EP3823759B1 - Dispositif de thermorégulation pour récipients de laboratoire - Google Patents

Dispositif de thermorégulation pour récipients de laboratoire Download PDF

Info

Publication number
EP3823759B1
EP3823759B1 EP19742177.9A EP19742177A EP3823759B1 EP 3823759 B1 EP3823759 B1 EP 3823759B1 EP 19742177 A EP19742177 A EP 19742177A EP 3823759 B1 EP3823759 B1 EP 3823759B1
Authority
EP
European Patent Office
Prior art keywords
temperature
absorber element
housing
receiving region
control medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19742177.9A
Other languages
German (de)
English (en)
Other versions
EP3823759A1 (fr
Inventor
Steffen Gehrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brand GmbH and Co KG
Original Assignee
Brand GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102018005582.6A external-priority patent/DE102018005582A1/de
Priority claimed from DE102018008152.5A external-priority patent/DE102018008152A1/de
Application filed by Brand GmbH and Co KG filed Critical Brand GmbH and Co KG
Publication of EP3823759A1 publication Critical patent/EP3823759A1/fr
Application granted granted Critical
Publication of EP3823759B1 publication Critical patent/EP3823759B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/16Holders for containers
    • A61J1/165Cooled holders, e.g. for medications, insulin, blood, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1855Means for temperature control using phase changes in a medium

