EP3833903B1 - Module d'éclairage de phare de véhicule automobile avec un grand nombre de systèmes micro-optiques - Google Patents

Module d'éclairage de phare de véhicule automobile avec un grand nombre de systèmes micro-optiques Download PDF

Info

Publication number
EP3833903B1
EP3833903B1 EP19752993.6A EP19752993A EP3833903B1 EP 3833903 B1 EP3833903 B1 EP 3833903B1 EP 19752993 A EP19752993 A EP 19752993A EP 3833903 B1 EP3833903 B1 EP 3833903B1
Authority
EP
European Patent Office
Prior art keywords
micro
light
optical system
aperture
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19752993.6A
Other languages
German (de)
English (en)
Other versions
EP3833903A1 (fr
Inventor
Andreas Moser
Bernhard Mandl
Friedrich Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3833903A1 publication Critical patent/EP3833903A1/fr
Application granted granted Critical
Publication of EP3833903B1 publication Critical patent/EP3833903B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources

Definitions

  • the invention relates to a projection device for a light module of a motor vehicle headlight, which is formed from a large number of micro-optical systems arranged in a matrix-like manner, each micro-optical system having a micro-entry optic, a micro-exit optic assigned to the micro-entry optic, and a micro-exit optic between the micro-entry optic and micro-aperture arranged on the micro-exit optics, wherein all micro-entry optics form an entry optic, all micro-exit optics form an exit optic and the micro-apertures form an aperture device, wherein the aperture device is arranged in a plane that is essentially orthogonal to the main emission direction of the projection device and the entrance optics, the exit optics and the diaphragm device are arranged in planes which are essentially parallel to one another.
  • the invention relates to a light module with at least one such projection device.
  • the international registration WO 2015/058227 A1 the applicant shows a micro-projection light module in which individual projection systems - projection devices - are lined up.
  • a sharp image of an overall light distribution for example a low beam light distribution, is generated with each individual projection system.
  • a single micro-optical system, from which the projection systems are formed, is designed for a wavelength of approx. 555 nm, ie for the green color range. This range is sharply imaged, while all other wavelength ranges are blurred due to chromatic aberration. In the case of a low beam distribution, for example, this means that the light-dark boundary has a violet color fringe.
  • the color of the color fringe can only be adjusted by deliberately defocusing the projection systems by changing the position of the micro exit optics.
  • this leads, for example, to a large gap that is very clearly visible to the naked eye between the low beam distribution and a partial high beam distribution (when the lens is defocused towards the beam stop) or that the color fringe becomes even bluer (when the lens is defocused away from the beam stop (stop device)).
  • Other solutions, such as achromatic lenses, are too complicated and too expensive to manufacture, since they require a specific combination of materials. More light modules are from the WO 2017/066817 A1 or the WO 2017/066818 A1 famous.
  • the task is solved with a light module according to claim 1.
  • all of the micro-optical systems are divided into at least two micro-optical system groups, the micro-apertures of the micro-optical systems of each micro-optical system group being illuminated by light of at least one light wavelength from a predetermined light wavelength range, preferably by light of a predetermined light wavelength, can be imaged sharply and the predetermined light wavelength ranges are different for different groups of micro-optical systems and preferably do not overlap.
  • each micro-optical system group is thus characterized by a light wavelength from a predetermined light wavelength range, preferably by a predetermined light wavelength. It can also be said that one of the micro-optical system groups only focuses light of at least one light wavelength from a predetermined light wavelength range, preferably a predetermined light wavelength. Other micro-optical system groups are defocused with regard to the light of a light wavelength from this predetermined light wavelength range, preferably the predetermined light wavelength.
  • the light distributions generated with the aid of the projection device are formed as an overlay of a large number of micro light distributions—light distributions that are formed by individual micro optical systems. Furthermore, each micro-optical system group is set up to form a partial light distribution. The partial light distributions are overlays of those micro light distributions that are created using the micro-optical systems belonging to the corresponding micro-optical-system group are formed/formed. The light distribution or the overall light distribution is also a superimposition of the partial light distributions of individual micro-optical system groups.
  • the above-mentioned sharp imaging of the optically effective edges of the micro-apertures in the light of at least one light wavelength from the specified light wavelength range, preferably the specified light wavelength, according to the invention results in micro-light-dark transitions or boundaries in the light image, which have color fringes in different colors.
  • the color fringes in the light image are also superimposed by superimposing the micro-light-dark transitions or boundaries, whereby a color compensation effect is achieved in which the color of a color fringe is adapted to the entire light distribution or the overall light distribution.
  • the specified light wavelength ranges, in particular the specified light wavelengths are preferably selected in such a way that a white color fringe is produced.
  • the micro-aperture in each micro-optical system is spaced apart from the micro-exit optics by a distance, the distance depending on the at least one light wavelength from a specified light wavelength range, preferably on a specified light wavelength, and within the same micro-optical system group is essentially the same, the distances in the micro-optical systems from different micro-optical system groups being different.
  • the micro-apertures can be spaced from the respective micro-exit optics by the same distance, this distance being determined according to at least one light wavelength from the predetermined light wavelength range assigned to this micro-optical system group, preferably at least one predetermined light wavelength is selected.
  • the micro-optical systems can consist of two or more different micro-optical system groups have two or more different distances between their micro-apertures and the respective micro-exit optics.
  • Each micro-optical system group can be set up to sharply image a micro-aperture in the light of at least one light wavelength from a predetermined light wavelength range, preferably a predetermined light wavelength.
