EP3823759B1 - Temperature-regulating device for laboratory vessels - Google Patents

Temperature-regulating device for laboratory vessels Download PDF

Info

Publication number
EP3823759B1
EP3823759B1 EP19742177.9A EP19742177A EP3823759B1 EP 3823759 B1 EP3823759 B1 EP 3823759B1 EP 19742177 A EP19742177 A EP 19742177A EP 3823759 B1 EP3823759 B1 EP 3823759B1
Authority
EP
European Patent Office
Prior art keywords
temperature
absorber element
housing
receiving region
control medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19742177.9A
Other languages
German (de)
French (fr)
Other versions
EP3823759A1 (en
Inventor
Steffen Gehrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brand GmbH and Co KG
Original Assignee
Brand GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102018005582.6A external-priority patent/DE102018005582A1/en
Priority claimed from DE102018008152.5A external-priority patent/DE102018008152A1/en
Application filed by Brand GmbH and Co KG filed Critical Brand GmbH and Co KG
Publication of EP3823759A1 publication Critical patent/EP3823759A1/en
Application granted granted Critical
Publication of EP3823759B1 publication Critical patent/EP3823759B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/16Holders for containers
    • A61J1/165Cooled holders, e.g. for medications, insulin, blood, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1855Means for temperature control using phase changes in a medium

Definitions

  • the invention relates to a temperature control device for accommodating laboratory vessels in order to keep the contents of the laboratory vessels at a predetermined temperature over a longer period of time.
  • the Patent Publication WO92/12071A1 shows a storage and transport device for thermally sensitive products.
  • biologically active substances in particular are to be stored within a specific temperature window in a cooled and non-frozen state.
  • a container carrier of the device has indentations for glass ampoules with the substances contained therein and to be protected.
  • the container support is made of thermoplastic material and forms an enclosed space around the indentations and a hollow peripheral rim overhanging the indentations.
  • Inside the closed space up to the level of the indentations there is a temperature control medium that changes its aggregate state and has a high heat of fusion. Water or gel materials can be used as a temperature control medium.
  • the hollow edge area serves to expand the temperature control medium that carries out the phase change.
  • the disadvantage of this device is that during the thermal conditioning of this device, the tempering medium begins the phase change on the outside of the hollow space and the volume expansion occurs most strongly in the area in which the phase change last takes place. Since the hollow space filled with air only occupies the edge area, deformation occurs in the center of the container carrier, with the depressions no longer being located at the same height as the base of the container carrier. The geometric determination is only given again when the phase change is in the opposite direction.
  • EP2428273A1 discloses a temperature control device for sample vessels in a non-autonomous design.
  • This temperature control device has two temperature control zones that are insulated from one another and that heat and cool the sample vessels in sections.
  • the desired temperature is set in the first temperature control zone by means of a heating element and in the second temperature control zone with a heat transfer medium flowing through it.
  • This temperature control device therefore requires connections for electrical and thermal energy and is complex in terms of structure and the number of functional elements.
  • DE69512750T2 also belongs to the state of the art.
  • the object of the invention is to create a temperature control device for holding laboratory vessels of the type mentioned at the outset, which keeps the contents of the laboratory vessels constant at a predetermined temperature over the entire surface of the receptacle and without supplying or withdrawing thermal energy over a longer period of time, as well as being functional is improved and can be produced more cost-effectively due to its dimension, which can be little thermally influenced.
  • the object is achieved by a temperature control device of the type mentioned with the features of claim 1 and a temperature control method for laboratory vessels according to claim 11.
  • Advantageous configurations are specified in the dependent claims.
  • a temperature control device for accommodating laboratory vessels is provided with a hollow housing that has an interior area and is filled with a temperature control medium. Before use, the temperature control device is thermally conditioned without laboratory vessels. During its use, the temperature control device either absorbs the conditioned thermal energy, i.e. heat, from the laboratory vessels or delivers it to the laboratory vessels in a finite time course.
  • the housing has a base at the bottom and a receiving area opposite at the top, which delimits the hollow inner area of the housing at the top. Inward-pointing indentations on the upper side of the receiving area serve as receptacles for the laboratory vessels to be tempered.
  • the hollow housing has a separate air space in addition to the interior area accommodating the tempering medium.
  • the interior can have a partition that divides the interior into partial spaces, in particular a first interior and a second interior.
  • the air space is separated from the temperature control medium by the structural design of the housing, i.e. that at least essentially no mixing of air space and temperature control medium takes place. This can be realized in particular by a corresponding component, such as a partition.
  • an embodiment is also possible in which the interior of the housing is only filled with the temperature control medium and with air, the air contained ultimately forming the air space in the sense of the invention.
  • an interface is formed between the tempering medium and the air space.
  • An absorber element is arranged in the interior of the hollow housing, which absorber element extends horizontally in the interior and has the temperature control medium flowing around and/or through it.
  • the absorber element is thermally conductively connected to the receiving area.
  • the laboratory vessels used in the receiving area in the wells are so through the tempering medium over a kept at a constant temperature for a long period of time.
  • the absorber element is designed in particular as a plate.
  • a material or a component is regarded as “thermally conductive” if its average thermal conductivity is at least 5 W/(m ⁇ K).
  • the heat of fusion of the tempering medium is absorbed by the absorber element and transported evenly to the receiving area.
  • the horizontally extending absorber element in the tempering medium allows the thermal energy of the mass of the tempering medium to be fully utilized.
  • the absorber element also accelerates the transport of heat from the environment via the receiving area into the temperature control medium. The time for conditioning is shorter.
  • a "horizontal" extension is related to the orientation of the temperature control device in the state of use and means that the absorber element extends at least essentially transversely to the effect of gravity. In particular, this also includes such an arrangement in which the absorber element does not run parallel to the floor.
  • the interior of the housing is partitioned parallel to the footprint, i.e. the floor.
  • the air space can advantageously be arranged opposite the receiving area, with the part of the inner area adjoining the receiving area receiving or containing the tempering medium. This enables direct contact and heat exchange between the tempering medium and the absorber element and the receiving area.
  • a partition wall is arranged between the interior areas of the housing.
  • the partition wall seals the two interior areas from each other and is designed to be flexible.
  • the partition allows a change in volume of the tempering medium in the dimensionally stable Housing.
  • the flexibility of the partition is achieved through the use of a resilient material such as silicone.
  • the elasticity of the dividing wall improves the direct contact of the tempering medium with the absorber element and the receiving area.
  • a material or component is "flexible" within the meaning of the invention if it has sufficient elasticity to return to its original shape after being deformed by the forces that act on the material or component as a result of a change in volume of the temperature control medium during the phase change.
  • a particularly suitable flat component such as a partition wall, can have a spring rate of less than 5 N/mm per mm2.
  • the surface normalization refers to the surface of the component on which a corresponding pressure is exerted.
  • the temperature control device can be used for cooling or keeping warm.
  • the housing with the tempering medium is heated or cooled, with the tempering medium preferably changing its state of aggregation and the energy being used for the phase change.
  • water or an aqueous solution that freezes when it cools down is used as the temperature control medium.
  • the tempering medium has a lower or higher density in the solid phase than in its liquid phase.
  • the temperature control medium which is already partially liquid again, allows the still solid temperature control medium to float or sink. Due to the different densities, this solid tempering medium presses against the absorber element.
  • the thermal energy of the receiving area with the laboratory vessels used is changed in a special way by the contact of the solid temperature control medium with the absorber element, its thermally conductive connection to the receiving area and the transfer of heat. Is the transfer of heat from the Absorber element to the receiving area, then the thermal energy of the receiving area is increased and the laboratory vessels are heated. If the heat is transferred from the receiving area to the absorber element, then the thermal energy of the receiving area is reduced and the laboratory vessels are cooled.
  • the heat transfer from or to the receiving area takes place evenly and sufficiently.
  • the constant temperature of the tempering medium during the phase change can be used over a longer period of time and a certain temperature of the laboratory vessels, essentially defined by the physical properties of the tempering medium, can be maintained.
  • the phase change from liquid to solid takes place simultaneously on almost the entire surface of the absorber element in the tempering medium and not just at certain points in the center of the receiving area.
  • the absorber element is arranged at a spatial distance from the receiving area.
  • the absorber element can be designed as a plate and the absorber element can be connected to the receiving area by means of one or more thermally conductive spacer elements.
  • the plate, spacer elements and the receiving area consist of a material with a thermal conductivity of at least 10 W/(m ⁇ K). With this minimum value, complete heat absorption by the absorber element or the plate and uniform temperature control of the laboratory vessels with simultaneous heat transfer to the temperature control medium can be guaranteed.
  • the receiving area of the housing is designed as a separate part. This allows a reduced heat dissipation of the housing or advantageously allows the receiving area to be made of a material with a higher thermal conductivity of at least 100 W/(m ⁇ K).
  • Aluminum is a dimensionally stable and cost-efficient material that is easy to process.
  • the Other parts of the hollow housing can be made of a material with a significantly lower thermal conductivity of at most 1 W/(m ⁇ K) and can be made of plastic.
  • the air space above the tempering medium serves to equalize the volume and limits the pressure build-up on the housing and the receiving area.
  • the absorber element protrudes into the temperature control medium with its underside directed towards the floor or as a plate.
  • the absorber element is flexible or elastically deformable towards the receiving area.
  • the absorber element preferably has an area-related spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element or is held in such a way that a spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element results.
  • the absorber element is designed either as a plate or, as an alternative design, as a structured, elastic shaped body, with the plate or also the shaped body preferably also being held resiliently in the receiving area with spacer elements. Both variants of a temperature control device are not damaged during the phase change and allow the volume of the temperature control medium to change, even in the solid state, without losing its function or deforming the housing.
  • the 1 shows a temperature control device 1 according to the invention for accommodating laboratory vessels 2.
  • the temperature control device 1 is thermally conditioned before use, ie without the laboratory vessels 2, and for this purpose is temperature-controlled in a refrigerator or heating cabinet. During use, the temperature control device 1 either absorbs or releases the conditioned thermal energy from the laboratory vessels 2 and the environment in a finite time course.
  • the temperature control device 1 shown consists of a hollow housing 3 which is at least partially filled with a temperature control medium 4 in the interior of the housing 3 .
  • the housing 3 is used in the laboratory as an independent device and, when in use, has a base 3.2 at the bottom or on an underside and a receiving area 3.1 opposite at the top or on an upper side, which delimits the hollow interior area of the housing 3 at the top.
  • indentations 5 are formed from above in the direction of the base 3.2 and inward, which serve as receptacles for the laboratory vessels 2 to be temperature-controlled.
  • the floor 2/3 can be in SBS format (Society of Biomolecular Screening) and the number of wells 5 in the grid of the SBS standard 12 ⁇ 8, 24 ⁇ 16, etc. be arranged.
  • the temperature control device 1 can be thermally conditioned, ie heated or cooled, standing on the floor 3.2 or lying on the recesses 5 before it is used with laboratory vessels 2, in order to assume a specific temperature that differs from the environment in which it is used.
  • a temperature control device 1 is shown, which represents an exemplary embodiment.
  • the receiving area 3.1 can, however, be detachably arranged on the housing 3, in particular from above, contrary to what is shown.
  • the housing 3 can cover the gaps around the recesses 5 as shown. Contrary to what is shown, this part can be designed separately from the housing 3 . Contrary to what is shown, the receiving area 3.1 can also be arranged detachably on the housing 3 from above.
  • the 2 shows the temperature control device 1 according to the invention with the hollow housing 3, which has an air space 6 separated from the interior area accommodating or containing the temperature control medium 4.
  • the separation of the inner area runs at least essentially parallel to the floor 3.2, which serves in particular as a standing area.
  • the air space 6 is arranged opposite the receiving area 3.1 and represents a part of the inner area.
  • the rest of the inner area adjoining the receiving area 3.1 receives the tempering medium 4. Heat is thus also transferred directly between the tempering medium 4 and the receiving area 3.1.
  • a dividing wall 3.3 is arranged between the hollow inner areas or the standing surface, ie the base 3.2, and the housing 3, which seals the two inner areas from one another and is designed to be flexible.
  • the partition wall 3.3 can also be arranged between other parts of the housing 3.
  • the standing area or the floor 3.2 When running after 2 the standing area or the floor 3.2 has a bore 3.4 which aerates and/or vents the air space 6.
  • the air space 6 is tightly enclosed and its pressure change can be used to force the tempering medium 4 against the receiving area 3.1.
  • the tempering medium 4 fills the interior of the housing 3 adjoining the receiving area 3.1 at least essentially completely, which is desirable in practice, but is usually only imperfectly possible.
  • air can still be included.
  • the interior is therefore completely filled with tempering medium 4 or partially with tempering medium 4 and air.
  • the part of the inner area adjoining the receiving area 3.1 is therefore preferably predominantly filled with tempering medium.
  • the volume of the tempering medium contained in the part of the interior adjacent to the receiving area 3.1 is greater than the volume of the air contained there.
  • the temperature control device 1 after 2 has an absorber element 7 in the hollow housing 3, which is designed as a plate and extends horizontally in the housing 3.
  • the absorber element 7 is arranged at a spatial distance from the receiving area 3.1 and the housing 3 and the amount of Tempering medium 4 selected so that the absorber element 7 is at least partially flowed around by the tempering medium 4, so has contact with the temperature-controlled tempering medium 4 and / or is immersed in it.
  • the absorber element 7 can have one or more openings 7 .
  • the absorber element 7 is thermally conductively connected to the receiving area 3.1 for the transmission of thermal energy and thus transmits the temperature of the tempering medium 4 to the laboratory vessels 2.
  • the temperature control device 1 is exposed to the desired temperature for a sufficiently long time before it is used.
  • the housing with the temperature control medium 4 of the temperature control device 1 is heated or cooled, depending on the required temperature window of the substances in the laboratory vessels 2.
  • the tempering medium 4 used in the housing 3 changes its state of aggregation when it is heated or cooled.
  • the temperature control medium 4 freezes when it cools and melts when it is heated.
  • the energy of the phase transition (e.g. in the case of water: 333.4 KJ/Kg at 0°C) is used effectively.
  • aqueous solution a glycol/water mixture and/or a gel material, in particular an aqueous carboxymethyl cellulose gel
  • a temperature control medium 4 for cooling the laboratory vessels 2 .
  • a mixture of cyclodextrin and 4-methylpyridine is used as the temperature control medium 4 .
  • a polymer solution consisting of several soluble substances with different phase temperatures and a concentration-dependent miscibility gap, such as a phenol/water mixture, can also be used.
  • the temperature control device 1 after Figures 1 and 2 is alternatively used for heating laboratory vessels 2 between 30°C and 45°C.
  • the housing 3 is filled with the already mentioned mixture of cyclodextrin and 4-methylpyridine.
  • the temperature control device 1 is conditioned at approximately 50° C. or higher.
  • the absorber element 7 extends in the opposite direction to that in Fig. 1 or 2 shown embodiment over a larger extent in the interior of the housing 3.
  • Temperature control device 1 shown is specially designed for temperature control medium 4, which has a lower density than its liquid phase in its solid phase.
  • Such a temperature control medium 4 which is already partly liquid again when it melts, floats in the still partly solid state and presses against the absorber element 7.
  • the 2 shows the temperature control device 1 according to the invention with the housing 3, which has an air space 6 separated from the interior area.
  • the separation of the inner area runs at least essentially parallel to the floor 3.2.
  • the embodiment after 2 shows not only constructive improvements. Surprisingly, advantages are also expressed in the effect and in the resulting temperature profile "B".
  • the flexible partition 3.3 enables the spatial division of temperature control medium 4 and air space 6 and the compensation of volume changes of the temperature control medium 4 into the air space 6 or away from it.
  • the partition 3.3 is made of a flexible, ie resilient, material, for example made of silicone.
  • the increase in volume of the solid or frozen tempering medium 4 is made possible by the expansion of the partition wall 3.3 into the air space 6 by prestressing.
  • the solid tempering medium 4 is thereby pressed against the absorber element 7 .
  • the heat transfer is increased by the pressing and the temperature profile "B" is kept below the temperature limit for even longer. This effect lasts even longer if the partition wall 3.3 also has low thermal conductivity.
  • the plate is fastened to the receiving area 3.1 with a plurality of spacer elements 8.
  • the spacer elements 8 also connect the plate 7 to the receiving area 3 . 1 in a thermally conductive manner and in such a number that the temperature of the tempering medium 4 is transferred to the laboratory vessels 2 .
  • Fig. 1 or 2 Decisive are in the embodiment according to the invention Fig. 1 or 2 also the materials used.
  • the absorber element 7 or the plate 12, the spacer elements 8 and/or the receiving area 3.1 consist in particular of a material with a thermal conductivity of at least 10 W/(m ⁇ K).
  • the receiving area 3.1 of the housing 3 is designed as a separate part.
  • the receiving area 3.1 which is materially separate from the housing 3, consists of a material with a thermal conductivity of at least 100 W/(m ⁇ K). Aluminum in particular is used as a suitable material.
  • the other parts of the hollow housing 3 may be made of plastic or include a plastic and preferably have a thermal conductivity of at most 1 W/(m ⁇ K) and thus a more heat-insulating effect.
  • the housing 3 can still be constructed discretely.
  • the housing 3 is provided with a separate floor 3.2, which represents the standing area compared to the receiving area 3.1.
  • the bottom 3.2 and the receiving area 3.1 are sealed against the housing 3 with seals 3.5.
  • projecting feet 3.6 are arranged on the floor.
  • the absorber element 7 is designed to be flexible with its absorber underside directed towards the base 3.2 towards the receiving area 3.1.
  • the increase in volume of the tempering medium 4 is tolerated by the absorber element 7 .
  • the absorber element 7 is a structured elastic molded body 7 ', such as 3 it shows. This flat shaped body 7' preferably has sufficient resilience with a spring rate of less than 1 N/mm per mm 2 area of the underside of the shaped body 7' in order to prevent deformation of the housing 3.
  • Shaped body 7 shown ' is a layer of metal mesh or foam.
  • the shaped body 7' is arranged on the underside of the receiving area 3.1.
  • Such a mesh or foam serves as an absorber for receiving and at the same time for transporting the thermal energy to the receiving area 3.1.
  • the mesh or the foam is also positioned so that it extends through the air space 6 below the receiving area 3.1 and is at least partially surrounded by the temperature control medium 4 and penetrated as completely as possible.
  • the structure itself enables the required flexibility and the selection of the material and the cross-sectional density allow for sufficient heat conduction to the receiving area 3.1.
  • the braiding or the foam can also serve only as flexible, resilient spacer elements 8' of the plate.
  • the spacer elements 8 hold the plate in a flexible, resilient manner in relation to the receiving area 3.1.
  • the plate is at least partially surrounded by the tempering medium 4 .
  • the temperature control medium 4 expands in volume in the solid state, it presses against the plate and is tolerated by its flexible positioning or its elastic change in shape.
  • the absorber element 7 is preferably detachably or non-detachably connected to the receiving area 3.1.
  • the absorber element 7 is connected to the underside of the receiving area 3.1 at multiple points, for example welded on using ultrasound.
  • the spacer elements 8 are integrally formed on the receiving area 3.1 and/or on the plate, so that there is good heat conduction.
  • a flexible spacer element 8' is shown. This spacer element 8' is part of the plate.
  • spacer element 8 Incisions, not shown, release the spacer element 8' and allow a meandering bend, as in FIG 4 pictured.
  • the free end of the spacer element 8' bent in this way is in particular welded to the receiving area 3.1.
  • the spacer elements 8 can be screwed on in a detachable manner be held in a non-positive/positive/frictional manner or permanently connected, such as welded, soldered, bonded, glued, or materially connected in some other way.