Definitions

  • the invention relates to a temperature control device for accommodating laboratory vessels in order to keep the contents of the laboratory vessels at a predetermined temperature over a longer period of time.
  • the Patent Publication WO92/12071A1 shows a storage and transport device for thermally sensitive products.
  • biologically active substances in particular are to be stored within a specific temperature window in a cooled and non-frozen state.
  • a container carrier of the device has indentations for glass ampoules with the substances contained therein and to be protected.
  • the container support is made of thermoplastic material and forms an enclosed space around the indentations and a hollow peripheral rim overhanging the indentations.
  • Inside the closed space up to the level of the indentations there is a temperature control medium that changes its aggregate state and has a high heat of fusion. Water or gel materials can be used as a temperature control medium.
  • the hollow edge area serves to expand the temperature control medium that carries out the phase change.
  • the disadvantage of this device is that during the thermal conditioning of this device, the tempering medium begins the phase change on the outside of the hollow space and the volume expansion occurs most strongly in the area in which the phase change last takes place. Since the hollow space filled with air only occupies the edge area, deformation occurs in the center of the container carrier, with the depressions no longer being located at the same height as the base of the container carrier. The geometric determination is only given again when the phase change is in the opposite direction.
  • EP2428273A1 discloses a temperature control device for sample vessels in a non-autonomous design.
  • This temperature control device has two temperature control zones that are insulated from one another and that heat and cool the sample vessels in sections.
  • the desired temperature is set in the first temperature control zone by means of a heating element and in the second temperature control zone with a heat transfer medium flowing through it.
  • This temperature control device therefore requires connections for electrical and thermal energy and is complex in terms of structure and the number of functional elements.
  • DE69512750T2 also belongs to the state of the art.
  • the object of the invention is to create a temperature control device for holding laboratory vessels of the type mentioned at the outset, which keeps the contents of the laboratory vessels constant at a predetermined temperature over the entire surface of the receptacle and without supplying or withdrawing thermal energy over a longer period of time, as well as being functional is improved and can be produced more cost-effectively due to its dimension, which can be little thermally influenced.
  • the object is achieved by a temperature control device of the type mentioned with the features of claim 1 and a temperature control method for laboratory vessels according to claim 11.
  • Advantageous configurations are specified in the dependent claims.
  • a temperature control device for accommodating laboratory vessels is provided with a hollow housing that has an interior area and is filled with a temperature control medium. Before use, the temperature control device is thermally conditioned without laboratory vessels. During its use, the temperature control device either absorbs the conditioned thermal energy, i.e. heat, from the laboratory vessels or delivers it to the laboratory vessels in a finite time course.
  • the housing has a base at the bottom and a receiving area opposite at the top, which delimits the hollow inner area of the housing at the top. Inward-pointing indentations on the upper side of the receiving area serve as receptacles for the laboratory vessels to be tempered.
  • the hollow housing has a separate air space in addition to the interior area accommodating the tempering medium.
  • the interior can have a partition that divides the interior into partial spaces, in particular a first interior and a second interior.
  • the air space is separated from the temperature control medium by the structural design of the housing, i.e. that at least essentially no mixing of air space and temperature control medium takes place. This can be realized in particular by a corresponding component, such as a partition.
  • an embodiment is also possible in which the interior of the housing is only filled with the temperature control medium and with air, the air contained ultimately forming the air space in the sense of the invention.
  • an interface is formed between the tempering medium and the air space.
  • An absorber element is arranged in the interior of the hollow housing, which absorber element extends horizontally in the interior and has the temperature control medium flowing around and/or through it.
  • the absorber element is thermally conductively connected to the receiving area.
  • the laboratory vessels used in the receiving area in the wells are so through the tempering medium over a kept at a constant temperature for a long period of time.
  • the absorber element is designed in particular as a plate.
  • a material or a component is regarded as “thermally conductive” if its average thermal conductivity is at least 5 W/(m ⁇ K).
  • the heat of fusion of the tempering medium is absorbed by the absorber element and transported evenly to the receiving area.
  • the horizontally extending absorber element in the tempering medium allows the thermal energy of the mass of the tempering medium to be fully utilized.
  • the absorber element also accelerates the transport of heat from the environment via the receiving area into the temperature control medium. The time for conditioning is shorter.