  • differences between the distances in different micro-optical system groups are approximately 0.01 mm to approximately 0.12 mm, preferably from approximately 0.01 mm to approximately 0.06 mm, in particular from approximately 0.01 mm to about 0.03 mm, the micro-exit optics having a back focus - the distance between the focal point and the light entry surface - which depends on the at least one light wavelength from a predetermined light wavelength range and on its diameter.
  • micro exit optics can be designed for green light. If the micro exit optics are designed, for example, as plano-convex lenses with a lens diameter of about 2 mm, they can be used for light with a light wavelength of about 555 nm ("green light”), a back focus of about 0.7 mm (“green focal point ”) have (see example in the description of the figures).
  • the position of the micro-apertures in a micro-optical system group can be tuned to a predetermined light wavelength range assigned to this micro-optical system group, preferably to a light wavelength.
  • the micro-optical system group is to image the micro-apertures for green light (from the green region of the spectrum with light wavelengths from about 490 nm to about 575 nm: ⁇ ⁇ 490 - 575 nm, in particular ⁇ ⁇ 555 nm).
  • micro-apertures determines the position of the intermediate image plane for these wavelengths and then positions the micro-apertures of the micro-optical system group in the green intermediate image plane or in the intersection of the green rays with the optical axis of the micro-exit optics.
  • the micro-apertures are at a distance from the micro-exit optics that is matched to the green light and is therefore related to the corresponding light wavelength.
  • the optically effective edges within the same micro-optical system group can be imaged sharply with light from a predetermined light wavelength range, preferably a predetermined light wavelength. This means that the light-dark boundary(s) generated by the optically effective edges(s) has(have) a color fringe of a corresponding color.
  • the micro exit optics of each micro optics system has a light exit surface with a specified curvature, the specified curvature (the value of the specified curvature) of the at least one light wavelength from a specified light wavelength range, preferably from one of the predetermined light wavelengths and is essentially the same within the same micro-optical system group, the predetermined curvatures in the micro-optical systems from different micro-optical system groups being different.
  • micro-bright-dark boundaries in different micro-optical system groups can be imaged sharply by light of different light wavelengths.
  • the different micro-optical system groups are formed separately from one another and are preferably spaced apart from one another.
  • each micro-optical system group is combined to form a micro-aperture group and the micro-aperture groups are configured identically, with each micro-aperture preferably being a small plate an opaque material is formed with a breakthrough, in particular each micro-aperture along the main direction of emission a finite thickness, for example from about 0.01 mm to about 0.12 mm, preferably from about 0.06 mm.
  • the light module also has a light source, the projection device being located downstream of the light source in the light emission direction and projecting essentially all of the light generated by the light source into an area in front of the light module in the form of a light distribution with a light-dark boundary, the light distribution is formed from a multiplicity of overlapping partial light distributions, each with a partial light/dark boundary, and each partial light distribution is formed by exactly one micro-optical system group.
  • each partial light-dark boundary has a color fringe of a predetermined color and different partial light-dark boundaries have color fringes of different colors.
  • the partial light-dark boundaries and the light-dark boundary are essentially straight, for example horizontal or vertical, or have an increase in asymmetry, with each color of a light wavelength from a predetermined light wavelength range, preferably a predetermined light wavelength is equivalent to.
  • the light source is set up to generate collimated light.
  • the light source comprises a light-collimating optics element and a preferably semiconductor-based lighting element, for example an LED light source, upstream of the light-collimating optics element, the light-collimating optics element being, for example, a collimator or a light-collimating attachment optics or a TIR lens .
  • the light source has at least two light-emitting areas, each individual light-emitting area being controllable independently of the other light-emitting areas of the light source, for example being switched on and off, and each light-emitting area having at least one, preferably precisely one, micro-optical system Group is assigned in such a way that from the respective light-emitting area light generated directly and only hits this light-emitting area associated micro-optical system group.
  • This enables dynamic setting, ie setting during operation of the light module, of the color of the color fringe of the light-dark boundary.
  • FIGS. 1-10 are schematic representations showing only those components that may be helpful in explaining the invention.
  • the person skilled in the art immediately recognizes that a projection device and a light module for a motor vehicle headlight can have a large number of other components that are not shown here, such as setting and adjusting devices, electrical supply means and much more.
  • reference axes relate to a professional installation position of the subject matter of the invention in a motor vehicle and represent a motor vehicle-related coordinate system.
  • figure 1 shows a lighting device 1 for a motor vehicle headlight, which can correspond to the light module according to the invention.
  • the illumination device 1 comprises a projection device 2 , which is formed from a multiplicity of micro-optical systems 3 arranged in a matrix-like manner, each micro-optical system 3 having a micro-entry optics 30 , a micro-exit optics 31 assigned to the micro-entry optics 30, and a micro-exit optics 31 arranged between the micro- Entry optics 30 and the micro exit optics 31 arranged micro-aperture 32 has.
  • figure 1 shows that the matrix-like arrangement of the micro-optical systems 3 extends in two directions X (horizontal) and Y (vertical) that are essentially orthogonal to the main emission direction Z. That in the Figures 1, 1a and 1b The coordinate system shown is, as described above, related to the lighting device 1 in its customary installation position.
  • the lighting device 1 can be used to generate light distributions that are superimposed on a large number of micro light distributions (such as in figure 6 ) - Light distributions that are formed by individual micro-optical systems - are formed.
  • figure 7 shows an example of such a light distribution, which is designed as a low beam distribution 8 with a light-dark boundary with an asymmetry increase 80 .
  • each micro-optical-system group is set up to form a partial light distribution.
  • the partial light distributions are also overlays of several micro light distributions.