Description

Die Erfindung betrifft eine Temperiervorrichtung zur Aufnahme von Laborgefäßen um den Inhalt der Laborgefäße über einen längeren Zeitraum bei einer vorgegebenen Temperatur zu halten.The invention relates to a temperature control device for accommodating laboratory vessels in order to keep the contents of the laboratory vessels at a predetermined temperature over a longer period of time.

Die Patentpublikation WO92/12071A1 zeigt eine Lager- und Transportvorrichtung für thermisch sensitive Produkte. Mit der beschriebenen Vorrichtung sollen besonders biologisch aktive Substanzen in einem bestimmten Temperaturfenster im gekühlten und nicht gefrorenen Zustand gelagert werden. Ein Behälterträger der Vorrichtung weist dazu Vertiefungen für Glasampullen mit den darin enthaltenen und zu schützenden Substanzen auf. Der Behälterträger ist aus thermoplastischem Material hergestellt und bildet einen abgeschlossenen Raum um die Vertiefungen herum und um einen hohlen, umlaufenden, über die Vertiefungen ragenden Randbereich. Innerhalb des geschlossenen Raums bis in die Höhe der Vertiefungen befindet sich ein seinen Aggregatzustand wechselndes Temperiermedium, welches eine große Schmelzwärme aufweist. Wasser oder Gelmaterialien können hierzu als Temperiermedium verwendet werden. Der hohle Randbereich dient zur Ausdehnung des Phasenwechsel ausführenden Temperiermediums.The Patent Publication WO92/12071A1 shows a storage and transport device for thermally sensitive products. With the device described, biologically active substances in particular are to be stored within a specific temperature window in a cooled and non-frozen state. For this purpose, a container carrier of the device has indentations for glass ampoules with the substances contained therein and to be protected. The container support is made of thermoplastic material and forms an enclosed space around the indentations and a hollow peripheral rim overhanging the indentations. Inside the closed space up to the level of the indentations there is a temperature control medium that changes its aggregate state and has a high heat of fusion. Water or gel materials can be used as a temperature control medium. The hollow edge area serves to expand the temperature control medium that carries out the phase change.

Nachteilig bei dieser Vorrichtung ist, dass beim thermischen Konditionieren dieser Vorrichtung das Temperiermedium an der Außenseite des hohlen Raumes mit dem Phasenwechsel beginnt und die Volumenausdehnung am stärksten in dem Bereich auftritt, in dem zuletzt der Phasenwechsel erfolgt. Da der hohle mit Luft gefüllte Raum nur den Randbereich einnimmt, kommt es zur Deformation im Zentrum des Behälterträgers, wobei die Vertiefungen sich nicht mehr auf gleicher Höhe zur Standfläche des Behälterträgers befinden. Erst beim gegenläufigen Phasenwechsel ist die geometrische Bestimmung wieder gegeben.The disadvantage of this device is that during the thermal conditioning of this device, the tempering medium begins the phase change on the outside of the hollow space and the volume expansion occurs most strongly in the area in which the phase change last takes place. Since the hollow space filled with air only occupies the edge area, deformation occurs in the center of the container carrier, with the depressions no longer being located at the same height as the base of the container carrier. The geometric determination is only given again when the phase change is in the opposite direction.

