EP3818096A1 - Utilisation de mousses de peba pour le filtrage des vibrations - Google Patents

Utilisation de mousses de peba pour le filtrage des vibrations

Info

Publication number
EP3818096A1
EP3818096A1 EP19753138.7A EP19753138A EP3818096A1 EP 3818096 A1 EP3818096 A1 EP 3818096A1 EP 19753138 A EP19753138 A EP 19753138A EP 3818096 A1 EP3818096 A1 EP 3818096A1
Authority
EP
European Patent Office
Prior art keywords
polyamide
blocks
mol
foam
peba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19753138.7A
Other languages
German (de)
English (en)
Inventor
Clio COCQUET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3818096A1 publication Critical patent/EP3818096A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/37Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers of foam-like material, i.e. microcellular material, e.g. sponge rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to the use of a polyamide block and polyether block copolymer foam for filtering vibrations.
  • the document FR 3047245 describes PEBA foams having a high capacity to restore elastic energy during stresses under low stress, a low remanent deformation in compression and a high resistance to fatigue in compression. These foams also have interesting anti-shock, anti-vibration and anti-noise properties. However, no vibration filtering properties are mentioned.
  • the invention relates first of all to the use of a polyamide block and polyether block copolymer foam for filtering vibrations.
  • the foam is non-crosslinked.
  • the polyamide blocks are blocks of polyamide 6, polyamide 11, polyamide 12, polyamide 5.4, polyamide 5.9, polyamide 5.10, polyamide 5.12, polyamide 5.13, polyamide 5.14, polyamide 5.16, polyamide 5.18, polyamide 5.36, polyamide 6.4, polyamide 6.9, polyamide 6.10, polyamide 6.12, polyamide 6.13, polyamide 6.14, polyamide 6.16, polyamide 6.18, polyamide 6.36, polyamide 10.4, polyamide 10.9, polyamide 10.10, polyamide 10.12 , polyamide 10.13, polyamide 10.14, polyamide 10.16, polyamide 10.18, polyamide 10.36, polyamide 10.T, polyamide 12.4, polyamide 12.9, polyamide 12.10, polyamide 12.12, polyamide 12.13, polyamide 12.14 , polyamide 12.16, polyamide 12.18, polyamide 12.36, polyamide 12.T or mixtures, or copolymers, of these, preferably polyamide 1 1, polyamide 12, polyamide 6, or polyamide 6.10 .
  • the polyether blocks are blocks of polyethylene glycol, propylene glycol, polytrimethylene glycol, polytetrahydrofuran, or mixtures, or copolymers, of these, preferably polyethylene glycol or polytetrahydrofuran.
  • the polyamide blocks of the copolymer have a number-average molar mass of 100 to 20,000 g / mol, preferably from 200 to 10,000 g / mol, even more preferably from 200 to 1,500 g / mol; and or
  • the polyether blocks of the copolymer have a number-average molar mass of 100 to 6000 g / mol, preferably from 200 to 3000 g / mol, even more preferably from 800 to 2500 g / mol.
  • the mass ratio of the polyamide blocks relative to the polyether blocks of the copolymer is from 0.1 to 10, preferably from 0.3 to 3, even more preferably from 0.3 to 0.9.
  • the foam has a density less than or equal to 800 kg / m 3 , preferably less than or equal to 600 kg / m 3 , more preferably less than or equal to 400 kg / m 3 , more particularly preferably less than or equal to 300 kg / m 3 .
  • the foam also contains one or more additives, preferably chosen from copolymers of ethylene and vinyl acetate, copolymers of ethylene and acrylate, and copolymers of ethylene and of alkyl ( meth) acrylate.
  • the invention also relates to a vibration filtering piece made of a polyamide block and polyether block copolymer foam as defined above.
  • the invention also relates to a vibration filtering part comprising at least one element made of a polyamide block and polyether block copolymer foam as defined above.
  • the vibration filtering part is chosen from among household robot feet, such as mixers and mixers, automotive parts or any vehicle, such as the suspension devices of motor vehicle gearboxes. , or the suspension devices of helicopter gearboxes.
  • the present invention makes it possible to meet the need expressed above. More particularly, it provides a polymer foam, light and recyclable, making it possible to effectively filter vibrations.
  • FIG. 1 represents the curve obtained by dynamic mechanical analysis during the measurement of the delta tangents of the foamed PEBA B (gray dotted curve) and of the non-foamed PEBA B (black curve in solid line) described in Example 2.
  • FIG. 2 represents the curve obtained by dynamic mechanical analysis during the measurement of the delta tangents of the foamed PEBA A-2 described in example 3.
  • the frequency (in Hz) is shown on the abscissa and the delta tangent is shown on the ordinate.
  • the invention relates to the use of a polyamide block and polyether block (PEBA) copolymer foam for filtering vibrations.
  • PEBA polyether block
  • Filtering vibrations consists in cutting off high frequencies, that is to say frequencies higher than the product of the natural frequency of the object made of filter material multiplied by 1.4.
  • PEBAs result from the polycondensation of polyamide blocks with reactive ends with polyether blocks with reactive ends, such as, inter alia polycondensation: 1) polyamide blocks with diamine chain ends with polyoxyalkylene blocks with dicarboxylic chain ends;
  • polyamide blocks with ends of dicarboxylic chains with polyoxyalkylene blocks with ends of diamine chains obtained for example by cyanoethylation and hydrogenation of polyoxyalkylene blocks a, w- aliphatic dihydroxylates called polyetherdiols;
  • Polyamide blocks with dicarboxylic chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain-limiting dicarboxylic acid.
  • Polyamide blocks with diamine chain ends originate, for example, from the condensation of polyamide precursors in the presence of a chain limiting diamine.
  • Three types of polyamide blocks can advantageously be used.
  • the polyamide blocks come from the condensation of a dicarboxylic acid, in particular those having from 4 to 20 carbon atoms, preferably those having from 6 to 18 carbon atoms, and from an aliphatic or aromatic diamine , in particular those having from 2 to 20 carbon atoms, preferably those having from 6 to 14 carbon atoms.
  • dicarboxylic acids mention may be made of 1,4-cyclohexyldicarboxylic acid, butanedioic, adipic, azelaic, suberic, sebacic, dodecanedicarboxylic, octadecanedicarboxylic acids and terephthalic and isophthalic acids, but also dimerized fatty acids .