  • the light distribution or the overall light distribution is a superimposition of partial light distributions.
  • each micro-optical system 3 consists of exactly one micro-entry optics 30, exactly one micro-exit optics 31 and exactly one micro-aperture 32 ( Figure 1a ).
  • all micro entry optics 30 form, for example, a one-piece entry optics 4 .
  • all micro exit optics 31 form a one-piece exit optics 5 , for example, and the micro diaphragms 32 form a one-piece diaphragm device 6 , for example.
  • the entrance optics 4, the exit optics 5 and the diaphragm device 6 form a one-piece projection device 2, for example.
  • the micro-entry optics 30, the micro-exit optics 31 and the micro-apertures 32 can be applied, for example, to one or more, preferably translucent substrate(s) 40, 50, 51, 52, 60 , for example made of glass or plastic.
  • the diaphragm device 6 is arranged in a plane that is essentially orthogonal to the main emission direction Z of the projection device 2—in the intermediate image plane 322 .
  • all micro-apertures 32 are also in the intermediate image plane 322.
  • the entrance optics 4, the exit optics 5 and the aperture device 6 are arranged in planes that are essentially parallel to one another.
  • Figure 1a shows schematically an enlarged exploded view of one of the micro-optical systems 3 of FIG Figure 1.
  • Figure 1b shows section AA of the Figure 1a .
  • the substrates 40, 50, 51, 52, 60 have been omitted from this illustration for the sake of simplicity.
  • the Figure 1a shows that the micro-aperture 32 can have an optically effective edge 320 .
  • the micro-aperture 32 is spaced from the micro-exit optics 31 by a distance d .
  • the optically effective edge 320 can be set up or configured to generate a light-dark boundary of the micro light distribution—a so-called micro light-dark boundary 3200 , 3201 (see FIG figure 6 ). At this point on figure 6 be referred to.
  • figure 6 shows different shapes of the optically effective edges 320a , 320b , 320c , 320d , 320e of a micro-aperture 32, as well as micro-light distributions corresponding to these shapes, which, for example, have an essentially horizontal micro-light-dark boundary 3201 or a micro light-dark boundary with an asymmetry increase 3201.
  • a micro light distribution is formed by light passing through the respective micro optical system 3 .
  • Each micro-optical system 3 therefore preferably forms exactly one micro-light distribution and vice versa: each micro-light distribution is preferably formed by exactly one micro-optical system 3 .
  • the optically effective edge 320, 320a, 320b, 320c, 320d, 320e can have different profiles.
  • the optically effective edge 320, 320a, 320b, 320c, 320d, 320e which in this case is formed as an opening limit, has a closed form (see also figure 6 ). At least part of the optically effective edge 320, 320a, 320b, 320c, 320d, 320e is set up/designed for shaping/forming the micro-light/dark boundary 3200, 3201. At the in the Figures 1a and 6 In the micro-apertures shown, this is the lower part of the optically active edge 320, 320a, 320b, 320c, 320d, 320e.
  • the technical features relating to the geometric shape of the light distributions relate to a two-dimensional projection of the respective light distribution.
  • This projection can occur, for example, in a lighting technology laboratory if the light distribution is projected onto a measuring screen that is set up at a distance of approx. 25 meters orthogonally to the main direction of radiation of a light module, a lighting device or a motor vehicle headlight that is installed in a customary installation position.
  • cut-off lines partial or micro cut-off line
  • the optically effective edge 320, 320a, 320b, 320c, 320d, 320e is only sharply imaged with light of a specific color or a specific wavelength.
  • the optically effective edge 320, 320a, 320b, 320c, 320d, 320e of the micro-aperture 32 spaced by this focal length from the micro exit optics 31 (the distance d is equal to the focal length in this case), in the form of a micro cut-off with a violet color fringe imaged when the micro-optical system is irradiated with white light, for example a semiconductor-based light source, preferably an LED light source.
  • the violet color of the color fringe is due to a mixture of blue and red portions of white light.
  • the distance d is changed by shifting the micro-aperture 32 along the main emission direction Z. This also changes the color of the color fringe, because the micro-aperture is no longer at an intersection of the green rays (light rays with a light wavelength from the green spectral range) with the optical axis of the micro-exit optics but, for example, at an intersection of the red or of the blue (light) rays with the optical axis of the micro exit optics.
  • the distance d can therefore be selected as a function of the light wavelength ⁇ d .
  • This example allows a general statement to be made: if all micro-optical systems of the projection device are identical, light-dark transitions of a light distribution generated with the projection device, for example the light-dark boundary of a low beam distribution, have a color fringe in a color that depends on the distance d of the micro-apertures depends on the micro-exit optics. The color of this color fringe results from the mixing of light wavelengths for which the micro-apertures are not in the focal plane (chromatic aberration).
  • micro-optical systems 3 are divided into at least two micro-optical system groups G1 , G2 , G3 .
  • figure 1 shows, for example, three micro-optical system groups G1, G2, G3.
  • a predetermined light wavelength range eg green range
  • a predetermined light wavelength ⁇ G1 , ⁇ G2 , ⁇ G3 is assigned to each micro-optical system group G1, G2, G3.
  • each micro-optical system group includes micro-optical systems whose micro-apertures are only affected by light with light wavelengths ⁇ G1 , ⁇ G2 , ⁇ G3 from the specified light wavelength range, preferably by light of a specified light wavelength (e.g. of about 555 nm). are sharply depictable.
  • the predetermined light wavelength ranges preferably the predetermined light wavelengths ⁇ G1 , ⁇ G2 , ⁇ G3 , of different micro-optical system groups G1, G2, G3 are different. It can be expedient that the different light wavelength ranges do not overlap.
  • the specified light wavelength range preferably the specified light wavelength ⁇ G1 , ⁇ G2 , ⁇ G3 .
  • the color fringes in the light image are also superimposed by superimposing the micro-light-dark transitions or boundaries, whereby a color compensation effect is achieved in which the color of a color fringe is adapted to the overall light distribution or the overall light distribution.
  • the specified light wavelength ranges, in particular the specified light wavelengths are preferably selected in such a way that a white color fringe is produced.
  • micro-apertures 32 of each micro-optical system group G1, G2, G3 can be combined to form a micro-aperture group, wherein the micro-aperture groups can be configured identically.
