of the rotor.

Der Stator weist eine innerhalb einer Formtoleranz nƤherungsweise zylinderfƶrmige MantelflƤche auf. Mit anderen Worten kann der Stator ein zylindrisches, insbesondere kreiszylindrisches Volumen umschlieƟen. Hierzu kann der Stator vorzugsweise eine innerhalb der Formtoleranz nƤherungsweise kreisfƶrmige QuerschnittsflƤche aufweisen und somit rotationssymmetrisch sein. Der Stator kann eventuell auch eine ovale, dreieckige, achteckige n-eckige oder allgemein polygonale QuerschnittsflƤche aufweisen. Die QuerschnittsflƤche kann von einer Unterkante des Stators bis zu einer Oberkante des Stators innerhalb einer Formtoleranz gleich bleiben. Die Formtoleranz beschreibt eine zulƤssige Abweichung von einer Zylinderform. Die Formtoleranz kann beispielsweise 10% oder weniger, bevorzugt 5% oder weniger, besonders bevorzugt 2% oder weniger bezogen auf Gesamtabmessungen des Stators betragen. Mit anderen Worten kann der Stator innerhalb der Formtoleranz unrund sein.The stator has a lateral surface that is approximately cylindrical within a shape tolerance. In other words, the stator can enclose a cylindrical volume, in particular a circular-cylindrical volume. For this purpose, the stator can preferably have an approximately circular cross-sectional area within the shape tolerance and can therefore be rotationally symmetrical. The stator may also have an oval, triangular, octagonal, n-sided or generally polygonal cross-sectional area. The cross-sectional area may remain the same within a shape tolerance from a bottom edge of the stator to a top edge of the stator. The shape tolerance describes a permissible deviation from a cylindrical shape. The shape tolerance can be, for example, 10% or less, preferably 5% or less, particularly preferably 2% or less based on the overall dimensions of the stator. In other words, the stator can be out of round within the form tolerance.

Eine MantelflƤche beschreibt eine GrenzflƤche fĆ¼r die Mahlkƶrper, das TrƤgermedium und das Mahlgut. Die MantelflƤche kann durch eine InnenflƤche des Stators abgebildet sein. Die MantelflƤche kann innerhalb der Winkeltoleranz senkrecht bzw. lotrecht sein.A lateral surface describes an interface for the grinding bodies, the carrier medium and the material to be ground. The lateral surface can be represented by an inner surface of the stator. The lateral surface can be vertical or plumb within the angular tolerance.

Eine Grundplatte leitet ein Gewicht des Stators, der Mahlkƶrper, des TrƤgermediums und des Mahlguts vollstƤndig oder zumindest zu einem weit Ć¼berwiegenden Anteil in das Fundament ein und ist belastungsgerecht ausgefĆ¼hrt. Die Grundplatte kann fest mit dem Fundament verbunden sein. Die Grundplatte kann eine lasttragende OberflƤche als Schnittstelle zum Stator aufweisen. Die lasttragende OberflƤche kann eine der QuerschnittsflƤche des Stators innerhalb der Formtoleranz entsprechende Form aufweisen. Die Grundplatte kann an einer OberflƤche oder an zwei gegenĆ¼berliegenden OberflƤchen eben sein. Die Grundplatte kann im Bereich der lasttragenden OberflƤche einen Einsatz zur VerstƤrkung aufweisen. Die Grundplatte kann aus einem Metallmaterial sein. Die Grundplatte kann beispielsweise ein separates Bauteil sein und auf dem Fundament aufliegen. Die Grundplatte kann auch auf StĆ¼tzfĆ¼ĆŸen stehen und beabstandet zum Fundament angeordnet sein. Die Grundplatte kann alternativ als speziell ausgeformter Bereich des Fundaments ausgebildet sein.A base plate transfers the weight of the stator, the grinding bodies, the carrier medium and the material to be ground completely or at least to a large extent into the foundation and is designed to withstand the load. The base plate can be firmly connected to the foundation. The baseplate may have a load bearing surface to interface with the stator. The load bearing surface may have a shape corresponding to the cross-sectional area of the stator within the shape tolerance. The base plate can be flat on one surface or on two opposite surfaces. The base plate may have an insert for reinforcement in the area of the load-bearing surface. The base plate can be made of a metal material. The base plate can be a separate component, for example, and can rest on the foundation. The base plate can also stand on support feet and be arranged at a distance from the foundation. Alternatively, the base plate can be designed as a specially shaped area of the foundation.

Ein Statorsegment kann eine im Wesentlichen bogenfƶrmige Grundform aufweisen. Eine Wand des Statorsegments bildet einen Teilbereich der MantelflƤche ab. Die Wand kann einen Winkelbereich der MantelflƤche abbilden. Wenn der Stator zwei Statorsegmente aufweist, kƶnnen beide WƤnde jeweils einen Winkelbereich von 180Ā° abbilden. Bei drei Statorsegmenten kann jede Wand einen Winkelbereich von 120Ā° abbilden. Bei n>3 Statorsegmenten kann jede Wand einen Winkelbereich von (360/n)Ā° abbilden. Die Statorsegmente kƶnnen in Umfangsrichtung unterschiedlich geteilt sein.A stator segment can have an essentially arched basic shape. A wall of the stator segment forms a partial area of the lateral surface. The wall can represent an angular area of the lateral surface. If the stator has two stator segments, both walls can each form an angular range of 180Ā°. With three stator segments, each wall can represent an angular range of 120Ā°. With n>3 stator segments, each wall can represent an angular range of (360/n)Ā°. The stator segments can be divided differently in the circumferential direction.

Die Wand weist eine belastungsgerecht ausgelegte WandstƤrke auf. Insbesondere kann die Wand des Statorsegments strukturell, d.h. insbesondere aufgrund ihrer WandstƤrke und/oder aufgrund von VerstƤrkungsmaƟnahmen, dazu ausgelegt sein, den KrƤften und Belastungen, die bei der beschriebenen MĆ¼hle insbesondere dort, wo die Statorsegmente unten aufstehen, entstehen, standhalten zu kƶnnen.The wall has a wall thickness designed to withstand the load. In particular, the wall of the stator segment can be designed structurally, ie in particular due to its wall thickness and/or due to reinforcement measures, to be able to withstand the forces and loads that arise in the mill described, particularly where the stator segments stand up at the bottom.

Die Wand kann an einer Innenseite mit einer Schutzschicht ausgerĆ¼stet sein, um direkten Kontakt zwischen den Mahlkƶrpern und der Wand zu verhindern. Die Wand kann auf der AuƟenseite Versteifungsrippen aufweisen.The wall can be equipped with a protective layer on an inside to prevent direct contact between the grinding media and the wall. The wall can have stiffening ribs on the outside.

Seitenkanten der Wand kƶnnen innerhalb der Winkeltoleranz senkrecht zur Oberkante und/oder Unterkante verlaufen. Eine DichtflƤche kann quer zu einer Zugrichtung von Verbindungselementen zum Verbinden der Statorsegmente ausgerichtet sein. Bei tangentialer Zugrichtung kann die DichtflƤche radial ausgerichtet sein. Bei radialer Zugrichtung kann die DichtflƤche tangential ausgerichtet sein. Die StandflƤche kann quer zu einer erwarteten Lastrichtung ausgerichtet sein. Die StandflƤche kann innerhalb der Winkeltoleranz horizontal ausgerichtet sein. Die DichtflƤche und/oder die StandflƤche kƶnnen durch an den Kanten der Wand angeordnete Versteifungsrippen ausgebildet sein.Side edges of the wall can be perpendicular to the top edge and/or bottom edge within the angle tolerance. A sealing surface can be aligned transversely to a pulling direction of connecting elements for connecting the stator segments. In the case of a tangential direction of pull, the sealing surface can be aligned radially. In the case of a radial direction of pull, the sealing surface can be oriented tangentially. The standing surface can be aligned transversely to an expected load direction. The stand can be aligned horizontally within the angle tolerance. The sealing surface and/or the standing surface can be formed by stiffening ribs arranged on the edges of the wall.

Die Statorsegmente sind mobil beziehungsweise kƶnnen von der Grundplatte abgehoben werden. Zuvor kann eine mechanische Verbindung zur Grundplatte gelƶst werden. Durch die MobilitƤt der Statorsegmente kann die vertikale KugelmĆ¼hle einfach geƶffnet werden. An der geƶffneten KugelmĆ¼hle ist der Rotor gut zugƤnglich und an den Innenseiten der Statorsegmente kƶnnen Wartungsarbeiten einfach durchgefĆ¼hrt werden.The stator segments are mobile or can be lifted off the base plate. A mechanical connection to the base plate can be released beforehand. Due to the mobility of the stator segments, the vertical ball mill can be opened easily. The rotor is easily accessible when the ball mill is open and maintenance work can be carried out easily on the inside of the stator segments.

An einer Innenseite der WƤnde der Statorsegmente kƶnnen mehrere vertikal voneinander beabstandete, horizontale, ringsegmentfƶrmige Rippen angeordnet sein. Die Rippen kƶnnen am zusammengesetzten Stator nach innen ragende ringfƶrmige FlƤchen bilden, welche hierin als BremsflƤchen bezeichnet werden. Der Rotor kann mehrere vertikal voneinander beabstandete, horizontale Scheiben mit je einer auƟenliegenden ringfƶrmigen FlƤche, welche hierin als SchleppflƤche bezeichnet wird, aufweisen. Die Rippen und die Scheiben kƶnnen in vertikaler Richtung abwechselnd angeordnet sein. Ein Innendurchmesser der BremsflƤchen kann kleiner sein als ein AuƟendurchmesser der SchleppflƤchen. Die BremsflƤchen und die SchleppflƤchen kƶnnen sich somit in horizontaler Richtung zumindest anteilig Ć¼berlappen. Zwischen den Rippen und Scheiben kann ein mƤanderfƶrmiges Labyrinth ausgebildet sein. Das Labyrinth erhƶht einen Durchflusswiderstand fĆ¼r die TrĆ¼be durch die KugelmĆ¼hle. Die Rippen kƶnnen daher auch als UmlenkflƤchen angesehen werden. Die Rippen kƶnnen innerhalb der Winkeltoleranz senkrecht zu der Wand ausgerichtet sein. Die Scheiben kƶnnen innerhalb der Winkeltoleranz senkrecht zur Rotorwelle ausgerichtet sein. Die Scheiben kƶnnen eine Kreisform innerhalb der Formtoleranz annƤhern. Die Scheiben kƶnnen auch polygonal sein. Die Rippen beziehungsweise die BremsflƤchen kƶnnen wie die WƤnde eine Schutzschicht aufweisen, um beispielsweise direkten Kontakt mit den Mahlkugeln zu verhindern. Die Scheiben kƶnnen ebenfalls eine Schutzschicht aufweisen. Die Schutzschicht kann austauschbar sein. Die Rippen, die am zusammengesetzten Stator eine gemeinsame BremsflƤche ausbilden, kƶnnen auf gleicher Hƶhe an den Statorsegmenten angeordnet sein und die gleiche Breite beziehungsweise Hƶhe aufweisen. Die Rippen und Scheiben kƶnnen in gleichmƤƟigen AbstƤnden angeordnet sein. Die Scheiben kƶnnen zwischen den SchleppflƤchen und der Rotorwelle DurchbrĆ¼che aufweisen. Die SchleppflƤchen am Rotor vergrĆ¶ĆŸern im Allgemeinen eine KontaktflƤche des TrƤgermediums, des Mahlguts und der Mahlkƶrper zum Rotor. Durch die SchleppflƤchen kƶnnen das TrƤgermedium, das Mahlgut und die Mahlkƶrper verbessert angetrieben werden. An den Scheiben steigt eine Bewegungsgeschwindigkeit eines Punkts proportional zu einem Abstand des Punkts zur Rotationsachse des Rotors. Am AuƟendurchmesser des Rotors werden die SchleppflƤchen mit der hƶchsten Bewegungsgeschwindigkeit bewegt. Die BremsflƤchen am Stator vergrĆ¶ĆŸern eine KontaktflƤche des TrƤgermediums, des Mahlguts und der Mahlkƶrper zum Stator. Durch die BremsflƤchen beziehungsweise SchleppflƤchen kƶnnen das TrƤgermedium, das Mahlgut und die Mahlkƶrper verbessert abgebremst beziehungsweise angetrieben werden. Zwischen den SchleppflƤchen und den BremsflƤchen entsteht im Betrieb ein hoher Geschwindigkeitsunterschied. Im TrƤgermedium, Mahlgut und den Mahlkƶrpern entsteht so ein groƟer Geschwindigkeitsgradient, der zu hohen Geschwindigkeitsunterschieden zwischen den einzelnen Mahlkƶrpern fĆ¼hrt. Durch die hohen Geschwindigkeitsunterschiede resultieren hohe StoƟ- bzw. ReibungskrƤfte und das Mahlgut wird effizient zerkleinert. Zwischen den SchleppflƤchen und den BremsflƤchen kann ein Hauptmahlbereich der vertikalen KugelmĆ¼hle angeordnet sein.On an inner side of the walls of the stator segments, a plurality of horizontal, ring-segment-shaped ribs spaced vertically apart can be arranged. The ribs may form inwardly projecting annular surfaces on the assembled stator, referred to herein as braking surfaces. The rotor may include a plurality of vertically spaced, horizontal disks each having an outer annular surface, referred to herein as a drag surface. The ribs and the discs may be alternately arranged in the vertical direction. An inner diameter of the braking surfaces can be smaller than an outer diameter of the drag surfaces. The braking surfaces and the drag surfaces can thus at least partially overlap in the horizontal direction. A meandering labyrinth can be formed between the ribs and disks. The labyrinth increases a flow resistance for the pulp through the ball mill. The ribs can therefore also be viewed as deflection surfaces. The ribs can be oriented perpendicular to the wall within angular tolerance. The discs can be aligned perpendicular to the rotor shaft within the angular tolerance. The disks can approximate a circular shape within shape tolerance. The discs can also be polygonal. Like the walls, the ribs or the braking surfaces can have a protective layer, for example to ensure direct contact with the grinding balls impede. The discs can also have a protective coating. The protective layer can be replaceable. The ribs, which form a common braking surface on the assembled stator, can be arranged at the same height on the stator segments and can have the same width or height. The ribs and disks may be evenly spaced. The discs can have openings between the drag surfaces and the rotor shaft. The drag surfaces on the rotor generally increase a contact surface of the carrier medium, the material to be ground and the grinding bodies with the rotor. The carrier medium, the material to be ground and the grinding bodies can be driven in an improved manner by the drag surfaces. A movement speed of a point on the discs increases in proportion to a distance of the point from the axis of rotation of the rotor. At the outer diameter of the rotor, the drag surfaces are moved with the highest movement speed. The braking surfaces on the stator increase the contact surface of the carrier medium, the material to be ground and the grinding bodies with the stator. The carrier medium, the material to be ground and the grinding bodies can be braked or driven in an improved manner by the braking surfaces or drag surfaces. During operation, there is a large difference in speed between the drag surfaces and the braking surfaces. This creates a large speed gradient in the carrier medium, the material to be ground and the grinding media, which leads to high speed differences between the individual grinding media. The high speed differences result in high impact and frictional forces and the ground material is efficiently shredded. A main grinding area of the vertical ball mill can be arranged between the drag surfaces and the braking surfaces.

Die Statorsegmente kƶnnen jeweils an einer AuƟenseite Anschlagelemente zum Anheben und Bewegen des jeweiligen Statorsegments aufweisen. Anschlagelemente kƶnnen speziell zum Anschlagen von Hebezeug ausgebildete Fixpunkte sein. Die Anschlagelemente kƶnnen belastungsgerecht dimensioniert sein. Die Anschlagelemente kƶnnen Ć¼ber eine VerstƤrkungsstruktur mit der Wand und/oder den VerstƤrkungsrippen verbunden sein. Beispielsweise kƶnnen die Anschlagelemente Ć¼ber zusƤtzliche Rippen verbunden sein. Die Anschlagelemente kƶnnen zur Sicherheit Ć¼berdimensioniert sein. Anschlagelemente kƶnnen spezifisch auf eine Art von Hebezeug ausgebildet sein. Beispielsweise kƶnnen Anschlagzapfen fĆ¼r Gurte, Seile und Ketten und Laschen verwendet werden. Anschlagƶsen kƶnnen fĆ¼r Haken vorgesehen sein. AnschlagflƤchen kƶnnen zum Einleiten von DruckkrƤften von HebegerƤten verwendet werden.The stator segments can each have stop elements on an outside for lifting and moving the respective stator segment. Attachment elements can be fixed points specially designed for attaching hoists. The stop elements can be dimensioned according to the load. The stop elements can be connected to the wall and/or the reinforcing ribs via a reinforcing structure. For example, the stop elements can be connected via additional ribs. The stop elements can be oversized for safety. Stop members may be specific to one type of hoist. For example, attachment pins for belts, ropes and chains and shackles can be used. Attachment eyes can be provided for hooks. Stop surfaces can be used to introduce compressive forces from lifting equipment.

Die Statorsegmente kƶnnen jeweils im Bereich der Unterkante der Wand Anschlagelemente aufweisen, welche insbesondere zum Ansetzen von Hydraulikhebern konfiguriert sind. Die Anschlagelemente kƶnnen dazu beispielsweise im Wesentlichen horizontal ausgerichtete AnschlagflƤchen aufweisen. Die Anschlagelemente kƶnnen auch eine spezielle Schnittstellengeometrie aufweisen. Beispielsweise kƶnnen kugelfƶrmige beziehungsweise kugelkalottenfƶrmige FlƤchen am Anschlagelement oder HebegerƤt mit Kugeln beziehungsweise Kugelkalotten am HebegerƤt oder Anschlagelement zusammenwirken, um eine winkelunempfindliche AbstĆ¼tzung zu erreichen.The stator segments can each have stop elements in the area of the lower edge of the wall, which are configured in particular for attaching hydraulic jacks. For this purpose, the stop elements can have, for example, substantially horizontally aligned stop surfaces. The stop elements can also have a special interface geometry. For example, spherical or spherical cap-shaped surfaces on the stop element or lifting device can interact with balls or spherical caps on the lifting device or stop element in order to achieve angle-insensitive support.

Die Anschlagelemente kƶnnen Eckpunkte eines virtuellen horizontalen Vielecks, insbesondere Dreiecks, definieren, dessen geometrischer Mittelpunkt auf einer vertikalen Achse durch einen Schwerpunkt des stehenden Statorsegments liegt. Der geometrische Mittelpunkt liegt bei einem Dreieck auf einem Schnittpunkt von Winkelhalbierenden des Dreiecks. Bei einem Viereck liegt der geometrische Mittelpunkt auf einem Schnittpunkt der Diagonalen des Vierecks. Durch eine Position der Anschlagelemente kann eine Gewichtsverteilung zwischen den Anschlagelementen vorbestimmt werden. Durch eine Ɯbereinstimmung der Achse durch den Schwerpunkt und dem Mittelpunkt des Vielecks kann eine KippstabilitƤt beim Anheben eines Statorsegments maximiert werden.The stop elements can define corner points of a virtual horizontal polygon, in particular a triangle, whose geometric center lies on a vertical axis through a center of gravity of the stationary stator segment. The geometric center of a triangle is at the intersection of the bisecting lines of the triangle. In a quadrilateral, the geometric center is at an intersection of the diagonals of the quadrilateral. A weight distribution between the stop elements can be predetermined by a position of the stop elements. By matching the axis through the center of gravity and the center point of the polygon, tilting stability when lifting a stator segment can be maximized.