  • a "horizontal" extension is related to the orientation of the temperature control device in the state of use and means that the absorber element extends at least essentially transversely to the effect of gravity. In particular, this also includes such an arrangement in which the absorber element does not run parallel to the floor.
  • the interior of the housing is partitioned parallel to the footprint, i.e. the floor.
  • the air space can advantageously be arranged opposite the receiving area, with the part of the inner area adjoining the receiving area receiving or containing the tempering medium. This enables direct contact and heat exchange between the tempering medium and the absorber element and the receiving area.
  • a partition wall is arranged between the interior areas of the housing.
  • the partition wall seals the two interior areas from each other and is designed to be flexible.
  • the partition allows a change in volume of the tempering medium in the dimensionally stable Housing.
  • the flexibility of the partition is achieved through the use of a resilient material such as silicone.
  • the elasticity of the dividing wall improves the direct contact of the tempering medium with the absorber element and the receiving area.
  • a material or component is "flexible" within the meaning of the invention if it has sufficient elasticity to return to its original shape after being deformed by the forces that act on the material or component as a result of a change in volume of the temperature control medium during the phase change.
  • a particularly suitable flat component such as a partition wall, can have a spring rate of less than 5 N/mm per mm2.
  • the surface normalization refers to the surface of the component on which a corresponding pressure is exerted.
  • the temperature control device can be used for cooling or keeping warm.
  • the housing with the tempering medium is heated or cooled, with the tempering medium preferably changing its state of aggregation and the energy being used for the phase change.
  • water or an aqueous solution that freezes when it cools down is used as the temperature control medium.
  • the tempering medium has a lower or higher density in the solid phase than in its liquid phase.
  • the temperature control medium which is already partially liquid again, allows the still solid temperature control medium to float or sink. Due to the different densities, this solid tempering medium presses against the absorber element.
  • the thermal energy of the receiving area with the laboratory vessels used is changed in a special way by the contact of the solid temperature control medium with the absorber element, its thermally conductive connection to the receiving area and the transfer of heat. Is the transfer of heat from the Absorber element to the receiving area, then the thermal energy of the receiving area is increased and the laboratory vessels are heated. If the heat is transferred from the receiving area to the absorber element, then the thermal energy of the receiving area is reduced and the laboratory vessels are cooled.
  • the heat transfer from or to the receiving area takes place evenly and sufficiently.
  • the constant temperature of the tempering medium during the phase change can be used over a longer period of time and a certain temperature of the laboratory vessels, essentially defined by the physical properties of the tempering medium, can be maintained.
  • the phase change from liquid to solid takes place simultaneously on almost the entire surface of the absorber element in the tempering medium and not just at certain points in the center of the receiving area.
  • the absorber element is arranged at a spatial distance from the receiving area.
  • the absorber element can be designed as a plate and the absorber element can be connected to the receiving area by means of one or more thermally conductive spacer elements.
  • the plate, spacer elements and the receiving area consist of a material with a thermal conductivity of at least 10 W/(m ⁇ K). With this minimum value, complete heat absorption by the absorber element or the plate and uniform temperature control of the laboratory vessels with simultaneous heat transfer to the temperature control medium can be guaranteed.
  • the receiving area of the housing is designed as a separate part. This allows a reduced heat dissipation of the housing or advantageously allows the receiving area to be made of a material with a higher thermal conductivity of at least 100 W/(m ⁇ K).
  • Aluminum is a dimensionally stable and cost-efficient material that is easy to process.
  • the Other parts of the hollow housing can be made of a material with a significantly lower thermal conductivity of at most 1 W/(m ⁇ K) and can be made of plastic.
  • the air space above the tempering medium serves to equalize the volume and limits the pressure build-up on the housing and the receiving area.
  • the absorber element protrudes into the temperature control medium with its underside directed towards the floor or as a plate.
  • the absorber element is flexible or elastically deformable towards the receiving area.
  • the absorber element preferably has an area-related spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element or is held in such a way that a spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element results.
  • the absorber element is designed either as a plate or, as an alternative design, as a structured, elastic shaped body, with the plate or also the shaped body preferably also being held resiliently in the receiving area with spacer elements. Both variants of a temperature control device are not damaged during the phase change and allow the volume of the temperature control medium to change, even in the solid state, without losing its function or deforming the housing.
  • the 1 shows a temperature control device 1 according to the invention for accommodating laboratory vessels 2.