  • diamines examples include tetramethylene diamine, hexamethylenediamine, 1, 10-decamethylenediamine, dodecamethylenediamine, trimethylhexamethylene diamine, isomers of bis- (4-aminocyclohexyl) -methane (BACM), bis - (3-methyl-4-aminocyclohexyl) methane (BMACM), and 2-2-bis- (3-methyl-4-aminocyclohexyl) -propane (BMACP), para-amino-di-cyclo-hexyl-methane ( PACM), isophoronediamine (IPDA), 2,6-bis- (aminomethyl) -norbornane (BAMN) and piperazine (Pip).
  • BCM bis- (4-aminocyclohexyl) -methane
  • BMACM bis - (3-methyl-4-aminocyclohexyl) methane
  • BMACP
  • polyamide blocks PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 and PA 10.18 are used.
  • PA XY notation X represents the number of carbon atoms derived from diamine residues
  • Y represents the number of carbon atoms derived from diacid residues, in a conventional manner.
  • the polyamide blocks result from the condensation of one or more ⁇ , w-aminocarboxylic acids and / or from one or more lactams having from 6 to 12 carbon atoms in the presence of a dicarboxylic acid having from 4 to 12 carbon atoms or a diamine.
  • lactams examples include caprolactam, enantholactam and lauryllactam.
  • ⁇ , w-amino carboxylic acid mention may be made of aminocaproic, amino-7-heptanoic, amino-11-undecanoic and amino-12-dodecanoic acids.
  • the polyamide blocks of the second type are blocks of PA 1 1 (polyundecanamide), of PA 12 (polydodecanamide) or of PA 6 (polycaprolactam).
  • PA 1 1 polyundecanamide
  • PA 12 polydodecanamide
  • PA 6 polycaprolactam
  • X represents the number of carbon atoms derived from the amino acid residues.
  • the polyamide blocks result from the condensation of at least one ⁇ , w-aminocarboxylic acid (or a lactam), at least one diamine and at least one dicarboxylic acid.
  • polyamide PA blocks are prepared by polycondensation:
  • the dicarboxylic acid having Y carbon atoms which is introduced in excess relative to the stoichiometry of the diamine or diamines, is used as chain limiter.
  • the polyamide blocks result from the condensation of at least two ⁇ , w-aminocarboxylic acids or of at least two lactams having from 6 to 12 carbon atoms or from a lactam and a aminocarboxylic acid not having the same number of atoms carbon in the possible presence of a chain limiter.
  • aliphatic ⁇ , w-aminocarboxylic acid mention may be made of aminocaproic, amino-7-heptanoic, amino-11-undecanoic and amino-12-dodecanoic acids.
  • lactams mention may be made of caprolactam, oenantholactam and lauryllactam.
  • aliphatic diamines mention may be made of hexamethylenediamine, dodecamethylenediamine and trimethylhexamethylene diamine.
  • cycloaliphatic diacids mention may be made of 1,4-cyclohexyldicarboxylic acid. Mention may be made, as examples of aliphatic diacids, of butane-dioic, adipic, azelaic, suberic, sebacic, dodecanedicarboxylic acids and dimerized fatty acids.
  • dimerized fatty acids preferably have a dimer content of at least 98%; preferably they are hydrogenated; these are for example the products marketed under the brand name "PRIPOL” by the company “CRODA”, or under the brand EMPOL by the company BASF, or under the brand Radiacid by the company OLEON, and polyoxyalkylenes a, w-diacids . Mention may be made, as examples of aromatic diacids, of terephthalic (T) and isophthalic (I) acids.
  • T terephthalic
  • I isophthalic
  • cycloaliphatic diamines examples include the isomers of bis- (4-aminocyclohexyl) -methane (BACM), bis- (3-methyl-4-aminocyclohexyl) methane (BMACM) and 2-2-bis- (3-methyl-4-aminocyclohexyl) - propane (BMACP), and para-amino-di-cyclo-hexyl-methane (PACM).
  • BMACM bis- (4-aminocyclohexyl) -methane
  • BMACM bis- (3-methyl-4-aminocyclohexyl) methane
  • BMACP 2-2-bis- (3-methyl-4-aminocyclohexyl) - propane
  • PAM para-amino-di-cyclo-hexyl-methane
  • IPDA isophoronediamine
  • BAMN 2,6-bis- (aminomethyl) -norbornane
  • polyamide blocks of the third type As examples of polyamide blocks of the third type, the following may be cited:
  • PA X / Y, PA X / Y / Z, etc. relate to copolyamides in which X, Y, Z, etc. represent homopolyamide units as described above.
  • the polyamide blocks of the copolymer used in the invention comprise polyamide blocks PA 6, PA 11, PA 12, PA 5.4, PA 5.9, PA 5.10, PA 5.12, PA 5.13, PA 5.14, PA 5.16, PA 5.18, PA 5.36, PA 6.4, PA 6.9, PA 6.10, PA 6.12, PA 6.13, PA 6.14, PA 6.16, PA 6.18, PA 6.36, PA 10.4, PA 10.9, PA 10.10, PA 10.12, PA 10.13, PA 10.14, PA 10.16 , PA 10.18, PA 10.36, PA 10.T, PA 12.4, PA 12.9, PA 12.10, PA 12.12, PA 12.13, PA 12.14, PA 12.16, PA 12.18, PA 12.36, PA 12.T, or mixtures or copolymers of these; and preferably comprise blocks of polyamide PA 6, PA 11, PA 12, PA 6.
  • Polyether blocks are made up of alkylene oxide units.
  • the polyether blocks may in particular be PEG blocks (polyethylene glycol), that is to say made up of ethylene oxide units, and / or PPG blocks (propylene glycol), that is to say made up of propylene oxide units, and / or P03G blocks (polytrimethylene glycol), that is to say made up of polytrimethylene glycol ether units, and / or PTMG blocks, that is to say made up of tetramethylene glycol units also called polytetrahydrofuran.
  • PEBA copolymers can comprise in their chain several types of polyethers, the copolyethers possibly being block or random.
  • the polyether blocks can also consist of ethoxylated primary amines.
  • ethoxylated primary amines mention may be made of the products of formula:
  • m and n are integers between 1 and 20 and x an integer between 8 and 18.
  • These products are for example commercially available under the brand NORAMOX® from the company CECA and under the brand GENAMIN® from the company Clariant.
  • the flexible polyether blocks can comprise polyoxyalkylene blocks with ends of Nhh chains, such blocks being obtainable by cyanoacetylation of polyoxyalkylene a, w-dihydroxylated aliphatic blocks called polyetherdiols.
  • the commercial products Jeffamine or Elastamine can be used (for example Jeffamine® D400, D2000, ED 2003, XTJ 542, commercial products of the company Huntsman, also described in documents JP 2004346274, JP 2004352794 and EP 148201 1).
  • the polyetherdiol blocks are either used as such and copolycondensed with polyamide blocks with carboxylic ends, or aminated to be transformed into polyether diamines and condensed with polyamide blocks with carboxylic ends.