Die KugelmĆ¼hle kann eine Verlagerungseinrichtung zum seitlichen Verschieben der voneinander getrennten Statorsegmente aufweisen, wobei die Verlagerungseinrichtung mobile Hilfseinrichtungen aufweist, die dazu ausgebildet sind, bei angehobenem Statorsegment zwischen den Anschlagelementen und am Boden angeordneten, parallel verlaufenden Schienen angeordnet zu werden und bei darauf abgesetztem Statorsegment mit dem Statorsegment entlang der Schienen bewegt zu werden. Die Schienen kƶnnen fest mit dem Fundament verbunden sein. Die Hilfseinrichtungen kƶnnen Gleitlager oder WƤlzkƶrper zum Verringern einer Reibung beim Bewegen aufweisen. WƤlzkƶrper kƶnnen beispielsweise drehbar gelagerte Rollen sein. Die Rollen kƶnnen selbst wƤlz- oder gleitgelagert sein. Bei einem Gleitlager wird das Gewicht des Statorsegments auf eine groƟe FlƤche verteilt, wodurch eine geringe FlƤchenpressung erreicht werden kann. Das Gleitlager kann Ć¼ber ein Schmiersystem geschmiert werden. Alternativ oder ergƤnzend kann eine Materialpaarung zwischen dem Gleitlager und der Schiene einen geringen Reibungskoeffizienten aufweisen. Beispielsweise kann das Gleitlager eine GleitflƤche aus PTFE, POM oder einem Ƥhnlichen Material aufweisen. Das Statorsegment kann mit den Hilfseinrichtungen unter Verwendung einer Bewegungseinrichtung bewegt werden. Die Bewegungseinrichtung kann zwischen dem Statorsegment und einem Fixpunkt angeordnet werden und ZugkrƤfte und/oder DruckkrƤfte in einer durch die Schienen definierten Bewegungsrichtung ausĆ¼ben. Die Bewegungseinrichtung kann beispielsweise zumindest einen Seilzug, Kettenzug oder Hydraulikzylinder aufweisen.The ball mill can have a displacement device for laterally displacing the stator segments that are separated from one another, the displacement device having mobile auxiliary devices which are designed to be arranged between the stop elements and parallel rails arranged on the floor when the stator segment is lifted and to be arranged with the To be moved along the rails stator segment. The rails can be firmly connected to the foundation. The auxiliary devices can have plain bearings or rolling bodies to reduce friction when moving. Rolling bodies can be rotatably mounted rollers, for example. The rollers themselves can be fitted with roller or plain bearings. With a plain bearing, the weight of the stator segment is distributed over a large area, which means that a low surface pressure can be achieved. The slide bearing can be lubricated via a lubrication system. Alternatively or additionally, a pair of materials between the sliding bearing and the rail can have a low coefficient of friction. For example, the plain bearing can have a sliding surface made of PTFE, POM or a similar material. The stator segment can be moved with the auxiliary devices using a moving device. The movement device can be arranged between the stator segment and a fixed point and tensile forces and/or compressive forces can be transmitted through the rails exert a defined direction of movement. The movement device can, for example, have at least one cable pull, chain pull or hydraulic cylinder.

Die Verlagerungseinrichtung kann zumindest eine KippstĆ¼tze zum AbstĆ¼tzen eines vertikal von der StandflƤche beabstandeten Anschlagelements auf zumindest einer der Schienen aufweisen, um wƤhrend des Anhebens und Verschiebens ein Kippen des Statorsegments zu verhindern. Eine KippstĆ¼tze kann das Statorsegment in einem relevanten Abstand zum Boden abstĆ¼tzen. Die KippstĆ¼tze kann hierzu die Schiene mit dem hƶher gelegenen Anschlagelement in einem schrƤgen Winkel verbinden. Die KippstĆ¼tze kann mobil sein, also unabhƤngig von dem Statorsegment bewegt werden und erst dann an dem Statorsegment befestigt werden, wenn das Statorsegment bewegt werden soll.The displacement device can have at least one tilting support for supporting a stop element, which is spaced vertically from the standing surface, on at least one of the rails in order to prevent the stator segment from tilting during lifting and displacement. An anti-tipper can support the stator segment at a relevant distance from the ground. For this purpose, the anti-tilt support can connect the rail to the higher-lying stop element at an oblique angle. The anti-tilt support can be mobile, that is to say it can be moved independently of the stator segment and only then be attached to the stator segment when the stator segment is to be moved.

Alternativ kann die KippstĆ¼tze fest mit dem Statorsegment verbunden sein und im Betrieb an Ort und Stelle verbleiben. Die KippstĆ¼tze kann Ć¼ber eine untere Verbindung mit einem unteren Anschlagelement verbunden sein. Die untere Verbindung kann ein seitliches Ausweichen der KippstĆ¼tze verhindern. Die KippstĆ¼tze kann auch zum Ausrichten der vertikalen Flansche benĆ¼tzt werden. An der KippstĆ¼tze kann eines der Anschlagelemente zum Anheben des Statorsegments angeordnet sein. Dann kƶnnen an der Unterkante der Wand zwei weitere der Anschlagelemente zum Anheben angeordnet sein, die im Wesentlichen auf einer Verbindungslinie durch den Schwerpunkt des stehenden Statorsegments angeordnet sind.Alternatively, the anti-tipper may be fixed to the stator segment and remain in place during operation. The anti-tipper can be connected to a lower stop element via a lower connection. The bottom connection can prevent the anti-tipper from deflecting sideways. The anti-tipper can also be used to align the vertical flanges. One of the stop elements for lifting the stator segment can be arranged on the anti-tipper. Two more of the stop elements for lifting can then be arranged on the lower edge of the wall, which are arranged essentially on a connecting line through the center of gravity of the stationary stator segment.

Das Statorsegment kann zumindest eine Arbeitsplattform aufweisen. Die Arbeitsplattform kann am stehenden Statorsegment innerhalb einer Lagetoleranz horizontal ausgerichtet sein. Die Arbeitsplattform kann entlang einer AuƟenkontur des Statorsegments verlaufen. Die unterste Arbeitsplattform kann in Ć¼ber Kopfhƶhe am Statorsegment angeordnet sein. Zwischen hƶherliegenden Arbeitsplattformen kann als vertikaler Abstand zumindest Stehhƶhe eingehalten werden. An der KippstĆ¼tze kann eine Leiter angeordnet sein, Ć¼ber die die Arbeitsplattform zugƤnglich ist. Die Arbeitsplattform und die Leiter kƶnnen GelƤnder und/oder Absturzsicherungseinrichtungen aufweisen. Ɯber die Arbeitsplattform kann das Statorsegment fĆ¼r Wartungsarbeiten gut zugƤnglich sein. Durch die Arbeitsplattform kann bei den Wartungsarbeiten auf ein mobiles GerĆ¼st verzichtet werden.The stator segment can have at least one working platform. The work platform can be aligned horizontally within a position tolerance on the stationary stator segment. The working platform can run along an outer contour of the stator segment. The lowest work platform can be arranged at overhead height on the stator segment. At least standing height can be maintained as a vertical distance between higher work platforms. A ladder can be arranged on the anti-tipper, via which the work platform is accessible. The work platform and the ladder can have railings and/or fall protection devices. The stator segment can be easily accessible for maintenance work via the working platform. Thanks to the working platform, there is no need for mobile scaffolding during maintenance work.

Die Schienen kƶnnen in das Fundament der KugelmĆ¼hle eingelassen sein, und optional, bei Nichtgebrauch durch Abdeckeinrichtungen abdeckbar sein. Die Schienen kƶnnen beispielsweise einbetoniert sein. Die Schienen kƶnnen in Vertiefungen in dem Fundament angeordnet sein. Die Abdeckeinrichtungen schĆ¼tzen die Schienen vor Verschmutzung und BeschƤdigungen. Insbesondere eine OberflƤche der Schienen kann so vor BeschƤdigungen geschĆ¼tzt werden. Eine nach oben gerichtete OberflƤche der Schienen oder einer diese Schiene abdeckenden Abdeckeinrichtung kann bĆ¼ndig mit einer OberflƤche des Fundaments sein. Die Abdeckeinrichtungen kƶnnen befahrbar sein. So wird ein Umfeld der vertikalen KugelmĆ¼hle zugƤnglich gehalten.The rails can be embedded in the foundation of the ball mill and can optionally be covered by covering devices when not in use. The rails can be concreted in, for example. The rails can be placed in recesses in the foundation. The covering devices protect the rails from dirt and damage. In particular, one surface of the rails can be protected from damage in this way. An upwardly directed surface of the rails or a covering device covering these rails may be flush with a surface of the foundation. The covering devices can be driven over. Thus, an environment of the vertical ball mill is kept accessible.

Die KugelmĆ¼hle kann eine Entleerungseinrichtung zum Entleeren der KugelmĆ¼hle aufweisen. Da die Mahlkƶrper wƤhrend des Betriebs in der KugelmĆ¼hle verbleiben, kƶnnen die Mahlkƶrper vor dem Ɩffnen des Stators mit Resten des TrƤgermediums und des Mahlguts durch die Entleerungseinrichtung abgelassen werden. Die Entleerungseinrichtung kann beispielsweise als Klappe oder Schieber in der Wand eines Statorsegments ausgefĆ¼hrt sein.The ball mill can have an emptying device for emptying the ball mill. Since the grinding bodies remain in the ball mill during operation, the grinding bodies can be drained through the discharge device with residues of the carrier medium and the material to be ground before the stator is opened. The emptying device can be designed, for example, as a flap or slider in the wall of a stator segment.

Die Entleerungseinrichtung kann innerhalb der lasttragenden OberflƤche der Grundplatte einen SchrƤgboden aufweisen. Eines der Statorsegmente kann im Bereich eines Tiefpunkts des SchrƤgbodens eine Entleerungsƶffnung der Entleerungseinrichtung aufweisen. Durch einen schrƤg verlaufenden Boden kƶnnen die Mahlkƶrper beim Entleeren seitlich schwerkraftgetrieben abflieƟen. Der SchrƤgboden weist eine SchrƤge von einem tiefsten Punkt zu einem hƶchsten Punkt auf. Die SchrƤge kann beispielsweise innerhalb einer Winkeltoleranz zwischen 1Ā° und 5Ā°, bevorzugt zwischen 2Ā° und 3Ā°, besonders bevorzugt 2,5Ā° betragen. Der SchrƤgboden kann als schrƤge Ebene ausgefĆ¼hrt sein. Der SchrƤgboden kann ebenfalls als auf den Tiefpunkt ausgerichtete rƤumlich geformte FlƤche ausgefĆ¼hrt sein. Die Entleerungsƶffnung stellt eine Durchgangsƶffnung durch die Wand bereit. Die Entleerungsƶffnung kann als Rohranschluss ausgefĆ¼hrt sein. Der Rohranschluss kann beispielsweise genormt ausgefĆ¼hrt sein. Der Rohranschluss kann beispielsweise mit einer GrĆ¶ĆŸe DN 150 ausgefĆ¼hrt sein. Die Entleerungsƶffnung kann eine geeignete Armatur, wie einen Schieber, eine Klappe, einen Hahn oder ein Ventil aufweisen.The evacuation means may include a sloping floor within the load bearing surface of the base. One of the stator segments can have an emptying opening of the emptying device in the region of a low point of the sloping floor. A sloping floor allows the grinding media to flow off to the side, driven by gravity, when being emptied. The sloping floor has a slope from a lowest point to a highest point. The slope can be, for example, within an angular tolerance of between 1Ā° and 5Ā°, preferably between 2Ā° and 3Ā°, particularly preferably 2.5Ā°. The inclined floor can be designed as an inclined plane. The sloping floor can also be designed as a three-dimensionally shaped surface aligned with the lowest point. The drain hole provides a through hole through the wall. The drain opening can be designed as a pipe connection. The pipe connection can be standardized, for example. The pipe connection can be designed with a size of DN 150, for example. The discharge opening can have a suitable fitting, such as a slide, a flap, a cock or a valve.

Eines der Statorsegmente kann im Bereich eines Hochpunkts des SchrƤgbodens zumindest eine SpĆ¼lƶffnung der Entleerungseinrichtung aufweisen. Durch die SpĆ¼lƶffnung kann ein SpĆ¼lfluid, insbesondere eine SpĆ¼lflĆ¼ssigkeit, ins Innere des Stators geleitet werden, um dieses auszuspĆ¼len. Die SpĆ¼lƶffnung kann als Rohranschluss ausgefĆ¼hrt sein. Die SpĆ¼lƶffnung kann beispielsweise genormt ausgefĆ¼hrt sein. Die SpĆ¼lƶffnung kann beispielsweise mit einer GrĆ¶ĆŸe DN 100 ausgefĆ¼hrt sein. Die SpĆ¼lƶffnung kann eine geeignete Armatur, wie einen Schieber, eine Klappe, einen Hahn oder ein Ventil aufweisen. Die SpĆ¼lƶffnung kann der Entleerungsƶffnung gegenĆ¼berliegend angeordnet sein. Durch ein SpĆ¼len kann das Entleeren der KugelmĆ¼hle unterstĆ¼tzt werden. Beispielweise kann durch die SpĆ¼lƶffnung FlĆ¼ssigkeit eingeleitet werden, die Ć¼ber den SchrƤgboden eine SpĆ¼lstrƶmung erzeugt.One of the stator segments can have at least one flushing opening of the emptying device in the area of a high point of the inclined floor. A flushing fluid, in particular a flushing liquid, can be conducted through the flushing opening into the interior of the stator in order to flush it out. The flushing opening can be designed as a pipe connection. The scavenging opening can, for example, have a standardized design. The flushing opening can be designed with a size of DN 100, for example. The Flush port may include any suitable fitting such as a gate, flapper, cock or valve. The flushing opening can be arranged opposite the emptying opening. Rinsing can help empty the ball mill. For example, liquid can be introduced through the flushing opening, which generates a flushing flow over the sloping floor.

Die KugelmĆ¼hle kann ein von dem Stator getrenntes Gestell aufweisen. StĆ¼tzen des Gestells kƶnnen seitlich beabstandet zu dem Stator auf dem Fundament der KugelmĆ¼hle abgestĆ¼tzt sein. Zumindest ein QuertrƤger des Gestells kann die StĆ¼tzen oberhalb des Stators miteinander verbinden. Eine Lagereinrichtung des Rotors kann auf dem QuertrƤger abgestĆ¼tzt sein. Mit anderen Worten kann fĆ¼r die KugelmĆ¼hle ein Gestell vorgesehen sein, welches separat zu dem Stator und nicht auf dem Stator lastend ausgebildet ist, wobei auf einem QuertrƤger dieses Gestells die Lager- und Antriebsanordnung gehalten und abgestĆ¼tzt ist, sodass diese Komponenten nicht auf dem Stator lasten. Das Gestell kann beispielsweise aus StahltrƤgern zusammengesetzt, insbesondere verschraubt, sein. Das Gestell kann als Portal ausgebildet sein, unter dem der Stator angeordnet ist. Aufgrund des Gestells kann der Stator zerlegt werden, ohne den Rotor dabei verƤndern zu mĆ¼ssen. Die Statorsegmente kƶnnen beispielsweise zu WartungsmaƟnahmen seitlich vom Rotor wegbewegt werden.The ball mill may have a stand separate from the stator. Supports of the frame may be supported on the ball mill foundation laterally spaced from the stator. At least one cross member of the frame can connect the supports to each other above the stator. A bearing device of the rotor can be supported on the cross member. In other words, a frame can be provided for the ball mill, which is designed separately from the stator and does not load on the stator, the bearing and drive arrangement being held and supported on a cross member of this frame, so that these components do not weigh on the stator . The frame can, for example, be composed of steel girders, in particular screwed. The frame can be designed as a portal under which the stator is arranged. Because of the frame, the stator can be dismantled without having to modify the rotor. The stator segments can be moved sideways away from the rotor for maintenance work, for example.

Die KugelmĆ¼hle kann eine AusrĆ¼ckvorrichtung zum seitlichen AusrĆ¼cken des an einer obenliegenden Kupplung abkoppelbaren Rotors aufweisen. Die AusrĆ¼ckvorrichtung kann zumindest eine Schiene und eine Koppeleinrichtung aufweisen. Die Koppeleinrichtung kann dazu ausgebildet sein, im Bereich der Kupplung mit dem Rotor verbunden zu werden, mit dem Rotor auf die Schiene abgesenkt zu werden und mit dem Rotor entlang der Schiene bewegt zu werden. Eine AusrĆ¼ckvorrichtung kann den Rotor zu Wartungszwecken in eine zugƤngliche Position bewegen, wƤhrend der Antrieb an Ort und Stelle verbleibt. An der Kupplung kann der Rotor vom Antrieb getrennt werden. Die Kupplung kann beispielsweise mit mehreren Schrauben verschraubt sein. An die Kupplung kann ein Anschlagelement gekoppelt werden, um den ausgerĆ¼ckten Rotor mit einem Kran anzuheben. Die Koppeleinrichtung kann eine auf eine Kontur des Rotors im Bereich der Kupplung angepasste Geometrie aufweisen. Die Koppeleinrichtung kann die Rotorwelle umschlieƟen. Die Koppeleinrichtung kann Anschlagelemente zum Ansetzen von Hebezeug aufweisen. Insbesondere kƶnnen die Anschlagelemente zum Ansetzen von Hydraulikhebern ausgebildet sein. Auch die Schiene kann Anschlagelemente zum Ansetzen der Hydraulikheber aufweisen. Die AusrĆ¼ckvorrichtung kann insbesondere zwei Schienen aufweisen, die beiderseits der Rotorwelle angeordnet sind.The ball mill can have a disengaging device for laterally disengaging the rotor, which can be uncoupled at an overhead clutch. The release device can have at least one rail and one coupling device. The coupling device can be designed to be connected to the rotor in the area of the coupling, to be lowered onto the rail with the rotor and to be moved along the rail with the rotor. A disengagement device can move the rotor to an accessible position for maintenance while the drive remains in place. The rotor can be separated from the drive at the clutch. The coupling can be screwed with several screws, for example. A stop member can be coupled to the clutch to lift the disengaged rotor with a crane. The coupling device can have a geometry adapted to a contour of the rotor in the area of the coupling. The coupling device can enclose the rotor shaft. The coupling device can have stop elements for attaching lifting gear. In particular, the stop elements can be designed for attaching hydraulic lifters. The rail can also have stop elements for attaching the hydraulic jack. In particular, the release device can have two rails which are arranged on both sides of the rotor shaft.

Das Gestell kann im Bereich der Kupplung des Rotors eine Wartungskabine aufweisen. Die Kupplung kann von der Wartungskabine aus zugƤnglich sein. Die Wartungskabine kann zum geschĆ¼tzten Aufbewahren von Werkzeugen verwendet werden. Die Wartungskabine kann die Kupplung vor UmwelteinflĆ¼ssen schĆ¼tzen.The frame can have a maintenance cabin in the area of the rotor coupling. The coupling can be accessible from the service cabin. The maintenance cabin can be used for the protected storage of tools. The maintenance cabin can protect the coupling from environmental influences.