  • the temperature control device 1 is thermally conditioned before use, ie without the laboratory vessels 2, and for this purpose is temperature-controlled in a refrigerator or heating cabinet. During use, the temperature control device 1 either absorbs or releases the conditioned thermal energy from the laboratory vessels 2 and the environment in a finite time course.
  • the temperature control device 1 shown consists of a hollow housing 3 which is at least partially filled with a temperature control medium 4 in the interior of the housing 3 .
  • the housing 3 is used in the laboratory as an independent device and, when in use, has a base 3.2 at the bottom or on an underside and a receiving area 3.1 opposite at the top or on an upper side, which delimits the hollow interior area of the housing 3 at the top.
  • indentations 5 are formed from above in the direction of the base 3.2 and inward, which serve as receptacles for the laboratory vessels 2 to be temperature-controlled.
  • the floor 2/3 can be in SBS format (Society of Biomolecular Screening) and the number of wells 5 in the grid of the SBS standard 12 ⁇ 8, 24 ⁇ 16, etc. be arranged.
  • the temperature control device 1 can be thermally conditioned, ie heated or cooled, standing on the floor 3.2 or lying on the recesses 5 before it is used with laboratory vessels 2, in order to assume a specific temperature that differs from the environment in which it is used.
  • a temperature control device 1 is shown, which represents an exemplary embodiment.
  • the receiving area 3.1 can, however, be detachably arranged on the housing 3, in particular from above, contrary to what is shown.
  • the housing 3 can cover the gaps around the recesses 5 as shown. Contrary to what is shown, this part can be designed separately from the housing 3 . Contrary to what is shown, the receiving area 3.1 can also be arranged detachably on the housing 3 from above.
  • the 2 shows the temperature control device 1 according to the invention with the hollow housing 3, which has an air space 6 separated from the interior area accommodating or containing the temperature control medium 4.
  • the separation of the inner area runs at least essentially parallel to the floor 3.2, which serves in particular as a standing area.
  • the air space 6 is arranged opposite the receiving area 3.1 and represents a part of the inner area.
  • the rest of the inner area adjoining the receiving area 3.1 receives the tempering medium 4. Heat is thus also transferred directly between the tempering medium 4 and the receiving area 3.1.
  • a dividing wall 3.3 is arranged between the hollow inner areas or the standing surface, ie the base 3.2, and the housing 3, which seals the two inner areas from one another and is designed to be flexible.
  • the partition wall 3.3 can also be arranged between other parts of the housing 3.
  • the standing area or the floor 3.2 When running after 2 the standing area or the floor 3.2 has a bore 3.4 which aerates and/or vents the air space 6.
  • the air space 6 is tightly enclosed and its pressure change can be used to force the tempering medium 4 against the receiving area 3.1.
  • the tempering medium 4 fills the interior of the housing 3 adjoining the receiving area 3.1 at least essentially completely, which is desirable in practice, but is usually only imperfectly possible.
  • air can still be included.
  • the interior is therefore completely filled with tempering medium 4 or partially with tempering medium 4 and air.
  • the part of the inner area adjoining the receiving area 3.1 is therefore preferably predominantly filled with tempering medium.
  • the volume of the tempering medium contained in the part of the interior adjacent to the receiving area 3.1 is greater than the volume of the air contained there.
  • the temperature control device 1 after 2 has an absorber element 7 in the hollow housing 3, which is designed as a plate and extends horizontally in the housing 3.
  • the absorber element 7 is arranged at a spatial distance from the receiving area 3.1 and the housing 3 and the amount of Tempering medium 4 selected so that the absorber element 7 is at least partially flowed around by the tempering medium 4, so has contact with the temperature-controlled tempering medium 4 and / or is immersed in it.
  • the absorber element 7 can have one or more openings 7 .
  • the absorber element 7 is thermally conductively connected to the receiving area 3.1 for the transmission of thermal energy and thus transmits the temperature of the tempering medium 4 to the laboratory vessels 2.
  • the temperature control device 1 is exposed to the desired temperature for a sufficiently long time before it is used.
  • the housing with the temperature control medium 4 of the temperature control device 1 is heated or cooled, depending on the required temperature window of the substances in the laboratory vessels 2.
  • the tempering medium 4 used in the housing 3 changes its state of aggregation when it is heated or cooled.
  • the temperature control medium 4 freezes when it cools and melts when it is heated.
  • the energy of the phase transition (e.g. in the case of water: 333.4 KJ/Kg at 0°C) is used effectively.
  • aqueous solution a glycol/water mixture and/or a gel material, in particular an aqueous carboxymethyl cellulose gel
  • a temperature control medium 4 for cooling the laboratory vessels 2 .
  • a mixture of cyclodextrin and 4-methylpyridine is used as the temperature control medium 4 .
  • a polymer solution consisting of several soluble substances with different phase temperatures and a concentration-dependent miscibility gap, such as a phenol/water mixture, can also be used.
  • the temperature control device 1 after Figures 1 and 2 is alternatively used for heating laboratory vessels 2 between 30°C and 45°C.