  • each micro-optical system 3 at least part of the micro-aperture 32 is spaced from the micro-exit optics 31 by a distance d, d1, d2, d3, the distance d, d1, d2, d3 being a light wavelength ⁇ d , ⁇ G1 , ⁇ G2 , ⁇ G3 from a predetermined light wavelength range or from one of the predetermined light wavelength ranges and is essentially the same within the same micro-optical system group G1, G2, G3.
  • the distances d1, d2, d3 can be selected differently in the micro-optical systems 3 from different micro-optical-system groups G1, G2, G3.
  • micro-apertures 32 are spaced from the respective micro-exit optics by the same distance, with this distance d1, d2, d3 being determined according to a light wavelength from the specified light wavelength range assigned to this micro-optical system group G1, G2, G3, preferably the predetermined light wavelength ⁇ G1 , ⁇ G2 , ⁇ G3 .
  • the micro-optical systems 3 from two or more different micro-optical system groups G1, G2, G3 have two or more different distances d1, d2, d3 between their micro-apertures 32 and the respective micro-exit optics 31.
  • Each micro-optical system group G1, G2, G3 is set up to expose micro-aperture 32 in the light of at least one light wavelength a predetermined light wavelength range, preferably a predetermined light wavelength to image sharply.
  • the micro-aperture is sharply imaged by green light with a light wavelength of approx. 555 nm.
  • the differences ⁇ d 12 , ⁇ d 23 between the distances d1, d2, d3 in different micro-optical system groups G1, G2, G3 can be about 0.01 mm to about 0.12 mm, preferably from about 0.01 mm to about 0 0.06 mm, in particular from about 0.01 mm to about 0.03 mm.
  • the micro exit optics 31 for green light in particular for light with a light wavelength of approximately 555 nm, preferably have a back focus of approximately 0.7 mm.
  • the position of the micro-apertures in a micro-optical system group can be tuned to a predetermined light wavelength range assigned to this micro-optical system group, preferably to a light wavelength.
  • the micro-optical system group is to image the micro-apertures for green light (from the green region of the spectrum with light wavelengths from about 490 nm to about 575 nm: ⁇ ⁇ 490 - 575 nm, in particular ⁇ ⁇ 555 nm).
  • micro-apertures determines the position of the intermediate image plane for these wavelengths and then positions the micro-apertures of the micro-optical system group in the green intermediate image plane or in the intersection of the green rays with the optical axis of the micro-exit optics.
  • the micro-apertures are at a distance from the micro-exit optics that is matched to the green light and is therefore related to the corresponding light wavelength.
  • the position of the micro-apertures is determined as a function of the light wavelength from another light wavelength range of the spectrum.
  • Other areas of the spectrum are, for example: violet area (violet light) with light wavelengths from about 380 nm to about 420 nm ( ⁇ ⁇ 380 - 420 nm); blue range (blue light) with light wavelength from about 420 nm to about 490 nm ( ⁇ ⁇ 420 - 490 nm); yellow area (yellow light) with light wavelength from about 575 nm to about 585 nm ( ⁇ ⁇ 575 - 585 nm); orange area (orange light) with light wavelength from about 585 nm to about 650 nm ( ⁇ ⁇ 585 - 650 nm), and red range (red light) with light wavelength from about 650 nm to about 750 nm ( ⁇ ⁇ 650 - 750 nm)
  • the optically active edges 320, 320a, 320b, 320c, 320d, 320e can be imaged sharply within the same micro-optical system group with light from a predetermined light wavelength range, preferably a predetermined light wavelength.
  • a predetermined light wavelength range preferably a predetermined light wavelength.
  • shifting the micro-aperture (green focal point) approximately 0.7 mm from the micro-exit optics in the horizontal direction leads to or away from the micro-exit optics by approximately 0.06 mm
  • Micro exit optics to a red or a blue color fringe at the micro light-dark transition or the limit For example, by shifting the micro-aperture by 0.03mm to the micro-exit optics (or the micro-aperture optics to the micro-aperture, an orange color fringe appears).
  • a superimposition of the color fringes in different colors in the light image leads to a clear compensation of the color fringes. For example, a yellow-reddish color fringe can be overlaid with a violet color fringe, thereby creating an essentially white color fringe - compensation.
  • micro-optical system groups which consist of an equal number of micro-optical systems, the micro-exit optics of a micro-optical system group being about 0.06 mm thicker than that of the others.
  • the sharpness factor of the light distribution can then be adjusted.
  • the different distances d1, d2, d3 in the different micro-optical system groups G1, G2, G3 can be caused, for example, by different thicknesses of the micro-exit optics 32 themselves, the corresponding substrates or the corresponding layers of adhesive between the corresponding substrate and the micro-exit optics.
  • figure 1 shows that the micro exit optics 32 are applied to a substrate 50, 51, 52.
  • the thickness of the substrate 50, 51, 52 varies depending on the micro-optical system group G1, G2, G3.
  • the thickness of the substrate 50, 51, 52 in the corresponding micro-optical system group G1, G2, G3 defines the distances d1, d2, d3 between the micro-apertures 32 and the micro-exit optics 31 of this micro-optical system group G1, G2, G3. It is also conceivable to design the substrate 60 of the diaphragm device 6 or the substrate 40 of the entrance optics 4 with different thicknesses for the different micro-optical system groups G1, G2, G3.
  • the different distances d1, d2, d3 can also be achieved with an adhesive layer 53 having a thickness ⁇ d , for example from 0.01 mm to about 0.12 mm, preferably from about 0.01 mm to about 0.06 mm, in particular from about 0.01 mm to about 0.03 mm can be achieved.
  • This somewhat thicker layer of adhesive can, for example, be between the micro exit optics 31 and the substrate 50 of the exit optics 5 or between the micro apertures 32 and the substrate 50 of the exit optics 5.
  • micro-apertures of a thickness D so that, for example, a rear part 32a of its optically effective edges, which is distal with respect to the micro-exit optics 31 (in the main emission direction Z), is sharply imaged with light of a first light wavelength ⁇ G11 from the specified light wavelength range and a front part 32b of its optically active edges that is proximal with respect to the micro exit optics 31 is sharply imaged with light of a second light wavelength ⁇ G12 from the predetermined light wavelength range.
  • the distal portion 32a at an intersection S ⁇ g 11 of the beams of light wavelength ⁇ G11 with the optical axis OA of the micro-optical system 3 and the proximal part 32b at an intersection point S ⁇ G12 of the beams of light wavelength ⁇ G12 are arranged with the optical axis OA of the micro-optical system 3 .
  • the micro-aperture 32 can be about 0 12 mm thick, with its center being spaced from the micro-exit optics 31 by about 0.7 mm.