Es wird darauf hingewiesen, dass einige der mƶglichen Merkmale und Vorteile der Erfindung hierin mit Bezug auf unterschiedliche AusfĆ¼hrungsformen der KugelmĆ¼hle, des Statorsegments oder des Verfahrens zum Warten der KugelmĆ¼hle beschrieben sind. Ein Fachmann erkennt, dass die Merkmale der KugelmĆ¼hle, des Statorsegments und des Verfahrens in geeigneter Weise kombiniert, Ć¼bertragen, angepasst und/oder ausgetauscht werden kƶnnen, um zu weiteren AusfĆ¼hrungsformen der Erfindung zu gelangen.It is noted that some of the possible features and advantages of the invention are described herein with reference to different embodiments of the ball mill, the stator segment or the method of servicing the ball mill. A person skilled in the art will recognize that the features of the ball mill, the stator segment and the method can be combined, transferred, adapted and/or interchanged in a suitable manner in order to arrive at further embodiments of the invention.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Nachfolgend werden AusfĆ¼hrungsformen der Erfindung unter Bezugnahme auf die beigefĆ¼gten Zeichnungen beschrieben, wobei weder die Zeichnungen noch die Beschreibung als die Erfindung einschrƤnkend auszulegen sind.

  • Fig. 1 zeigt eine rƤumliche Darstellung einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 2 zeigt eine rƤumliche Darstellung einer geƶffneten vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 3 zeigt eine rƤumliche Darstellung eines Statorsegments einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 4 zeigt eine Schnittdarstellung durch eine vertikale KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 5 zeigt eine Schnittdarstellung durch eine vertikale KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 6 zeigt ein Ablaufdiagramm eines Verfahrens zum Warten einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 7 zeigt eine rƤumliche Darstellung einer geschlossenen vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 8 zeigt eine rƤumliche Darstellung einer geƶffneten vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 9 zeigt eine rƤumliche Darstellung eines Statorsegments einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 10 zeigt eine rƤumliche Darstellung einer Arbeitsplattform einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 11 zeigt eine rƤumliche Darstellung einer Verlagerungseinrichtung einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel;
  • Fig. 12 zeigt eine Detaildarstellung eines Standflanschs einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel; und
  • Fig. 13 zeigt eine Detaildarstellung eines Dichtflanschs einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel.
Embodiments of the invention are described below with reference to the accompanying drawings, neither the drawings nor the description being to be construed as limiting the invention.
  • 1 shows a spatial representation of a vertical ball mill according to an embodiment;
  • 2 shows a spatial representation of an open vertical ball mill according to an embodiment;
  • 3 shows a spatial representation of a stator segment of a vertical ball mill according to an embodiment;
  • 4 shows a sectional view through a vertical ball mill according to an embodiment;
  • figure 5 shows a sectional view through a vertical ball mill according to an embodiment;
  • 6 FIG. 12 shows a flow chart of a method for servicing a vertical ball mill according to an embodiment; FIG.
  • 7 shows a spatial representation of a closed vertical ball mill according to an embodiment;
  • 8 shows a spatial representation of an open vertical ball mill according to an embodiment;
  • 9 shows a spatial representation of a stator segment of a vertical ball mill according to an embodiment;
  • 10 shows a spatial representation of a work platform of a vertical ball mill according to an embodiment;
  • 11 shows a spatial representation of a displacement device of a vertical ball mill according to an embodiment;
  • 12 shows a detailed view of a stand flange of a vertical ball mill according to an embodiment; and
  • 13 shows a detailed view of a sealing flange of a vertical ball mill according to an embodiment.

Die Figuren sind lediglich schematisch und nicht maƟstabsgetreu. Gleiche Bezugszeichen bezeichnen in den Figuren gleiche oder gleichwirkende Merkmale.The figures are merely schematic and not true to scale. In the figures, the same reference symbols denote the same features or features that have the same effect.

AusfĆ¼hrungsformen der ErfindungEmbodiments of the invention

Fig. 1 zeigt eine rƤumliche Darstellung einer vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. In der KugelmĆ¼hle 100 ist mit einem FĆ¼llvolumen von Ć¼ber 12 m3 bis zirka 150 m3 sehr groƟ und kann in einem kontinuierlichen Mahlvorgang eine Suspension von grob gebrochenem Mahlgut in einem flĆ¼ssigen TrƤgermedium durch bewegte Mahlkƶrper von einer gemittelten AnfangskorngrĆ¶ĆŸe um etwa einen Faktor 10 bis 100 auf eine gemittelte ZielkorngrĆ¶ĆŸe zerkleinert werden. Die Mahlkƶrper kƶnnen insbesondere metallische und/oder keramische Kugeln mit einem etwa um etwa einen Faktor 2 bis 50 grĆ¶ĆŸeren Durchmesser als die AnfangskorngrĆ¶ĆŸe sein. Die AnfangskorngrĆ¶ĆŸe kann hier bis zu 15 Millimetern betragen. Die Mahlkƶrper kƶnnen dabei zwischen 5 Millimetern und 50 Millimetern groƟ sein. Damit kann die KugelmĆ¼hle 100 als Zerkleinerungsstufe in einem mehrstufigen AufschlieƟungsprozess, beispielsweise in der Rohstoffgewinnung, verwendet werden. Dort kann das Mahlgut gewĆ¼nschte Mineralien und abzuscheidendes taubes Gestein enthalten. 1 shows a spatial representation of a vertical ball mill 100 according to an embodiment. In the ball mill 100, with a filling volume of more than 12 m 3 to around 150 m 3 , it is very large and, in a continuous grinding process, a suspension of coarsely crushed material to be ground in a liquid carrier medium can be produced by moving grinding bodies with an average initial grain size by a factor of around 10 to 100 be crushed to an average target grain size. The grinding media can in particular be metallic and/or ceramic balls with a diameter that is approximately 2 to 50 times larger than the initial grain size. The initial grain size here can be up to 15 millimeters. The grinding bodies can be between 5 millimeters and 50 millimeters in size. The ball mill 100 can thus be used as a comminution stage in a multi-stage digestion process, for example in the extraction of raw materials. There, the grist may contain desired minerals and waste rock to be separated.

Die KugelmĆ¼hle 100 weist zum Bewegen der Mahlkƶrper einen hƤngenden Rotor auf. Ein freistehender Stator 102 umschlieƟt als BehƤlter fĆ¼r die Suspension und die Mahlkƶrper einen Arbeitsraum der KugelmĆ¼hle 100 und den Rotor radial. Ein Arbeitsraum im Innern des Stators 102 der hier dargestellten KugelmĆ¼hle 100 betrƤgt zwischen 12 Kubikmetern und 150 Kubikmetern. Der Arbeitsraum ist im Betrieb grĆ¶ĆŸtenteils mit einem Mahlkƶrperbett aus vielen Mahlkƶrpern gefĆ¼llt. Die Suspension mit dem grob gebrochenen Mahlgut wird hier mit einer Durchflussrate zwischen 50 Kubikmetern pro Stunde und 5000 Kubikmetern pro Stunde kontinuierlich in einem unteren Bereich des Arbeitsraums in das Mahlkƶrperbett eingeleitet. Das Mahlgut wird beim DurchflieƟen des Mahlkƶrperbetts zerkleinert. In einem oberen Bereich des Arbeitsraums flieƟt die Suspension mit dem zerkleinerten Mahlgut aus dem Mahlkƶrperbett ab und wird aus dem Arbeitsraum ausgeleitet, wƤhrend die Mahlkƶrper im Arbeitsraum verbleiben.The ball mill 100 has an overhead rotor for moving the media. A free-standing stator 102, as a container for the suspension and the grinding bodies, radially encloses a working space of the ball mill 100 and the rotor. A working space inside the stator 102 of the ball mill 100 shown here is between 12 cubic meters and 150 cubic meters. During operation, the working space is mostly filled with a grinding media bed made up of many grinding media. The suspension with the coarsely crushed material to be ground is fed continuously into the bed of grinding media in a lower area of the working space at a flow rate of between 50 cubic meters per hour and 5000 cubic meters per hour. The ground material is comminuted as it flows through the grinding media bed. In an upper region of the working space, the suspension with the comminuted material to be ground flows out of the bed of grinding media and is discharged from the working space, while the grinding media remain in the working space.

Zwischen dem Stator 102 und dem Rotor bildet sich wƤhrend des Mahlvorgangs bei rotierendem Rotor eine Scherstrƶmung aus, da eine Rotorgrenzschicht der den Rotor umgebenden Suspension mit den darin enthaltenen Mahlkƶrpern vom Rotor im Wesentlichen auf eine Winkelgeschwindigkeit des Rotors mitgerissen wird und eine Statorgrenzschicht der Suspension mit den darin enthaltenen Mahlkƶrpern am Stator 102 im Wesentlichen stationƤr gehalten wird. Zwischen der Rotorgrenzschicht und der Statorgrenzschicht bildet sich ein Geschwindigkeitsverlauf der Scherstrƶmung aus, da die Suspension und die Mahlkƶrper umso schneller bewegt werden, je nƤher sie dem Rotor sind. Aufgrund des Geschwindigkeitsverlaufs ergeben sich massenhaft Kollisionen zwischen schnellen und langsamen Mahlkƶrpern, bei denen das dazwischen befindliche Mahlgut zerkleinert wird. Das zerkleinerte Mahlgut wird durch eine aus dem Durchfluss der Suspension durch das Mahlkƶrperbett resultierende AufwƤrtsstrƶmung des TrƤgermediums im Arbeitsraum aufwƤrts geschwemmt.A shear flow forms between the stator 102 and the rotor during the grinding process when the rotor is rotating, since a rotor boundary layer of the suspension surrounding the rotor with the grinding media contained therein is entrained by the rotor essentially at an angular velocity of the rotor and a stator boundary layer of the suspension with the is held substantially stationary on the stator 102 by the grinding media contained therein. Between the rotor boundary layer and the stator boundary layer, a speed profile of the shearing flow develops, since the suspension and the grinding media are moved faster the closer they are to the rotor. Due to the course of the speed, there are mass collisions between fast and slow grinding bodies, in which the material to be ground in between is crushed. The comminuted material to be ground is swept upwards in the working chamber by an upward flow of the carrier medium resulting from the flow of the suspension through the bed of grinding media.

Der Stator 102 weist eine im Wesentlichen eine Zylinderform annƤhernde MantelflƤche 104 auf und verdeckt in der in der Figur gezeigten Darstellung den Rotor. Der Rotor ist oberhalb des Stators 102 an einem oberen Ende axial und radial gelagert und hƤngt in den Arbeitsraum hinein. Eine Lager- und Antriebseinrichtung 106 des Rotors ist Ć¼ber ein freistehendes Gestell 108 direkt auf einem Fundament 110 der KugelmĆ¼hle 100 abgestĆ¼tzt. Die Lager- und Antriebseinrichtung 106 weist hier vier Elektromotoren 107 mit einer Gesamtleistung zwischen 0,8 Megawatt und 12.5 Megawatt auf, die Ć¼ber ein gemeinsames Getriebe den Rotor antreiben. Es kƶnnen auch weniger bis minimal ein Elektromotoren zum Einsatz kommen. Zwischen dem Gestell 108 und dem Stator 102 besteht kein lasttragender Kontakt. Ein Antriebsmoment der Lager- und Antriebseinrichtung 106 wird Ć¼ber das Gestell 108 in das Fundament 110 abgeleitet. Der Stator 102 steht selbsttragend auf einer Grundplatte der KugelmĆ¼hle 100. Die Grundplatte stĆ¼tzt ein Gewicht des Stators 102, ein Gegenmoment des Antriebsmoments sowie ein Gewicht der Mahlkƶrper, der Mineralien und des TrƤgermediums auf dem Fundament 110 ab. Die Grundplatte ist in Fig. 1 durch den Stator 102 verdeckt.The stator 102 has a lateral surface 104 that essentially approximates the shape of a cylinder and, in the representation shown in the figure, covers the rotor. The rotor is mounted axially and radially above the stator 102 at an upper end and hangs into the working space. A bearing and drive device 106 of the rotor is supported directly on a foundation 110 of the ball mill 100 via a free-standing frame 108 . The storage and drive device 106 has four electric motors 107 with a total output of between 0.8 megawatts and 12.5 megawatts, which drive the rotor via a common gearbox. Fewer or at least one electric motor can also be used. There is no load bearing contact between the frame 108 and the stator 102 . A drive torque of the bearing and drive device 106 is derived via the frame 108 into the foundation 110 . The stator 102 stands self-supporting on a base plate of the ball mill 100. The base plate supports a weight of the stator 102, a counter torque of the driving torque, and a weight of the grinding media, the minerals, and the carrier medium on the foundation 110. The base plate is in 1 covered by the stator 102.

Der Stator 102 ist insbesondere zu Wartungszwecken teilbar. Hier ist der Stator 102 aus zwei im Wesentlichen gleichartigen Statorsegmenten 112 zusammengesetzt. Der Stator 102 kann auch aus mehr als zwei Statorsegmenten 112 zusammengesetzt sein. Die Statorsegmente 112 sind Ć¼ber Dichtflansche 114 miteinander verbunden. Die Dichtflansche 114 verlaufen von einer Oberkante des Stators 102 zu einer Unterkante des Stators entlang von Seitenkanten einer Wand 116 der Statorsegmente 112. Zum Verbinden der Statorsegmente 112 kƶnnen die Dichtflansche 114 beispielsweise miteinander verschraubt werden. Zum Trennen der Statorsegmente 112 kƶnnen die Schrauben wieder gelƶst werden. Die benachbarten Statorsegmente 112 kƶnnen alternativ auch in anderer Weise mechanisch miteinander lƶsbar verbunden werden. Die Dichtflansche 114 bilden DichtflƤchen 118 zum fluiddichten Abdichten des Arbeitsraums aus. Zwischen DichtflƤchen 118 kƶnnen zusƤtzliche Dichtungen angeordnet sein. Die DichtflƤchen 118 beziehungsweise Dichtungen verhindern ein Auslaufen der Suspension an den Trennstellen des Stators 102. Dichtflansche 114 kƶnnen zusƤtzlich mit LeckagekanƤlen versehen sein. LeckagekanƤle kƶnnen eventuell austretendes TrƤgermedium gezielt in ein Sammelsystem ableiten. Die Wand 116 eines Statorsegments 112 bildet ein eine Zylindersegmentform annƤhernde Segment der MantelflƤche 104 des Stators 102 ab und ist an einer AuƟenseite durch eine Mehrzahl von tangential ausgerichteten Versteifungsrippen 117 versteift. ZusƤtzlich ist die Wand 116 an der AuƟenseite durch wenige in axialer Richtung verlaufende Versteifungsrippen 119 verstƤrkt. Die Dichtflansche 114 entsprechen im Wesentlichen entlang den Seitenkanten verlaufenden axialen Versteifungsrippen 119. Die Versteifungsrippen 117, 119 versteifen den Stator 112 unter anderem gegen einen hydrostatischen Druck durch das TrƤgermedium.The stator 102 can be divided in particular for maintenance purposes. Here the stator 102 is composed of two essentially identical stator segments 112 . The stator 102 can also be composed of more than two stator segments 112 . The stator segments 112 are connected to one another via sealing flanges 114 . The sealing flanges 114 run from an upper edge of the stator 102 to a lower edge of the stator along side edges of a wall 116 of the stator segments 112. To connect the stator segments 112, the sealing flanges 114 can be screwed together, for example. To separate the stator segments 112, the screws can be loosened again. Alternatively, the adjacent stator segments 112 can also be mechanically detachably connected to one another in some other way. The sealing flanges 114 form sealing surfaces 118 for fluid-tight sealing of the working space. Additional seals can be arranged between sealing surfaces 118 . The sealing surfaces 118 or seals prevent the suspension from escaping at the separation points of the stator 102. Sealing flanges 114 can also be provided with leakage channels. Leakage channels can divert any escaping carrier medium to a collection system. The wall 116 of a stator segment 112 forms a segment of the lateral surface 104 of the stator 102 that approximates the shape of a segment of a cylinder and is reinforced on an outside by a plurality of tangentially aligned stiffening ribs 117 . In addition, the wall 116 is reinforced on the outside by a few stiffening ribs 119 running in the axial direction. The sealing flanges 114 essentially correspond to axial stiffening ribs 119 running along the side edges. The stiffening ribs 117, 119 stiffen the stator 112, among other things, against hydrostatic pressure from the carrier medium.

Die Statorsegmente 112 weisen an der Unterkante je einen umlaufenden Standflansch 120 auf. Der Standflansch 120 ist im Wesentlichen eine entlang der Unterkante der WƤnde 116 verlaufende tangentiale Rippe. Ɯber die Standflansche 120 sind die Statorsegmente 112 mit der Grundplatte verbunden, insbesondere derart, dass KrƤfte aufgrund eines Gewichts der Statorsegmente 112 sowie eventuell aufgrund eines Gewichts der Mahlkƶrper und des Mahlguts in die Grundplatte abgeleitet werden kƶnnen. Beispielsweise kƶnnen die Standflansche 120 mit der Grundplatte verschraubt sein. Die Standflansche 120 bilden eine belastungsgerecht dimensionierte StandflƤche 122 des Stators 102 aus. Ɯber die StandflƤche 122 wird das gesamte Gewicht des Stators 102 auf der Grundplatte abgestĆ¼tzt. Die StandflƤche 122 ist ebenso eine DichtflƤche 118 und dichtet an der Grundplatte ab. Zwischen der StandflƤche 122 und der Grundplatte kann ebenfalls eine Dichtung angeordnet sein. Auch zwischen der StandflƤche 122 und der Grundplatte kƶnnen LeckagekanƤle ausgebildet sein.The stator segments 112 each have a peripheral standing flange 120 on the lower edge. The standing flange 120 is essentially one along the bottom edge of the Walls 116 running tangential rib. The stator segments 112 are connected to the baseplate via the standing flanges 120, in particular in such a way that forces due to the weight of the stator segments 112 and possibly due to the weight of the grinding bodies and the material to be ground can be dissipated into the baseplate. For example, the standing flanges 120 can be screwed to the base plate. The standing flanges 120 form a standing surface 122 of the stator 102 that is dimensioned appropriately for the load. The entire weight of the stator 102 is supported on the base plate via the base 122 . The standing surface 122 is also a sealing surface 118 and seals against the base plate. A seal can also be arranged between the standing surface 122 and the base plate. Leakage channels can also be formed between the standing surface 122 and the base plate.