  • the housing 3 is filled with the already mentioned mixture of cyclodextrin and 4-methylpyridine.
  • the temperature control device 1 is conditioned at approximately 50° C. or higher.
  • the absorber element 7 extends in the opposite direction to that in Fig. 1 or 2 shown embodiment over a larger extent in the interior of the housing 3.
  • Temperature control device 1 shown is specially designed for temperature control medium 4, which has a lower density than its liquid phase in its solid phase.
  • Such a temperature control medium 4 which is already partly liquid again when it melts, floats in the still partly solid state and presses against the absorber element 7.
  • the 2 shows the temperature control device 1 according to the invention with the housing 3, which has an air space 6 separated from the interior area.
  • the separation of the inner area runs at least essentially parallel to the floor 3.2.
  • the embodiment after 2 shows not only constructive improvements. Surprisingly, advantages are also expressed in the effect and in the resulting temperature profile "B".
  • the flexible partition 3.3 enables the spatial division of temperature control medium 4 and air space 6 and the compensation of volume changes of the temperature control medium 4 into the air space 6 or away from it.
  • the partition 3.3 is made of a flexible, ie resilient, material, for example made of silicone.
  • the increase in volume of the solid or frozen tempering medium 4 is made possible by the expansion of the partition wall 3.3 into the air space 6 by prestressing.
  • the solid tempering medium 4 is thereby pressed against the absorber element 7 .
  • the heat transfer is increased by the pressing and the temperature profile "B" is kept below the temperature limit for even longer. This effect lasts even longer if the partition wall 3.3 also has low thermal conductivity.
  • the plate is fastened to the receiving area 3.1 with a plurality of spacer elements 8.
  • the spacer elements 8 also connect the plate 7 to the receiving area 3 . 1 in a thermally conductive manner and in such a number that the temperature of the tempering medium 4 is transferred to the laboratory vessels 2 .
  • Fig. 1 or 2 Decisive are in the embodiment according to the invention Fig. 1 or 2 also the materials used.
  • the absorber element 7 or the plate 12, the spacer elements 8 and/or the receiving area 3.1 consist in particular of a material with a thermal conductivity of at least 10 W/(m ⁇ K).
  • the receiving area 3.1 of the housing 3 is designed as a separate part.
  • the receiving area 3.1 which is materially separate from the housing 3, consists of a material with a thermal conductivity of at least 100 W/(m ⁇ K). Aluminum in particular is used as a suitable material.
  • the other parts of the hollow housing 3 may be made of plastic or include a plastic and preferably have a thermal conductivity of at most 1 W/(m ⁇ K) and thus a more heat-insulating effect.
  • the housing 3 can still be constructed discretely.
  • the housing 3 is provided with a separate floor 3.2, which represents the standing area compared to the receiving area 3.1.
  • the bottom 3.2 and the receiving area 3.1 are sealed against the housing 3 with seals 3.5.
  • projecting feet 3.6 are arranged on the floor.
  • the absorber element 7 is designed to be flexible with its absorber underside directed towards the base 3.2 towards the receiving area 3.1.
  • the increase in volume of the tempering medium 4 is tolerated by the absorber element 7 .
  • the absorber element 7 is a structured elastic molded body 7 ', such as 3 it shows. This flat shaped body 7' preferably has sufficient resilience with a spring rate of less than 1 N/mm per mm 2 area of the underside of the shaped body 7' in order to prevent deformation of the housing 3.
  • Shaped body 7 shown ' is a layer of metal mesh or foam.
  • the shaped body 7' is arranged on the underside of the receiving area 3.1.
  • Such a mesh or foam serves as an absorber for receiving and at the same time for transporting the thermal energy to the receiving area 3.1.
  • the mesh or the foam is also positioned so that it extends through the air space 6 below the receiving area 3.1 and is at least partially surrounded by the temperature control medium 4 and penetrated as completely as possible.
  • the structure itself enables the required flexibility and the selection of the material and the cross-sectional density allow for sufficient heat conduction to the receiving area 3.1.
  • the braiding or the foam can also serve only as flexible, resilient spacer elements 8' of the plate.
  • the spacer elements 8 hold the plate in a flexible, resilient manner in relation to the receiving area 3.1.
  • the plate is at least partially surrounded by the tempering medium 4 .
  • the temperature control medium 4 expands in volume in the solid state, it presses against the plate and is tolerated by its flexible positioning or its elastic change in shape.
  • the absorber element 7 is preferably detachably or non-detachably connected to the receiving area 3.1.
  • the absorber element 7 is connected to the underside of the receiving area 3.1 at multiple points, for example welded on using ultrasound.
  • the spacer elements 8 are integrally formed on the receiving area 3.1 and/or on the plate, so that there is good heat conduction.
  • a flexible spacer element 8' is shown. This spacer element 8' is part of the plate.
  • spacer element 8 Incisions, not shown, release the spacer element 8' and allow a meandering bend, as in FIG 4 pictured.
  • the free end of the spacer element 8' bent in this way is in particular welded to the receiving area 3.1.
  • the spacer elements 8 can be screwed on in a detachable manner be held in a non-positive/positive/frictional manner or permanently connected, such as welded, soldered, bonded, glued, or materially connected in some other way.