  • the general method for the preparation in two stages of the PEBA copolymers having ester bonds between the PA blocks and the PE blocks is known and is described, for example, in document FR 2846332.
  • the general method of preparing the PEBA copolymers of the invention having amide bonds between the PA blocks and the PE blocks is known and described, for example in document EP 148201 1.
  • the polyether blocks can also be mixed with polyamide precursors and a diacid chain limiter to prepare polymers with polyamide blocks and polyether blocks having units distributed in a statistical manner (one-step process).
  • PEBA in the present description of the invention relates as well to PEBAX® marketed by Arkema, to Vestamid® marketed by Evonik®, to Grilamid® marketed by EMS, as to Pelestat® type PEBA marketed by Sanyo or any other PEBA from other suppliers.
  • block copolymers described above generally comprise at least one polyamide block and at least one polyether block
  • the present invention also covers all the alloys of copolymers comprising two, three, four (or even more) different blocks chosen from those described in the present description, since these blocks comprise at least polyamide and polyether blocks.
  • the copolymer alloy according to the invention can comprise a segmented block copolymer comprising three different types of blocks (or "triblock"), which results from the condensation of several of the blocks described above.
  • Said triblock is preferably chosen from copolyetheresteramides and copolyetheramideurethanes.
  • PEBA copolymers which are particularly preferred in the context of the invention are copolymers comprising blocks:
  • the foam according to the invention comprises a PEBA copolymer as described above: preferably only one such copolymer is used. However, it is possible to use a mixture of two or more of two PEBA copolymers as described above.
  • the number-average molar mass of the polyamide blocks in the PEBA copolymer is preferably from 100 to 20,000 g / mol, more preferably from 200 to 10,000 g / mol, even more preferably from 200 to 1,500 g / mol.
  • the number-average molar mass of the polyamide blocks in the PEBA copolymer is from 100 to 200 g / mol, or from 200 to 500 g / mol, or from 500 to 1000 g / mol, or from 1000 to 1500 g / mol, or from 1500 to 2000 g / mol, or from 2000 to 2500 g / mol, or from 2500 to 3000 g / mol, or from 3000 to 3500 g / mol, or from 3500 to 4000 g / mol, or from 4000 to 5000 g / mol, or from 5000 to 6000 g / mol, or from 6000 to 7000 g / mol, or from 7000 to 8000 g / mol, or from 8000 to 9000 g / mol, or from 9000 to 10000 g / mol, or from 10000 to 1100 g / mol, or from 1000 to 12000 g / mol, or from 12000
  • the number-average molar mass of the polyether blocks is preferably from 100 to 6000 g / mol, more preferably from 200 to 3000 g / mol, even more preferably from 800 to 2500 g / mol.
  • the number-average molar mass of the polyether blocks is from 100 to 200 g / mol, or from 200 to 500 g / mol, or from 500 to 800 g / mol, or from 800 to 1000 g / mol , or from 1000 to 1500 g / mol, or from 1500 to 2000 g / mol, or from 2000 to 2500 g / mol, or from 2500 to 3000 g / mol, or from 3000 to 3500 g / mol, or from 3500 to 4000 g / mol, or from 4000 to 4500 g / mol, or from 4500 to 5000 g / mol, or from 5000 to 5500 g / mol, or from 5500 to 6000 g
  • the number-average molar mass is fixed by the content of chain limiter. It can be calculated according to the relation:
  • n monomer X MW repetition motif / chain niimator MW Chain limiter
  • n monomer is the number of moles of monomer or im chain itor represents the number of moles limiter (e.g., diacid) excess repetition MWmotif represents the molar mass of the repeating unit
  • chain MWiimiteur represents the molar mass of the limiter (for example diacid) in excess.
  • the number-average molar mass of the polyamide blocks and of the polyether blocks can be measured before the copolymerization of the blocks by chromatography on permeable gel (GPC).
  • the mass ratio of the polyamide blocks relative to the polyether blocks of the copolymer is from 0.1 to 10, preferably from 0.3 to 3, even more preferably from 0.3 to 0.9.
  • the mass ratio of the polyamide blocks relative to the polyether blocks of the copolymer can be from 0.1 to 0.2, or from 0.2 to 0.3, or from 0.3 to 0.4, or from 0 , 4 to 0.5, or 0.5 to 0.6, or 0.6 to 0.7, or 0.7 to 0.8, or 0.8 to 0.9, or 0 , 9 to 1, or 1 to 1, 5, or 1, 5 to 2, or 2 to 2.5, or 2.5 to 3, or 3 to 3.5, or 3.5 to 4, or from 4 to 4.5, or from 4.5 to 5, or from 5 to 5.5, or from 5.5 to 6, or from 6 to 6.5, or from 6.5 to 7 , or from 7 to 7.5, or from 7.5 to 8, or from 8 to 8.5, or from 8.5 to 9, or from 9 to 9.5, or from 9.5 to 10.
  • the copolymer used in the invention has an instantaneous hardness less than or equal to 40 Shore D, more preferably less than or equal to 35 Shore D.
  • the hardness measurements can be carried out according to ISO standard 868.
  • the polyamide block and polyether block copolymer is used to form a foam, preferably without a crosslinking step.
  • the foam is formed by mixing the copolymer in the molten state with a blowing agent and then performing a foaming step.
  • the foam thus formed essentially consists, or even consists, of the copolymer described above (or the copolymers, if a mixture of copolymers is used) and optionally the blowing agent, if the latter remains present in the pores of the foam, especially if it is a closed pore foam.
  • the polyamide block and polyether block copolymer can be combined with various additives, for example copolymers of ethylene and vinyl acetate or EVA (for example those marketed under the name of Evatane® by Arkema), or copolymers of ethylene and acrylate, or copolymers of ethylene and alkyl (meth) acrylate, for example those sold under the name Lotryl® by Arkema.
  • EVA for example those marketed under the name of Evatane® by Arkema
  • copolymers of ethylene and acrylate for example those sold under the name Lotryl® by Arkema
  • These additives can be used to adjust the hardness of the foamed part, its appearance and its comfort.
  • the additives can be added in a content of 0 to 50% by mass, preferably from 5 to 30% by mass, relative to the copolymer with polyamide blocks and with polyether blocks.
  • the blowing agent can be a chemical or physical agent.
  • it is a physical agent, such as, for example, dinitrogen or carbon dioxide, or a hydrocarbon, chlorofluorocarbon, hydrochlorocarbon, hydrofluorocarbon or hydrochlorofluorocarbon (saturated or unsaturated).