  • the distal part 32a of the optically effective edge of the micro-aperture 32 is at an intersection point S ⁇ g 11 of the red rays with the optical axis OA of the micro-exit optics 31 and the proximal part 32b of the optically effective edge of the micro-aperture 32 at an intersection S ⁇ G12 of the blue rays lie with the optical axis OA of the micro exit optics.
  • Different parts of the optical Effective edge, such as the distal or the proximal part are superimposed in the light image in the form of micro-light-dark transitions or borders with color fringes in different colors. This superimposition can also compensate for the color fringe of the light-dark boundary.
  • micro exit optics of different thicknesses are preferred—whether achieved by a thicker substrate, thicker adhesive layer or thicker micro exit optics body.
  • the production of micro-apertures of different thicknesses is only possible with application processes (lithographic) and leads to an air gap in the projection device. Micro-apertures of different thicknesses cannot be connected to flat glass plates, such as those used in the imprint process.
  • micro-exit optics of different thicknesses can be easily produced using a tool.
  • the micro exit optics 31 of each micro optics system 3 has a light exit surface with a predetermined curvature k1 , k2 , the predetermined curvature k1, k2 (the value of the predetermined curvature) of a light wavelength from a predetermined light wavelength range or from one of the predetermined light wavelength ranges, preferably from one of the light wavelengths ⁇ G1 , ⁇ G2 , ⁇ G3 and within the same micro-optical system group G1, G2, G3 is essentially the same, the predetermined curvatures k1, k2 in the micro Optical systems 3 from different micro-optical system groups G1, G2, G3 are different.
  • FIG. 5 shows a schematic of two micro-exit optics 31 from different micro-optical system groups G1, G2 and micro-apertures 32 upstream of these micro-exit optics 31. It should be noted that the micro-apertures in this example are at the same distance from the micro-exit optics 31 are arranged. It is understood that this is not a limitation.
  • the distance between the micro-aperture and the micro-exit optics can also be varied here, as described above and adapted to the light wavelength.
  • the light exit surfaces of the micro exit optics 31 of figure 5 are curved differently. This means that the micro-apertures 32 of the micro-optical systems 3 of a first micro-optical-system group G1 at an intersection S ⁇ g 1 of the beams of light wavelength ⁇ G1 with the optical axis OA of the corresponding micro-optical system 3 and the micro-apertures 32 of the micro-optical systems 3 of a second micro-optical-system group G2 at an intersection S ⁇ g 2 the beams of light wavelength ⁇ G2 with the optical axis OA of the corresponding micro-optical system 3 can be located.
  • the optically effective edges of the micro-apertures 32 are imaged as micro-light-dark transitions or boundaries 3200, 3201 with color fringes in different colors.
  • the light wavelengths can be selected in such a way that the color fringe that occurs after the superimposition is white.
  • these exemplary embodiments can be combined with one another.
  • it can be expedient not only to vary the position of the micro-apertures (the distance d1, d2, d3 between the micro-aperture and the respective micro-exit optics) from micro-optical system group to micro-optical system group, but also to change the curvatures k1, k2 of the light exit surfaces of the micro exit optics.
  • the overall thickness of the projection device but also the lengthwise extension of the entire light module in which the projection device is used, can be influenced and the overall depth can thus be adjusted, for example.
  • an adhesive layer as in the Figures 2 or 3 or a thicker substrate as in figure 1 to foresee.
  • figure 6 Examples of micro-apertures 32 with differently shaped openings 321a, 321b, 321c, 321d, 321e and of micro-light distributions that can be generated by the respective shape of the opening.
  • figure 6 reveals two different forms of micro-light-dark boundaries: a substantially horizontally running micro-light-dark boundary 3201 and a micro-light-dark boundary with an asymmetry increase 3201.
  • a substantially horizontally running micro-light-dark boundary 3201 and a micro-light-dark boundary with an asymmetry increase 3201.
  • by superimposing the micro-light distributions of the same micro-optical system group in the light image forms a partial light distribution that has a partial light-dark boundary with a color fringe of a specified color, the specified color depending on the specified light wavelength range, preferably on the specified light wavelength .
  • the partial light distributions superimposed in the light image form a light distribution or total light distribution, such as the low beam distribution 8 in the figure 7 .
  • the micro light distributions with the micro light/dark boundaries exhibiting the asymmetry increase 3201 lead to partial light/dark boundaries with an asymmetry increase, with each partial light/dark boundary having the color fringe in the specified color.
  • the light-dark boundary with the asymmetry increase 80 is formed, the color fringe of which has a color that is determined by the colors of the color fringe of the partial light distribution.
  • the color of the color fringe of the light-dark boundary with the increase in asymmetry 80 in the low beam distribution 8 is preferably white.
  • the different micro-optical system groups can certainly be formed separately from one another. It is conceivable that the different micro-optical system groups are spaced apart from one another.
  • the entry optics, the exit optics and the diaphragm device can be arranged on separate, different, preferably transparent substrates.
  • the lighting device 1 for a motor vehicle headlight has a light source 7 which is upstream of the projection device 2 in the light emission direction Z.
  • the light source 7 emits light which is projected by the projection device 2 in an area in front of the lighting device in the form of a light distribution, for example a low beam light distribution 8 with a light/dark boundary, for example a light/dark boundary with an asymmetry increase 80.
  • the light distribution is formed from a multiplicity of overlapping partial light distributions, each with a partial light/dark boundary.
  • Each partial light distribution is formed by exactly one micro-optical system group.
  • the light source 7 can expediently be set up to generate collimated light.
  • the light source 7 can be a light-collimating optical element, such as a collimator 9 in figure 1 and a preferably semiconductor-based lighting element, for example an LED light source 10, located in front of the collimator 9.
  • the light-collimating optics element can also be designed as a light-collimating attachment optics or a TIR lens (not shown).
  • the light source 7 has three light-emitting areas 70, 71, 72.
  • Each individual light-emitting area can be one or more semiconductor-based light sources, preferably LED light sources, and can be controlled, for example switched on and off, independently of the other light-emitting areas of the light source 7 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)