Claims (13)

  1. Dispositif de régulation de température (1) pour des récipients de laboratoire (2), qui est conçu pour être conditionné thermiquement avant l'utilisation sans récipients de laboratoire (2) et pour absorber l'énergie thermique conditionnée des récipients de laboratoire (2) et/ou la restituer aux récipients de laboratoire (2) pendant l'utilisation dans un déroulement temporel fini,
    avec un boîtier creux (3),
    qui présente une zone intérieure remplie d'un médium de régulation de température (4),
    le boîtier (3) ayant un fond (3.2) sur une face inférieure et, à l'opposé, sur une face supérieure, une zone de réception (3.1) qui délimite la zone intérieure du boîtier (3) vers la face supérieure et qui présente sur sa face supérieure des renfoncements (5) dirigés vers l'intérieur pour recevoir les récipients de laboratoire (2) à tempérer,
    caractérisé en ce que
    le boîtier (3) présente un espace d'air (6),
    en ce qu'un élément absorbant (7) s'étendant horizontalement est disposé dans la zone intérieure du boîtier (3), l'élément absorbant (7) étant encerclé et/ou traversé au moins partiellement par le médium de régulation de température (4), et
    en ce que l'élément absorbant (7) et la zone de réception (3.1) sont reliés de manière thermiquement conductrice.
  2. Dispositif de régulation de température selon la revendication 1, caractérisé en ce que
    la zone intérieure du boîtier (3) est séparée en s'étendant parallèlement au fond (3.2) et/ou l'espace d'air (6) est disposé sur le côté de la zone intérieure opposé à la zone de réception (3.1) et la partie de la zone intérieure adjacente à la zone de réception (3.1) contient le médium de régulation de température (4).
  3. Dispositif de régulation de température selon la revendication 1 ou 2, caractérisé en ce que
    la zone intérieure du boîtier (3) est remplie au moins partiellement de le médium de régulation de température (4), de préférence jusqu'à l'élément absorbant (7), et la partie restante de la zone intérieure contient l'espace d'air (6), et/ou en ce que la zone intérieure du boîtier (3) est séparée de telle sorte que le médium de régulation de température (4) est contenu dans une première zone intérieure et l'espace d'air (6) dans une deuxième zone intérieure, de préférence une paroi de séparation (3.3) étant disposée entre la première zone intérieure et la deuxième zone intérieure du boîtier (3), laquelle rend les deux zones intérieures étanches l'une par rapport à l'autre et est réalisée de manière flexible, la paroi de séparation (3.3) étant constituée en particulier d'un matériau élastique, de préférence de la silicone, ou présentant un matériau élastique.
  4. Dispositif de régulation de température selon l'une des revendications précédentes, caractérisé en ce que
    le médium de régulation de température (4) est conçu pour, lors de l'absorption d'énergie thermique par les récipients de laboratoire (2), modifier son état d'agrégation au moins partiellement d'une phase solide en une phase liquide et/ou, lors de la restitution d'énergie thermique aux récipients de laboratoire (2), modifier son état d'agrégation d'une phase liquide en une phase solide, en particulier, la phase solide de le médium de régulation de température (4) ayant une densité inférieure ou supérieure à celle de la phase liquide de le médium de régulation de température (4), de sorte que la phase solide flotte ou coule dans la phase liquide de le médium de régulation de température (4), et pousse contre l'élément absorbant (7),
  5. Dispositif de régulation de température selon la revendication 4, caractérisé en ce que
    le dispositif de régulation de température (1) est conçu pour augmenter l'énergie thermique de la zone de réception (3.1) avec les récipients de laboratoire (2) utilisés par contact de la phase solide de le médium de régulation de température (4) avec l'élément absorbant (7) et transfert de chaleur de l'élément absorbant (7) à la zone de réception (3.1) pour chauffer les récipients de laboratoire (2) ou
    réduire l'énergie thermique de la zone de réception (3.1) avec les récipients de laboratoire (2) utilisés par contact de la phase solide de le médium de régulation de température (4) avec l'élément absorbant (7) et transfert de chaleur de la zone de réception (3.1) à l'élément absorbant (7) pour refroidir les récipients de laboratoire (2).
  6. Dispositif de régulation de température selon l'une des revendications précédentes, caractérisé en ce que
    l'élément absorbant (7) est disposé à distance spatiale de la zone de réception (3.1), en particulier dans lequel l'élément absorbant (7) comprend une plaque ou est conçu comme une plaque et/ou dans lequel l'élément absorbant (7) est relié à la zone de réception (3.1) au moyen d'un ou plusieurs éléments d'écartement (8) thermiquement conducteurs, et dans lequel, de préférence, la plaque, le ou les éléments d'écartement (8) et/ou la zone de réception (3.1) sont constitués d'un matériau ayant une conductivité thermique d'au moins 10 W/(m · K).
  7. Dispositif de régulation de température selon l'une des revendications précédentes, caractérisé en ce que