Um an den Rotor zu gelangen, kann der Arbeitsraum entleert werden, d.h. Mahlgut und Mahlkƶrper entfernt werden. Dann kƶnnen die Statorsegmente 112 lateral bewegt werden. Vor dem Bewegen wird eine mechanische Verbindung der Statorsegmente 112 untereinander und der Statorsegmente 112 mit der Grundplatte gelƶst. AnschlieƟend kƶnnen die Statorsegmente 112 individuell mittels einer Hebeeinrichtung angehoben werden, um frei von der Grundplatte lateral bewegt zu werden. Als Hebeeinrichtung kƶnnen beispielsweise Hydraulikheber verwendet werden. FĆ¼r das Anheben weist jedes Statorsegment 112 mehrere Anschlagelemente 124 auf. Die Anschlagelemente 124 sind im Bereich der Unterkante der Wand 116 angeordnet. Die Anschlagelemente 124 sind hier als Ć¼ber die StandflƤche 122 Ć¼berstehende Konsolen ausgebildet und weisen nach unten gerichtete AnschlagflƤchen auf.In order to access the rotor, the working area can be emptied, i.e. the material to be ground and the grinding media removed. Then the stator segments 112 can be moved laterally. Before moving, a mechanical connection between the stator segments 112 and between the stator segments 112 and the base plate is released. Subsequently, the stator segments 112 can be individually lifted by means of a lifting device in order to be moved laterally free of the base plate. Hydraulic jacks, for example, can be used as the lifting device. Each stator segment 112 has a plurality of stop elements 124 for lifting. The stop elements 124 are arranged in the area of the lower edge of the wall 116 . The stop elements 124 are designed here as consoles that protrude beyond the standing surface 122 and have stop surfaces pointing downwards.

In einem AusfĆ¼hrungsbeispiel weist die KugelmĆ¼hle 100 eine Verlagerungseinrichtung 126 auf. Die Verlagerungseinrichtung 126 weist pro Statorsegment 112 drei Schiebewege 128 auf, Ć¼ber die das Statorsegment 112 lateral gefĆ¼hrt von dem anderen Statorsegment 112 wegbewegt werden kann. Die Schiebewege 128 sind hier durch im Fundament 110 verankerte Schienen 130 vorgegeben. Die Schienen 130 und das Fundament 110 sind dazu ausgelegt, das Gewicht eines Statorsegments 112 sicher zu tragen. Zum Verschieben wird das angehobene Statorsegment 112 unter Verwendung der Hebeeinrichtung auf Hilfseinrichtungen abgesenkt. Die Hilfseinrichtungen werden zwischen den Anschlagelementen 124 und den Schienen 130 angeordnet und stĆ¼tzen das Gewicht des darauf abgesenkten Statorsegments 112 Ć¼ber die Schienen 130 ab. Durch die Hilfseinrichtungen wird ein Abstand zwischen der StandflƤche 122 und der Grundplatte auch in wieder abgesenktem Zustand gewahrt. Das Statorsegment 112 wird mit den Hilfseinrichtungen entlang des Schiebewegs 128 bewegt.In one exemplary embodiment, the ball mill 100 has a displacement device 126 . The displacement device 126 has three sliding paths 128 per stator segment 112, via which the stator segment 112 can be moved away from the other stator segment 112 in a laterally guided manner. The sliding paths 128 are defined here by rails 130 anchored in the foundation 110 . The rails 130 and foundation 110 are designed to securely support the weight of a stator segment 112 . For shifting, the lifted stator segment 112 is lowered onto auxiliary equipment using the lifting device. The auxiliary devices are arranged between the stop elements 124 and the rails 130 and support the weight of the stator segment 112 lowered thereon via the rails 130 . The auxiliary devices maintain a distance between the standing surface 122 and the base plate, even when it is lowered again. The stator segment 112 is moved along the sliding path 128 with the auxiliary devices.

In einem AusfĆ¼hrungsbeispiel sind die Hilfseinrichtungen als Gleitschuhe ausgefĆ¼hrt, die mittels eines Gleitbelags und eines optionalen Schmiermittels auf einer OberflƤche der Schienen 130 gleiten. Zum Bewegen des Statorsegments 112 entlang der Schienen 130 kƶnnen Zugsysteme und/oder Schubsysteme verwendet werden.In one embodiment, the auxiliary devices are designed as sliding shoes, which slide on a surface of the rails 130 by means of a sliding coating and an optional lubricant. Pull systems and/or push systems may be used to move the stator segment 112 along the rails 130 .

In einem alternativen AusfĆ¼hrungsbeispiel werden zum Verschieben des Statorsegments 112 Schwerlastroller zwischen den Anschlagelementen 124 und dem belastungsgerecht dimensionierten Fundament 110 angeordnet, Ć¼ber die das Gewicht des Statorsegments 112 direkt auf dem Fundament 110 abgestĆ¼tzt wird. Auf den Schwerlastrollern kann das Statorsegment 112 frei bewegt werden.In an alternative exemplary embodiment, heavy-duty rollers are arranged between the stop elements 124 and the foundation 110 , which is dimensioned appropriately for the load, in order to move the stator segment 112 , via which rollers the weight of the stator segment 112 is supported directly on the foundation 110 . The stator segment 112 can be moved freely on the heavy-duty rollers.

In einem AusfĆ¼hrungsbeispiel ist an zumindest einem der Statorsegmente 112 zumindest eine KippstĆ¼tze 132 angeordnet. Die KippstĆ¼tze 132 kann fest an dem Statorsegment 112 befestigt sein oder alternativ vor dem Verschieben an dafĆ¼r vorgesehenen Anschlagelementen 124 der Statorsegmente 112 befestigt werden. Die KippstĆ¼tze 132 kann Ć¼ber einen Schwerlastroller auf dem Fundament 110 abgestĆ¼tzt sein. Alternativ kann die KippstĆ¼tze 132 Teil der Verlagerungseinrichtung 126 sein. Dann ist die KippstĆ¼tze 132 mittels einer weiteren Hilfseinrichtung 134 an eine der Schienen 130 gekoppelt. Die weitere Hilfseinrichtung 134 kann als Gleitschuh ausgebildet sein. Die weitere Hilfseinrichtung 134 kann gegen ein Abheben von der Schiene 130 gesichert sein. Dazu kann die Hilfseinrichtung 134 die Schiene 130 zumindest teilweise umgreifen. So kann die Hilfseinrichtung 134 DruckkrƤfte und ZugkrƤfte in die Schiene 130 einleiten. ZusƤtzlich ist die KippstĆ¼tze 132 lƤngenverstellbar, um beim Anheben und Absenken des Statorsegments 112 den Hub ausgleichen zu kƶnnen beziehungsweise eine Winkelstellung des Statorsegments 112 zu dem anderen Statorsegment 112 zu korrigieren.In one exemplary embodiment, at least one anti-tilt support 132 is arranged on at least one of the stator segments 112 . The anti-tilt support 132 can be firmly attached to the stator segment 112 or, alternatively, can be attached to stop elements 124 of the stator segments 112 provided for this purpose before the displacement. The anti-tipper 132 can be supported on the foundation 110 via a heavy-duty roller. Alternatively, the anti-tipper 132 can be part of the displacement device 126 . The anti-tilt support 132 is then coupled to one of the rails 130 by means of a further auxiliary device 134 . The additional auxiliary device 134 can be designed as a sliding shoe. The additional auxiliary device 134 can be secured against being lifted off the rail 130 . For this purpose, the auxiliary device 134 can at least partially encompass the rail 130 . In this way, the auxiliary device 134 can introduce compressive and tensile forces into the rail 130 . In addition, the anti-tilt support 132 is adjustable in length in order to be able to compensate for the stroke when raising and lowering the stator segment 112 or to correct an angular position of the stator segment 112 in relation to the other stator segment 112 .

Beim dargestellten AusfĆ¼hrungsbeispiel sind die Schienen 130 in Vertiefungen des Fundaments 110 angeordnet. Somit kƶnnen die Schienen 130 wƤhrend des Betriebs der KugelmĆ¼hle 100 abgedeckt werden, wodurch sie vor BeschƤdigung und Verschmutzung besser geschĆ¼tzt sind, als wenn sie offenliegen wĆ¼rden.In the exemplary embodiment shown, the rails 130 are arranged in depressions in the foundation 110 . Thus, the rails 130 can be covered during the operation of the ball mill 100, which protects them from damage and dirt better than if they were exposed.

Fig. 2 zeigt eine rƤumliche Darstellung einer geƶffneten vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 entspricht dabei im Wesentlichen der KugelmĆ¼hle in Fig. 1. Im Gegensatz zu der Darstellung in Fig. 1 sind die Statorsegmente 112 hier voneinander getrennt worden. Die Statorsegmente 112 wurden an den Anschlagelementen 124 angehoben und dabei von der Grundplatte 200 abgehoben. Zwischen den Anschlagelementen 124 und den Schienen 130 sind Hilfseinrichtungen 134 angeordnet worden, auf denen die Statorsegmente 112 abgesetzt worden sind. Dadurch sind die StandflƤchen 122 beabstandet zu einer lasttragenden OberflƤche 201 der Grundplatte 200. Unter Verwendung einer Zugvorrichtung 202 sind die Statorsegmente 112 auf den Hilfseinrichtungen 134 entlang des durch die Schienen 130 definierten Schiebewegs 128 seitlich von der Grundplatte 200 weg verlagert worden, um Wartungsarbeiten beziehungsweise Unterhaltsarbeiten an dem Rotor 204 und/oder einer Innenseite 206 des Stators 102 durchfĆ¼hren zu kƶnnen. Im dargestellten Beispiel sind die Statorsegmente 112 in entgegengesetzte Richtungen bewegt worden. 2 shows a spatial representation of an open vertical ball mill 100 according to an embodiment. The ball mill 100 essentially corresponds to the ball mill in 1 . In contrast to the representation in 1 the stator segments 112 have been separated from one another here. The stator segments 112 were lifted at the stop elements 124 and thereby lifted off the base plate 200. Auxiliary devices 134 have been arranged between the stop elements 124 and the rails 130, on which the stator segments 112 have been placed. As a result, the standing areas 122 are at a distance from a load-bearing surface 201 of the base plate 200. Using a pulling device 202, the stator segments 112 on the auxiliary devices 134 are laterally shifted away from the base plate 200 along the sliding path 128 defined by the rails 130 in order to carry out maintenance work to be able to perform on the rotor 204 and/or an inner side 206 of the stator 102 . In the example shown, the stator segments 112 have been moved in opposite directions.

An den Innenseiten 206 der WƤnde 116 kƶnnen die Statorsegmente 112 mehrere vertikal voneinander beabstandete, horizontale, ringsegmentfƶrmige Rippen 208 aufweisen. Die Rippen 208 beider Statorsegmente 112 kƶnnen gleich angeordnet sein. Flachseiten jeder Rippe 208 wirken im Betrieb der vertikalen KugelmĆ¼hle 100 als ringfƶrmige BremsflƤchen 210 fĆ¼r die Suspension. Die Rippen 208 wirken fĆ¼r die von unten nach oben durch die KugelmĆ¼hle 100 strƶmende Suspension ferner als UmlenkflƤchen in Richtung des Rotors 204. Die Rippen 208 weisen gleichmƤƟige AbstƤnde auf. Die Rippen 208 auf der Innenseite 206 kƶnnen, brauchen aber nicht unbedingt, eine grĆ¶ĆŸere Hƶhe und/oder grĆ¶ĆŸere vertikale AbstƤnde voneinander aufweisen als die tangentialen Versteifungsrippen 117 an der AuƟenseite. Ebenso ist eine AusfĆ¼hrung des MĆ¼hlenzylinders ohne innenliegende Rippen mƶglich.On the inner sides 206 of the walls 116, the stator segments 112 can have a plurality of vertically spaced, horizontal, ring-segment-shaped ribs 208. The ribs 208 of both stator segments 112 can be arranged in the same way. Flat sides of each rib 208 act as annular braking surfaces 210 for the suspension during operation of the vertical ball mill 100 . The ribs 208 also act as deflection surfaces in the direction of the rotor 204 for the suspension flowing from bottom to top through the ball mill 100. The ribs 208 are uniformly spaced. The ribs 208 on the inside 206 may, but need not, have a greater height and/or greater vertical spacing than the tangential stiffening ribs 117 on the outside. It is also possible to design the mill cylinder without internal ribs.

Der Rotor 204 ist von der Antriebs- und Lagereinrichtung 106 getrennt und seitlich ausgerĆ¼ckt dargestellt. Der Rotor 204 weist mehrere auf einer Rotorwelle 205 angeordnete, vertikal voneinander beabstandete, quer zur Rotorwelle 205 ausgerichtete Scheiben 212 auf. An ihren Flachseiten weist jede Scheibe 212 zwei ringfƶrmige SchleppflƤchen 214 zum Antreiben der Suspension auf. Die Scheiben 212 weisen zur Rotorwelle 205 hin DurchbrĆ¼che 213 auf. Durch die DurchbrĆ¼che 213 sind zwischen den SchleppflƤchen 214 und der Rotorwelle 205 Speichen 215 ausgebildet.The rotor 204 is shown separated from the drive and bearing assembly 106 and laterally disengaged. The rotor 204 has a plurality of discs 212 which are arranged on a rotor shaft 205 and are vertically spaced apart and aligned transversely to the rotor shaft 205 . On its flat sides, each disc 212 has two annular drag surfaces 214 for driving the suspension. The discs 212 have openings 213 towards the rotor shaft 205 . Spokes 215 are formed between the drag surfaces 214 and the rotor shaft 205 through the openings 213 .

Im betriebsbereiten Zustand der KugelmĆ¼hle 100 kƶnnen die Rippen 208 und die Scheiben 212 im Arbeitsraum beabstandet zueinander und abwechselnd Ć¼bereinander angeordnet sein, wobei sich die BremsflƤchen 210 und die SchleppflƤchen 214 in horizontaler Richtung zumindest anteilig Ć¼berlappen kƶnnen. Durch die Ɯberlappung der Rippen 208 und der Scheiben 212 ist im betriebsbereiten Zustand ein Labyrinth zwischen dem Stator 102 und dem Rotor 204 ausgebildet, das einen Strƶmungsweg der Suspension durch die KugelmĆ¼hle 100 verlƤngert. Ebenso ist eine AusfĆ¼hrung ohne die inneren Rippen 208 machbar. An einem oberen Ende weist der Rotor 204 eine Kupplung 216 auf, Ć¼ber die der Rotor 204 mit der Lager- und Antriebseinrichtung 106 lƶsbar gekoppelt werden kann.When the ball mill 100 is ready for operation, the ribs 208 and the disks 212 can be spaced apart from one another and arranged alternately one above the other in the working space, with the braking surfaces 210 and the drag surfaces 214 being able to overlap at least partially in the horizontal direction. Due to the overlapping of the ribs 208 and the discs 212, a labyrinth is formed between the stator 102 and the rotor 204 in the operational state, which forms a flow path for the suspension extended by the ball mill 100. An embodiment without the inner ribs 208 is also feasible. At an upper end, the rotor 204 has a coupling 216 via which the rotor 204 can be detachably coupled to the bearing and drive device 106 .

Das Gestell 108 weist eine AusrĆ¼ckvorrichtung 218 zum AusrĆ¼cken des Rotors 204 auf. Die AusrĆ¼ckvorrichtung 218 weist zwei mit dem Gestell 108 verbundene, seitlich Ć¼ber QuertrƤger des Gestells 108 herausragende Schienen 130 und eine Koppeleinrichtung 220 auf. Die Schienen 130 sind an gegenĆ¼berliegenden Seiten der Rotorwelle 205 angeordnet.The frame 108 has a disengagement device 218 for disengaging the rotor 204 . The release device 218 has two rails 130 which are connected to the frame 108 and protrude laterally over the crossbeam of the frame 108 and a coupling device 220 . The rails 130 are arranged on opposite sides of the rotor shaft 205 .

Zum AusrĆ¼cken wird die Koppeleinrichtung 220 im Bereich der Kupplung 216 mit dem an die Lager- und Antriebseinrichtung 106 gekoppelten Rotor 204 verbunden. Die Koppeleinrichtung 220 ist im Wesentlichen U-fƶrmig und wird von der Seite an die Rotorwelle 205 geschoben. AnschlieƟend wird ein offenes Ende der Koppeleinrichtung 220 durch einen Riegel 222 verschlossen. Die Kupplung 216 weist einen grĆ¶ĆŸeren Durchmesser auf als die Rotorwelle 205. Die Koppeleinrichtung 220 wird angehoben, bis sie an der Kupplung 216 anliegt und die Lager- und Antriebseinrichtung 106 entlastet ist, indem ein Gewicht des Rotors 204 durch die Koppeleinrichtung 220 abgefangen wird. Dann wird die Kupplung 116 von der Lager- und Antriebseinrichtung 106 gelƶst. Die Koppeleinrichtung 220 mit dem gelƶsten Rotor 204 wird dann abgesenkt, bis sie auf den Schienen 130 aufliegt. Der Rotor 204 mitsamt der Koppeleinrichtung 220 wird anschlieƟend entlang der Schienen 130 bewegt, bis die Kupplung 216 neben dem QuertrƤger angeordnet ist und von oben zugƤnglich ist. Die Kupplung 216 kann anschlieƟend Ć¼ber einen Adapter mit einem Kran aus der Koppeleinrichtung 220 gehoben werden. Die Koppeleinrichtung 220 kann beispielsweise einen Gleitbelag aufweisen.To disengage, the coupling device 220 is connected in the area of the clutch 216 to the rotor 204 coupled to the bearing and drive device 106 . The coupling device 220 is essentially U-shaped and is pushed onto the rotor shaft 205 from the side. An open end of the coupling device 220 is then closed by a latch 222 . The coupling 216 has a larger diameter than the rotor shaft 205. The coupling device 220 is raised until it rests against the coupling 216 and the bearing and drive device 106 is relieved by the weight of the rotor 204 being intercepted by the coupling device 220. Then the clutch 116 is released from the bearing and drive device 106 . The coupler 220 with the rotor 204 detached is then lowered until it rests on the rails 130 . The rotor 204 together with the coupling device 220 is then moved along the rails 130 until the coupling 216 is arranged next to the cross member and is accessible from above. The coupling 216 can then be lifted out of the coupling device 220 using an adapter with a crane. The coupling device 220 can have a sliding coating, for example.

Nachfolgend werden Details des AusfĆ¼hrungsbeispiels, wie es in Fig. 1 und Fig. 2 dargestellt ist, weitergehend und mit teilweise modifizierter Wortwahl erlƤutert.Below are details of the embodiment as shown in 1 and 2 is shown, explained in more detail and with partially modified choice of words.

Die Figuren 1 und 2 zeigen eine KugelmĆ¼hle 100 bei der ein als Lager- und Antriebseinrichtung 106 dienender MĆ¼hlenantrieb aus Motor(en) 107 und Getriebe zusammen mit einer als Rotorwelle 205 dienenden MĆ¼hlenwelle oben an der vertikalen MĆ¼hle auf einer Plattform beziehungsweise einem MĆ¼hlenrahmen, welche als Gestell 108 dienen, angeordnet ist. Die MĆ¼hlenwelle trƤgt Mahlscheiben 212 und kann zusammen mit diesen als Rotor 204 bezeichnet werden. Die Plattform oben an der MĆ¼hle trƤgt nur das Gewicht von Rotor, Motor und Getriebe, wodurch relativ kleine KrƤfte wirken. Die KrƤfte sind insbesondere klein gegenĆ¼ber den wirkenden KrƤften, wenn die ganze MĆ¼hle oben aufgehƤngt ist.The figures 1 and 2 show a ball mill 100 in which a mill drive consisting of motor(s) 107 and gearing serving as a bearing and drive device 106, together with a mill shaft serving as a rotor shaft 205, are arranged at the top of the vertical mill on a platform or a mill frame, which serve as a frame 108 is. The mill shaft carries grinding discs 212 and together with these can be referred to as rotor 204 . The platform at the top of the mill only supports the weight of the rotor, motor and gearbox, resulting in relatively small forces. The Forces are particularly small compared to the acting forces when the whole mill is suspended above.