Der Einsatz eines solchen Behälterträgers bei einem automatisierten Laborgerät zum Handhaben der Substanzen in den Glasampullen oder anderen Gefäßen ist bei fehlender konstanter geometrischer Bestimmung nicht möglich. Auch bei der manuellen Handhabung von mehreren Substanzen in benachbarten Vertiefungen können bedingt durch die Deformation des Behälterträgers Fehler auftreten.The use of such a container carrier in an automated laboratory device for handling the substances in the glass ampoules or other vessels not possible in the absence of a constant geometric determination. Errors can also occur during the manual handling of several substances in adjacent wells due to the deformation of the container carrier.

Im Weiteren ist bei dieser Art eines Behälterträgers der nicht gleichmäßig verlaufende gegenläufige Phasenwechsel nachteilig, der im Randbereich des hohlen Raums beginnt und im Zentrum des Behälterträgers endet. Eine vorgegebene Temperatur über einen benötigten Zeitraum ist nicht in jeder Vertiefung möglich. Auch wird die Schmelzwärme beim Phasenwechsel nicht konstant genutzt und über alle Vertiefungen verteilt.Another disadvantage of this type of container carrier is the non-uniform, opposite phase change, which begins in the edge area of the hollow space and ends in the center of the container carrier. A specified temperature over a required period of time is not possible in every well. Also, the heat of fusion is not used constantly during the phase change and is not distributed over all depressions.

Eine weitere Patentpublikation EP2428273A1 offenbart eine Temperiervorrichtung für Probengefäße in nicht autarker Bauart. Diese Temperiervorrichtung hat zwei, gegeneinander isolierte Temperierzonen, die Probengefäße abschnittsweise erwärmt und kühlt. Bei der ersten Temperierzone wird mittels eines Heizelements und bei der zweiten Temperierzone mit einem durchströmenden Wärmeübertragungsmedium die gewünschte Temperatur eingestellt. Diese Temperiervorrichtung bedarf also der Anschlüsse von elektrischer und thermischer Energie und ist im Aufbau und der Anzahl an Funktionselementen komplex. DE69512750T2 gehört ebenfalls zum Stand der Technik.Another patent publication EP2428273A1 discloses a temperature control device for sample vessels in a non-autonomous design. This temperature control device has two temperature control zones that are insulated from one another and that heat and cool the sample vessels in sections. The desired temperature is set in the first temperature control zone by means of a heating element and in the second temperature control zone with a heat transfer medium flowing through it. This temperature control device therefore requires connections for electrical and thermal energy and is complex in terms of structure and the number of functional elements. DE69512750T2 also belongs to the state of the art.

Der Erfindung liegt die Aufgabe zugrunde eine Temperiervorrichtung zur Aufnahme von Laborgefäßen der eingangs genannten Art zu schaffen, die den Inhalt der Laborgefäße über die möglichst gesamte Fläche der Aufnahme und ohne Zufuhr oder Entzug thermischer Energie über einen längeren Zeitraum bei einer vorgegebenen Temperatur konstant hält sowie funktional durch deren thermisch gering beeinflussbare Dimension verbessert und kostengünstiger herzustellen ist. Die Aufgabe wird durch eine Temperiervorrichtung der eingangs genannten Art mit den Merkmalen des Anspruch 1 und einem Temperierverfahren für Laborgefäße nach Anspruch 11 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.The object of the invention is to create a temperature control device for holding laboratory vessels of the type mentioned at the outset, which keeps the contents of the laboratory vessels constant at a predetermined temperature over the entire surface of the receptacle and without supplying or withdrawing thermal energy over a longer period of time, as well as being functional is improved and can be produced more cost-effectively due to its dimension, which can be little thermally influenced. The object is achieved by a temperature control device of the type mentioned with the features of claim 1 and a temperature control method for laboratory vessels according to claim 11. Advantageous configurations are specified in the dependent claims.

Erfindungsgemäß ist eine Temperiervorrichtung zur Aufnahme von Laborgefäßen mit einem hohlen, einen Innenbereich aufweisenden und mit einem Temperiermedium gefüllten Gehäuse versehen. Die Temperiervorrichtung wird vor ihrem Gebrauch ohne Laborgefäße thermisch konditioniert. Während ihres Gebrauchs nimmt die Temperiervorrichtung in einem endlichen zeitlichen Verlauf die konditionierte thermische Energie, d.h. Wärme, entweder von den Laborgefäßen auf oder gibt sie an die Laborgefäße ab. Das Gehäuse hat dazu unten einen Boden und gegenüberliegend oben einen Aufnahmebereich, der den hohlen Innenbereich des Gehäuses nach oben begrenzt. An der Oberseite des Aufnahmebereichs dienen nach innen weisende Vertiefungen als Aufnahmen für die zu temperierenden Laborgefäße.According to the invention, a temperature control device for accommodating laboratory vessels is provided with a hollow housing that has an interior area and is filled with a temperature control medium. Before use, the temperature control device is thermally conditioned without laboratory vessels. During its use, the temperature control device either absorbs the conditioned thermal energy, i.e. heat, from the laboratory vessels or delivers it to the laboratory vessels in a finite time course. For this purpose, the housing has a base at the bottom and a receiving area opposite at the top, which delimits the hollow inner area of the housing at the top. Inward-pointing indentations on the upper side of the receiving area serve as receptacles for the laboratory vessels to be tempered.

Das hohle Gehäuse weist, neben dem das Temperiermedium aufnehmenden Innenbereich einen abgetrennten Luftraum auf. In alternativer Formulierung kann der Innenbereich eine Trennung aufweisen, die den Innenbereich in Teilräume, insbesondere einen ersten Innenbereich und einen zweiten Innenbereich, aufteilt. Entscheidend ist letztlich, dass der Luftraum durch die konstruktive Ausgestaltung des Gehäuses vom Temperiermedium abgetrennt ist, d.h. dass zumindest im Wesentlichen keine Vermischung von Luftraum und Temperiermedium erfolgt. Dies kann insbesondere durch ein entsprechendes Bauteil, wie eine Trennwand, realisiert sein. Erfindungsgemäß ist ferner auch eine Ausgestaltung möglich, bei welcher der Innenraum des Gehäuses lediglich mit dem Temperiermedium und mit Luft gefüllt ist, wobei die enthaltene Luft letztlich den Luftraum im Sinne der Erfindung bildet. Hierbei ist insbesondere eine Grenzfläche zwischen dem Temperiermedium und dem Luftraum ausgebildet.The hollow housing has a separate air space in addition to the interior area accommodating the tempering medium. In an alternative formulation, the interior can have a partition that divides the interior into partial spaces, in particular a first interior and a second interior. Ultimately, it is decisive that the air space is separated from the temperature control medium by the structural design of the housing, i.e. that at least essentially no mixing of air space and temperature control medium takes place. This can be realized in particular by a corresponding component, such as a partition. According to the invention, an embodiment is also possible in which the interior of the housing is only filled with the temperature control medium and with air, the air contained ultimately forming the air space in the sense of the invention. Here, in particular, an interface is formed between the tempering medium and the air space.

Im Innenbereich des hohlen Gehäuses ist ein Absorberelement angeordnet, das sich horizontal im Innenbereich erstreckt und von dem Temperiermedium um- und/oder durchströmt wird. Das Absorberelement ist mit dem Aufnahmebereich thermisch leitend verbunden. Die im Aufnahmebereich in die Vertiefungen eingesetzten Laborgefäße werden so durch das Temperiermedium über einen längeren Zeitraum auf einer konstanten Temperatur gehalten. Das Absorberelement ist insbesondere als Platte ausgebildet.An absorber element is arranged in the interior of the hollow housing, which absorber element extends horizontally in the interior and has the temperature control medium flowing around and/or through it. The absorber element is thermally conductively connected to the receiving area. The laboratory vessels used in the receiving area in the wells are so through the tempering medium over a kept at a constant temperature for a long period of time. The absorber element is designed in particular as a plate.

Im Rahmen der vorliegenden Erfindung wird ein Material oder ein Bauteil als "thermisch leitend" angesehen, wenn seine Wärmeleitfähigkeit im Mittel wenigstens 5 W/(m . K) beträgt.In the context of the present invention, a material or a component is regarded as “thermally conductive” if its average thermal conductivity is at least 5 W/(m·K).

Die Schmelzwärme des Temperiermediums wird von dem Absorberelement aufgenommen und zum Aufnahmebereich gleichmäßig transportiert. Das sich im Temperiermedium horizontal erstreckende Absorberelement ermöglicht, dass die thermische Energie der Masse des Temperiermediums vollständig genutzt wird. Auch beim thermischen Konditionieren der Temperiervorrichtung beschleunigt das Absorberelement den Wärmetransport von der Umgebung über den Aufnahmebereich in das Temperiermedium. Die Zeit für das Konditionieren ist kürzer. Eine "horizontale" Erstreckung ist vorliegend auf die Ausrichtung der Temperiervorrichtung im Benutzungszustand bezogen und bedeutet, dass das Absorberelement sich zumindest im Wesentlichen quer zur Wirkung der Schwerkraft erstreckt. Dies schließt insbesondere auch eine solche Anordnung mit ein, bei der das Absorberelement nicht parallel zum Boden verläuft.The heat of fusion of the tempering medium is absorbed by the absorber element and transported evenly to the receiving area. The horizontally extending absorber element in the tempering medium allows the thermal energy of the mass of the tempering medium to be fully utilized. During the thermal conditioning of the temperature control device, the absorber element also accelerates the transport of heat from the environment via the receiving area into the temperature control medium. The time for conditioning is shorter. A "horizontal" extension is related to the orientation of the temperature control device in the state of use and means that the absorber element extends at least essentially transversely to the effect of gravity. In particular, this also includes such an arrangement in which the absorber element does not run parallel to the floor.

In einer bevorzugten Konstruktion ist der Innenbereich des Gehäuses parallel zur Standfläche, d.h. zum Boden, getrennt. Der Luftraum kann in vorteilhafter Weise gegenüber dem Aufnahmebereich angeordnet sein, wobei der zum Aufnahmebereich angrenzende Teil des Innenbereichs das Temperiermedium aufnimmt bzw. enthält. Hierdurch wird ein direkter Kontakt und Wärmeaustausch des Temperiermediums mit dem Absorberelement und dem Aufnahmebereich ermöglicht.In a preferred construction, the interior of the housing is partitioned parallel to the footprint, i.e. the floor. The air space can advantageously be arranged opposite the receiving area, with the part of the inner area adjoining the receiving area receiving or containing the tempering medium. This enables direct contact and heat exchange between the tempering medium and the absorber element and the receiving area.