  • a physical agent such as, for example, dinitrogen or carbon dioxide, or a hydrocarbon, chlorofluorocarbon, hydrochlorocarbon, hydrofluorocarbon or hydrochlorofluorocarbon (saturated or unsaturated).
  • butane or pentane can be used.
  • a physical blowing agent is mixed with the copolymer in liquid or supercritical form, then converted to the gas phase during the foaming step.
  • the mixture of the copolymer and the blowing agent is injected into a mold, and the foaming is produced by the opening of the mold.
  • foaming techniques that can be used include batch foaming and extrusion foaming.
  • the foam according to the invention preferably has a density less than or equal to 800 kg / m 3 , more preferably less than or equal to 600 kg / m 3 , more particularly preferably less than or equal to 400 kg / m 3 , or even less or equal to 300 kg / m 3 . It can for example have a density of 50 to 800 kg / m 3 , and more particularly preferably from 100 to 600 kg / m 3 . Density control can be achieved by adapting the parameters of the manufacturing process.
  • this foam has a rebound resilience, according to ISO 8307, greater than or equal to 55%.
  • this foam has a residual compression deformation, according to ISO 7214, less than or equal to 10%, and more particularly preferably less than or equal to 8%.
  • this foam also has excellent fatigue resistance and damping properties.
  • the foam according to the invention can be used to manufacture vibration filtering parts.
  • it can be the feet of household robots, such as blenders and kitchen mixers.
  • It can also be auto parts or parts of any vehicle, such as air or water vehicles, for example helicopters, airplanes, boats. Examples of such filtration parts are: suspension devices for motor vehicle gearboxes, suspension devices for helicopter transmission boxes.
  • An advantage of the foam objects according to the invention is that they can be easily recycled, for example by melting them in an extruder equipped with a degassing outlet (optionally after cutting them into pieces).
  • the tangent delta (tan delta) of the PEBA is calculated by the ratio of the dissipative module (or "loss module", E ") on the elastic module (or" storage modulus ", E ').
  • the dissipative module E "and the elastic module E” are measured by dynamic mechanical analysis (DMA).
  • a foam is formed from a PEBA A (called “PEBA A-1 foamed"). Foamed PEBA A-1 has a density of 0.65 g / cm 3 .
  • PEBA A is a block copolymer of PA1 1 and of PTMG blocks of density 1.02 g / cm 3 , having a melting temperature of 135 ° C and a hardness of 32 Shore D 15s.
  • Foamed PEBA A-1 is compared to non-foamed PEBA A.
  • the delta tangent of PEBA A-1 foamed and PEBA A unfoamed is measured as indicated above.
  • the operating conditions for the measurement of the dissipative module E "and of the elastic module E" by DMA are as follows:
  • Foamed PEBA A-1 has a delta tangent lower than that of non-foamed PEBA A, therefore it has a better vibration filtering property at the temperatures tested.
  • a foam is formed from a PEBA B (called “foamed PEBA B").
  • Foamed PEBA B has a density of 0.1 g / cm 3 .
  • PEBA B is a PA12 block and PTMG block copolymer with a density of 1.01 g / cm 3 , having a melting temperature of 159 ° C. and a hardness of 50 Shore D 15 s.
  • Foamed PEBA B is compared to unfoamed PEBA B.
  • the delta tangent of the foamed PEBA B and the non-foamed PEBA B is measured as indicated above.
  • the operating conditions for the measurement of the dissipative module E "and of the elastic module E" by DMA are identical to those of example 1.
  • Foamed PEBA B has a lower delta tangent than unfoamed PEBA B, therefore it has a better vibration filtering property at the temperatures tested.
  • a foam is formed from PEBA A (called "PEBA A-2 foamed"). Foamed PEBA A-2 has a density of 0.2 g / cm 3 . The tangent delta of the foamed PEBA A-2 is measured as indicated above.
  • the operating conditions for the measurement of the dissipative module E ”and of the elastic module E 'by DMA are as follows:
  • PEBA A-2 foam has a very low tangent delta over a wide frequency range at 20 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polyamides (AREA)

Abstract

L'invention concerne l'utilisation d'une mousse de copolymère à blocs polyamides et à blocs polyéthers pour le filtrage des vibrations. L'invention peut être appliquée à la fabrication de pièces de filtrage de vibrations telles que des pieds de robot ménagers, de type mélangeurs ou mixeurs, des pièces automobiles ou de tout véhicule, notamment des dispositifs de suspension des boîtes de vitesse de véhicule automobile, ou des dispositifs de suspension des boîtes de transmission d'hélicoptère.

Description

UTILISATION DE MOUSSES DE PEBA POUR LE FILTRAGE DES
VIBRATIONS
DOMAINE DE L'INVENTION
La présente invention concerne l’utilisation d’une mousse de copolymère à blocs polyamides et à blocs polyéthers pour le filtrage des vibrations. ARRIERE-PLAN TECHNIQUE
Dans de nombreuses applications, par exemple dans le domaine du petit électroménager ou de l’automobile, il peut être souhaitable d’incorporer dans les appareils utilisés un moyen de filtrage des vibrations émises par l’appareil. Certaines mousses polymères se sont avérées prometteuses dans la mise en œuvre de tels moyens.
Le document FR 3047245 décrit des mousses de PEBA présentant une capacité élevée à restituer de l’énergie élastique lors de sollicitations sous faible contrainte, une faible déformation rémanente en compression et une résistance élevée à la fatigue en compression. Ces mousses présentent également des propriétés anti-chocs, anti-vibrations et anti-bruit intéressantes. Toutefois, aucune propriété de filtrage des vibrations n’est mentionnée.
Il existe donc un réel besoin de fournir un matériau capable de filtrer les vibrations de manière efficace. RESUME DE L’INVENTION
L’invention concerne en premier lieu l’utilisation d’une mousse de copolymère à blocs polyamides et à blocs polyéthers pour le filtrage des vibrations.
Dans des modes de réalisation, la mousse est non réticulée.
Dans des modes de réalisation, les blocs polyamides sont des blocs de polyamide 6, de polyamide 11 , de polyamide 12, de polyamide 5.4, de polyamide 5.9, de polyamide 5.10, de polyamide 5.12, de polyamide 5.13, de polyamide 5.14, de polyamide 5.16, de polyamide 5.18, de polyamide 5.36, de polyamide 6.4, de polyamide 6.9, de polyamide 6.10, de polyamide 6.12, de polyamide 6.13, de polyamide 6.14, de polyamide 6.16, de polyamide 6.18, de polyamide 6.36, de polyamide 10.4, de polyamide 10.9, de polyamide 10.10, de polyamide 10.12, de polyamide 10.13, de polyamide 10.14, de polyamide 10.16, de polyamide 10.18, de polyamide 10.36, de polyamide 10.T, de polyamide 12.4, de polyamide 12.9, de polyamide 12.10, de polyamide 12.12, de polyamide 12.13, de polyamide 12.14, de polyamide 12.16, de polyamide 12.18, de polyamide 12.36, de polyamide 12.T ou des mélanges, ou des copolymères, de ceux-ci, de préférence de polyamide 1 1 , de polyamide 12, de polyamide 6, ou de polyamide 6.10.