Ein als Stator 102 wirkender Mahlzylinder der KugelmĆ¼hle 100 mit einer VerschleiƟschutzauskleidung und stationƤren Scheiben in Form von Rippen 208 ist konstruktiv nicht mit dem MĆ¼hlenantrieb verbunden. Der Mahlzylinder ist in zwei MahlzylinderhƤlften mit stationƤren Scheiben teilbar. Eine Abdichtung am Vertikalflansch und am Radialflansch erfolgt mit einer Hohldichtung. Ein Gewicht des Mahlzylinders, der stationƤren Scheiben, von Mahlkƶrpern und der hier als TrĆ¼be bezeichneten Suspension aus Mahlgut und TrƤgermedium wird durch die Verankerung am Boden getragen und ins Fundament abgeleitet. Die Mahlzylinderkonstruktion ist in sich genĆ¼gend stabil, um die KrƤfte aufzunehmen. Die Grundplatte 200 ist im Beton am Boden zur Aufnahme und Ableitung der MahlzylinderkrƤfte verankert. Eine optionale VerschleiƟplatte schĆ¼tzt die Grundplatte 200 und wird nur durch ihr Eigengewicht gehalten oder kann auch mechanisch befestigt werden und kann einfach entfernt werden. Ein TrĆ¼be-Einlass ist seitwƤrts unten und ein TrĆ¼be-Auslass ist seitwƤrts oben angeordnet.A grinding cylinder of the ball mill 100 acting as a stator 102 with an anti-wear lining and stationary discs in the form of ribs 208 is not structurally connected to the mill drive. The grinding cylinder can be divided into two grinding cylinder halves with stationary disks. A hollow seal is used to seal the vertical flange and the radial flange. A weight of the grinding cylinder, the stationary discs, grinding bodies and the suspension of grinding material and carrier medium, referred to here as pulp, is carried by the anchoring on the ground and diverted into the foundation. The grinding cylinder construction is sufficiently stable to absorb the forces. The base plate 200 is anchored in the concrete on the floor to absorb and dissipate the grinding cylinder forces. An optional wear plate protects the base plate 200 and is supported solely by its own weight or can also be mechanically attached and can be easily removed. A slurry inlet is sideways down and a slurry outlet is sideways up.

Im Betrieb der KugelmĆ¼hle 100 ist der Innenraum des Mahlzylinders beziehungsweise des MĆ¼hlenzylinders bis zu 80% der Mahlzylinderhƶhe mit Mahlperlen (nicht dargestellt) gefĆ¼llt. In ZwischenrƤumen zwischen den Mahlperlen und oberhalb des Mahlperlenbetts befindet sich TrĆ¼be. Hier erfolgt eine Entleerung der KugelmĆ¼hle 100 durch Ɩffnungen am MĆ¼hlenboden.During operation of the ball mill 100, the interior of the grinding cylinder or the mill cylinder is filled with grinding beads (not shown) up to 80% of the height of the grinding cylinder. There is turbidity in the spaces between the grinding beads and above the bed of grinding beads. Here, the ball mill 100 is emptied through openings on the mill floor.

Die hier vorgestellte vertikale KugelmĆ¼hle 100 kann insbesondere fĆ¼r eine PrimƤrmahlung, also fĆ¼r eine Grobmahlung, eingesetzt werden. Dabei wird Mahlgut mit einer maximalen KorngrĆ¶ĆŸe F100 von 10 mm bis 15 mm bzw. mit einem F80 von 250 Mikron bis 5 mm auf eine Feinheit von P80 von 100 Āµm wirtschaftlich gemahlen.The vertical ball mill 100 presented here can be used in particular for primary grinding, ie for coarse grinding. Here, regrind with a maximum grain size F100 of 10 mm to 15 mm or with an F80 of 250 microns to 5 mm is ground economically to a fineness of P80 of 100 Āµm.

Eine Variante der KugelmĆ¼hle 100 kann fĆ¼r eine Zerkleinerung im Feinbereich verwendet werden. Als Feinbereich wird hier eine Mahlung auf eine Produktfeinheit mit einem P80 von 40 bis 300 Āµm bezeichnet. Im Feinbereich liegt die Aufgabefeinheit vorzugshalber im Bereich von kleiner 500 Āµm.A variant of the ball mill 100 can be used for fine comminution. A grinding to a product fineness with a P80 of 40 to 300 Āµm is referred to here as a fine range. In the fine range, the feed fineness is preferably in the range of less than 500 Ī¼m.

Bei der hier vorgestellten vertikalen KugelmĆ¼hle 100 bleiben die Mahlkƶrper im Wesentlichen in vertikaler Richtung in Position. Es wird im Wesentlichen keine Hubarbeit aufgebracht. Die Mahlung erfolgt in den Bereichen zwischen den Rotorscheiben 212 und den durch die Rippen 208 gebildeten GehƤusescheiben. Der Mahlraum, und damit die Beanspruchung des Mahlgutes mit den Mahlkƶrpern, ist sehr gut definiert. Dies erhƶht die Mahleffizienz. Die fĆ¼r die Mahlung erforderlichen MahlkrƤfte werden im Wesentlichen durch FliehkrƤfte erzeugt. Die Schwerkraft bewirkt eine von oben nach unten zunehmende Kontaktkraft oder Pressung zwischen den Mahlkƶrpern und einen von oben nach unten zunehmenden hydrostatischen Druck im Stator 102. Die MahlkrƤfte kƶnnen durch die Drehzahl und durch die Masse der Mahlkƶrper beeinflusst und geƤndert werden. Der Transport des Mahlguts in der vertikalen KugelmĆ¼hle 100 erfolgt durch die SchleppkrƤfte in der TrĆ¼be welche durch die Aufgabepumpe erzeugt wird. Die Verweilzeit und damit der Energieeintrag kann durch eine einstellbare Fƶrderleistung der Aufgabepumpe beeinflusst werden. Fertiggut wird durch die Ɩffnungen im Rotor transportiert und im Ɯberlauf oben aus der MĆ¼hle abgefĆ¼hrt. Ein separater ƤuƟerer Sichtkreislauf ist im Allgemeinen nicht nƶtig. Ein solcher kann aber im Bedarfsfall vorgesehen werden.In the case of the vertical ball mill 100 presented here, the grinding bodies essentially remain in position in the vertical direction. Essentially no lifting work is applied. The grinding takes place in the areas between the Rotor disks 212 and the housing disks formed by the ribs 208. The grinding chamber, and thus the stress on the material to be ground with the grinding media, is very well defined. This increases grinding efficiency. The grinding forces required for grinding are essentially generated by centrifugal forces. Gravity causes a top-to-bottom contact force or squeeze between the grinding media and a top-to-bottom increasing hydrostatic pressure in the stator 102. The grinding forces can be influenced and changed by the speed and mass of the grinding media. The ground material is transported in the vertical ball mill 100 by the drag forces in the pulp which are generated by the feed pump. The residence time and thus the energy input can be influenced by an adjustable delivery rate of the feed pump. The finished product is transported through the openings in the rotor and discharged from the top of the mill in the overflow. A separate external view circuit is generally not required. However, one can be provided if necessary.

Das Feingut aus der hier vorgestellten vertikalen KugelmĆ¼hle 100 erreicht eine fĆ¼r die nachfolgende Behandlungsstufe (Flotation, Laugung) vorteilhafte enge KorngrĆ¶ĆŸenverteilung (KGV). Dies entspricht einem steilen Verlauf einer im RRRS Diagramm dargestellten Feinheitskurve. Eine enge KorngrĆ¶ĆŸenverteilung wird durch die Minimierung von Ɯbermahlung erreicht. Dazu wird bei dem hier vorgestellten Ansatz das bereits fertige Produkt schnellstmƶglich aus dem Mahlprozess entfernt. Je besser das gelingt umso steiler ist die KGV. Der Mahlraum der vertikalen KugelmĆ¼hle 100 ist daher so gestaltet dass diese Voraussetzungen erfĆ¼llt sind. Dies wird im Wesentlichen durch Ɩffnungen in Form der DurchbrĆ¼che 213 in den Rotorscheiben 212 erreicht. Eine Pumpe fƶrdert die TrĆ¼be von unten nach oben, passiert die Ɩffnungen und den Mahlraum und nimmt die Feinanteile des Mahlguts mit. Die Geschwindigkeit wird durch die Fƶrdermenge der Pumpe bestimmt. Die Fƶrdermenge wird so eingestellt, dass ein Abtransport des auf die gewĆ¼nschte Produktfeinheit gemahlenen Produkts erfolgt und grƶberes Material im Mahlraum der MĆ¼hle verbleibt. Das Mahlgut, welches bereits die erforderliche Feinheit erreicht hat, wird so schnell wie mƶglich aus dem Mahlraum entfernt. Damit wird eine Ɯbermahlung vermieden.The fine material from the vertical ball mill 100 presented here achieves a narrow grain size distribution (PSR) that is advantageous for the subsequent treatment stage (flotation, leaching). This corresponds to a steep course of a delicacy curve shown in the RRRS diagram. A narrow particle size distribution is achieved by minimizing over-grinding. In the approach presented here, the already finished product is removed from the grinding process as quickly as possible. The better this succeeds, the steeper the price-earnings ratio. The grinding chamber of the vertical ball mill 100 is therefore designed in such a way that these requirements are met. This is essentially achieved by openings in the form of openings 213 in rotor disks 212 . A pump conveys the slurry from bottom to top, passes through the openings and the grinding chamber and takes the fines of the ground material with it. The speed is determined by the flow rate of the pump. The flow rate is adjusted in such a way that the product ground to the desired product fineness is transported away and coarser material remains in the grinding chamber of the mill. The material to be ground, which has already reached the required fineness, is removed from the grinding chamber as quickly as possible. This avoids over-grinding.

Bevor Unterhaltsarbeiten an der KugelmĆ¼hle 100 beginnen kƶnnen, wird der Mahlzylinder-Innenraum entleert. Dabei werden die Mahlperlen und die TrĆ¼be durch Ɩffnungen und Rohrleitungen im MĆ¼hlenboden und durch Ɩffnen der entsprechenden Ventile abgelassen. Durch das Eigengewicht verlassen die Mahlperlen und die TrĆ¼be den Mahlraum durch die Bodenƶffnungen. Die Entleerungsmenge kann durch die Ventile geregelt und durch eine Drehung des Rotors unterstĆ¼tzt werden. Rohrleitungen fĆ¼hren die Mahlperlen und die TrĆ¼be zu einem geeigneten Fƶrdersystem, welches unterhalb des MĆ¼hlenbodens angebracht ist. Das Fƶrdersystem kann zum Beispiel ein Fƶrderband, eine Fƶrderschnecke, eine Pumpe oder ein Becherwerk sein. Die AufzƤhlung ist nicht abschlieƟend.Before maintenance work can begin on the ball mill 100, the interior of the grinding cylinder is emptied. The grinding beads and the slurry are drained through openings and pipes in the mill floor and by opening the relevant valves. Due to their own weight, the grinding beads and the slurry leave the grinding chamber through the floor openings. The drain volume can be adjusted through the valves regulated and supported by rotation of the rotor. Pipelines lead the grinding beads and the pulp to a suitable conveyor system, which is installed below the mill floor. The conveying system can be, for example, a conveyor belt, a screw conveyor, a pump or a bucket elevator. The list is not final.

Das Fƶrdersystem transportiert die Mahlperlen und die TrĆ¼be seitwƤrts der KugelmĆ¼hle 100 auf genĆ¼gend Hƶhe, damit diese in einen BehƤlter oder Lastwagen eingefĆ¼llt werden kƶnnen. Dieser Vorgang wird solange fortgesetzt, bis die KugelmĆ¼hle 100 vollstƤndig entleert ist.The conveyor system transports the milling beads and slurry sideways of the ball mill 100 to a level high enough to be loaded into a bin or truck. This process is continued until the ball mill 100 is completely empty.

Zum Ɩffnen des Stators 102 durch Verlagern eines der Statorsegmente 112 in Form der ersten MahlzylinderhƤlfte werden die Gleitschienen 130 abgedeckt und gereinigt. Dabei wird insbesondere eine GleitschienenoberflƤche gereinigt. AnschlieƟend werden MontagestĆ¼tzen bzw. KippstĆ¼tzen 132 an beiden MĆ¼hlenzylinderhƤlften montiert und Rohrflanschverschraubungen der TrĆ¼be ZufĆ¼hrung und des TrĆ¼be-Auslaufrohrs gelƶst. Dann werden die vertikalen und radialen Flanschverschraubungen gelƶst und drei Hydraulikzylinder pro MahlzylinderhƤlfte eingeschoben. Unter Verwendung der drei Hydraulikzylinder wird eine MahlzylinderhƤlfte um ca. 25mm angehoben und drei Teflon-Gleitschuhe an der MahlzylinderhƤlfte sowie ein weiterer Gleitschuh an der MontagestĆ¼tze angebracht. Mit den drei Hydraulikzylindern wird die MahlzylinderhƤlfte abgelassen, bis die Teflon-Gleitschuhe auf den Gleitschienen aufstehen. Dann werden die beidseitigen Zug- und Schubzylinder an den vorgesehen Laschen des Mahlzylinders beziehungsweise der Gleitschuhe verbunden. Die MontagestĆ¼tze wird mit ihrem Hydraulikzylinder soweit ausgefahren, bis sich die MahlzylinderhƤlfte anfƤngt zu heben. Mit den beiden Zug- und Schubzylindern wird die MahlzylinderhƤlfte bis zur vorgesehenen Unterhaltsposition gezogen.To open the stator 102 by moving one of the stator segments 112 in the form of the first grinding cylinder half, the slide rails 130 are covered and cleaned. In this case, in particular, a slide rail surface is cleaned. Subsequently, assembly supports or anti-tipping supports 132 are mounted on both halves of the mill cylinder and screwed pipe flange connections of the pulp feed and the pulp discharge pipe are loosened. Then the vertical and radial flange screws are loosened and three hydraulic cylinders are pushed in for each half of the grinding cylinder. Using the three hydraulic cylinders, one half of the grinding cylinder is raised by approx. 25mm and three Teflon shoes are attached to the half of the grinding cylinder and another shoe to the assembly support. The grinding cylinder half is lowered with the three hydraulic cylinders until the Teflon sliding shoes stand up on the slide rails. Then the pull and push cylinders on both sides are connected to the tabs provided on the grinding cylinder or the sliding shoes. The assembly support is extended with its hydraulic cylinder until the grinding cylinder half begins to lift. With the two pull and push cylinders, the grinding cylinder half is pulled to the intended maintenance position.

Zum Demontieren der MĆ¼hlenwelle wird ein Wellenmontageschlitten beziehungsweise Wellenmontagewagen als AusrĆ¼ckvorrichtung 218 an die installierte Welle gefahren. Der Wellenmontageschlitten wird mit vier Hydraulikzylindern zirka 25mm nach oben angehoben und die Wellenklemmschelle um den Wellenschaft geschlossen und geklemmt. AnschlieƟend werden Kupplungsschrauben gelƶst. Der Wellenmontageschlitten wird zusammen mit der geklemmten und entkuppelten Welle mittels vier Hydraulikzylindern abgelassen, bis der Wellenmontageschlitten auf der Gleitbahn aufsetzt. Mit zumindest einem hydraulischen Verfahrzylinder wird der Wellenmontageschlitten mit der Welle in eine seitliche Position beziehungsweise eine Aushebeposition, an welcher die Welle mit dem Hallenkran ausgehoben werden kann, verschoben. Dort wird eine Wellenhaltevorrichtung beziehungsweise eine Ɩse an der Wellenkupplung installiert. Jetzt kann die Welle am Haken des Hallenkrans weggehoben werden. Die Welle kann in einer hƤngenden Haltevorrichtung gelagert werden oder auf einen speziellen Maintenance Trailer abgelegt werden.To dismantle the mill shaft, a shaft assembly slide or shaft assembly carriage is moved to the installed shaft as a disengaging device 218 . The shaft assembly carriage is lifted about 25mm upwards with four hydraulic cylinders and the shaft clamp is closed and clamped around the shaft shaft. Then the coupling screws are loosened. The shaft assembly carriage is lowered together with the clamped and decoupled shaft using four hydraulic cylinders until the shaft assembly carriage touches the slideway. With at least one hydraulic traversing cylinder, the shaft assembly carriage with the shaft is moved to a lateral position or a Lifting position, at which the shaft can be lifted with the indoor crane, shifted. There, a shaft holding device or an eyelet is installed on the shaft coupling. Now the shaft can be lifted off the hook of the indoor crane. The shaft can be stored in a hanging fixture or placed on a dedicated maintenance trailer.

Fig. 3 zeigt eine rƤumliche Darstellung eines Statorsegments 112 einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel. Das Statorsegment 112 entspricht im Wesentlichen einem der Statorsegmente 112 in den Figuren 1 und 2. Im Gegensatz zu der Darstellung in den Figuren 1 und 2 wird der Stator im dargestellten AusfĆ¼hrungsbeispiel aus drei Statorsegmenten 112 zusammengesetzt. Die Wand 116 bildet einen Bogen von 120Ā° ab. Der Dichtflansch 114 und die DichtflƤche 118 sowie der Standflansch 120 und die StandflƤche 122 sind mit Durchgangsbohrungen 121 versehen, um sie jeweils mit einem entsprechend ausgefĆ¼hrten GegenstĆ¼ck, also einer anderen DichtflƤche eines anderen Statorsegments 112 beziehungsweise der lasttragenden OberflƤche der Grundplatte zu verschrauben. Das hier dargestellte Statorsegment 112 weist ein Gewicht von etwa 30 Tonnen auf. An der Innenseite 116 sind neun in regelmƤƟigen AbstƤnden Ć¼bereinander angeordnete Rippensegmente angeordnet. 3 shows a spatial representation of a stator segment 112 of a vertical ball mill according to an embodiment. The stator segment 112 essentially corresponds to one of the stator segments 112 in FIGS figures 1 and 2 . Contrary to what is shown in the figures 1 and 2 the stator is composed of three stator segments 112 in the exemplary embodiment shown. The wall 116 forms an arc of 120Ā°. The sealing flange 114 and the sealing surface 118 as well as the base flange 120 and the base 122 are provided with through holes 121 in order to screw them to a correspondingly designed counterpart, i.e. another sealing surface of another stator segment 112 or the load-bearing surface of the base plate. The stator segment 112 shown here has a weight of approximately 30 tons. On the inside 116 nine rib segments are arranged one above the other at regular intervals.

Die als Konsolen ausgebildeten Anschlagelemente 124 stehen radial Ć¼ber die StandflƤche 122 Ć¼ber und sind Ć¼ber je zwei axial ausgerichtete Versteifungsrippen mit der Wand 116 verbunden. Zwei der Anschlagelemente 124 sind im Bereich der unteren Ecken der Wand 116 angeordnet.The stop elements 124 designed as consoles protrude radially beyond the standing surface 122 and are connected to the wall 116 via two axially aligned stiffening ribs. Two of the stop elements 124 are arranged in the area of the lower corners of the wall 116 .