In einer weiteren bevorzugten Konstruktion ist zwischen den Innenbereichen des Gehäuses eine Trennwand angeordnet. Die Trennwand dichtet die beiden Innenbereiche gegeneinander ab und ist flexibel ausgeführt. Die Trennwand ermöglicht eine Volumenänderung des Temperiermediums im formstabilen Gehäuse. Die Flexibilität der Trennwand wird durch die Verwendung eines federelastischen Werkstoffes, beispielsweise Silikon erzielt. Mit der Elastizität der Trennwand wird der direkte Kontakt des Temperiermediums mit dem Absorberelement und dem Aufnahmebereich verbessert.In a further preferred construction, a partition wall is arranged between the interior areas of the housing. The partition wall seals the two interior areas from each other and is designed to be flexible. The partition allows a change in volume of the tempering medium in the dimensionally stable Housing. The flexibility of the partition is achieved through the use of a resilient material such as silicone. The elasticity of the dividing wall improves the direct contact of the tempering medium with the absorber element and the receiving area.

Ein Material oder Bauteil ist im Sinne der Erfindung dann "flexibel", wenn es eine ausreichende Elastizität aufweist, um nach einer Verformung durch die Kräfte, die infolge einer Volumenänderung des Temperiermediums beim Phasenwechsel auf das Material oder Bauteil wirken, wieder in die Ursprungsform zurückzukehren. Ein insbesondere geeignetes flächiges Bauteil, wie eine Trennwand, kann eine Federrate von weniger als 5 N/mm je mm2 aufweisen. Die Flächennormierung bezieht sich dabei auf die Fläche des Bauteils, auf die ein entsprechender Druck ausgeübt wird.A material or component is "flexible" within the meaning of the invention if it has sufficient elasticity to return to its original shape after being deformed by the forces that act on the material or component as a result of a change in volume of the temperature control medium during the phase change. A particularly suitable flat component, such as a partition wall, can have a spring rate of less than 5 N/mm per mm2. The surface normalization refers to the surface of the component on which a corresponding pressure is exerted.

Gemäß einer Ausgestaltung kann die Temperiervorrichtung zum Kühlen oder Warmhalten genutzt werden. Das Gehäuse mit dem Temperiermedium wird dazu erwärmt oder gekühlt, wobei vorzugsweise das Temperiermedium seinen Aggregatzustand wandelt und die Energie zum Phasenwandel genutzt wird.According to one embodiment, the temperature control device can be used for cooling or keeping warm. For this purpose, the housing with the tempering medium is heated or cooled, with the tempering medium preferably changing its state of aggregation and the energy being used for the phase change.

In kostengünstiger Weise wird als Temperiermedium Wasser oder eine wässrige Lösung verwendet, die beim Abkühlen gefriert.In a cost-effective manner, water or an aqueous solution that freezes when it cools down is used as the temperature control medium.

Gemäß einer vorteilhaften Ausgestaltung hat das Temperiermedium in fester Phase eine geringere oder höhere Dichte als in seiner flüssigen Phase. Beim Phasenwechsel von außen lässt das schon teilweise wieder flüssige Temperiermedium das noch feste Temperiermedium aufschwimmen oder absinken. Dieses feste Temperiermedium drängt aufgrund der unterschiedlichen Dichten dabei gegen das Absorberelement. In besonderer Weise wird die thermische Energie des Aufnahmebereichs mit den eingesetzten Laborgefäßen durch den Kontakt des festen Temperiermediums mit dem Absorberelement, dessen thermisch leitende Anbindung an den Aufnahmebereich und der Übertragung von Wärme verändert. Erfolgt die Übertragung der Wärme von dem Absorberelement zu dem Aufnahmebereich, dann wird die thermische Energie des Aufnahmebereichs erhöht und die Laborgefäße werden erwärmt. Erfolgt die Übertragung der Wärme von dem Aufnahmebereich zu dem Absorberelement, dann wird die thermische Energie des Aufnahmebereichs verringert und die Laborgefäße werden gekühlt.According to an advantageous embodiment, the tempering medium has a lower or higher density in the solid phase than in its liquid phase. During the phase change from the outside, the temperature control medium, which is already partially liquid again, allows the still solid temperature control medium to float or sink. Due to the different densities, this solid tempering medium presses against the absorber element. The thermal energy of the receiving area with the laboratory vessels used is changed in a special way by the contact of the solid temperature control medium with the absorber element, its thermally conductive connection to the receiving area and the transfer of heat. Is the transfer of heat from the Absorber element to the receiving area, then the thermal energy of the receiving area is increased and the laboratory vessels are heated. If the heat is transferred from the receiving area to the absorber element, then the thermal energy of the receiving area is reduced and the laboratory vessels are cooled.

Die Wärmeübertragung von oder zu dem Aufnahmebereich erfolgt gleichmäßig und ausreichend. Die beim Phasenwechsel konstante Temperatur des Temperiermediums kann über längere Zeit genutzt werden und eine bestimmte, im Wesentlichen von der physikalischen Eigenschaft des Temperiermediums definierte Temperatur der Laborgefäße gehalten werden. Beim vorangegangenen Konditionieren erfolgt der Phasenwechsel von flüssig zu fest auf der nahezu kompletten Oberfläche des im Temperiermedium befindlichen Absorberelements gleichzeitig und nicht nur punktuell im Zentrum des Aufnahmebereiches.The heat transfer from or to the receiving area takes place evenly and sufficiently. The constant temperature of the tempering medium during the phase change can be used over a longer period of time and a certain temperature of the laboratory vessels, essentially defined by the physical properties of the tempering medium, can be maintained. During the previous conditioning, the phase change from liquid to solid takes place simultaneously on almost the entire surface of the absorber element in the tempering medium and not just at certain points in the center of the receiving area.

Nach bevorzugter Ausführung ist das Absorberelement mit räumlichem Abstand zu dem Aufnahmebereich angeordnet. Dabei kann das Absorberelement als eine Platte ausgeführt und das Absorberelement mit dem Aufnahmebereich mittels einem oder mehreren thermisch leitenden Abstandselementen verbunden sein. In vorteilhafter Ausführung bestehen die Platte, Abstandselemente und der Aufnahmebereich aus einem Material mit einer Wärmleitfähigkeit von mindestens 10 W/(m . K). Mit diesem Mindestwert kann eine vollständige Wärmeaufnahme durch das Absorberelement bzw. die Platte und eine gleichmäßige Temperierung der Laborgefäße bei gleichzeitiger Wärmeübertragung an das Temperiermedium gewährleistet werden.According to a preferred embodiment, the absorber element is arranged at a spatial distance from the receiving area. The absorber element can be designed as a plate and the absorber element can be connected to the receiving area by means of one or more thermally conductive spacer elements. In an advantageous embodiment, the plate, spacer elements and the receiving area consist of a material with a thermal conductivity of at least 10 W/(m·K). With this minimum value, complete heat absorption by the absorber element or the plate and uniform temperature control of the laboratory vessels with simultaneous heat transfer to the temperature control medium can be guaranteed.

Nach einer weiteren bevorzugten Ausführung ist der Aufnahmebereich des Gehäuses als separates Teil ausgeführt ist. Dies ermöglicht eine verminderte Wärmeabgabe des Gehäuses bzw. ermöglicht in vorteilhafter Weise, dass der Aufnahmebereich aus einem Material mit einer höheren Wärmleitfähigkeit von mindestens 100 W/(m . K) ausgeführt werden kann. Aluminium ist hierbei ein formstabiler und hervorragend zu bearbeitender, kosteneffizienter Werkstoff. Die anderen Teile des hohlen Gehäuses können dabei aus einem Material mit einer wesentlich geringeren Wärmleitfähigkeit von maximal 1 W/(m . K) bestehen und aus Kunststoff gefertigt sein.According to a further preferred embodiment, the receiving area of the housing is designed as a separate part. This allows a reduced heat dissipation of the housing or advantageously allows the receiving area to be made of a material with a higher thermal conductivity of at least 100 W/(m·K). Aluminum is a dimensionally stable and cost-efficient material that is easy to process. the Other parts of the hollow housing can be made of a material with a significantly lower thermal conductivity of at most 1 W/(m·K) and can be made of plastic.

Gerade wenn ein Temperiermedium eingesetzt wird, dessen Dichte und/oder Volumen beim Phasenwechsel seines Aggregatzustandes veränderlich ist, dient der Luftraum über dem Temperiermedium zum Volumenausgleich und begrenzt den Druckaufbau auf das Gehäuse und den Aufnahmebereich. Bei der erfindungsgemäßen Temperiervorrichtung ragt das Absorberelement mit seiner zum Boden hin gerichteten Unterseite bzw. als Platte in das Temperiermedium hinein. Das Absorberelement ist erfindungsgemäß zum Aufnahmebereich hin flexibel bzw. elastisch verformbar. Vorzugsweise weist das Absorberelement eine flächenbezogene Federrate von kleiner als 1 N/mm je mm2 Fläche der Unterseite des Absorberelements auf bzw. wird derart gehalten, dass sich eine Federrate von kleiner als 1 N/mm je mm2 Fläche der Unterseite des Absorberelements ergibt.Especially when a tempering medium is used whose density and/or volume changes when its state of aggregation changes, the air space above the tempering medium serves to equalize the volume and limits the pressure build-up on the housing and the receiving area. In the temperature control device according to the invention, the absorber element protrudes into the temperature control medium with its underside directed towards the floor or as a plate. According to the invention, the absorber element is flexible or elastically deformable towards the receiving area. The absorber element preferably has an area-related spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element or is held in such a way that a spring rate of less than 1 N/mm per mm 2 area of the underside of the absorber element results.

Das Absorberelement ist entweder als Platte ausgeführt oder als eine alternative Ausführung ein strukturierter, elastischer Formkörper, wobei die Platte oder auch der Formkörper vorzugsweise zusätzlich am Aufnahmebereich mit Abstandselementen federnd gehalten werden. Beide Varianten einer Temperiervorrichtung nehmen keinen Schaden beim Phasenwechsel und ermöglichen eine Volumenänderung des Temperiermediums auch im festen Zustand ohne Verlust ihrer Funktion oder Deformation des Gehäuses.The absorber element is designed either as a plate or, as an alternative design, as a structured, elastic shaped body, with the plate or also the shaped body preferably also being held resiliently in the receiving area with spacer elements. Both variants of a temperature control device are not damaged during the phase change and allow the volume of the temperature control medium to change, even in the solid state, without losing its function or deforming the housing.

Weitere bevorzugte Ausgestaltungen der erfindungsgemäßen Temperiervorrichtung ergeben sich aus der nachfolgenden Beschreibung in Zusammenhang mit den Figuren und deren Beschreibung.Further preferred configurations of the temperature control device according to the invention result from the following description in connection with the figures and their description.

Die Erfindung wird nachfolgend anhand der anliegenden Zeichnung der bevorzugten Ausführung näher erläutert.

  • Fig. 1 zeigt in Schnittansicht eine erfindungsgemäße Temperiervorrichtung.
  • Fig. 2 zeigt die Temperiervorrichtung von Fig. 1 in einer bevorzugten Ausführungsform.
  • Fig. 3 zeigt eine Detailansicht der Temperiervorrichtung von Fig. 1 in einer alternativen bevorzugten Ausführungsform.
  • Fig. 4 zeigt eine Detailansicht der Temperiervorrichtung von Fig. 1 in einer alternativen bevorzugten Ausführungsform.
  • Fig. 5 zeigt ein Diagramm über Temperaturverläufe an der Temperiervorrichtung.
The invention is explained in more detail below with reference to the attached drawing of the preferred embodiment.
  • 1 shows a sectional view of a temperature control device according to the invention.
  • 2 shows the temperature control device from 1 in a preferred embodiment.
  • 3 shows a detailed view of the temperature control device from FIG 1 in an alternative preferred embodiment.
  • 4 shows a detailed view of the temperature control device from FIG 1 in an alternative preferred embodiment.
  • figure 5 shows a diagram of temperature profiles on the temperature control device.