Dans des modes de réalisation, les blocs polyéthers sont des blocs de polyéthylène glycol, de propylène glycol, de polytriméthylène glycol, de polytétrahydrofurane, ou des mélanges, ou des copolymères, de ceux-ci, de préférence de polyéthylène glycol ou de polytétrahydrofurane.
Dans des modes de réalisation :
- les blocs polyamides du copolymère ont une masse molaire moyenne en nombre de 100 à 20000 g/mol, de préférence de 200 à 10000 g/mol, encore plus préférentiellement de 200 à 1500 g/mol ; et/ou
- les blocs polyéthers du copolymère ont une masse molaire moyenne en nombre de 100 à 6000 g/mol, de préférence de 200 à 3000 g/mol, encore plus préférentiellement de 800 à 2500 g/mol.
Dans des modes de réalisation, le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère est de 0,1 à 10, de préférence de 0,3 à 3, encore plus préférentiellement de 0,3 à 0,9.
Dans des modes de réalisation, la mousse présente une densité inférieure ou égale à 800 kg/m3, de préférence inférieure ou égale à 600 kg/m3, plus préférentiellement inférieure ou égale à 400 kg/m3, de manière plus particulièrement préférée inférieure ou égale à 300 kg/m3.
Dans des modes de réalisation, la mousse contient également un ou plusieurs additifs, de préférence choisis parmi les copolymères d’éthylène et acétate de vinyle, les copolymères d’éthylène et d’acrylate, et les copolymères d’éthylène et d’alkyl(méth)acrylate.
L’invention concerne également une pièce de filtrage de vibrations constituée d’une mousse de copolymère à blocs polyamides et à blocs polyéthers telle que définie ci-dessus. L’invention concerne également une pièce filtrage de vibrations comprenant au moins un élément constitué d’une mousse de copolymère à blocs polyamides et à blocs polyéthers telle que définie ci-dessus.
Dans des modes de réalisation, la pièce de filtrage de vibrations est choisie parmi les pieds de robot ménagers, tels que les mélangeurs et les mixeurs, les pièces automobiles ou de tout véhicule, tels que les dispositifs de suspension des boîtes de vitesse de véhicule automobile, ou les dispositifs de suspension des boîtes de transmission d’hélicoptère.
La présente invention permet de de répondre au besoin exprimé ci- dessus. Elle fournit plus particulièrement une mousse polymère, légère et recyclable, permettant de filtrer efficacement les vibrations.
Cela est accompli grâce à l’utilisation d’un copolymère à blocs polyamides et à blocs polyéthers.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente la courbe obtenue par analyse mécanique dynamique lors de la mesure des tangentes delta du PEBA B moussé (courbe grise en pointillés) et du PEBA B non moussé (courbe noire en trait plein) décrits l’exemple 2. La température (en °C) figure en abscisse et la tangente delta figure en ordonnées.
La figure 2 représente la courbe obtenue par analyse mécanique dynamique lors de la mesure des tangentes delta du PEBA A-2 moussé décrit dans l’exemple 3. La fréquence (en Hz) figure en abscisse et la tangente delta figure en ordonnées.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
L’invention concerne l’utilisation d’une mousse de copolymère à blocs polyamides et à blocs polyéthers (PEBA) pour le filtrage des vibrations.
Le filtrage des vibrations consiste en la coupure des hautes fréquences, c’est-à-dire des fréquences supérieures au produit de la fréquence propre de l’objet en matériau filtrant multiplié par 1 ,4.
Il s’agit d’une application distincte de l’absorption des vibrations telle que mentionnée par exemple dans le document FR 3047245.
Les PEBA résultent de la polycondensation de blocs polyamides à extrémités réactives avec des blocs polyéthers à extrémités réactives, telle que, entre autres la polycondensation : 1 ) de blocs polyamides à bouts de chaîne diamines avec des blocs polyoxyalkylènes à bouts de chaînes dicarboxyliques ;
2) de blocs polyamides à bouts de chaînes dicarboxyliques avec des blocs polyoxyalkylènes à bouts de chaînes diamines, obtenues par exemple par cyanoéthylation et hydrogénation de blocs polyoxyalkylène a,w- dihydroxylées aliphatiques appelés polyétherdiols ;
3) de blocs polyamides à bouts de chaînes dicarboxyliques avec des polyétherdiols, les produits obtenus étant, dans ce cas particulier, des polyétheresteramides.
Les blocs polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation de précurseurs de polyamides en présence d'un diacide carboxylique limiteur de chaîne. Les blocs polyamides à bouts de chaînes diamines proviennent par exemple de la condensation de précurseurs de polyamides en présence d'une diamine limiteur de chaîne.
On peut utiliser avantageusement trois types de blocs polyamides.
Selon un premier type, les blocs polyamides proviennent de la condensation d'un diacide carboxylique, en particulier ceux ayant de 4 à 20 atomes de carbone, de préférence ceux ayant de 6 à 18 atomes de carbone, et d'une diamine aliphatique ou aromatique, en particulier celles ayant de 2 à 20 atomes de carbone, de préférence celles ayant de 6 à 14 atomes de carbone.
A titre d’exemples d’acides dicarboxyliques, on peut citer l’acide 1 ,4- cyclohexyldicarboxylique, les acides butanedioïque, adipique, azélaïque, subérique, sébacique, dodécanedicarboxylique, octadécanedicarboxylique et les acides téréphtalique et isophtalique, mais aussi les acides gras dimérisés.
A titre d’exemples de diamines, on peut citer la tétraméthylène diamine, l’hexaméthylènediamine, la 1 ,10-décaméthylènediamine, la dodécaméthylènediamine, la triméthylhexaméthylène diamine, les isomères des bis-(4-aminocyclohexyl)-méthane (BACM), bis-(3-méthyl-4- aminocyclohexyl)méthane (BMACM), et 2-2-bis-(3-méthyl-4- aminocyclohexyl)-propane (BMACP), le para-amino-di-cyclo-hexyl-méthane (PACM), l’isophoronediamine (IPDA), la 2,6-bis-(aminométhyl)-norbornane (BAMN) et la pipérazine (Pip).