Fig. 4 zeigt eine Schnittdarstellung durch eine vertikale KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 entspricht im Wesentlichen der in den Figuren 1 und 2 dargestellten KugelmĆ¼hle. Die KugelmĆ¼hle 100 weist eine Entleerungseinrichtung 400 zum Entleeren des Arbeitsraums auf. Die Grundplatte 200 der KugelmĆ¼hle 100 weist als Teil der Entleerungseinrichtung 400 einen SchrƤgboden 402 auf. FĆ¼r den SchrƤgboden 402 ist eine von der lasttragenden, das Gewicht der Statorsegmente 112 abstĆ¼tzenden OberflƤche 201 umschlossene FlƤche Ć¼ber die OberflƤche 201 erhaben und um einen Winkel von zirka 2,5Ā° bis 30Ā° gegenĆ¼ber der Horizontalen schrƤg ausgerichtet. 4 shows a sectional view through a vertical ball mill 100 according to an embodiment. The ball mill 100 essentially corresponds to that in FIGS figures 1 and 2 ball mill shown. The ball mill 100 has an emptying device 400 for emptying the working space. The base plate 200 of the ball mill 100 has a sloping floor 402 as part of the emptying device 400 . For sloping floor 402, a surface enclosed by the load bearing surface 201 supporting the weight of the stator segments 112 is raised above surface 201 and slanted at an angle of approximately 2.5Ā° to 30Ā° from horizontal.

Eines der Statorsegmente 112 weist im Bereich eines Tiefpunkts des SchrƤgbodens 402, also dort, wo eine OberflƤche des SchrƤgbodens 402 am nƤchsten an der lasttragenden OberflƤche 201 ist, eine Entleerungsƶffnung 404 auf. Die Entleerungsƶffnung 404 ist hier als radial ausgerichteter Rohranschlussflansch ausgefĆ¼hrt. Im Betrieb ist die Entleerungsƶffnung 404 durch eine geeignete Armatur verschlossen. Zum Entleeren wird die Armatur geƶffnet. Das Fundament 110 weist hier neben der KugelmĆ¼hle 100 im Bereich vor der Entleerungsƶffnung 404 eine Grube 406 auf, in der zum Entleeren des Arbeitsraums TransportbehƤlter zum Abtransport der Mahlkƶrper platziert werden kƶnnen. Durch die Entleerungsƶffnung 404 kƶnnen die Mahlkƶrper mit anhaftenden Resten der Suspension schwerkraftgetrieben in die in der Grube 406 angeordneten TransportbehƤlter abgelassen werden. WƤhrend des Entleerens kann der Rotor 204 angetrieben werden, um auf den Scheiben 212 abgelagerte Mahlkƶrper nach auƟen wegzuschleudern.One of the stator segments 112 has a drain opening 404 in the region of a low point of the sloping floor 402, ie where a surface of the sloping floor 402 is closest to the load-bearing surface 201. Drain port 404 is here designed as a radially aligned pipe connection flange. In operation, the drain opening 404 is closed by a suitable fitting. The valve is opened for emptying. In addition to the ball mill 100, the foundation 110 has a pit 406 in the area in front of the discharge opening 404, in which transport containers for transporting away the grinding bodies can be placed in order to empty the working space. Through the discharge opening 404, the grinding bodies with adhering residues of the suspension can be discharged into the transport containers arranged in the pit 406, driven by gravity. During the purge, the rotor 204 may be driven to eject media deposited on the disks 212 to the outside.

In einem AusfĆ¼hrungsbeispiel weist das andere Statorsegment 112 im Bereich eines Hochpunkts des SchrƤgbodens 402, also dort, wo die OberflƤche des SchrƤgbodens 402 am weitesten Ć¼ber die lasttragende OberflƤche 201 Ć¼bersteht, zumindest eine SpĆ¼lƶffnung 408 auf. Die SpĆ¼lƶffnung 408 ist hier ebenfalls als radial ausgerichteter Rohranschlussflansch ausgefĆ¼hrt. Die SpĆ¼lƶffnung 408 ist der Entleerungsƶffnung diametral gegenĆ¼berliegend angeordnet. Durch die SpĆ¼lƶffnung 408 kann die Entleerung des Arbeitsraums mittels eines auf die Entleerungsƶffnung 404 gerichteten FlĆ¼ssigkeitsstroms unterstĆ¼tzt werden. Auch die SpĆ¼lƶffnung 408 ist im Betrieb durch eine geeignete Armatur verschlossen.In one exemplary embodiment, the other stator segment 112 has at least one flushing opening 408 in the region of a high point of the sloping floor 402, ie where the surface of the sloping floor 402 projects farthest beyond the load-bearing surface 201. The flushing opening 408 is also designed here as a radially aligned pipe connection flange. The flushing port 408 is located diametrically opposite the drain port. The flushing opening 408 can support the emptying of the working chamber by means of a liquid flow directed onto the emptying opening 404 . The flushing opening 408 is also closed by a suitable fitting during operation.

Der Rotor 204 kann zusƤtzlich zu der oberen radialen und axialen Lagerung in der Lager- und Antriebseinrichtung 106 auch Ć¼ber ein radiales Loslager in der Grundplatte 200 gelagert sein. Dazu weist die Rotorwelle am unteren Ende einen Lagerzapfen auf, der in dem Loslager gelagert ist. LƤngenƤnderungen des Rotors 204 kƶnnen durch Verschiebungen des Loslagers auf dem Lagerzapfen ausgeglichen werden.In addition to the upper radial and axial bearing in the bearing and drive device 106, the rotor 204 can also be mounted in the base plate 200 via a radial floating bearing. For this purpose, the rotor shaft has a bearing journal at the lower end, which is mounted in the movable bearing. Changes in the length of the rotor 204 can be compensated for by shifting the floating bearing on the bearing journal.

Fig. 5 zeigt eine Schnittdarstellung durch eine vertikale KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 entspricht im Wesentlichen der KugelmĆ¼hle in Fig. 4. Im Gegensatz dazu deckt hier die Grundplatte 200 die Grube 406 zumindest teilweise ab. Die Grundplatte 200 weist hier die zumindest eine Entleerungsƶffnung 404 auf. Wird die Armatur geƶffnet, flieƟt der Inhalt des Arbeitsraums durch die Entleerungsƶffnung 404 ab. figure 5 shows a sectional view through a vertical ball mill 100 according to an embodiment. The ball mill 100 essentially corresponds to the ball mill in 4 . In contrast, here the base plate 200 covers the pit 406 at least partially. The base plate 200 has the at least one emptying opening 404 here. If the fitting is opened, the contents of the working space flow out through the drain opening 404 .

In einem AusfĆ¼hrungsbeispiel weist die Grundplatte 200 mehrere Entleerungsƶffnungen 404 auf. Die Entleerungsƶffnungen 404 sind Ć¼ber die Grundplatte 200 verteilt angeordnet. Die mehreren Entleerungsƶffnungen 404 weisen zusammen eine vergrĆ¶ĆŸerte GesamtquerschnittsflƤche auf, wodurch das Entleeren schnell erfolgt.In one embodiment, the base plate 200 has a plurality of drainage openings 404 . The drain openings 404 are distributed over the base plate 200 arranged. The multiple purge ports 404 together have an increased total cross-sectional area, thereby purging is rapid.

In einem AusfĆ¼hrungsbeispiel ist in der Grube 406 ein Transportsystem 500 zum Fƶrdern des Inhalts des Arbeitsraums aus der Grube 406 angeordnet. Beispielsweise kann das Fƶrdersystem 500 als Fƶrderband oder Fƶrderschnecke ausgefĆ¼hrt sein. Das Transportsystem 500 weist eine Fƶrderhƶhe auf, die ausreicht, um den Inhalt in ebenerdig abgestellte TransportbehƤlter zu transportieren. Ebenso kann aber auch der TransportbehƤlter unter der MĆ¼hle angeordnet sein, so dass keine Fƶrdereinrichtung benƶtigt wird.In one exemplary embodiment, a transport system 500 for conveying the contents of the workspace out of the pit 406 is arranged in the pit 406 . For example, the conveyor system 500 can be designed as a conveyor belt or screw conveyor. The transport system 500 has a delivery head that is sufficient to transport the contents into transport containers parked at ground level. However, the transport container can also be arranged under the mill so that no conveying device is required.

Fig. 6 zeigt ein Ablaufdiagramm eines Verfahrens 600 zum Warten einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel. Unter Verwendung des Verfahrens 600 kann eine KugelmĆ¼hle, welche insbesondere zum Vor-Mahlen von Mineralien ausgebildet ist, gewartet werden. Das Verfahren 600 weist einen Schritt 602 des Trennens, einen Schritt 606 des Anordnens und einen Schritt 610 des Verlagerns auf. 6 6 shows a flow diagram of a method 600 for servicing a vertical ball mill according to an embodiment. Using method 600, a ball mill configured specifically for pre-milling minerals may be serviced. The method 600 comprises a step 602 of separating, a step 606 of arranging and a step 610 of relocating.

Die vertikale KugelmĆ¼hle weist einen nach unten hƤngenden Rotor auf, der an einem oberen Ende axial und radial gelagert ist. Weiterhin weist die vertikale KugelmĆ¼hle einen den Rotor radial umschlieƟenden, selbsttragend stehenden Stator auf, der von einem Gewicht des Rotors unbelastet ist. Der Rotor weist eine tangential zum Rotor ausgerichtete, innerhalb einer Formtoleranz eine Zylinderform annƤhernde MantelflƤche auf. Ferner weist die vertikale KugelmĆ¼hle eine Grundplatte auf, die ein Gewicht des Stators abstĆ¼tzt. Der Stator ist aus zumindest zwei voneinander trennbaren, in getrenntem Zustand freitragend stehenden, relativ zueinander verlagerbaren, Statorsegmenten zusammengesetzt. Jedes der Statorsegmente weist an zumindest einer von einer Oberkante einer die MantelflƤche ausbildenden Wand zu einer Unterkante der Wand verlaufenden Seitenkante der Wand eine DichtflƤche zum Abdichten an dem jeweils anderen Statorsegment auf. Ferner weist jedes der Statorsegmente an der Unterkante eine belastungsgerecht dimensionierte StandflƤche zum Abdichten an der Grundplatte auf. Das Statorsegment lastet mit der StandflƤche innerhalb einer Winkeltoleranz orthogonal auf einer lasttragenden OberflƤche der Grundplatte stehend.The vertical ball mill has a downwardly hanging rotor which is supported axially and radially at an upper end. Furthermore, the vertical ball mill has a self-supporting stator which radially encloses the rotor and is unloaded by the weight of the rotor. The rotor has a lateral surface which is oriented tangentially to the rotor and approximates a cylindrical shape within a shape tolerance. Further, the vertical ball mill has a base plate that supports a weight of the stator. The stator is composed of at least two stator segments which can be separated from one another and are cantilevered in the separate state and can be displaced relative to one another. Each of the stator segments has, on at least one side edge of the wall running from an upper edge of a wall forming the lateral surface to a lower edge of the wall, a sealing surface for sealing on the respective other stator segment. Furthermore, each of the stator segments has on the lower edge a footprint dimensioned appropriately for the load for sealing to the base plate. The stator segment loads with the base orthogonally standing on a load-bearing surface of the base plate within an angular tolerance.

Im Schritt 602 des Trennens wird der Stator in die Statorsegmente getrennt, wobei der Stator an den DichtflƤchen getrennt wird. Mechanische Verbindungen zwischen benachbarten Statorsegmenten kƶnnen hierzu gelƶst werden.In step 602 of separating, the stator is separated into the stator segments, with the stator being separated at the sealing surfaces. Mechanical connections between adjacent stator segments can be released for this purpose.

Im Schritt 606 des Anordnens werden Hilfseinrichtungen unter dem Statorsegment angeordnet. Die Hilfseinrichtungen kƶnnen dabei derart positioniert werden und ausgestaltet sein, dass das gesamte Statorsegment auf den Hilfseinrichtungen lasten und mit diesen verlagert werden kann.In step 606 of placing, auxiliary devices are placed under the stator segment. The auxiliary devices can be positioned and configured in such a way that the entire stator segment can bear a load on the auxiliary devices and can be displaced with them.

Im Schritt 610 des Verlagerns werden das Statorsegment und die Hilfseinrichtungen unter Verwendung einer Verlagerungseinrichtung lateral verlagert. Zumindest eines der Statorsegmente wird hierbei im Wesentlichen horizontal verlagert, wƤhrend es Ć¼ber die Hilfseinrichtungen vorzugsweise nach wie vor mit seinem Gewicht auf dem Fundament der KugelmĆ¼hle lastet.In step 610 of shifting, the stator segment and the auxiliary devices are shifted laterally using a shifting device. At least one of the stator segments is in this case displaced essentially horizontally, while its weight preferably still weighs on the foundation of the ball mill via the auxiliary devices.

Die KugelmĆ¼hle mit dem in der beschriebenen Weise geƶffneten Stator kann dann einfach gewartet werden. Insbesondere ist der Arbeitsraum einfach zugƤnglich, sodass er gereinigt kann und/oder VerschleiƟteile ausgetauscht werden kƶnnen.The ball mill with the stator opened in the manner described can then be easily serviced. In particular, the working space is easily accessible so that it can be cleaned and/or wearing parts can be replaced.

In einem AusfĆ¼hrungsbeispiel weist das Verfahren 600 einen Schritt 604 des Anhebens und einen Schritt 608 des Absetzens auf. Im Schritt 604 des Anhebens wird zumindest eines der Statorsegmente unter Verwendung von Hebeeinrichtungen angehoben, wobei das Statorsegment von der Grundplatte abgehoben wird. Ein Anheben des Statorsegments um wenige Millimeter oder wenige Zentimeter kann genĆ¼gen. Das Anheben kann insbesondere mithilfe von hydraulischen Hebeeinrichtungen erfolgen, welche Anschlagelemente an dem jeweiligen Statorsegment von unten her abstĆ¼tzen. Im Schritt 608 des Absetzens wird das Statorsegment auf den Hilfseinrichtungen abgesetzt.In one embodiment, the method 600 includes a step 604 of lifting and a step 608 of setting down. In the lifting step 604, at least one of the stator segments is lifted using lifting devices, whereby the stator segment is lifted off the base plate. Raising the stator segment by a few millimeters or a few centimeters can suffice. The lifting can be done in particular with the help of hydraulic lifting devices, which support stop elements on the respective stator segment from below. In step 608 of setting down, the stator segment is set down on the auxiliaries.

Die stehend auf der Grundplatte und somit indirekt auf dem Fundament lastende Ausgestaltung des Stators der hierin beschriebenen KugelmĆ¼hle ermƶglicht somit, dass der Stator in einfacher Weise und vorzugsweise auch von wenig geschultem Personal und/oder bei widrigen Bedingungen geƶffnet werden kann, um die KugelmĆ¼hle dann warten zu kƶnnen. Durch die oben beschriebene Ausgestaltung kann die Wartung in einer kĆ¼rzeren Zeitspanne erfolgen. Da die MĆ¼hle dann schneller wieder in den Produktionsprozess eingesetzt werden kann, wird die ProduktivitƤt gesteigert.The design of the stator of the ball mill described here, which stands on the base plate and thus indirectly weighs on the foundation, thus makes it possible for the stator to be opened easily and preferably also by less trained personnel and/or under adverse conditions, in order to then service the ball mill to be able to With the configuration described above, maintenance can be performed in a shorter period of time. Since the mill can then be used again more quickly in the production process, productivity is increased.

Fig. 7 zeigt eine rƤumliche Darstellung einer geschlossenen vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 entspricht dabei im Wesentlichen der KugelmĆ¼hle in Fig. 1. ZusƤtzlich dazu weist die KugelmĆ¼hle 100 am Gestell 108 und am Stator 102 Arbeitsplattformen 700 in mehreren Etagen Ć¼bereinander auf. Die Arbeitsplattformen 700 sind umlaufend durch GelƤnder abgesichert. Die Statorsegmente 112 und das Gestell 108 weisen Arbeitsplattformen 700 in zwei Etagen auf. Das Gestell 108 weist auch Arbeitsplattformen 700 in zwei darĆ¼ber liegenden Etagen auf. Die KugelmĆ¼hle 100 erstreckt sich also Ć¼ber vier Etagen. 7 shows a spatial representation of a closed vertical ball mill 100 according to an embodiment. The ball mill 100 essentially corresponds to the ball mill in 1 . In addition to this, the ball mill 100 on the frame 108 and on the stator 102 has working platforms 700 in several tiers one above the other. The work platforms 700 are secured all around by railings. The Stator segments 112 and the frame 108 have work platforms 700 on two floors. The frame 108 also includes work platforms 700 on two floors above. The ball mill 100 thus extends over four floors.

Die Arbeitsplattformen 700 eines Statorsegments 112 sind Ć¼ber eine Leiter 702 miteinander verbunden. Die Leiter 702 ist an der hier permanent verbauten KippstĆ¼tze 132 befestigt. Die Leiter 702 weist einen RĆ¼ckenschutzkƤfig auf. Die KippstĆ¼tze 132 ist an beiden Arbeitsplattformen 700 beziehungsweise mit einer Tragstruktur der Arbeitsplattformen 700 verbunden und ist im Wesentlichen parallel zu der LƤngsachse des Stators 102 ausgerichtet. Die KippstĆ¼tze 132 ist durch die Arbeitsplattformen 132 beabstandet zu dem Statorsegment 112 angeordnet. Aufgrund der permanent verbauten KippstĆ¼tze 132 weist der Stator 102 nur zwei Anschlagelemente 124 im Bereich der Dichtflansche 114 auf. Das dritte Anschlagelement 124 ist am unteren Ende der KippstĆ¼tze 132 angeordnet. Ɯber die Arbeitsplattformen 700 des Stators 102 sind die Dichtflansche 114 Ć¼ber ihre volle LƤnge fĆ¼r Wartungsarbeiten einfach zugƤnglich.The work platforms 700 of a stator segment 112 are connected to one another via a ladder 702 . The ladder 702 is attached to the anti-tipper 132, which is permanently installed here. The ladder 702 has a safety cage. The anti-tilt support 132 is connected to both work platforms 700 or to a support structure of the work platforms 700 and is aligned essentially parallel to the longitudinal axis of the stator 102 . The anti-tipper 132 is spaced apart from the stator segment 112 by the work platforms 132 . Due to the permanently installed anti-tilt support 132 , the stator 102 has only two stop elements 124 in the area of the sealing flanges 114 . The third stop element 124 is arranged at the lower end of the anti-tilt support 132 . The sealing flanges 114 are easily accessible for maintenance work over their full length via the work platforms 700 of the stator 102 .