Claims (13)

  1. Module lumineux (1) pour un projecteur de véhicule automobile avec un dispositif de projection (2), le dispositif de projection (2) étant formé d'une pluralité de micro-systèmes optiques (3) disposés à la manière d'une matrice, chaque micro-système optique (3) comprenant une micro-optique d'entrée (30), une micro-optique de sortie (31) associée à la micro-optique d'entrée (30) et un micro-diaphragme (32), toutes les micro-optiques d'entrée (31) formant une optique d'entrée (4), toutes les micro-optiques de sortie (31) formant une optique de sortie (5) et les micro-diaphragmes (32) formant un dispositif de diaphragme (6), le dispositif de diaphragme (6) étant disposé dans un plan sensiblement orthogonal à la direction principale de rayonnement (Z) du dispositif de projection (2) et l'optique d'entrée (4), l'optique de sortie (5) et le dispositif de diaphragme (6) étant disposés dans des plans sensiblement parallèles entre eux, l'ensemble des microsystèmes optiques (3) étant divisé en au moins deux groupes de microsystèmes optiques (G1, G2, G3), les microdiaphragmes (32) des microsystèmes optiques (3) de chaque groupe de microsystèmes optiques (G1, G2, G3) étant éclairés par de la lumière d'au moins une longueur d'onde lumineuse (λG1, λG2, λG3) peuvent être reproduits de manière nette à partir d'une plage de longueurs d'onde de lumière prédéterminée et les plages de longueurs d'onde de lumière prédéterminées sont différentes pour différents groupes de microsystèmes optiques (G1, G2, G3), le module de lumière (2) présentant une source de lumière (7), le dispositif de projection (2) étant placé en aval de la source de lumière (7) dans la direction d'émission de la lumière et projetant la lumière produite par la source de lumière (7) dans une zone située devant le module de lumière sous la forme d'une répartition de la lumière (8) avec une limite clair-obscur (80), la répartition de la lumière étant formée d'une pluralité de répartitions partielles de la lumière se chevauchant les unes les autres et présentant chacune une limite claire-obscure partielle, et chaque répartition partielle de la lumière étant formée par exactement un groupe de micro-systèmes optiques, caractérisée en ce que en ce que chaque limite de clair-obscur partielle présente une frange de couleur d'une couleur prédéterminée et différentes limites de clair-obscur partielles présentent des franges de couleur de différentes couleurs, chaque couleur correspondant à une longueur d'onde lumineuse (λG1, λG2, λG3) d'une plage de longueurs d'onde lumineuses prédéterminée, de préférence à une longueur d'onde lumineuse prédéterminée (λG1, λG2, λG3).
  2. Module lumineux (1) selon la revendication 1, caractérisé en ce que, dans chaque système micro-optique (3), au moins une partie du micro-diaphragme (32) est espacée de la micro-optique de sortie (31) d'une distance (d, d1, d2, d3), ladite distance (d, d1, d2, d3) étant fonction de ladite au moins une longueur d'onde lumineuse (λd, λG1, λG2, λG3) à partir d'une plage de longueurs d'onde de lumière prédéterminée et est identique à l'intérieur du même groupe de systèmes micro-optiques (G1, G2, G3), les distances (d1, d2, d3) étant différentes pour les systèmes micro-optiques (3) provenant de différents groupes de systèmes micro-optiques (G1, G2, G3).
  3. Module lumineux (1) selon la revendication 2, caractérisé en ce que des différences (Δd12, Δd23) entre les distances (d1, d2, d3) dans différents groupes de microsystèmes optiques (G1, G2, G3) vont d'environ 0,01 mm à environ 0,12 mm, de préférence d'environ 0,01 mm à environ 0,06 mm, en particulier d'environ 0,01 mm à environ 0,03 mm, les micro-optiques de sortie (31) ayant une largeur de coupe qui dépend d'au moins une longueur d'onde lumineuse (λd, λG1, λG2, λG3) d'une plage de longueurs d'onde lumineuses prédéterminée et de leur diamètre.
  4. Module lumineux (1) selon l'une des revendications 1 à 3, caractérisé en ce que la micro-optique de sortie (31) de chaque micro-système optique (3) présente une surface de sortie de la lumière ayant une courbure prédéterminée (k1, k2), la courbure prédéterminée (k1, k2) dépendant d'au moins une longueur d'onde lumineuse (λG1, λG2, λG3) d'une plage de longueurs d'onde lumineuse prédéterminée, dépend de préférence de l'une des longueurs d'onde de lumière prédéterminées (λG1, λG2, λG3) et est identique au sein du même groupe de microsystèmes optiques (G1, G2, G3), les courbures prédéterminées (k1, k2) étant différentes pour les microsystèmes optiques (3) provenant de différents groupes de microsystèmes optiques (G1, G2, G3).