Die Fig. 1 zeigt eine erfindungsgemäße Temperiervorrichtung 1 zur Aufnahme von Laborgefäßen 2. Die Temperiervorrichtung 1 wird vor dem Gebrauch, also ohne die Laborgefäße 2, thermisch konditioniert und dazu in einem Kühl- oder Wärmeschrank temperiert. Während des Gebrauchs nimmt die Temperiervorrichtung 1 in einem endlichen zeitlichen Verlauf die konditionierte thermische Energie entweder von den Laborgefäßen 2 und der Umgebung auf oder gibt sie ab.the 1 shows a temperature control device 1 according to the invention for accommodating laboratory vessels 2. The temperature control device 1 is thermally conditioned before use, ie without the laboratory vessels 2, and for this purpose is temperature-controlled in a refrigerator or heating cabinet. During use, the temperature control device 1 either absorbs or releases the conditioned thermal energy from the laboratory vessels 2 and the environment in a finite time course.

Die in den Fig. 1 und 2 gezeigte Temperiervorrichtung 1 besteht aus einem hohlen Gehäuse 3, das im Innenbereich des Gehäuses 3 zumindest partiell mit einem Temperiermedium 4 gefüllt ist. Das Gehäuse 3 wird im Labor als selbstständige Vorrichtung verwendet und hat dazu im Benutzungszustand unten bzw. an einer Unterseite, einen Boden 3.2 und gegenüberliegend oben bzw. an einer Oberseite einen Aufnahmebereich 3.1, der den hohlen Innenbereich des Gehäuses 3 nach oben begrenzt.The in the Figures 1 and 2 The temperature control device 1 shown consists of a hollow housing 3 which is at least partially filled with a temperature control medium 4 in the interior of the housing 3 . The housing 3 is used in the laboratory as an independent device and, when in use, has a base 3.2 at the bottom or on an underside and a receiving area 3.1 opposite at the top or on an upper side, which delimits the hollow interior area of the housing 3 at the top.

An dem Aufnahmebereich 3.1 sind von oben in Richtung des Bodens 3.2 und nach innen weisende Vertiefungen 5 ausgebildet, die als Aufnahmen für die zu temperierenden Laborgefäße 2 dienen. Der Boden 3.2 kann im SBS-Format (Society of Biomolecular Screening) dimensioniert und die Anzahl an Vertiefungen 5 im Raster des SBS-Standards 12 × 8, 24 × 16 usw. angeordnet sein.On the receiving area 3.1, indentations 5 are formed from above in the direction of the base 3.2 and inward, which serve as receptacles for the laboratory vessels 2 to be temperature-controlled. The floor 2/3 can be in SBS format (Society of Biomolecular Screening) and the number of wells 5 in the grid of the SBS standard 12 × 8, 24 × 16, etc. be arranged.

Die Temperiervorrichtung 1 kann auf dem Boden 3.2 stehend oder auf den Vertiefungen 5 liegend jedenfalls vor ihrem Einsatz mit Laborgefäßen 2 thermisch konditioniert, also erwärmt oder gekühlt werden, um eine bestimmte zur Einsatzumgebung unterschiedliche Temperatur anzunehmen.The temperature control device 1 can be thermally conditioned, ie heated or cooled, standing on the floor 3.2 or lying on the recesses 5 before it is used with laboratory vessels 2, in order to assume a specific temperature that differs from the environment in which it is used.

In Fig. 1 ist eine Temperiervorrichtung 1 gezeigt, die ein Ausführungsbeispiel darstellt. Der Aufnahmebereich 3.1 kann an dem Gehäuse 3 jedoch entgegen den Darstellungen insbesondere von oben lösbar angeordnet sein. Das Gehäuse 3 kann die Zwischenräume um die Vertiefungen 5 wie dargestellt überdecken. Entgegen den Darstellungen kann dieses Teil separat vom Gehäuse 3 ausgeführt sein. Ebenso kann der Aufnahmebereich 3.1 entgegen der Darstellungen an dem Gehäuse 3 von oben lösbar angeordnet sein.In 1 a temperature control device 1 is shown, which represents an exemplary embodiment. The receiving area 3.1 can, however, be detachably arranged on the housing 3, in particular from above, contrary to what is shown. The housing 3 can cover the gaps around the recesses 5 as shown. Contrary to what is shown, this part can be designed separately from the housing 3 . Contrary to what is shown, the receiving area 3.1 can also be arranged detachably on the housing 3 from above.

Die Fig. 2 zeigt die erfindungsgemäße Temperiervorrichtung 1 mit dem hohlen Gehäuse 3, das ein von dem das Temperiermedium 4 aufnehmenden bzw. enthaltenden Innenbereich abgetrennten Luftraum 6 aufweist. Die Trennung des Innenbereichs verläuft zumindest im Wesentlichen parallel zum Boden 3.2, der insbesondere als Standfläche dient. Im Gegensatz zu der Ausführung nach Fig. 1 ist der Luftraum 6 gegenüber dem Aufnahmebereich 3.1 angeordnet und stellt einen Teil des Innenbereichs dar. Der an den Aufnahmebereich 3.1 angrenzende übrige Teil des Innenbereichs nimmt das Temperiermedium 4 auf. Somit erfolgt eine Wärmeübertragung zwischen Temperiermedium 4 und dem Aufnahmebereich 3.1 auch direkt.the 2 shows the temperature control device 1 according to the invention with the hollow housing 3, which has an air space 6 separated from the interior area accommodating or containing the temperature control medium 4. The separation of the inner area runs at least essentially parallel to the floor 3.2, which serves in particular as a standing area. In contrast to the execution according to 1 the air space 6 is arranged opposite the receiving area 3.1 and represents a part of the inner area. The rest of the inner area adjoining the receiving area 3.1 receives the tempering medium 4. Heat is thus also transferred directly between the tempering medium 4 and the receiving area 3.1.

In einer vorteilhaften Ausführung ist zwischen den hohlen Innenbereichen bzw. der Standfläche, d.h. dem Boden 3.2, und dem Gehäuse 3 eine Trennwand 3.3 angeordnet, die beide Innenbereiche gegeneinander abdichtet und flexibel ausgeführt ist. Die Trennwand 3.3 kann auch zwischen anderen Teilen des Gehäuses 3 angeordnet sein. Die Ausführung nach Fig. nach Fig. 1 und 2, bei der die Standfläche bzw. der Boden 3.2 den einen Teil des hohlen Innenbereichs aufweist, ist diesbezüglich eine vorteilhafte Ausführung.In an advantageous embodiment, a dividing wall 3.3 is arranged between the hollow inner areas or the standing surface, ie the base 3.2, and the housing 3, which seals the two inner areas from one another and is designed to be flexible. The partition wall 3.3 can also be arranged between other parts of the housing 3. The embodiment according to FIG Figures 1 and 2 , in the the standing surface or the base 3.2 having part of the hollow interior area is an advantageous embodiment in this respect.

Bei der Ausführung nach Fig. 2 weist die Standfläche bzw. der Boden 3.2 eine Bohrung 3.4 auf, die den Luftraum 6 be- und/oder entlüftet. Alternativ ist der Luftraum 6 dicht eingeschlossen und dessen Druckveränderung kann genutzt werden, um das Temperiermedium 4 gegen den Aufnahmebereich 3.1 zu drängen.When running after 2 the standing area or the floor 3.2 has a bore 3.4 which aerates and/or vents the air space 6. Alternatively, the air space 6 is tightly enclosed and its pressure change can be used to force the tempering medium 4 against the receiving area 3.1.

Wie in Fig. 2 gezeigt, füllt das Temperiermedium 4 den zum Aufnahmebereich 3.1 angrenzenden Innenbereich des Gehäuses 3 zumindest im Wesentlichen vollständig aus, was in der Praxis zwar angestrebt wird, aber meist nur unvollkommen möglich ist. Beim Füllen des Innenbereichs mit Temperiermedium 4 und anschließenden Verschließen mit der Trennwand 3.3 kann Luft noch mit eingeschlossen sein. Der Innenbereich ist also vollständig mit Temperiermedium 4 oder partiell mit Temperiermedium 4 und Luft gefüllt. Je näher und direkter das Temperiermedium 4 an dem Aufnahmebereich 3.1 ist, umso besser ist dessen thermische Verbindung. D.h. eine Wärmeübertragung kann umso höher erfolgen, je kleiner der Abstand des Temperiermediums 4 zum Aufnahmebereich 3.1 ist und je weniger Zwischenelemente die Wärme übertragen. Optimal ist dabei ein unmittelbarer Kontakt zwischen Temperiermedium 4 und Aufnahmebereich 3.1. Bevorzugt ist daher eine Füllung des an den Aufnahmebereich 3.1 angrenzenden Innenbereichs zu einem möglichst großen Teil mit Temperiermedium 4. Der an den Aufnahmebereich 3.1 grenzende Teil des Innenbereichs ist daher vorzugsweise zum überwiegenden Teil mit Temperiermedium 4 gefüllt. Insbesondere ist das im an den Aufnahmebereich 3.1 grenzenden Teil des Innenbereichs enthaltene Volumen des Temperiermediums größer als das Volumen der dort enthaltenen Luft.As in 2 shown, the tempering medium 4 fills the interior of the housing 3 adjoining the receiving area 3.1 at least essentially completely, which is desirable in practice, but is usually only imperfectly possible. When filling the interior with temperature control medium 4 and then closing it with the partition wall 3.3, air can still be included. The interior is therefore completely filled with tempering medium 4 or partially with tempering medium 4 and air. The closer and more direct the temperature control medium 4 is to the receiving area 3.1, the better its thermal connection. In other words, the smaller the distance between the tempering medium 4 and the receiving area 3.1, and the fewer intermediate elements that transmit the heat, the greater the heat transfer. Direct contact between the tempering medium 4 and the receiving area 3.1 is optimal. It is therefore preferred to fill the inner area adjoining the receiving area 3.1 as much as possible with tempering medium 4. The part of the inner area adjoining the receiving area 3.1 is therefore preferably predominantly filled with tempering medium. In particular, the volume of the tempering medium contained in the part of the interior adjacent to the receiving area 3.1 is greater than the volume of the air contained there.

Die Temperiervorrichtung 1 nach Fig. 2 weist ein Absorberelement 7 im hohlen Gehäuse 3 auf, das als Platte ausgeführt ist und sich horizontal im Gehäuse 3 erstreckt. Das Absorberelement 7 ist dabei zum Aufnahmebereich 3.1 und Gehäuse 3 mit räumlichem Abstand so angeordnet und die Menge des Temperiermediums 4 so gewählt, dass das Absorberelement 7 von dem Temperiermedium 4 zumindest partiell umströmt wird, also Kontakt mit dem temperierten Temperiermedium 4 hat und/oder darin eingetaucht ist.The temperature control device 1 after 2 has an absorber element 7 in the hollow housing 3, which is designed as a plate and extends horizontally in the housing 3. The absorber element 7 is arranged at a spatial distance from the receiving area 3.1 and the housing 3 and the amount of Tempering medium 4 selected so that the absorber element 7 is at least partially flowed around by the tempering medium 4, so has contact with the temperature-controlled tempering medium 4 and / or is immersed in it.