Avantageusement, des blocs polyamides PA 4.12, PA 4.14, PA 4.18, PA 6.10, PA 6.12, PA 6.14, PA 6.18, PA 9.12, PA 10.10, PA 10.12, PA 10.14 et PA 10.18 sont utilisés. Dans la notation PA X.Y, X représente le nombre d’atomes de carbone issu des résidus de diamine, et Y représente le nombre d’atomes de carbone issu des résidus de diacide, de façon conventionnelle. Selon un deuxième type, les blocs polyamides résultent de la condensation d'un ou plusieurs acides a,w-aminocarboxyliques et/ou d'un ou plusieurs lactames ayant de 6 à 12 atomes de carbone en présence d'un diacide carboxylique ayant de 4 à 12 atomes de carbone ou d'une diamine. A titre d’exemples de lactames, on peut citer le caprolactame, l’oenantholactame et le lauryllactame. A titre d’exemples d'acide a,w-amino carboxylique, on peut citer les acides aminocaproïque, amino-7-heptanoïque, amino-1 1 - undécanoïque et amino-12-dodécanoïque.
Avantageusement les blocs polyamides du deuxième type sont des blocs de PA 1 1 (polyundécanamide), de PA 12 (polydodécanamide) ou de PA 6 (polycaprolactame). Dans la notation PA X, X représente le nombre d’atomes de carbone issus des résidus d’aminoacide.
Selon un troisième type, les blocs polyamides résultent de la condensation d'au moins un acide a,w-aminocarboxylique (ou un lactame), au moins une diamine et au moins un diacide carboxylique.
Dans ce cas, on prépare les blocs polyamide PA par polycondensation :
- de la ou des diamines aliphatiques linéaires ou aromatiques ayant X atomes de carbone ;
- du ou des diacides carboxyliques ayant Y atomes de carbone ; et
- du ou des comonomères {Z}, choisis parmi les lactames et les acides a,w-aminocarboxyliques ayant Z atomes de carbone et les mélanges équimolaires d’au moins une diamine ayant X1 atomes de carbone et d’au moins un diacide carboxylique ayant Y1 atomes de carbones, (X1 , Y1 ) étant différent de (X, Y),
- ledit ou lesdits comonomères {Z} étant introduits dans une proportion pondérale allant avantageusement jusqu’à 50%, de préférence jusqu’à 20%, encore plus avantageusement jusqu’à 10% par rapport à l’ensemble des monomères précurseurs de polyamide ;
- en présence d’un limiteur de chaîne choisi parmi les diacides carboxyliques.
Avantageusement, on utilise comme limiteur de chaîne le diacide carboxylique ayant Y atomes de carbone, que l’on introduit en excès par rapport à la stœchiométrie de la ou des diamines.
Selon une variante de ce troisième type, les blocs polyamides résultent de la condensation d'au moins deux acides a,w-aminocarboxyliques ou d'au moins deux lactames ayant de 6 à 12 atomes de carbone ou d'un lactame et d'un acide aminocarboxylique n'ayant pas le même nombre d'atomes de carbone en présence éventuelle d'un limiteur de chaîne. A titre d'exemples d'acide a,w-aminocarboxylique aliphatique, on peut citer les acides aminocaproïques, amino-7-heptanoïque, amino-1 1 -undécanoïque et amino- 12-dodécanoïque. A titre d'exemples de lactame, on peut citer le caprolactame, l'oenantholactame et le lauryllactame. A titre d'exemples de diamines aliphatiques, on peut citer l’hexaméthylènediamine, la dodécaméthylènediamine et la triméthylhexaméthylène diamine. A titre d'exemples de diacides cycloaliphatiques, on peut citer l'acide 1 ,4- cyclohexyldicarboxylique. A titre d'exemples de diacides aliphatiques, on peut citer les acides butane-dioïque, adipique, azélaïque, subérique, sébacique, dodécanedicarboxylique, les acides gras dimérisés. Ces acides gras dimérisés ont de préférence une teneur en dimère d'au moins 98% ; de préférence ils sont hydrogénés ; il s’agit par exemple des produits commercialisés sous la marque "PRIPOL" par la société "CRODA", ou sous la marque EMPOL par la société BASF, ou sous la marque Radiacid par la société OLEON, et des polyoxyalkylènes a,w-diacides. A titre d'exemples de diacides aromatiques, on peut citer les acides téréphtalique (T) et isophtalique (I). A titre d'exemples de diamines cycloaliphatiques, on peut citer les isomères des bis-(4-aminocyclohexyl)-méthane (BACM), bis-(3-méthyl-4- aminocyclohexyl)méthane (BMACM) et 2-2-bis-(3-méthyl-4-aminocyclohexyl)- propane(BMACP), et le para-amino-di-cyclo-hexyl-méthane (PACM). Les autres diamines couramment utilisées peuvent être l'isophoronediamine (IPDA), la 2,6-bis-(aminométhyl)-norbornane (BAMN) et la pipérazine.
A titre d'exemples de blocs polyamides du troisième type, on peut citer les suivants :
- le PA 6.6/6, où 6.6 désigne des motifs hexaméthylènediamine condensée avec l'acide adipique et 6 désigne des motifs résultant de la condensation du caprolactame ;
- le PA 6.6/6.10/1 1/12, où 6.6 désigne l'hexaméthylènediamine condensée avec l'acide adipique, 6.10 désigne l'hexaméthylènediamine condensée avec l'acide sébacique, 1 1 désigne des motifs résultant de la condensation de l'acide aminoundécanoïque et 12 désigne des motifs résultant de la condensation du lauryllactame.
Les notations PA X/Y, PA X/Y/Z, etc. se rapportent à des copolyamides dans lesquels X, Y, Z, etc. représentent des unités homopolyamides telles que décrites ci-dessus. Avantageusement, les blocs polyamides du copolymère utilisé dans l’invention comprennent des blocs de polyamide PA 6, PA 11 , PA 12, PA 5.4, PA 5.9, PA 5.10, PA 5.12, PA 5.13, PA 5.14, PA 5.16, PA 5.18, PA 5.36, PA 6.4, PA 6.9, PA 6.10, PA 6.12, PA 6.13, PA 6.14, PA 6.16, PA 6.18, PA 6.36, PA 10.4, PA 10.9, PA 10.10, PA 10.12, PA 10.13, PA 10.14, PA 10.16, PA 10.18, PA 10.36, PA 10.T, PA 12.4, PA 12.9, PA 12.10, PA 12.12, PA 12.13, PA 12.14, PA 12.16, PA 12.18, PA 12.36, PA 12.T, ou des mélanges ou copolymères de ceux-ci ; et de préférence comprennent des blocs de polyamide PA 6, PA 11 , PA 12, PA 6.10, PA 10.10, PA 10.12, ou des mélanges ou copolymères de ceux-ci.