  5. Module lumineux (1) selon l'une des revendications 1 à 4, caractérisé en ce qu'au moins une partie des micro-diaphragmes (32) de chaque groupe de microsystèmes optiques (G1, G2, G3) présente des arêtes optiquement actives (320, 320a, 320b, 320c, 320d, 320e) qui sont conçues pour reproduire une micro-frontière claire-obscure sensiblement horizontale.
  6. Module lumineux (1) selon la revendication 5, caractérisé en ce que les micro-frontières clair-obscur peuvent être reproduites de manière nette pour différents groupes de microsystèmes optiques par la lumière des différentes longueurs d'onde de la lumière (λG1, λG2, λG3).
  7. Module lumineux (1) selon l'une des revendications 1 à 6, caractérisé en ce que les différents groupes de microsystèmes optiques (G1, G2, G3) sont formés séparément les uns des autres et sont de préférence espacés les uns des autres.
  8. Module lumineux (1) selon l'une des revendications 1 à 7, caractérisé en ce que les micro-diaphragmes (32) de chaque groupe de micro-systèmes optiques (G1, G2, G3) sont regroupés en un groupe de micro-diaphragmes et les groupes de micro-diaphragmes sont réalisés de manière identique, chaque micro-diaphragme (32) étant de préférence réalisé sous la forme d'une plaquette en un matériau opaque avec une ouverture (321, 321a, 321b, 321c, 321d, 321e), chaque micro-diaphragme (32) présentant en particulier le long de la direction principale de rayonnement (Z) une épaisseur finie (D), par exemple d'environ 0,01 mm à environ 0,12 mm, de préférence d'environ 0,06 mm.
  9. Module lumineux selon l'une des revendications précédentes, caractérisé en ce que les limites de clair-obscur partielles et la limite de clair-obscur sont sensiblement droites, par exemple horizontales ou verticales, ou présentent une montée d'asymétrie (80).
  10. Module lumineux selon l'une des revendications précédentes, caractérisé en ce que la source lumineuse (7) est agencée pour produire une lumière collimatée.
  11. Module lumineux selon l'une des revendications précédentes, caractérisé en ce que la source lumineuse (7) comprend un élément optique de collimation de la lumière (9) et un élément lumineux (10), de préférence à base de semi-conducteurs, par exemple une source lumineuse LED, placé en amont de l'élément optique de collimation de la lumière (9), l'élément optique de collimation de la lumière (9) étant par exemple un collimateur ou une optique rapportée de collimation de la lumière ou une lentille TIR.
  12. Module lumineux selon l'une des revendications précédentes, caractérisé en ce que la source lumineuse (7) comporte au moins deux zones d'émission de lumière (70, 71, 72), chaque zone d'émission de lumière individuelle pouvant être commandée, par exemple activée et désactivée, indépendamment des autres zones d'émission de lumière de la source lumineuse (7), et à chaque zone émettrice de lumière (70, 71, 72) est associé au moins un, de préférence exactement un groupe de microsystèmes optiques (G1, G2, G3) de telle sorte que la lumière produite par la zone émettrice de lumière respective (70, 71, 72) arrive directement et uniquement sur le groupe de microsystèmes optiques (G1, G2, G3) associé à cette zone émettrice de lumière (70, 71, 72).
  13. Projecteur de véhicule automobile comportant au moins un module d'éclairage selon l'une quelconque des revendications précédentes.
EP19752993.6A 2018-08-07 2019-08-05 Module d'éclairage de phare de véhicule automobile avec un grand nombre de systèmes micro-optiques Active EP3833903B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18187726.7A EP3608585A1 (fr) 2018-08-07 2018-08-07 Dispositif de projection d'un grand nombre de systèmes micro-optiques et module d'éclairage de phare de véhicule automobile
PCT/EP2019/070975 WO2020030568A1 (fr) 2018-08-07 2019-08-05 Dispositif de projection composé d'une pluralité de systèmes micro-optiques et module d'éclairage pour un projecteur de véhicule à moteur