Das Absorberelement 7 kann eine oder mehrere Öffnungen 7.1 haben, die ein Durchströmen von Luftblasen und je nach Dimension der Öffnungen 7.1 und Viskosität des Temperiermediums 4 ein zumindest partielles Durchströmen des Temperiermediums 4 durch das Absorberelement 7 ermöglichen.The absorber element 7 can have one or more openings 7 .

Das Absorberelement 7 ist zur Übertragung von thermischer Energie mit dem Aufnahmebereich 3.1 thermisch leitend gut verbunden und überträgt so die Temperatur des Temperiermediums 4 auf die Laborgefäße 2.The absorber element 7 is thermally conductively connected to the receiving area 3.1 for the transmission of thermal energy and thus transmits the temperature of the tempering medium 4 to the laboratory vessels 2.

Die erfindungsgemäße Temperiervorrichtung 1 wird vor ihrem Gebrauch der gewünschten Temperatur ausreichend lange ausgesetzt. Das Gehäuse mit dem Temperiermedium 4 der Temperiervorrichtung 1 wird erwärmt oder gekühlt, je nach benötigtem Temperaturfenster der Substanzen in den Laborgefäßen 2.The temperature control device 1 according to the invention is exposed to the desired temperature for a sufficiently long time before it is used. The housing with the temperature control medium 4 of the temperature control device 1 is heated or cooled, depending on the required temperature window of the substances in the laboratory vessels 2.

Das im Gehäuse 3 eingesetzte Temperiermedium 4 wandelt bei der Erwärmung oder Abkühlung seinen Aggregatzustand. Beim Abkühlen gefriert das Temperiermedium 4 und beim Erwärmen schmilzt es. Dabei wird die Energie des Phasenübergangs (beispielsweise im Fall von Wasser: 333,4 KJ/Kg bei 0°C) effektiv genutzt.The tempering medium 4 used in the housing 3 changes its state of aggregation when it is heated or cooled. The temperature control medium 4 freezes when it cools and melts when it is heated. The energy of the phase transition (e.g. in the case of water: 333.4 KJ/Kg at 0°C) is used effectively.

Als kostengünstiges Temperiermedium 4 zum Kühlen der Laborgefäße 2 wird bevorzugt Wasser, eine wässrige Lösung, ein Glykol/Wassergemisch und/oder ein Gelmaterial, insbesondere ein wässriges Carboxymethylzelluose-Gel, eingesetzt. Alternativ zum Erwärmen oder Warmhalten von Laborgefäßen 2 wird als Temperiermedium 4 ein Gemisch aus Cyclodextrin und 4-Methylpyridin verwendet. Auch eine Polymerlösung aus mehreren löslichen Stoffen mit unterschiedlichen Phasentemperaturen und einer konzentrationsabhängigen Mischungslücken, wie ein Phenol/Wasser-Gemisch, kann eingesetzt werden.Water, an aqueous solution, a glycol/water mixture and/or a gel material, in particular an aqueous carboxymethyl cellulose gel, is preferably used as an inexpensive temperature control medium 4 for cooling the laboratory vessels 2 . As an alternative to heating or keeping laboratory vessels 2 warm, a mixture of cyclodextrin and 4-methylpyridine is used as the temperature control medium 4 . A polymer solution consisting of several soluble substances with different phase temperatures and a concentration-dependent miscibility gap, such as a phenol/water mixture, can also be used.

Die Temperiervorrichtung 1 nach Fig. 1 und 2 wird alternativ zum Erwärmen von Laborgefäßen 2 zwischen 30°C und 45°C verwendet. Das Gehäuse 3 ist dazu mit dem bereits erwähnten Gemisch aus Cyclodextrin und 4-Methylpyridin befüllt. Die Temperiervorrichtung 1 wird bei ca. 50°C oder höher konditioniert. Das Absorberelement 7 erstreckt sich dabei entgegen der in Fig. 1 oder 2 gezeigten Ausführung über eine größere Ausdehnung im Innenbereich des Gehäuses 3.The temperature control device 1 after Figures 1 and 2 is alternatively used for heating laboratory vessels 2 between 30°C and 45°C. For this purpose, the housing 3 is filled with the already mentioned mixture of cyclodextrin and 4-methylpyridine. The temperature control device 1 is conditioned at approximately 50° C. or higher. The absorber element 7 extends in the opposite direction to that in Fig. 1 or 2 shown embodiment over a larger extent in the interior of the housing 3.

Die in Fig. 1 und 2 gezeigte Temperiervorrichtung 1 ist besonders gestaltet für Temperiermedium 4, das in seiner festen Phase eine geringere Dichte als seine flüssige Phase hat. Ein solches Temperiermedium 4, das beim Schmelzen schon teilweise wieder flüssig ist, schwimmt im noch teilweise festen Zustand auf und drängt gegen das Absorberelement 7.In the Figures 1 and 2 Temperature control device 1 shown is specially designed for temperature control medium 4, which has a lower density than its liquid phase in its solid phase. Such a temperature control medium 4, which is already partly liquid again when it melts, floats in the still partly solid state and presses against the absorber element 7.

In der Ausführung nach Fig. 2 drängt das noch feste Temperiermedium 4 auch gegen den Aufnahmebereich 3.1. Durch die Berührung des festen Temperiermediums 4 mit dem Absorberelement 7 und ggf. zusätzlich dem Aufnahmebereich 3.1 schmilzt das Temperiermedium 4 flächig ab. Das so temperierte Absorberelement 7 führt die Wärme von dem Aufnahmebereich 3.1 mit den eingesetzten Laborgefäßen 2 dem Temperiermedium 4 zu und erhöht dessen thermische Energie oder umgekehrt. Der gefrorene Zustand des Temperiermediums 4 im vom Gehäuse 3 und Aufnahmebereich 3.1 umschlossenen Volumen wird dabei insbesondere vollständig genutzt. Die Laborgefäße 2 können über einen langen Zeitraum gekühlt oder geheizt werden.In execution after 2 pushes the still solid tempering medium 4 against the receiving area 3.1. Due to the contact of the solid temperature control medium 4 with the absorber element 7 and possibly additionally with the receiving area 3.1, the temperature control medium 4 melts over the entire area. The absorber element 7 tempered in this way supplies the heat from the receiving area 3.1 with the laboratory vessels 2 used to the tempering medium 4 and increases its thermal energy or vice versa. The frozen state of the tempering medium 4 in the volume enclosed by the housing 3 and the receiving area 3.1 is in particular fully utilized. The laboratory vessels 2 can be cooled or heated over a long period of time.

Wie effektiv die erfindungsgemäße Ausführung nach Fig. 1 oder 2 gegenüber einer Ausführung ohne ein Absorberelement 7 ist, zeigt die Fig. 5 mit dem jeweiligen Verlauf eines mit Wasser gekühlten Gehäuses 3 beider Ausführungen, jeweils in deren Vertiefungen 5 gemessen. Der Temperaturverlauf "A" entspricht der Ausführung ohne Absorberelement und "B" der erfindungsgemäßen Ausführung nach Fig. 1 oder 2. Die Temperaturgrenze von 7°C wird bei "B" doppelt so lange unterschritten wie bei "A". Je nach Temperiermedium 4 erzielt man eine entsprechend dessen physikalischer Eigenschaft andere Temperaturgrenze und - verlauf.How effective the embodiment according to the invention Fig. 1 or 2 is compared to an embodiment without an absorber element 7, which shows figure 5 with the respective course of a water-cooled housing 3 of both versions, each measured in their depressions 5. The temperature profile "A" corresponds to the embodiment without an absorber element and "B" to the embodiment according to the invention Fig. 1 or 2 . "B" stays below the temperature limit of 7°C for twice as long as "A". Depending on the tempering medium 4 one achieves one according to its physical properties different temperature limit and course.

Die Fig. 2 zeigt die erfindungsgemäße Temperiervorrichtung 1 mit dem Gehäuse 3, das ein von dem Innenbereich abgetrennten Luftraum 6 aufweist. Die Trennung des Innenbereichs verläuft zumindest im Wesentlichen parallel zum Boden 3.2.the 2 shows the temperature control device 1 according to the invention with the housing 3, which has an air space 6 separated from the interior area. The separation of the inner area runs at least essentially parallel to the floor 3.2.

Die Ausführungsform nach Fig. 2 zeigt nicht nur konstruktive Verbesserungen auf. Vorteile äußern sich auch überraschenderweise in der Wirkung und in dem resultierenden Temperaturverlauf "B". Die flexible Trennwand 3.3 ermöglicht die räumliche Teilung von Temperiermedium 4 und Luftraum 6 und die Kompensation von Volumenänderungen des Temperiermediums 4 in den Luftraum 6 hinein oder von ihm entfernend.The embodiment after 2 shows not only constructive improvements. Surprisingly, advantages are also expressed in the effect and in the resulting temperature profile "B". The flexible partition 3.3 enables the spatial division of temperature control medium 4 and air space 6 and the compensation of volume changes of the temperature control medium 4 into the air space 6 or away from it.

Bei der in Fig. 1 und 2 gezeigten besonders bevorzugten Ausgestaltung wird die Trennwand 3.3 aus einem flexiblen, d.h. federelastischen, Werkstoff, beispielsweise aus Silikon, ausgeführt.At the in Figures 1 and 2 particularly preferred embodiment shown, the partition 3.3 is made of a flexible, ie resilient, material, for example made of silicone.

Die Volumenzunahme des festen bzw. gefrorenen Temperiermediums 4 wird durch die Ausdehnung der Trennwand 3.3 in den Luftraum 6 durch Vorspannung ermöglicht. Das feste Temperiermedium 4 wird dabei gegen das Absorberelement 7 gedrückt. Bei der Verwendung der Temperiervorrichtung 1 wird durch das Andrücken die Wärmeübertragung gesteigert und der Temperaturverlauf "B" noch länger unter der Temperaturgrenze gehalten. Dieser Effekt hält noch länger an, wenn die Trennwand 3.3 zusätzlich eine geringe Wärmeleitfähigkeit aufweist.The increase in volume of the solid or frozen tempering medium 4 is made possible by the expansion of the partition wall 3.3 into the air space 6 by prestressing. The solid tempering medium 4 is thereby pressed against the absorber element 7 . When using the temperature control device 1, the heat transfer is increased by the pressing and the temperature profile "B" is kept below the temperature limit for even longer. This effect lasts even longer if the partition wall 3.3 also has low thermal conductivity.

Fig. 2 zeigt eine Ausführungsform mit einer Platte als Absorberelement 7, die im hohlen Gehäuse 3 horizontal angeordnet ist. Die Platte ist in dieser Ausführungsform mit mehreren Abstandselementen 8 an dem Aufnahmebereich 3.1 befestigt. Die Abstandselemente 8 verbinden dabei auch die Platte 7 mit dem Aufnahmebereich 3.1 thermisch leitend und in solch einer Anzahl, dass die Temperatur des Temperiermediums 4 auf die Laborgefäße 2 übertragen wird. 2 shows an embodiment with a plate as the absorber element 7, which is arranged horizontally in the hollow housing 3. In this embodiment, the plate is fastened to the receiving area 3.1 with a plurality of spacer elements 8. The spacer elements 8 also connect the plate 7 to the receiving area 3 . 1 in a thermally conductive manner and in such a number that the temperature of the tempering medium 4 is transferred to the laboratory vessels 2 .