Les blocs polyéthers sont constitués de motifs d’oxyde d'alkylène.
Les blocs polyéthers peuvent notamment être des blocs PEG (polyéthylène glycol) c'est à dire constitués de motifs oxyde d'éthylène, et/ou des blocs PPG (propylène glycol) c'est à dire constitués de motifs oxyde de propylène, et/ou des blocs P03G (polytriméthylène glycol) c’est-à-dire constitués de motifs polytriméthylène ether de glycol, et/ou des blocs PTMG c'est à dire constitués de motifs tetraméthylène de glycol appelés aussi polytétrahydrofurane. Les copolymères PEBA peuvent comprendre dans leur chaîne plusieurs types de polyéthers, les copolyéthers pouvant être à blocs ou statistiques.
On peut également utiliser des blocs obtenus par oxyéthylation de bisphénols, tels que par exemple le bisphénol A. Ces derniers produits sont décrits notamment dans le document EP 613919.
Les blocs polyéthers peuvent aussi être constitués d'amines primaires éthoxylées. A titre d'exemple d'amines primaires éthoxylées on peut citer les produits de formule :
H - (OCH2CH2)m—N - (CH2CH20)n— H
(CH,),
CH3
dans laquelle m et n sont des entiers compris entre 1 et 20 et x un entier compris entre 8 et 18. Ces produits sont par exemple disponibles dans le commerce sous la marque NORAMOX® de la société CECA et sous la marque GENAMIN® de la société CLARIANT.
Les blocs souples polyéthers peuvent comprendre des blocs polyoxyalkylènes à bouts de chaînes Nhh, de tels blocs pouvant être obtenus par cyanoacétylation de blocs polyoxyalkylène a,w-dihydroxylés aliphatiques appelées polyétherdiols. Plus particulièrement, les produits commerciaux Jeffamine ou Elastamine peuvent être utilisés (par exemple Jeffamine® D400, D2000, ED 2003, XTJ 542, produits commerciaux de la société Huntsman, également décrits dans les documents JP 2004346274, JP 2004352794 et EP 148201 1 ).
Les blocs polyétherdiols sont soit utilisés tels quels et copolycondensés avec des blocs polyamides à extrémités carboxyliques, soit aminés pour être transformés en polyéthers diamines et condensés avec des blocs polyamides à extrémités carboxyliques. La méthode générale de préparation en deux étapes des copolymères PEBA ayant des liaisons esters entre les blocs PA et les blocs PE est connue et est décrite, par exemple, dans le document FR 2846332. La méthode générale de préparation des copolymères PEBA de l’invention ayant des liaisons amides entre les blocs PA et les blocs PE est connue et décrite, par exemple dans le document EP 148201 1 . Les blocs polyéthers peuvent être aussi mélangés avec des précurseurs de polyamide et un limiteur de chaîne diacide pour préparer les polymères à blocs polyamides et blocs polyéthers ayant des motifs répartis de façon statistique (procédé en une étape).
Bien entendu, la désignation PEBA dans la présente description de l’invention se rapporte aussi bien aux PEBAX® commercialisés par Arkema, aux Vestamid® commercialisés par Evonik®, aux Grilamid® commercialisés par EMS, qu’aux Pelestat® type PEBA commercialisés par Sanyo ou à tout autre PEBA d’autres fournisseurs.
Si les copolymères à blocs décrits ci-dessus comprennent généralement au moins un bloc polyamide et au moins un bloc polyéther, la présente invention couvre également tous les alliages de copolymères comprenant deux, trois, quatre (voire plus) blocs différents choisis parmi ceux décrits dans la présente description, dès lors que ces blocs comportent au moins des blocs polyamides et polyéthers.
Par exemple, l’alliage de copolymère selon l’invention peut comprendre un copolymère segmenté à blocs comprenant trois types de blocs différents (ou « tribloc »), qui résulte de la condensation de plusieurs des blocs décrits ci-dessus. Ledit tribloc est de préférence choisi parmi les copolyétheresteramides et les copolyétheramideuréthanes.
Des copolymères PEBA particulièrement préférés dans le cadre de l’invention sont les copolymères comportant des blocs :
- PA 1 1 et PEG ; - PA 1 1 et PTM G ;
- PA 12 et PEG ;
- PA 12 et PTMG ;
- PA 6.10 et PEG ;
- PA 6.10 et PTMG ;
- PA 6 et PEG ;
- PA 6 et PTMG.
La mousse selon l’invention comporte un copolymère PEBA tel que décrit ci-dessus : de préférence un seul tel copolymère est utilisé. Il est toutefois possible d’utiliser un mélange de deux ou plus de deux copolymères PEBA tels que décrits ci-dessus.
La masse molaire moyenne en nombre des blocs polyamides dans le copolymère PEBA vaut de préférence de 100 à 20000 g/mol, plus préférentiellement de 200 à 10000 g/mol, encore plus préférentiellement de 200 à 1500 g/mol. Dans des modes de réalisations, la masse molaire moyenne en nombre des blocs polyamides dans le copolymère PEBA vaut de 100 à 200 g/mol, ou de 200 à 500 g/mol, ou de 500 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 5000 g/mol, ou de 5000 à 6000 g/mol, ou de 6000 à 7000 g/mol, ou de 7000 à 8000 g/mol, ou de 8000 à 9000 g/mol, ou de 9000 à 10000 g/mol, ou de 10000 à 1 1000 g/mol, ou de 1 1000 à 12000 g/mol, ou de 12000 à 13000 g/mol, ou de 13000 à 14000 g/mol , ou de 14000 à 15000 g/mol , ou de 15000 à 16000 g/mol, ou de 16000 à 17000 g/mol, ou de 17000 à 18000 g/mol, ou de 18000 à 19000 g/mol, ou de 19000 à 20000 g/mol.
La masse molaire moyenne en nombre des blocs polyéthers vaut de préférence de 100 à 6000 g/mol, plus préférentiellement de 200 à 3000 g/mol, encore plus préférentiellement de 800 à 2500 g/mol. Dans des modes de réalisations, la masse molaire moyenne en nombre des blocs polyéthers vaut de 100 à 200 g/mol, ou de 200 à 500 g/mol, ou de 500 à 800 g/mol, ou de 800 à 1000 g/mol, ou de 1000 à 1500 g/mol, ou de 1500 à 2000 g/mol, ou de 2000 à 2500 g/mol, ou de 2500 à 3000 g/mol, ou de 3000 à 3500 g/mol, ou de 3500 à 4000 g/mol, ou de 4000 à 4500 g/mol, ou de 4500 à 5000 g/mol, ou de 5000 à 5500 g/mol, ou de 5500 à 6000 g/mol.