Die Arbeitsplattformen 700 am Gestell 108 sind Ć¼ber einen Treppenturm 704 zugƤnglich. Der Treppenturm ist neben dem Gestell 108 angeordnet. In der dritten Etage weist das Gestell 108 eine Wartungskabine 706 auf, von der aus ein geschĆ¼tzter Zugang zu der Kupplung zwischen der Lager- und Antriebseinrichtung 106 und dem Rotor sowie der AusrĆ¼ckvorrichtung mƶglich ist. Die Wartungskabine 706 ist umlaufend von Arbeitsplattformen 700 umgeben. Die Arbeitsplattform 700 der vierten Etage ist im Wesentlichen auf einer DachflƤche der Wartungskabine 706 angeordnet und erstreckt sich rund um die Lager- und Antriebseinrichtung 106. Die Lager- und Antriebseinrichtung 106 weist hier einen einzelnen Elektromotor 107 auf.The work platforms 700 on the frame 108 are accessible via a stair tower 704 . The stair tower is located next to the frame 108. On the third floor, the frame 108 has a maintenance cabin 706 from which protected access to the coupling between the bearing and drive device 106 and the rotor and the release device is possible. The maintenance cabin 706 is surrounded by work platforms 700 all around. The work platform 700 of the fourth floor is essentially arranged on a roof area of the maintenance cabin 706 and extends around the storage and drive device 106 . The storage and drive device 106 has a single electric motor 107 here.

Das Gestell 108 ist als Fachwerkkonstruktion ausgefĆ¼hrt. Dabei ist das Gestell 108 auf der Seite des Treppenturms 704 als rƤumliches Fachwerk ausgefĆ¼hrt und weist sechs StƤnder in zwei parallelen Reihen auf. Auf den unteren beiden Etagen des Gestells 108 sind Arbeitsplattformen 700 auf den die StƤnder verbindenden Balken des Fachwerks angeordnet. Die Arbeitsplattformen 700 des Stators sind in geschlossenem Zustand der KugelmĆ¼hle 100 auch von den Arbeitsplattformen 700 des Gestells 108 zugƤnglich. Auf der dem Treppenturm 704 entgegengesetzten Seite ist das Gestell 108 als ebenes Fachwerk mit drei StƤndern in einer Reihe ausgefĆ¼hrt.The frame 108 is designed as a framework construction. The frame 108 on the side of the stair tower 704 is designed as a three-dimensional framework and has six uprights in two parallel rows. On the lower two floors of the frame 108 work platforms 700 are arranged on the beams of the truss connecting the uprights. The work platforms 700 of the stator are also accessible from the work platforms 700 of the frame 108 when the ball mill 100 is in the closed state. On the side opposite the stair tower 704, the frame 108 is designed as a flat truss with three uprights in a row.

Fig. 8 zeigt eine rƤumliche Darstellung einer geƶffneten vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 entspricht dabei im Wesentlichen der KugelmĆ¼hle in Fig. 7. Der Rotor ist aus GrĆ¼nden der Ɯbersichtlichkeit hier nicht dargestellt. Hier sind die Statorsegmente 112 voneinander getrennt und seitlich verschoben dargestellt. Im Gegensatz zu den Darstellungen in den Figuren 1 bis 6 ist die Grundplatte 200 hier Ć¼ber eine umgebende BodenflƤche erhaben ausgefĆ¼hrt. Der SchrƤgboden 402 ist als schrƤge StirnflƤche eines Ć¼ber die lasttragende OberflƤche 201 Ć¼berstehenden Zylinderstumpfs ausgefĆ¼hrt, ragt also bei geschlossener KugelmĆ¼hle 100 in den Innenraum des Stators 102 hinein. 8 shows a spatial representation of an open vertical ball mill 100 according to an embodiment. The ball mill 100 corresponds to im Essentially the ball mill in 7 . The rotor is not shown here for reasons of clarity. Here, the stator segments 112 are shown separated from one another and shifted laterally. Contrary to what is shown in the Figures 1 to 6 the base plate 200 is here raised above a surrounding floor area. The sloping bottom 402 is designed as a sloping end face of a truncated cylinder that protrudes beyond the load-bearing surface 201, ie protrudes into the interior of the stator 102 when the ball mill 100 is closed.

Die Hilfseinrichtungen 134 weisen je einen Rahmen 800 auf, der alle drei Anschlagelemente 124 eines Statorsegments 112 verbindet und ihre Relativpositionen fixiert. An den Rahmen 800 kƶnnen die Hilfseinrichtungen 134 einfach beispielsweise mit dem Hallenkran angehoben werden und an einen Lagerplatz bewegt werden. Nach dem Trennen der Statorsegmente 112 sind die Statorsegmente 112 an den Anschlagelementen 124 angehoben worden, um sie von der Grundplatte 200 zu lƶsen. Die Hilfseinrichtungen 134 mit ihrem Rahmen 800 sind zwischen den Anschlagelementen 124 und der Verlagerungseinrichtung 126 angeordnet worden. Die Statorsegmente 112 sind dann auf die Hilfseinrichtungen 134 abgesenkt worden. Die Hilfseinrichtungen 134 weisen einen eigenen Antrieb 802 auf. Unter Verwendung des Antriebs 802 sind die Hilfseinrichtungen 134 mit den darauf gelagerten Statorsegmenten 112 entlang der Verlagerungseinrichtung 126 seitlich in die Wartungspositionen bewegt worden.The auxiliary devices 134 each have a frame 800 which connects all three stop elements 124 of a stator segment 112 and fixes their relative positions. On the frame 800, the auxiliary devices 134 can simply be lifted, for example with an indoor crane, and moved to a storage location. After separating the stator segments 112 , the stator segments 112 have been lifted at the stop elements 124 in order to detach them from the base plate 200 . The auxiliary devices 134 with their frame 800 have been arranged between the stop elements 124 and the displacement device 126 . The stator segments 112 have then been lowered onto the auxiliaries 134 . The auxiliary devices 134 have their own drive 802 . Using the drive 802, the auxiliary devices 134 with the stator segments 112 mounted thereon have been moved laterally along the displacement device 126 into the maintenance positions.

Fig. 9 zeigt eine rƤumliche Darstellung eines Statorsegments 112 einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel. Das Statorsegment 112 entspricht dabei im Wesentlichen einem der Statorsegmente in den Figuren 7 und 8. Das Statorsegment 112 weist im Gegensatz zu den Statorsegmenten in den Figuren 1 bis 5 auf der AuƟenseite nur eine Versteifungsrippe 117 auf. Die Versteifungsrippe 117 ist in einem unteren Bereich der MantelflƤche 104 oberhalb der axialen Versteifungsrippen 119 der Anschlagelemente 124 angeordnet. 9 shows a spatial representation of a stator segment 112 of a vertical ball mill according to an embodiment. The stator segment 112 essentially corresponds to one of the stator segments in FIG figures 7 and 8th . The stator segment 112 has in contrast to the stator segments in the Figures 1 to 5 only one stiffening rib 117 on the outside. The stiffening rib 117 is arranged in a lower area of the lateral surface 104 above the axial stiffening ribs 119 of the stop elements 124 .

Die Arbeitsplattformen 700 sind umlaufend um die MantelflƤche 104 ausgefĆ¼hrt. Auf einer Innenseite, also auf einer der MantelflƤche 104 zugewandten Seite weisen die Arbeitsplattformen 700 einen halbkreisbogenfƶrmigen Ausschnitt fĆ¼r das Statorsegment 112 auf. Auf einer AuƟenseite, also auf einer von der MantelflƤche 104 abgewandten Seite sind die Arbeitsplattformen 700 eckig. Entlang aller AuƟenkanten weisen die Arbeitsplattformen 700 das GelƤnder und einen SĆ¼llrand 900 auf. Der SĆ¼llrand 900 steht nach oben Ć¼ber eine BodenflƤche der Arbeitsplattformen 700 Ć¼ber und verhindert ein Herabfallen von GegenstƤnden.The work platforms 700 run all the way around the lateral surface 104 . On an inside, that is to say on a side facing lateral surface 104 , work platforms 700 have a cutout in the shape of a semicircular arc for stator segment 112 . The working platforms 700 are angular on an outside, ie on a side facing away from the lateral surface 104 . The working platforms 700 have the railing and a coaming 900 along all outer edges. The coaming 900 stands upwards over a floor surface of the work platforms 700 and prevents objects from falling.

Die Arbeitsplattformen 700 weisen im Bereich des Dichtflanschs 114 einen Ausschnitt auf. Der Dichtflansch 114 wird also durch die Arbeitsplattformen 700 nicht unterbrochen. Im Bereich des Ausschnitts sind die Arbeitsplattformen 700 auf einer Seite des Statorsegments 112 Ć¼ber eine Ebene der DichtflƤche 118 beziehungsweise Ć¼ber den Dichtflansch 114 Ć¼ber. Dadurch ist der Dichtflansch 114 von beiden Seiten zugƤnglich und Das Statorsegment 112 kann in einer ergonomischen Arbeitshaltung mit dem anderen, hier nicht dargestellten Statorsegment verbunden werden.The work platforms 700 have a cutout in the area of the sealing flange 114 . The sealing flange 114 is therefore not interrupted by the work platforms 700 . In the area of the cutout, the working platforms 700 on one side of the stator segment 112 extend beyond a plane of the sealing surface 118 or the sealing flange 114 . As a result, the sealing flange 114 is accessible from both sides and the stator segment 112 can be connected to the other stator segment, not shown here, in an ergonomic working position.

Die Leiter 702 ist auf einer Seite der KippstĆ¼tze 132 angeordnet und weist auf Hƶhe der beiden Arbeitsplattformen 700 je einen Durchstieg durch den RĆ¼ckenschutzkƤfig auf. Im Bereich der Durchstiege ist das GelƤnder unterbrochen.The ladder 702 is arranged on one side of the anti-tilt support 132 and has a passage through the safety cage at the level of the two work platforms 700 . The railing is interrupted in the area of the hatches.

Fig. 10 zeigt eine rƤumliche Darstellung einer Arbeitsplattform 700 einer vertikalen KugelmĆ¼hle gemƤƟ einem AusfĆ¼hrungsbeispiel. Die Arbeitsplattform 700 entspricht dabei im Wesentlichen einer der Arbeitsplattformen in Fig. 7. Die Arbeitsplattform 700 ist rechteckig. Die Arbeitsplattform 700 weist an zwei AuƟenseiten wie die Arbeitsplattformen in Fig. 9 einen Ć¼ber die BodenflƤche Ć¼berstehenden SĆ¼llrand 900 und ein GelƤnder auf. Unterhalb der BodenflƤche weist die Arbeitsplattform 700 eine Tragstruktur auf. Insbesondere ist die BodenflƤche durch Rippen ausgesteift. Die Rippen weisen an zwei Innenseiten der Arbeitsplattform 700 Befestigungsbohrungen zum Befestigen der Arbeitsplattform 700 an der KugelmĆ¼hle auf. 10 shows a spatial representation of a work platform 700 of a vertical ball mill according to an embodiment. The work platform 700 essentially corresponds to one of the work platforms in 7 . The work platform 700 is rectangular. The working platform 700 has two outer sides like the working platforms in 9 a coaming 900 projecting beyond the floor area and a railing. The work platform 700 has a support structure below the floor surface. In particular, the bottom surface is reinforced by ribs. The ribs have attachment holes on two inner sides of the work platform 700 for attaching the work platform 700 to the ball mill.

An den vier Ecken weist die Arbeitsplattform 700 je eine in der BodenflƤche versenkte Hebelasche 1000 auf. Ɯber die Hebelaschen 1000 kann die Arbeitsplattform 700 einfach und schnell mit dem Hallenkran montiert und demontiert werden.At each of the four corners, the working platform 700 has a lifting bracket 1000 sunk into the floor area. The working platform 700 can be quickly and easily assembled and disassembled with the indoor crane using the lifting brackets 1000.

Fig. 11 zeigt eine rƤumliche Darstellung eine Verlagerungseinrichtung 126 einer vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die Verlagerungseinrichtung 126 entspricht dabei im Wesentlichen der Verlagerungseinrichtung in Fig. 8. Die Verlagerungseinrichtung 126 ist auf die Schienen 130 aufgesetzt. Die Hilfseinrichtungen 134 sind zwischen den Anschlagelementen 124 und den Schienen 130 angeordnet. Der Rahmen 800 ist im Wesentlichen V-fƶrmig und verbindet die an den Anschlagelemente 124 angeordneten Hilfseinrichtungen 134 miteinander. Die beiden am Statorsegment 112 angeordneten Hilfseinrichtungen 134 weisen je einen elektrischen Antrieb 802 auf. 11 shows a spatial representation of a displacement device 126 of a vertical ball mill 100 according to an embodiment. The displacement device 126 essentially corresponds to the displacement device in FIG 8 . The displacement device 126 is placed on the rails 130 . The auxiliary devices 134 are arranged between the stop elements 124 and the rails 130 . The frame 800 is essentially V-shaped and connects the auxiliary devices 134 arranged on the stop elements 124 commonality. The two auxiliary devices 134 arranged on the stator segment 112 each have an electric drive 802 .

Fig. 12 zeigt eine Detaildarstellung eines Standflanschs 120 einer vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Der Standflansch 120 liegt auf der Grundplatte 200 auf. Die Grundplatte 200 entspricht der Darstellung in Fig. 8. Der Standflansch 120 und die lasttragende OberflƤche 201 weisen in einem einheitlichen Raster angeordnete Nuten 1200 auf. Die Nuten 1200 in der lasttragenden OberflƤche 201 sind dabei als T-Nuten ausgefĆ¼hrt, um hier nicht dargestellte T-Nutenschrauben zum Verschrauben des Stators 102 mit der Grundplatte 200 aufzunehmen. Die T-Nutenschrauben kƶnnen in gelƶstem Zustand seitlich aus den T-Nuten und den Nuten 1200 des Standflanschs 120 herausgenommen werden und stellen so kein Hindernis beim seitlichen Verlagern der Statorsegmente 112 dar. 12 shows a detailed illustration of a stand flange 120 of a vertical ball mill 100 according to an exemplary embodiment. The stand flange 120 rests on the base plate 200. The base plate 200 corresponds to the representation in FIG 8 . The base flange 120 and the load bearing surface 201 have grooves 1200 arranged in a uniform grid. The slots 1200 in the load-bearing surface 201 are designed as T-slots in order to accommodate T-slot screws (not shown here) for screwing the stator 102 to the base plate 200 . When loosened, the T-slot screws can be removed from the side of the T-slots and the slots 1200 of the stationary flange 120 and thus do not represent an obstacle when the stator segments 112 are moved sideways.

Fig. 13 zeigt eine Detaildarstellung eines Dichtflanschs 114 einer vertikalen KugelmĆ¼hle 100 gemƤƟ einem AusfĆ¼hrungsbeispiel. Die KugelmĆ¼hle 100 ist hier geschlossen. Die Dichtflansche 114 der miteinander verbundenen Statorsegmente 112 sind hier durch schwenkbare Zwingen 1300 aneinander gepresst. Die Zwingen 1300 weisen einen im Wesentlichen U-fƶrmigen Grundkƶrper 1302 auf und umgreifen beide Dichtflansche 114 von auƟen. An einem der Statorsegmente 112 sind auf der AuƟenseite Scharniere 1304 angeordnet, an denen die Zwingen 1300 horizontal schwenkbar gelagert sind. Die Grundkƶrper 1302 weisen jeweils zumindest eine Gewindebohrung 1306 auf, in der eine Schraubspindel 1308 zum Zusammenpressen der Dichtflansche 114 drehbar gelagert ist. 13 shows a detailed view of a sealing flange 114 of a vertical ball mill 100 according to an embodiment. The ball mill 100 is closed here. The sealing flanges 114 of the stator segments 112 connected to one another are pressed together here by pivotable clamps 1300 . The clamps 1300 have an essentially U-shaped base body 1302 and enclose both sealing flanges 114 from the outside. On one of the stator segments 112, hinges 1304 are arranged on the outside, on which the clamps 1300 are mounted in a horizontally pivotable manner. The base bodies 1302 each have at least one threaded bore 1306 in which a screw spindle 1308 for pressing the sealing flanges 114 together is rotatably mounted.

In einem AusfĆ¼hrungsbeispiel sind die Dichtflansche 114 durch schwenkbare Klemmbacken 1310 miteinander verbunden. Die Klemmbacken 1310 sind an den Scharnieren 1304 horizontal schwenkbar gelagert. Die Klemmbacken 1310 weisen einen schrƤg zulaufenden, vertikalen Schlitz 1312 auf. Der Schlitz 1312 ist an seinem breiteren Ende breiter als beide Dichtflansche 114 zusammen. Am schmaleren Ende ist der Schlitz 1312 schmaler als die Dichtflansche 114. Die Dichtflansche 114 werden beim Schwenken der Klemmbacken 1310 in den Schlitz 1312 eingefĆ¼hrt. Wenn die SeitenflƤchen des Schlitzes 1312 an den Dichtflanschen 114 anliegen, kann der Klemmbacken 1310 beispielsweise durch HammerschlƤge auf den Dichtflanschen 114 verkeilt werden. Zum Lƶsen eines Klemmbacken 1310 kann beispielsweise ein Keil zwischen den Klemmbacken 1310 und die MantelflƤche 104 getrieben werden, um den Klemmbacken 1310 von den Dichtflanschen 114 abzudrĆ¼cken.In one exemplary embodiment, the sealing flanges 114 are connected to one another by pivotable clamping jaws 1310 . The clamping jaws 1310 are mounted on the hinges 1304 so that they can be pivoted horizontally. The jaws 1310 have a tapered, vertical slot 1312 on. The slot 1312 is wider at its wider end than both sealing flanges 114 together. At the narrower end, the slot 1312 is narrower than the sealing flanges 114. The sealing flanges 114 are inserted into the slot 1312 as the jaws 1310 pivot. When the side surfaces of the slot 1312 abut the sealing flanges 114, the clamping jaw 1310 can be wedged on the sealing flanges 114, for example by hammer blows. To release a clamping jaw 1310, for example, a wedge can be driven between the clamping jaws 1310 and the lateral surface 104 in order to push the clamping jaws 1310 off the sealing flanges 114.

AbschlieƟend ist darauf hinzuweisen, dass Begriffe wie "aufweisend", "umfassend", etc. keine anderen Elemente oder Schritte ausschlieƟen und Begriffe wie "eine" oder "ein" keine Vielzahl ausschlieƟen. Bezugszeichen in den AnsprĆ¼chen sind nicht als EinschrƤnkung anzusehen.Finally, it should be noted that terms such as "comprising,""comprising," etc. do not exclude other elements or steps, and terms such as "a" or "an" do not exclude a plurality. Any reference signs in the claims should not be construed as limiting.