Entscheidend sind bei der erfindungsgemäßen Ausführung nach Fig. 1 oder 2 auch die eingesetzten Materialien. Das Absorberelement 7 bzw. die Platte , die Abstandselemente 8 und/oder der Aufnahmebereich 3.1 bestehen insbesondere aus einem Material mit einer Wärmleitfähigkeit von mindestens 10 W/(m . K).Decisive are in the embodiment according to the invention Fig. 1 or 2 also the materials used. The absorber element 7 or the plate 12, the spacer elements 8 and/or the receiving area 3.1 consist in particular of a material with a thermal conductivity of at least 10 W/(m·K).

Nach bevorzugter Ausführung ist der Aufnahmebereich 3.1 des Gehäuses 3 als separates Teil ausgeführt. Der vom Gehäuse 3 stofflich getrennte Aufnahmebereich 3.1 besteht aus einem Material mit einer Wärmleitfähigkeit von mindestens 100 W/(m · K). Als geeigneter Werkstoff wird insbesondere Aluminium eingesetzt. Die anderen Teile des hohlen Gehäuses 3 können aus Kunststoff bestehen oder einen Kunststoff aufweisen und haben vorzugsweise eine Wärmleitfähigkeit von maximal 1 W/(m · K) und somit eine eher wärmeisolierende Wirkung.According to a preferred embodiment, the receiving area 3.1 of the housing 3 is designed as a separate part. The receiving area 3.1, which is materially separate from the housing 3, consists of a material with a thermal conductivity of at least 100 W/(m·K). Aluminum in particular is used as a suitable material. The other parts of the hollow housing 3 may be made of plastic or include a plastic and preferably have a thermal conductivity of at most 1 W/(m·K) and thus a more heat-insulating effect.

Das Gehäuse 3 kann dabei noch weiter diskret aufgebaut sein. In Fig. 1 und 2 ist das Gehäuse 3 mit einem separaten Boden 3.2 versehen, der gegenüber dem Aufnahmebereich 3.1 die Standfläche darstellt. Der Boden 3.2 und der Aufnahmebereich 3.1 sind mit Dichtungen 3.5 gegen das Gehäuse 3 abgedichtet. Wie in Fig. 2 gezeigt, sind an dem Boden vorstehende Standfüße 3.6 angeordnet.The housing 3 can still be constructed discretely. In Figures 1 and 2 the housing 3 is provided with a separate floor 3.2, which represents the standing area compared to the receiving area 3.1. The bottom 3.2 and the receiving area 3.1 are sealed against the housing 3 with seals 3.5. As in 2 shown, projecting feet 3.6 are arranged on the floor.

Nach einer weiteren bevorzugten Ausführung der Temperiervorrichtung 1 ist das Absorberelement 7 mit seiner zum Boden 3.2 hin gerichteten Absorberunterseite zum Aufnahmebereich 3.1 hin flexibel ausgebildet. Die Volumenzunahme des Temperiermediums 4 wird durch das Absorberelement 7 toleriert. In bevorzugter Ausführung ist das Absorberelement 7 ein strukturierter elastischer Formkörper 7', wie die Fig. 3 es zeigt. Vorzugsweise weist dieser flächige Formkörper 7' eine ausreichende Nachgiebigkeit mit einer Federrate von kleiner als 1 N/mm je mm2 Fläche der Unterseite des Formkörpers 7' auf, um eine Deformation des Gehäuses 3 zu verhindern.According to a further preferred embodiment of the temperature control device 1, the absorber element 7 is designed to be flexible with its absorber underside directed towards the base 3.2 towards the receiving area 3.1. The increase in volume of the tempering medium 4 is tolerated by the absorber element 7 . In a preferred embodiment, the absorber element 7 is a structured elastic molded body 7 ', such as 3 it shows. This flat shaped body 7' preferably has sufficient resilience with a spring rate of less than 1 N/mm per mm 2 area of the underside of the shaped body 7' in order to prevent deformation of the housing 3.

Der in Fig. 3 gezeigte Formkörper 7' ist eine Lage Metallgeflecht oder-schaum. Der Formkörper 7' ist an der Unterseite des Aufnahmebereichs 3.1 angeordnet. Ein solches Geflecht oder Schaum dient als Absorber zur Aufnahme und gleichzeitig zum Transport der Wärmeenergie zum Aufnahmebereich 3.1. Das Geflecht oder der Schaum ist ebenso positioniert, dass es bzw. er sich unterhalb des Aufnahmebereichs 3.1 durch den Luftraum 6 hindurch erstreckt und von dem Temperiermedium 4 zumindest teilweise umgeben und dabei möglichst vollständig durchdrungen ist. Die Struktur selbst ermöglicht die geforderte Flexibilität und die Wahl des Werkstoffs sowie der Querschnittsdichte die ausreichende Wärmeleitung zum Aufnahmebereich 3.1 hin. Als vereinfachte Variante kann das Geflecht oder der Schaum auch nur als flexibel federnde Abstandselemente 8' der Platte dienen.the inside 3 Shaped body 7 shown 'is a layer of metal mesh or foam. The shaped body 7' is arranged on the underside of the receiving area 3.1. Such a mesh or foam serves as an absorber for receiving and at the same time for transporting the thermal energy to the receiving area 3.1. The mesh or the foam is also positioned so that it extends through the air space 6 below the receiving area 3.1 and is at least partially surrounded by the temperature control medium 4 and penetrated as completely as possible. The structure itself enables the required flexibility and the selection of the material and the cross-sectional density allow for sufficient heat conduction to the receiving area 3.1. As a simplified variant, the braiding or the foam can also serve only as flexible, resilient spacer elements 8' of the plate.

In der Ausführung einer Platte mit Abstandselementen 8 halten die Abstandselemente 8 die Platte in Bezug zu dem Aufnahmebereich 3.1 flexibel federnd. Wie in Fig. 1 gezeigt ist die Platte vom Temperiermedium 4 zumindest teilweise umgeben. Bei einer Volumenausdehnung des Temperiermediums 4 im festen Zustand drängt dieses gegen die Platte und wird durch deren flexible Positionierung bzw. ihre elastische Formänderung toleriert.In the embodiment of a plate with spacer elements 8, the spacer elements 8 hold the plate in a flexible, resilient manner in relation to the receiving area 3.1. As in 1 shown, the plate is at least partially surrounded by the tempering medium 4 . When the temperature control medium 4 expands in volume in the solid state, it presses against the plate and is tolerated by its flexible positioning or its elastic change in shape.

Im Weiteren ist das Absorberelement 7 an dem Aufnahmebereich 3.1 vorzugsweise lösbar oder unlösbar verbunden. In Fig. 3 ist das Absorberelement 7 mit der Unterseite des Aufnahmebereichs 3.1 mehrfach punktuell verbunden, z.B. mit Ultraschall angeschweißt. In der Ausführung nach Fig. 1 oder 2 sind die Abstandselemente 8 an dem Aufnahmebereich 3.1 und/oder an der Platte einstückig angeformt, so dass eine gute Wärmeleitung erfolgt. In der Fig. 4 ist eine Ausführungsform eines flexibles Abstandselementes 8' gezeigt. Dieses Abstandselement 8' ist ein Teil der Platte.Furthermore, the absorber element 7 is preferably detachably or non-detachably connected to the receiving area 3.1. In 3 the absorber element 7 is connected to the underside of the receiving area 3.1 at multiple points, for example welded on using ultrasound. In execution after Fig. 1 or 2 the spacer elements 8 are integrally formed on the receiving area 3.1 and/or on the plate, so that there is good heat conduction. In the 4 an embodiment of a flexible spacer element 8' is shown. This spacer element 8' is part of the plate.

Nicht gezeigte Einschnitte stellen das Abstandselement 8' frei und ermöglichen eine mäanderförmige Biegung, wie in Fig. 4 abgebildet. Das freie Ende des so gebogenen Abstandselementes 8' ist insbesondere an den Aufnahmebereich 3.1 angeschweißt. Alternativ können die Abstandselemente 8 lösbar angeschraubt sein, also kraft-/form-/reib-schlüssig gehalten oder unlösbar fest verbunden, wie geschweißt, gelötet, gebondet, geklebt, oder in sonstiger Weise stofflich verbunden werden.Incisions, not shown, release the spacer element 8' and allow a meandering bend, as in FIG 4 pictured. The free end of the spacer element 8' bent in this way is in particular welded to the receiving area 3.1. Alternatively, the spacer elements 8 can be screwed on in a detachable manner be held in a non-positive/positive/frictional manner or permanently connected, such as welded, soldered, bonded, glued, or materially connected in some other way.

Claims (13)