Publications (2)

Publication Number Publication Date
EP3833903A1 EP3833903A1 (fr) 2021-06-16
EP3833903B1 true EP3833903B1 (fr) 2022-03-16

Family

ID=63173960

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18187726.7A Withdrawn EP3608585A1 (fr) 2018-08-07 2018-08-07 Dispositif de projection d'un grand nombre de systèmes micro-optiques et module d'éclairage de phare de véhicule automobile
EP19752993.6A Active EP3833903B1 (fr) 2018-08-07 2019-08-05 Module d'éclairage de phare de véhicule automobile avec un grand nombre de systèmes micro-optiques

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18187726.7A Withdrawn EP3608585A1 (fr) 2018-08-07 2018-08-07 Dispositif de projection d'un grand nombre de systèmes micro-optiques et module d'éclairage de phare de véhicule automobile

Country Status (6)

Country Link
US (1) US11293614B2 (fr)
EP (2) EP3608585A1 (fr)
JP (1) JP7104853B2 (fr)
KR (1) KR102549734B1 (fr)
CN (1) CN112534181B (fr)
WO (1) WO2020030568A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726829B (zh) * 2020-11-17 2021-05-01 坦德科技股份有限公司 導光柱結構
DE102020132350A1 (de) * 2020-12-04 2022-06-09 Marelli Automotive Lighting Reutlingen (Germany) GmbH Lichtmodul für einen Kraftfahrzeugscheinwerfer
KR20220089942A (ko) * 2020-12-22 2022-06-29 에스엘 주식회사 차량용 램프
CN117178142A (zh) * 2021-02-22 2023-12-05 亮锐有限责任公司 具有发射器阵列、微米或纳米结构化透镜、和角度滤光器的发光器件组件
US11508888B2 (en) * 2021-02-22 2022-11-22 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
EP4316911A1 (fr) * 2022-08-01 2024-02-07 ZKW Group GmbH Système d'éclairage de véhicule automobile destiné à l'émission des projections au sol à position limitée

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329887B2 (en) * 2003-12-02 2008-02-12 3M Innovative Properties Company Solid state light device
DE102009010558B4 (de) * 2009-02-13 2016-06-09 Automotive Lighting Reutlingen Gmbh Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
DE102010035767A1 (de) * 2010-08-20 2012-02-23 Automotive Lighting Reutlingen Gmbh Projektionsscheinwerfer mit gezielt abgeschwächtem Lichtintensitätsgradienten an der Hell-Dunkel-Grenze
AT514967B1 (de) * 2013-10-25 2015-08-15 Zizala Lichtsysteme Gmbh Mikroprojektions-Lichtmodul für einen Kraftfahrzeugscheinwerfer
DE102013227194A1 (de) * 2013-12-27 2015-07-02 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugscheinwerfer
JP6600987B2 (ja) 2015-05-21 2019-11-06 市光工業株式会社 車両用灯具
DE102015216985A1 (de) * 2015-09-04 2017-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsvorrichtung und Verfahren zur Projektion mit optischen Freiformflächen
AT517885B1 (de) * 2015-10-23 2018-08-15 Zkw Group Gmbh Mikroprojektions-Lichtmodul für einen Kraftfahrzeugscheinwerfer zur Erzeugung von abbildungsfehlerfreien Lichtverteilungen
AT517887B1 (de) * 2015-10-23 2018-06-15 Zkw Group Gmbh Mikroprojektions-Lichtmodul für Fahrzeugscheinwerfer
AT518905B1 (de) * 2016-07-29 2018-04-15 Zkw Group Gmbh Projektionseinrichtung für einen Kraftfahrzeugscheinwerfer und Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
KR20210027402A (ko) 2021-03-10
EP3608585A1 (fr) 2020-02-12
JP7104853B2 (ja) 2022-07-21
US20210325016A1 (en) 2021-10-21
CN112534181A (zh) 2021-03-19
EP3833903A1 (fr) 2021-06-16
US11293614B2 (en) 2022-04-05
JP2021533548A (ja) 2021-12-02
KR102549734B1 (ko) 2023-06-30
CN112534181B (zh) 2023-01-17
WO2020030568A1 (fr) 2020-02-13

Similar Documents

Publication Publication Date Title
EP3833903B1 (fr) Module d'éclairage de phare de véhicule automobile avec un grand nombre de systèmes micro-optiques
EP3365593B1 (fr) Module lumineux à microprojection pour projecteur de véhicule
EP3365594B1 (fr) Module lumineux à microprojection pour un projecteur de véhicule à moteur servant à produire des répartitions de lumière sans aberration
EP3714205B1 (fr) Module d'éclairage pour phare de véhicule automobile
EP2910847B1 (fr) Module d'éclairage d'un projecteur de véhicule automobile et projecteur avec un tel module d'éclairage
EP3282181B1 (fr) Lentille micro-optique sur verre présentant un conception de protection et procédé de fabrication
EP3833904B1 (fr) Dispositif de projection, module lumineux et phares de véhicule automobile de micro-optiques
DE102018217215A1 (de) Abblendlichtscheinwerfer
EP3721133B1 (fr) Dispositif de projection pour un phare de véhicule automobile
EP3372890A1 (fr) Module de phare de véhicule automobile
DE10317958B4 (de) Vorrichtung zum Erzeugen und Projizieren von Lichtmarken
DE102014119027A1 (de) Vorrichtung zur Multispot-Scan-Mikroskopie
DE2409924A1 (de) Vorrichtung zur herstellung einer vielfalt von projektionsbildern
DE102009008418A1 (de) Beleuchtungsvorrichtung mit einer IR-LED-Lichtquelle
EP3657066B1 (fr) Unité d'éclairage pour un phare de véhicule automobile destinée à générer une répartition lumineuse à coupure
DE102020107926A1 (de) Mikrolinsenprojektionsmodul mit an Ausleuchtdivergenz angepasster Bklende
DE102018132065A1 (de) Mikroprojektoren aufweisendes Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
EP3230650B1 (fr) Phare pour véhicules
DE102020121974A1 (de) Lichtmodul mit einer Farbfehler korrigierenden Optikvorrichtung
DE102011085978A1 (de) Laser-leuchtstoff-vorrichtung mit laserarray
DE102020132350A1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
EP3126736A1 (fr) Dispositif d'éclairage destiné à un véhicule automobile
DE102022210092A1 (de) Abblendlichtscheinwerfer und Verfahren zum Herstellen derselben

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220128

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003749

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476131

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003749

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220805

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230828

Year of fee payment: 5

Ref country code: DE

Payment date: 20230821

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190805