Bezugszeichenliste:Reference list:

100100
KugelmĆ¼hleball mill
102102
Statorstator
104104
MantelflƤchelateral surface
106106
Lager- und AntriebseinrichtungStorage and drive equipment
107107
Elektromotorenelectric motors
108108
Gestellframe
110110
Fundamentfoundation
112112
Statorsegmentstator segment
114114
Dichtflanschsealing flange
116116
WandWall
117117
tangentiale Versteifungsrippentangential stiffening ribs
118118
DichtflƤchesealing surface
119119
axiale Versteifungsrippenaxial stiffening ribs
120120
Standflanschstand flange
121121
Durchgangsbohrungenthrough holes
122122
StandflƤchefloor space
124124
Anschlagelementstop element
126126
Verlagerungseinrichtungrelocation facility
128128
Schiebewegsliding distance
130130
Schienerail
132132
KippstĆ¼tzeAnti-tipper
134134
Hilfseinrichtungauxiliary facility
200200
Grundplattebase plate
201201
lasttragende OberflƤcheload bearing surface
202202
Zugvorrichtungpulling device
204204
Rotorrotor
205205
Rotorwellerotor shaft
206206
Innenseiteinside
208208
Ripperib
210210
BremsflƤchebraking surface
212212
Scheibedisc
213213
DurchbrĆ¼chebreakthroughs
214214
SchleppflƤchedrag surface
215215
Speichenspokes
216216
Kupplungcoupling
218218
AusrĆ¼ckvorrichtungrelease device
220220
Koppeleinrichtungcoupling device
222222
Riegelbars
400400
Entleerungseinrichtungemptying device
402402
SchrƤgbodensloping floor
404404
Entleerungsƶffnungdischarge opening
406406
Grubepit
408408
SpĆ¼lƶffnungflushing port
500500
Transportsystemtransport system
600600
Verfahren zum Warten einer vertikalen KugelmĆ¼hleMethod of maintaining a vertical ball mill
602602
Schritt des Trennensstep of separation
604604
Schritt des Anhebensstep of lifting
606606
Schritt des Anordnensarranging step
608608
Schritt des Absetzensstep of weaning
610610
Schritt des Verlagernsrelocation step
700700
Arbeitsplattformworking platform
702702
LeiterDirector
704704
Treppenturmstair tower
706706
Wartungskabinemaintenance cabin
800800
RahmenFrame
802802
Antriebdrive
900900
SĆ¼llrandcoaming
10001000
Hebelaschelifting tab
12001200
Nutgroove
13001300
Zwingeferrule
13021302
Grundkƶrperbody
13041304
Scharnierhinge
13061306
Gewindebohrungthreaded hole
13081308
Schraubspindelscrew spindle
13101310
Klemmbackenjaws
13121312
Schlitzslot

Claims (15)

  1. Vertical ball mill (100), in particular for pre-grinding material to be ground, such as minerals, comprising:
    a rotor (204) that is axially and radially mounted at an upper end and hangs downwards,
    a stator (102) which radially surrounds the rotor (204), is not loaded by a weight of the rotor (204), stands in a self-supporting manner, and has a lateral surface (104) that is oriented tangentially to the rotor (204) and is approximately cylindrical, within a shape tolerance, and
    a base plate (200) that supports a weight of the stator (102),
    wherein the stator (102) is composed of at least two stator segments (112) which may be separated from one another, stand unsupported in the separated state, and may be moved relative to one another,
    wherein each of the stator segments (112) comprises, on at least one side edge of the wall (116), extending from a top edge of a wall (116) forming the lateral surface (104) to a bottom edge of the wall (116), a sealing surface (118) for sealing to the other stator segment (112) in each case, and, on the bottom edge, a standing surface (122) which is dimensioned appropriately for the load and is intended for sealing to the base plate (200),
    wherein the stator segment (112) weighs, in a standing manner, on the base plate (200) with the standing surface (122), in a manner orthogonal within an angular tolerance on a load-bearing surface (201) of the base plate (200).
  2. Ball mill (100) according to claim 1,
    in which a plurality of vertically mutually spaced, horizontal, annular segment-shaped ribs (208) are arranged on an inner face (206) of the walls (116), which ribs form inwardly protruding annular brake surfaces (210) on the assembled stator (102), and
    in which the rotor (204) comprises a plurality of vertically mutually spaced, horizontal discs (212), each having an outside annular entraining surface (214), wherein the ribs (208) and the discs (212) are arranged alternately in the vertical direction, and the brake surfaces (210) and the entraining surfaces (214) overlap, at least in part, in the horizontal direction.
  3. Ball mill (100) according to either of the preceding claims,
    in which the stator segments (112) each comprise stop elements (124) on an outer face, for lifting and moving the relevant stator segment (112).
  4. Ball mill (100) according to claim 3,
    in which the stator segments (112) each comprise stop elements (124) in the region of the bottom edge of the wall (116), which stop elements are configured in particular for fixing hydraulic jacks.
  5. Ball mill according to either of claims 3 to 4,
    in which the stop elements (124) define corner points of a virtual horizontal polygon, in particular triangle, the geometrical centre point of which is located on a vertical axis through a centre of gravity of the standing stator segment (112).
  6. Ball mill (100) according to any of claims 3 to 5,
    comprising a shifting device (126) for lateral shifting of the mutually separated stator segments (112),
    wherein the shifting device (126) comprises movable auxiliary devices (134) which are designed to be arranged between the stop elements (124) and rails (130) arranged on the ground and extending in parallel, when the stator segment (112) is raised, and to be moved along the rails (130), together with the stator segment (112), when the stator segment (112) is deposited thereon, and
    in which, optionally, the shifting device (126) comprises at least one tilt support (132) for supporting a stop element (124), vertically spaced apart from the standing surface (122), on at least one of the rails (130), in order to prevent tilting of the stator segment (112) during lifting and shifting.
  7. Ball mill (100) according to claim 6, in which the rails (130) are recessed into a foundation (110) of the ball mill (100) and, optionally, may be covered by covering devices when not in use.
  8. Ball mill (100) according to any of the preceding claims, comprising an emptying device (400) for emptying the ball mill (100), and
    in which, optionally, the emptying device (400) comprises an oblique base (402) within the load-bearing surface (201) of the base plate (200), wherein one of the stator segments (112) comprises an emptying opening (404) of the emptying device (400) in the region of a bottom point of the oblique base (402).
  9. Ball mill (100) according to claim 8, in which one of the stator segments (112) comprises a rinsing opening (408) of the emptying device (400) in the region of a top point of the oblique base (402).
  10. Ball mill (100) according to any of the preceding claims,
    comprising a frame (108) that is separated from the stator (102),
    wherein supports of the frame (108) are supported on a foundation (110) of the ball mill (100) so as to be laterally spaced apart from the stator (102), and at least one crossbeam of the frame (108) interconnects the supports above the stator (102), wherein a bearing and drive device (106) of the rotor (204) is supported on the crossbeam.
  11. Ball mill (100) according to any of the preceding claims,
    comprising a disengagement device (218) for laterally disengaging the rotor (204) that may be decoupled from an upper coupling (216),
    wherein the disengagement device (218) comprises at least one rail (130) and a coupling device (220), wherein the coupling device (220) is designed to be connected to the rotor (204) in the region of the coupling (216), to be lowered onto the rail (130) together with the rotor (204), and to be moved along the rail (130) together with the rotor (204).
  12. Ball mill (100) according to claim 10 and claim 11, in which the frame (108) comprises a maintenance cab (706) in the region of the coupling (216).
  13. Self-supporting standing stator segment (112) for a vertical ball mill (100) according to any of claims 1 to 12, comprising:
    a wall (116) that is approximately in a shape of a cylinder segment, within a shape tolerance,
    at least one sealing surface (118) that is arranged on a side edge of the wall (116) extending from a top edge of the wall (116) to a bottom edge of the wall (116) and is intended for sealing to another stator segment (112), and
    a standing surface (122) that is arranged on the bottom edge and is dimensioned appropriately for the load, and by means of which the stator segment (112) may be erected on a load-bearing surface (201) of a base plate (200) of the ball mill (100), so as to be orthogonal within an angular tolerance,
    wherein a stator (102) that stands in a self-supporting manner and comprises a lateral surface (104) that is formed by the walls (116) and is approximately cylindrical, within a shape tolerance, may be composed of a plurality of stator segments (112), which stator, in an assembled state, may stand in a loading manner on the base plate (200) for supporting a weight of the stator (102).
  14. Method (600) for maintaining a vertical ball mill (100), in particular for pre-grinding material to be ground, such as minerals,
    wherein the vertical ball mill (100) comprises a rotor (204) that is axially and radially mounted at an upper end and hangs downwards, a stator (102) which radially surrounds the rotor (204), is not loaded by a weight of the rotor (204), stands in a self-supporting manner, and has a lateral surface (104) that is oriented tangentially to the rotor (204) and is approximately cylindrical, within a shape tolerance, and a base plate (200) that supports a weight of the stator (102),
    wherein the stator (102) is composed of at least two stator segments (112) which may be separated from one another, stand unsupported in the separated state, and may be moved relative to one another,
    wherein each of the stator segments (112) comprises, on at least one side edge of the wall (116), extending from a top edge of a wall (116) forming the lateral surface (104) to a bottom edge of the wall (116), a sealing surface (118) for sealing to the other stator segment (112) in each case, and, on the bottom edge, a standing surface (122) which is dimensioned appropriately for the load and is intended for sealing to the base plate (200),
    wherein the stator segment (112) weighs, in a standing manner, on the base plate (200) with the standing surface (122), in a manner orthogonal within an angular tolerance on a load-bearing surface (201) of the base plate (200),
    wherein the method (600) comprises:
    separating (602) the stator (102) into the stator segments (112), wherein a stator (102) is separated at the sealing surfaces (118),
    arranging (606) auxiliary devices (134) under at least one of the stator segments (112), and
    lateral shifting (610) of the stator segment (112) and of the auxiliary devices (134) using a shifting device (126).
  15. Method (600) according to claim 14, in which the stator segment (112) may be lifted from the base plate (200), using lifting devices, and deposited on the auxiliary devices (134) using the lifting devices.
EP19769145.4A 2018-09-14 2019-09-13 Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill Active EP3840890B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018122540.7A DE102018122540B3 (en) 2018-09-14 2018-09-14 Vertical ball mill, stator segment for a vertical ball mill and method of servicing a vertical ball mill
PCT/EP2019/074550 WO2020053419A1 (en) 2018-09-14 2019-09-13 Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill

Publications (2)

Publication Number Publication Date
EP3840890A1 EP3840890A1 (en) 2021-06-30
EP3840890B1 true EP3840890B1 (en) 2023-06-21

Family

ID=67956793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19769145.4A Active EP3840890B1 (en) 2018-09-14 2019-09-13 Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill

Country Status (14)

Country Link
US (1) US11944976B2 (en)
EP (1) EP3840890B1 (en)
AU (1) AU2019338944A1 (en)
BR (1) BR112021003729A2 (en)
CA (1) CA3111689A1 (en)
CL (1) CL2021000513A1 (en)
DE (1) DE102018122540B3 (en)
DK (1) DK3840890T3 (en)
ES (1) ES2952958T3 (en)
FI (1) FI3840890T3 (en)
MX (1) MX2021003003A (en)
PE (1) PE20211487A1 (en)
WO (1) WO2020053419A1 (en)
ZA (1) ZA202100900B (en)

Families Citing this family (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556467A1 (en) * 2018-04-16 2019-10-23 Omya International AG Hybrid disc
ES2914694T3 (en) * 2019-11-28 2022-06-15 Frank Peter Fowler Grinding assembly for a ball mill
WO2022016211A1 (en) * 2020-07-20 2022-01-27 Vectis Pty Ltd as trustee for JJB Trust Grinding mill

Citations (8)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE1901593A1 (en) 1969-01-14 1970-08-27 Draiswerke Gmbh Agitator mill
US4174074A (en) 1977-04-29 1979-11-13 Gebrueder Buehler Ag Ball mill
EP0771591A1 (en) 1995-06-06 1997-05-07 KOTOBUKI ENGINEERING & MANUFACTURING CO LTD Wet agitating ball mill and method
US5894998A (en) 1996-09-19 1999-04-20 Draiswerke, Inc. Agitator mill
DE3943826B4 (en) 1988-06-09 2004-12-09 BĆ¼hler AG Agitator-type grinder assembly - has rotor and/or stator with coolant channel and thermal expansion-compensating elements between adjacent parts
ITBO20090605A1 (en) 2009-09-23 2011-03-24 Samia S P A PERFECTED IN A CENTRIFUGE MILL TO REFINE MIXTURES, IN PARTICULAR CONTAINING PIGMENTS SUITABLE FOR USE IN THE TANNING INDUSTRY
WO2018138405A1 (en) 2017-01-26 2018-08-02 Outotec (Finland) Oy Improvements in stirred bead grinding mills
US10058872B2 (en) 2014-07-03 2018-08-28 STT Enviro Corp. Vertical ball mill with internal materials flow conduit

Family Cites Families (10)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
SU1151302A1 (en) 1983-11-03 1985-04-23 Vnii Gidrotekh Meliorat Apparatus for grinding polymeric granular materials
ES2030618A6 (en) * 1990-10-31 1992-11-01 Oliver & Battle Sa Mill for triturating and breaking up solids predispersed in liquids.
DE4128074C2 (en) 1991-08-23 1995-06-29 Omya Gmbh Agitator ball mill
US5971307A (en) 1998-02-13 1999-10-26 Davenport; Ricky W. Rotary grinder
RU17112U1 (en) 2000-02-28 2001-03-20 Š Š¾ŃŃŠøŠ¹ŃŠŗŠøŠ¹ Š³Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²ŠµŠ½Š½Ń‹Š¹ Š°Š³Ń€Š°Ń€Š½Ń‹Š¹ Š·Š°Š¾Ń‡Š½Ń‹Š¹ уŠ½ŠøŠ²ŠµŃ€ŃŠøтŠµŃ‚ FEED GRINDER
DE10110652B4 (en) * 2001-03-06 2004-01-29 Hosokawa Alpine Ag & Co.Ohg, Agitator mill with toroidal grinding gap
CN101282790B (en) * 2005-08-15 2011-01-26 ę–Æē‰¹ę‹‰å””ꊀęœÆęœ‰é™å…¬åø Method for increasing efficiency of grinding of ores, minerals and concentrates
DE102007005131B3 (en) 2007-02-01 2008-01-31 Siemens Ag Ring motor as direct drive, particularly for ore mills or tube mills, comprises stator and rotor formed as rotary mill body, where stator has two different excitation systems and mill body has toothed structure
EP2380666B1 (en) 2010-04-19 2013-04-17 Siemens Aktiengesellschaft Mill drive system
RU2524369C1 (en) 2013-03-12 2014-07-27 Š¤ŠµŠ“ŠµŃ€Š°Š»ŃŒŠ½Š¾Šµ Š³Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²ŠµŠ½Š½Š¾Šµ Š±ŃŽŠ“Š¶ŠµŃ‚Š½Š¾Šµ Š¾Š±Ń€Š°Š·Š¾Š²Š°Ń‚ŠµŠ»ŃŒŠ½Š¾Šµ учрŠµŠ¶Š“ŠµŠ½ŠøŠµ Š²Ń‹ŃŃˆŠµŠ³Š¾ ŠæрŠ¾Ń„ŠµŃŃŠøŠ¾Š½Š°Š»ŃŒŠ½Š¾Š³Š¾ Š¾Š±Ń€Š°Š·Š¾Š²Š°Š½Šøя "Š”ŠøŠ±ŠøрсŠŗŠøŠ¹ Š³Š¾ŃŃƒŠ“Š°Ń€ŃŃ‚Š²ŠµŠ½Š½Ń‹Š¹ тŠµŃ…Š½Š¾Š»Š¾Š³ŠøчŠµŃŠŗŠøŠ¹ уŠ½ŠøŠ²ŠµŃ€ŃŠøтŠµŃ‚" (Š”ŠøŠ±Š“Š¢Š£) Chopper

Patent Citations (8)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE1901593A1 (en) 1969-01-14 1970-08-27 Draiswerke Gmbh Agitator mill
US4174074A (en) 1977-04-29 1979-11-13 Gebrueder Buehler Ag Ball mill
DE3943826B4 (en) 1988-06-09 2004-12-09 BĆ¼hler AG Agitator-type grinder assembly - has rotor and/or stator with coolant channel and thermal expansion-compensating elements between adjacent parts
EP0771591A1 (en) 1995-06-06 1997-05-07 KOTOBUKI ENGINEERING & MANUFACTURING CO LTD Wet agitating ball mill and method
US5894998A (en) 1996-09-19 1999-04-20 Draiswerke, Inc. Agitator mill
ITBO20090605A1 (en) 2009-09-23 2011-03-24 Samia S P A PERFECTED IN A CENTRIFUGE MILL TO REFINE MIXTURES, IN PARTICULAR CONTAINING PIGMENTS SUITABLE FOR USE IN THE TANNING INDUSTRY
US10058872B2 (en) 2014-07-03 2018-08-28 STT Enviro Corp. Vertical ball mill with internal materials flow conduit
WO2018138405A1 (en) 2017-01-26 2018-08-02 Outotec (Finland) Oy Improvements in stirred bead grinding mills

Also Published As

Publication number Publication date
US11944976B2 (en) 2024-04-02
PE20211487A1 (en) 2021-08-09
WO2020053419A1 (en) 2020-03-19
ZA202100900B (en) 2022-01-26
MX2021003003A (en) 2021-08-11
DE102018122540B3 (en) 2019-11-21
DK3840890T3 (en) 2023-08-21
ES2952958T3 (en) 2023-11-07
FI3840890T3 (en) 2023-08-18
AU2019338944A1 (en) 2021-03-04
EP3840890A1 (en) 2021-06-30
US20220118459A1 (en) 2022-04-21
CA3111689A1 (en) 2020-03-19
CL2021000513A1 (en) 2021-08-13
BR112021003729A2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
EP3840890B1 (en) Vertical ball mill, stator segment for a vertical ball mill and method for maintaining a vertical ball mill
EP2271428B1 (en) Circulating mill system with external rising pipes
US7048214B2 (en) Gyratory crusher with hydrostatic bearings
EP2661325A1 (en) Mobile crushing system
DE102015114992B4 (en) roller Press
CA2968492C (en) Agitator means for vertical grinding mills
EP2307144B1 (en) Feed device with two rotary valves which are variable independently of each other
WO2017202842A1 (en) Dual-shaft shredder having a quick-change device
DE102015114998A1 (en) roller Press
EP2981360B1 (en) Apparatus and method for comminution of ore with a spring arrangement
DE102014011878B4 (en) Ground milling machine, method of dismantling and method of installing a milling device
EP3318331B1 (en) Crushing system with a crushing machine
EP3204162A1 (en) Apparatus for comminuting ore, comprising a hydraulic spring device, and associated method
FI126135B (en) A method for renewing the lining elements of the inner surface of a grinding mill
EP3347131B1 (en) Method and device for dismounting rollers of a roller press
RU2798529C2 (en) Vertical ball mill, stator segment for vertical ball mill and method for maintenance of vertical ball mill
DE102011121495B3 (en) Grinding roller with screwed shaft
DE102015114997A1 (en) Method for dismantling rolls of a roller press
WO2015082979A1 (en) Device for lifting and lowering loads in vertical shafts, in particular containers with radioactive contents
EP0136600A2 (en) Impact mill
CA3199824A1 (en) Screw flight system, replacement kit, a vertical grinding mill, and method of mounting the same
DE102013202071B4 (en) Method and device for supporting and moving a semi-mobile crushing plant
DE10012530A1 (en) Device for separation of heavy products from suspension consisting of water and solid substances has cage located in bottom of container in region of sluice and which has at least one baffle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1580515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230621

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230816

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

U12 Withdrawal of the request for unitary effect

Effective date: 20230914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230922

Year of fee payment: 5

Ref country code: NL

Payment date: 20230920

Year of fee payment: 5

Ref country code: GB

Payment date: 20230920

Year of fee payment: 5

Ref country code: FI

Payment date: 20230920

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230920

Year of fee payment: 5

Ref country code: FR

Payment date: 20230928

Year of fee payment: 5

Ref country code: DK

Payment date: 20230925

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231124

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 5

Ref country code: CH

Payment date: 20231001

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OMYA INTERNATIONAL AG

Effective date: 20240321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230913

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230913

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621