  1. Temperature-control device (1) for laboratory vessels (2) which is configured to be thermally conditioned in the absence of laboratory vessels (2) before use and, during use, in a finite time period, to absorb the conditioned thermal energy from the laboratory vessels (2) and/or to transfer said thermal energy to the laboratory vessels (2),
    with a hollow housing (3),
    which has an internal region filled with a temperature-control medium (4),
    wherein the housing (3) has a base (3.2) on an underside and a receiving region (3.1) situated opposite thereto on an upper side, the receiving region delimiting the internal region of the housing (3) in a direction toward the upper side and having inwardly directed depressions (5) on its upper side for receiving the laboratory vessels (2) to be temperature-controlled,
    characterized in that
    the housing (3) has an air space (6),
    that a horizontally extending absorber element (7) is arranged in the internal region of the housing (3), wherein the temperature-control medium (4) at least partially flows around and/or through the absorber element (7), and
    that the absorber element (7) and the receiving region (3.1) are connected in a thermally conductive manner.
  2. Temperature-control device as claimed in claim 1, characterized in that the internal region of the housing (3) is partitioned parallel to the base (3.2) and/or the air space (6) is arranged on that side of the internal region that is opposite to the receiving region (3.1), and that the part of the internal region that is adjacent to the receiving region (3.1) comprises the temperature-control medium (4).
  3. Temperature-control device as claimed in claim 1 or 2, characterized in that the internal region of the housing (3) is filled at least to some extent with the temperature-control medium (4), preferably extending as far as the absorber element (7) and the remaining part of the internal region comprises the air space (6), and/or the internal region of the housing (3) is partitioned such that the temperature-control medium (4) is present in a first internal region and the air space (6) is present in a second internal region, preferably wherein a partition (3.3) which seals the two internal regions from one another and is designed to be flexible is arranged between the first internal region and the second internal region of the housing (3), wherein the partition (3.3) particularly consists of an elastic material, preferably silicone, or comprises an elastic material.
  4. Temperature-control device as claimed in any of the preceding claims, characterized in that
    the temperature-control medium (4) is configured to change its physical state at least to some extent from a solid phase to a liquid phase during absorption of thermal energy from the laboratory vessels (2) and/or to change its physical state from a liquid phase to a solid phase during transfer of thermal energy to the laboratory vessels (2), in particular wherein the solid phase of the temperature-control medium (4) has a lower or higher density than the liquid phase of the temperature-control medium (4), so that the solid phase floats or sinks in the liquid phase of the temperature-control medium (4) and moves forcibly toward the absorber element (7).
  5. Temperature-control device as claimed in claim 4, characterized in that the temperature-control device (1) is configured to increase the thermal energy of the receiving region (3.1) with the inserted laboratory vessels (2) via contact of the solid phase of the temperature-control medium (4) with the absorber element (7) and transfer of heat from the absorber element (7) to the receiving region (3.1) for the heating of the laboratory vessels (2) or
    to reduce the thermal energy of the receiving region (3.1) with the inserted laboratory vessels (2) via contact of the solid phase of the temperature-control medium (4) with the absorber element (7) and transfer of heat from the receiving region (3.1) to the absorber element (7) for the cooling of the laboratory vessels (2).
  6. Temperature-control device as claimed in any of the preceding claims, characterized in that
    the absorber element (7) is arranged spatially separated from the receiving region (3.1),
    particularly wherein the absorber element (7) comprises a plate or is configured as a plate and/or wherein the absorber element (7) is connected to the receiving region (3.1) by means of one or more thermally conductive spacer elements (8), and wherein, preferably, the plate, the spacer element(s) (8) and/or the receiving region (3.1) consist of a material with a thermal conductivity of at least 10 W/(m · K).
  7. Temperature-control device as claimed in any of the preceding claims, characterized in that
    the receiving region (3.1) of the housing (3) is a separate part, preferably wherein the receiving region (3.1) consists of a material with a thermal conductivity of at least 100 W/(m · K), particularly of aluminum, and the other parts of the housing (3) consist of a material with a thermal conductivity of at most 1 W/(m · K), particularly of plastic.
  8. Temperature-control device as claimed in any of the preceding claims, characterized in that
    at least at an underside of the absorber that faces toward the base (3.2), the absorber element (7) is configured to be elastically deformable in the direction of the receiving region (3.1),
    preferably wherein the absorber element (7) is a structured elastic molding (7') and/or the spacer element(s) (8) hold(s) the absorber element (7) in resilient manner on the receiving region (3.1), preferably wherein the absorber element (7) is held with a spring rate below 1 N/mm per mm2 of the area of the underside of the absorber element (7).
  9. Temperature-control device as claimed in any of claims 1 to 5, characterized in that
    the absorber element (7) is a structured elastic molding (7'), wherein at the underside of the absorber that faces toward the base (3.2), the molding (7') is configured to be elastically deformable in the direction toward the receiving region (3.1), wherein the spring rate of the underside of the absorber is preferably below 1 N/mm per mm2 of the area of the underside of the absorber.
  10. Temperature-control device as claimed in any of the preceding claims, characterized in that the temperature-control medium (4) is water or an aqueous solution.
  11. Temperature-control process (1) for laboratory vessels (2), comprising the following steps:
    - provision of a temperature-control device, particularly as claimed in any of the preceding claims, with an internal region at least partially filled with a temperature-control medium (4) and with a housing (3) with an receiving region (3.1), wherein a hollow internal region of the housing (3) is delimited in upward direction by the receiving region (3.1), and with depressions (5) directed inward on the upper side of the receiving region (3.1),
    - thermal conditioning before use in the absence of laboratory vessels (2),
    - insertion of the laboratory vessels (2),
    - absorption or transfer of the conditioned thermal energy from the laboratory vessels (2) or to the laboratory vessels in a finite time period,
    characterized in that
    the temperature-control medium (4) at least partially flows around and/or through an absorber element (7) extending horizontally within the internal region of the housing (3), and the absorber element (7) and the receiving region (3.1) are connected in a thermally conductive manner.
  12. Temperature-control process as claimed in claim 11, characterized in that the housing (3) with the temperature-control medium (4) is heated or cooled, preferably wherein the temperature-control medium (4) changes its physical state , particularly wherein the temperature-control medium (4) is water or an aqueous solution.
  13. Temperature-control process as claimed in claim 11 or 12, characterized in that the temperature-control medium (4) is selected in a manner such that the solid phase of the temperature-control medium (4) has a lower or higher density than the liquid phase of the temperature-control medium (4), so that the solid phase floats or sinks in the liquid phase of the temperature-control medium (4) and moves forcibly toward the absorber element (7) due to the different densities of the phases, preferably wherein the thermal energy of the receiving region (3.1) with the inserted laboratory vessels (2) is increased via contact of the solid temperature-control medium (4) with the absorber element (7) and the transfer of heat from the absorber element (7) to the receiving region (3.1) for the heating of the laboratory vessels (2), or the thermal energy of the receiving region (3.1) with the inserted laboratory vessels (2) is reduced via contact of the solid temperature-control medium (4) with the absorber element (7) and the transfer of heat from the receiving region (3.1) to the absorber element (7) for the cooling of the laboratory vessels (2).
EP19742177.9A 2018-07-16 2019-07-16 Temperature-regulating device for laboratory vessels Active EP3823759B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018005582.6A DE102018005582A1 (en) 2018-07-16 2018-07-16 Temperature control device for laboratory vessels
DE102018008152.5A DE102018008152A1 (en) 2018-10-16 2018-10-16 Temperature control device for laboratory vessels
PCT/EP2019/069105 WO2020016219A1 (en) 2018-07-16 2019-07-16 Temperature-regulating device for laboratory vessels

Publications (2)

Publication Number Publication Date
EP3823759A1 EP3823759A1 (en) 2021-05-26
EP3823759B1 true EP3823759B1 (en) 2022-03-23

Family

ID=67383761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19742177.9A Active EP3823759B1 (en) 2018-07-16 2019-07-16 Temperature-regulating device for laboratory vessels

Country Status (4)

Country Link
US (1) US20220212195A1 (en)
EP (1) EP3823759B1 (en)
CN (1) CN112368080A (en)
WO (1) WO2020016219A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220258167A1 (en) * 2020-11-17 2022-08-18 Khalifa University of Science and Technology Methods and devices for rapid detection of covid-19 and other pathogens

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802220A (en) * 1973-06-20 1974-04-09 Kool Pak Corp Cooling cushion
US4322954A (en) * 1979-05-23 1982-04-06 Sheehan Laurence M Portable cooler for medicine
US4474033A (en) * 1983-06-06 1984-10-02 Baker John F Passive transportable cooling unit for storing vials of allergenic extracts or the like
US4948564A (en) * 1986-10-28 1990-08-14 Costar Corporation Multi-well filter strip and composite assemblies
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5058397A (en) * 1990-08-29 1991-10-22 Usa/Scientific Plastics, Inc. Cryogenic storage box for microcentrifuge tubes
US5181394A (en) * 1991-01-14 1993-01-26 Amgen Inc. Freeze protective shipping units
EP0718212B2 (en) * 1994-12-20 2004-09-15 Joseph N. Villa Insulated storage/shipping container for maintainig a constant temperature
US5863507A (en) * 1996-11-07 1999-01-26 James; Lizymol Benchtop cooler
US5934099A (en) * 1997-07-28 1999-08-10 Tcp/Reliable Inc. Temperature controlled container
DE29918179U1 (en) * 1999-10-15 2000-01-27 Eppendorf Geraetebau Netheler Temperature control device for laboratory vessels
US7727479B2 (en) * 2000-09-29 2010-06-01 Applied Biosystems, Llc Device for the carrying out of chemical or biological reactions
WO2004004886A2 (en) * 2002-07-05 2004-01-15 Aventis Pharmaceuticals Inc. Apparatus and method for use in solid phase chemical synthesis
US8151593B2 (en) * 2005-09-08 2012-04-10 London Health Sciences Centre Research Inc. Embedding method and apparatus for the preparation of frozen section tissue
NL2001054C2 (en) * 2007-12-04 2009-06-08 Heineken Supply Chain Bv Cooler and method for cooling beverage containers such as bottles and cans.
DE202009001433U1 (en) * 2009-02-05 2009-04-09 Schmiedl, Dieter, Dr. Asservierungsbehälter
DE102010040685A1 (en) 2010-09-14 2012-03-15 Hamilton Bonaduz Ag Temperature control device for the thermal consolidation of drug beads
US9149809B2 (en) * 2011-05-06 2015-10-06 Bio-Rad Laboratories, Inc. Thermal cycler with vapor chamber for rapid temperature changes
WO2013082139A1 (en) * 2011-11-28 2013-06-06 Rui Zhang Thermal cycling using phase changing fluids
US9297499B2 (en) * 2012-12-06 2016-03-29 Cook Medical Technologies Llc Cryogenic storage container, storage device, and methods of using the same
US10459410B2 (en) * 2013-03-15 2019-10-29 Shazi Iqbal Automatic tracking of a specimen holder moved from one specimen rack to another
KR102336308B1 (en) * 2014-12-26 2021-12-09 주식회사 미코바이오메드 Device for polymerase chain reaction comprising driving element for reciprocating sliding, and method for polymerase chain reaction using the same
US20180178219A1 (en) * 2015-06-16 2018-06-28 Hepatochem, Inc. Chemistry Kits
JP6743815B2 (en) * 2015-06-26 2020-08-19 凸版印刷株式会社 plate
US9656267B2 (en) * 2015-09-17 2017-05-23 Nvigen, Inc. Magnetic rack
EP3290119B1 (en) * 2016-09-01 2019-06-26 Roche Diagniostics GmbH Assembly, instrument for performing a temperature-dependent reaction and method for performing a temperature-dependent reaction in an assembly
JP6904131B2 (en) * 2017-07-21 2021-07-14 株式会社島津製作所 Gene measuring device

Also Published As

Publication number Publication date
US20220212195A1 (en) 2022-07-07
WO2020016219A1 (en) 2020-01-23
EP3823759A1 (en) 2021-05-26
CN112368080A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
EP0881950B1 (en) Temperature-regulating block with temperature-regulating devices
DE102008054590A1 (en) Refrigerating appliance with an ice and / or liquid dispensing device
DE3411357A1 (en) COLD AND HEAT PACK FOR PHYSIOTHERAPY AND THE LIKE
DE102018008152A1 (en) Temperature control device for laboratory vessels
EP2782676B1 (en) Vapour chamber
DE19646116A1 (en) Temperature control block with recordings
EP3823759B1 (en) Temperature-regulating device for laboratory vessels
DE102015005681A1 (en) Receiving device for beverage containers
WO2009010424A2 (en) Device for producing ice cubes, refrigerating appliance comprising such a device, and method for producing ice cubes
EP0061697B1 (en) Cold storage accumulator with mounting means and air-regulating louvres
DE3605891C2 (en) Cooling device, especially household refrigerator
EP1005624B1 (en) Method and device for refrigerating, especially freezing, goods
DE202006009540U1 (en) Temperature maintaining method in a thermally insulated container has a facility for holding a thermal storage plate within the insulated chamber
DE19725203C2 (en) Cooler
DE1786299B1 (en) Packaging container
EP2551624B1 (en) Heat accumulator
DE102018005582A1 (en) Temperature control device for laboratory vessels
CH664004A5 (en) CONTAINER FOR REFRIGERATION.
DE3240157A1 (en) TEMPERATURE DEVICE FOR COOLING / HEATING LIQUIDS IN CONTAINERS
DE10261353B4 (en) Apparatus for preparing ice cubes
WO2008025696A2 (en) Refrigerating device comprising supports for a refrigerated product carrier
EP2821739B1 (en) Transportable cooling chamber
DE4007004C3 (en) Heat storage
DE202008013573U1 (en) Transport system with an insulated container
EP2942592A1 (en) Latent heat reservoir

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003815

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1477068

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220624

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220723

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003815

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

26N No opposition filed

Effective date: 20230102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220716

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230721

Year of fee payment: 5

Ref country code: CH

Payment date: 20230801

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 5

Ref country code: DE

Payment date: 20230712

Year of fee payment: 5