    la zone de réception (3.1) du boîtier (3) est réalisée sous forme de pièce séparée, de préférence la zone de réception (3.1) étant constituée d'un matériau ayant une conductivité thermique d'au moins 100 W/(m · K), en particulier en aluminium, et les autres pièces du boîtier (3) étant constituées d'un matériau ayant une conductivité thermique de 1 W/(m · K) au maximum, en particulier en matière plastique.
  8. Dispositif de régulation de température selon l'une des revendications précédentes, caractérisé en ce que
    l'élément absorbant (7) est réalisé de manière élastiquement déformable vers la zone de réception (3.1) au moins sur une face inférieure de l'absorbeur orientée vers le fond (3.2),
    de préférence l'élément absorbant (7) étant un corps moulé élastique structuré (7') et/ou le ou les éléments d'écartement (8) maintenant élastiquement l'élément absorbant (7) sur la zone de réception (3.1), de préférence l'élément absorbant (7) étant maintenu avec un taux de ressort inférieur à 1 N/mm par mm2 de surface de la face inférieure de l'élément absorbant (7).
  9. Dispositif de régulation de température selon l'une des revendications 1 à 5, caractérisé en ce que
    l'élément absorbant (7) est un corps moulé élastique structuré (7'), le corps moulé (7') étant conçu de manière à pouvoir être déformé élastiquement avec sa face inférieure d'absorbeur orientée vers le fond (3.2) en direction de la zone de réception (3.1), la raideur élastique de la face inférieure d'absorbeur étant de préférence inférieure à 1 N/mm par mm2 de surface de la face inférieure d'absorbeur.
  10. Dispositif de régulation de température selon l'une des revendications précédentes, caractérisé en ce que le médium de régulation de température (4) est de l'eau ou une solution aqueuse.
  11. Procédé de régulation de température (1) pour des récipients de laboratoire (2), comprenant les étapes suivantes :
    - mise à disposition d'un dispositif de régulation de température, en particulier selon l'une des revendications précédentes, avec une zone intérieure remplie au moins partiellement d'un médium de régulation de température (4) et avec un boîtier (3) avec une zone de réception (3.1), une zone intérieure creuse du boîtier (3) étant limitée vers le haut par la zone de réception (3.1), et avec des renfoncements (5) dirigés vers l'intérieur à partir de la face supérieure de la zone de réception (3.1),
    - conditionnement thermique avant utilisation sans récipients de laboratoire (2),
    - mise en place des récipients de laboratoire (2),
    - absorption ou la restitution de l'énergie thermique conditionnée par les récipients de laboratoire (2) ou aux récipients de laboratoire dans un déroulement temporel fini,
    caractérisé en ce que
    qu'un élément absorbant (7) s'étendant horizontalement dans la zone intérieure du boîtier (3) est encerclé et/ou traversé au moins partiellement par le médium de régulation de température (4) et que l'élément absorbant (7) et la zone de réception (3.1) sont reliés de manière thermiquement conductrice.
  12. Procédé de régulation de température selon la revendication 11, caractérisé en ce que
    le boîtier (3) est chauffé ou refroidi avec le médium de régulation de température (4), le médium de régulation de température (4) changeant de préférence d'état physique, en particulier le médium de régulation de température (4) étant de l'eau ou une solution aqueuse.
  13. Procédé de régulation de température selon la revendication 11 ou 12, caractérisé en ce que
    le médium de régulation de température (4) est choisi de telle sorte que la phase solide de le médium de régulation de température (4) a une densité plus faible ou plus élevée que la phase liquide de le médium de régulation de température (4), de sorte que la phase solide flotte ou coule dans la phase liquide de le médium de régulation de température (4) et, en raison des densités différentes dans les phases, se presse contre l'élément absorbant (7), l'énergie thermique de la zone de réception (3.1) avec les récipients de laboratoire (2) utilisés est augmentée par le contact de le médium de régulation de température solide (4) avec l'élément absorbant (7) et la transmission de chaleur de l'élément absorbant (7) à la zone de réception (3.1) pour chauffer les récipients de laboratoire (2) ou l'énergie thermique de la zone de réception (3.1) avec les récipients de laboratoire (2) utilisés est diminuée par le contact de le médium de régulation de température solide (4) avec l'élément absorbant (7) et la transmission de chaleur de la zone de réception (3.1) à l'élément absorbant (7) pour refroidir les récipients de laboratoire (2).
EP19742177.9A 2018-07-16 2019-07-16 Dispositif de thermorégulation pour récipients de laboratoire Active EP3823759B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018005582.6A DE102018005582A1 (de) 2018-07-16 2018-07-16 Temperiervorrichtung für Laborgefäße
DE102018008152.5A DE102018008152A1 (de) 2018-10-16 2018-10-16 Temperiervorrichtung für Laborgefäße
PCT/EP2019/069105 WO2020016219A1 (fr) 2018-07-16 2019-07-16 Dispositif de thermorégulation pour récipients de laboratoire

Publications (2)

Publication Number Publication Date
EP3823759A1 EP3823759A1 (fr) 2021-05-26
EP3823759B1 true EP3823759B1 (fr) 2022-03-23

Family

ID=67383761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742177.9A Active EP3823759B1 (fr) 2018-07-16 2019-07-16 Dispositif de thermorégulation pour récipients de laboratoire

Country Status (4)

Country Link
US (1) US20220212195A1 (fr)
EP (1) EP3823759B1 (fr)
CN (1) CN112368080A (fr)
WO (1) WO2020016219A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220258167A1 (en) * 2020-11-17 2022-08-18 Khalifa University of Science and Technology Methods and devices for rapid detection of covid-19 and other pathogens

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802220A (en) * 1973-06-20 1974-04-09 Kool Pak Corp Cooling cushion
US4322954A (en) * 1979-05-23 1982-04-06 Sheehan Laurence M Portable cooler for medicine
US4474033A (en) * 1983-06-06 1984-10-02 Baker John F Passive transportable cooling unit for storing vials of allergenic extracts or the like
US4948564A (en) * 1986-10-28 1990-08-14 Costar Corporation Multi-well filter strip and composite assemblies
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5058397A (en) * 1990-08-29 1991-10-22 Usa/Scientific Plastics, Inc. Cryogenic storage box for microcentrifuge tubes
US5181394A (en) 1991-01-14 1993-01-26 Amgen Inc. Freeze protective shipping units
EP0718212B2 (fr) * 1994-12-20 2004-09-15 Joseph N. Villa Récipient isolé de stockage/transport pour maintenir une température constante
US5863507A (en) * 1996-11-07 1999-01-26 James; Lizymol Benchtop cooler
US5934099A (en) * 1997-07-28 1999-08-10 Tcp/Reliable Inc. Temperature controlled container
DE29918179U1 (de) * 1999-10-15 2000-01-27 Eppendorf Geraetebau Netheler Temperiereinrichtung für Laborgefäße
US7727479B2 (en) * 2000-09-29 2010-06-01 Applied Biosystems, Llc Device for the carrying out of chemical or biological reactions
MXPA05000047A (es) * 2002-07-05 2005-04-08 Aventis Pharma Inc Aparato y metodo para uso en sintesis quimica en fase solida.
US8151593B2 (en) * 2005-09-08 2012-04-10 London Health Sciences Centre Research Inc. Embedding method and apparatus for the preparation of frozen section tissue
NL2001054C2 (nl) * 2007-12-04 2009-06-08 Heineken Supply Chain Bv Koeler en werkwijze voor koeling van drankhouders zoals flessen en blikjes.
DE202009001433U1 (de) * 2009-02-05 2009-04-09 Schmiedl, Dieter, Dr. Asservierungsbehälter
DE102010040685A1 (de) 2010-09-14 2012-03-15 Hamilton Bonaduz Ag Temperiervorrichtung zur thermischen Verfestigung von Wirkstoff-Beads
EP2704835A4 (fr) * 2011-05-06 2014-12-24 Bio Rad Laboratories Thermocycleur comprenant une chambre à vapeur pour des changements rapides de température
US9012185B2 (en) * 2011-11-28 2015-04-21 Pyro-E, Llc Thermal cycling device with phase changing fluids
US9297499B2 (en) * 2012-12-06 2016-03-29 Cook Medical Technologies Llc Cryogenic storage container, storage device, and methods of using the same
US10459410B2 (en) * 2013-03-15 2019-10-29 Shazi Iqbal Automatic tracking of a specimen holder moved from one specimen rack to another
KR102336308B1 (ko) * 2014-12-26 2021-12-09 주식회사 미코바이오메드 반복 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
WO2016205329A1 (fr) * 2015-06-16 2016-12-22 Hepatochem, Inc. Kits de chimie
JP6743815B2 (ja) * 2015-06-26 2020-08-19 凸版印刷株式会社 プレート
US9656267B2 (en) * 2015-09-17 2017-05-23 Nvigen, Inc. Magnetic rack
EP3552707B1 (fr) * 2016-09-01 2020-10-21 Roche Diagnostics GmbH Ensemble, instrument destiné à réaliser une action en fonction de la température et procédé de réalisation d'une réaction en fonction de la température dans un ensemble
JP6904131B2 (ja) * 2017-07-21 2021-07-14 株式会社島津製作所 遺伝子測定装置

Also Published As

Publication number Publication date
WO2020016219A1 (fr) 2020-01-23
EP3823759A1 (fr) 2021-05-26
CN112368080A (zh) 2021-02-12
US20220212195A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
EP0881950B1 (fr) Bloc de regulation de temperature dote de dispositifs de regulation de temperature
DE3411357A1 (de) Kaelte- und waermepackung fuer die physiotherapie u. dgl.
DE102018008152A1 (de) Temperiervorrichtung für Laborgefäße
EP2782676B1 (fr) Chambre à vapeur
DE19646116A1 (de) Temperierblock mit Aufnahmen
EP3823759B1 (fr) Dispositif de thermorégulation pour récipients de laboratoire
DE202019101971U1 (de) Batterie mit thermischer Schnittstelle für ein Kraftfahrzeug
WO2009010424A2 (fr) Dispositif pour produire des glaçons, appareil réfrigérant équipé de ce type de dispositif et procédé pour produire des glaçons
EP0061697B1 (fr) Elément de stockage du froid, avec éléments de montage et aillettes réglant l'air
DE19724020A1 (de) Wärmestrahlungsgerät mit Wärmerohr für Energiespeicherbatteriegeräte
DE3605891C2 (de) Kühlgerät, insbesondere Haushalts-Kühlschrank
DE102012202233A1 (de) Vorrichtung zur Herstellung von Formteilen aus Partikelkunststoffen
EP1005624B1 (fr) Procede et dispositif pour refrigerer, en particulier congeler, un materiau
DE202006009540U1 (de) Temperaturisoliertes Behältnis
DE19725203C2 (de) Kühlbehälter
DE1786299B1 (de) Verpackungsbehaelter
EP2551624B1 (fr) Accumulateur thermique
DE102018005582A1 (de) Temperiervorrichtung für Laborgefäße
CH664004A5 (de) Behaelter zum kuehlen eines kuehlgutes.
DE3240157A1 (de) Temperiergeraet zum kuehlen/erhitzen von in behaeltern befindlichen fluessigkeiten
DE10261353B4 (de) Vorrichtung zum Bereiten von Eiswürfeln
WO2008025696A2 (fr) Appareil réfrigérant présentant des fixations pour un support de denrées à réfrigérer
DE102013111813B4 (de) Transportabler Kühlraum
DE4007004C3 (de) Wärmespeicher
EP2411783B1 (fr) Dispositif pour refroidir des préparations pathologiques/histologiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003815

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1477068

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003815

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

26N No opposition filed

Effective date: 20230102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230721

Year of fee payment: 5

Ref country code: CH

Payment date: 20230801

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 5

Ref country code: DE

Payment date: 20230712

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323