La masse molaire moyenne en nombre est fixée par la teneur en limiteur de chaîne. Elle peut être calculée selon la relation :
Mn = n monomère X MWmotif de répétition / niimiteur de chaîne MWlimiteur de chaîne Dans cette formule, nmonomère représente le nombre de moles de monomère, niimiteur de chaîne représente le nombre de moles de limiteur (par exemple diacide) en excès, MWmotif de répétition représente la masse molaire du motif de répétition, et MWiimiteur de chaîne représente la masse molaire du limiteur (par exemple diacide) en excès.
La masse molaire moyenne en nombre des blocs polyamides et des blocs polyéthers peut être mesurée avant la copolymérisation des blocs par chromatographie sur gel perméable (GPC).
Avantageusement, le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère vaut de 0,1 à 10, de préférence de 0,3 à 3, encore plus préférentiellement de 0,3 à 0,9. En particulier, le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère peut être de 0,1 à 0,2, ou de 0,2 à 0,3, ou de 0,3 à 0,4, ou de 0,4 à 0,5, ou de 0,5 à 0,6, ou de 0,6 à 0,7, ou de 0,7 à 0,8, ou de 0,8 à 0,9, ou de 0,9 à 1 , ou de 1 à 1 ,5, ou de 1 ,5 à 2, ou de 2 à 2,5, ou de 2,5 à 3, ou de 3 à 3,5, ou de 3,5 à 4, ou de 4 à 4,5, ou de 4,5 à 5, ou de 5 à 5,5, ou de 5,5 à 6, ou de 6 à 6,5, ou de 6,5 à 7, ou de 7 à 7,5, ou de 7,5 à 8, ou de 8 à 8,5, ou de 8,5 à 9, ou de 9 à 9,5, ou de 9,5 à 10.
De préférence, le copolymère utilisé dans l’invention présente une dureté instantanée inférieure ou égale à 40 Shore D, de préférence encore inférieure ou égale à 35 Shore D. Les mesures de dureté peuvent être effectuées selon la norme ISO 868.
Le copolymère à blocs polyamides et à blocs polyéthers est utilisé pour former une mousse, de préférence sans étape de réticulation. La mousse est formée en mélangeant le copolymère à l’état fondu avec un agent d’expansion, puis en réalisant une étape de moussage.
Selon un mode de réalisation, la mousse ainsi formée consiste essentiellement, voire consiste, en le copolymère décrit ci-dessus (ou les copolymères, si un mélange de copolymères est utilisé) et optionnellement l’agent d’expansion, si celui-ci demeure présent dans les pores de la mousse, notamment s’il s’agit d’une mousse à pores fermés.
Le copolymère à blocs polyamides et à blocs polyéthers peut être combiné à divers additifs, par exemple des copolymères d’éthylène et acétate de vinyle ou EVA (par exemple ceux commercialisés sous le nom d’Evatane® par Arkema), ou des copolymères d’éthylène et d’acrylate, ou des copolymères d’éthylène et d’alkyl(méth)acrylate, par exemple ceux commercialisé sous le nom de Lotryl® par Arkema. Ces additifs peuvent permettre d’ajuster la dureté de la pièce moussée, son aspect et son confort. Les additifs peuvent être ajoutés dans une teneur de 0 à 50 % en masse, préférentiellement de 5 à 30 % en masse, par rapport au copolymère à blocs polyamides et à blocs polyéthers.
L’agent d’expansion peut être un agent chimique ou physique. De préférence, il s’agit d’un agent physique, tel que par exemple le diazote ou le dioxyde de carbone, ou un hydrocarbure, chlorofluorocarbure, hydrochlorocarbure, hydrofluorocarbure ou hydrochlorofluorocarbure (saturé ou insaturé). Par exemple le butane ou le pentane peuvent être utilisés.
Un agent d’expansion physique est mélangé avec le copolymère sous forme liquide ou supercritique, puis converti en phase gazeuse lors de l’étape de moussage.
Selon des modes de réalisation préférés, le mélange du copolymère et de l’agent d’expansion est injecté dans un moule, et le moussage est produit par l’ouverture du moule. Cette technique permet de produire directement des objets moussés tridimensionnels aux géométries complexes.
Il s’agit également d’une technique relativement simple à mettre en œuvre, notamment par rapport à certains procédés de fusion de particules moussées tels que décrits dans l’art antérieur : en effet, le remplissage du moule par des granulés moussés de polymère puis la fusion des particules pour assurer une tenue mécanique des pièces sans détruire la structure de la mousse sont des opérations complexes.
D’autres techniques de moussage utilisables sont notamment le moussage en « batch » et le moussage en extrusion.
La mousse selon l’invention présente de préférence une densité inférieure ou égale à 800 kg/m3, plus préférentiellement inférieure ou égale à 600 kg/m3, de manière plus particulièrement préférée inférieure ou égale à 400 kg/m3, voire inférieure ou égale à 300 kg/m3. Elle peut par exemple présenter une densité de 50 à 800 kg/m3, et de manière plus particulièrement préférée de 100 à 600 kg/m3. Le contrôle de la densité peut être réalisé par une adaptation des paramètres du procédé de fabrication.
De préférence, cette mousse présente une résilience de rebondissement, selon la norme ISO 8307, supérieure ou égale à 55 %.
De préférence, cette mousse présente une déformation rémanente en compression, selon la norme ISO 7214, inférieure ou égale à 10 %, et de manière plus particulièrement préférée inférieure ou égale à 8 %.
De préférence, cette mousse présente également d’excellentes propriétés de tenue en fatigue et d’amortissement. La mousse selon l’invention peut être utilisée pour fabriquer des pièces de filtrage de vibrations. Par exemple, il peut s’agir de pieds de robots ménagers, tels que les mélangeurs (ou « blenders ») et les mixeurs de cuisine. Il peut également s’agir de pièces automobiles ou de pièces de tout véhicule, tels que les véhicules aériens ou nautiques, par exemple les hélicoptères, les avions, les bateaux. Des exemples de telles pièces de filtration sont : les dispositifs de suspension des boîtes de vitesse de véhicule automobile, les dispositifs de suspension des boîtes de transmission d’hélicoptère.
Un avantage des objets en mousse selon l’invention est qu’ils peuvent être aisément recyclés, par exemple en les fondant dans une extrudeuse équipée d’une sortie de dégazage (optionnellement après les avoir découpés en morceaux).
EXEMPLES
Les exemples suivants illustrent l'invention sans la limiter.
Dans les exemples ci-dessous, le tangente delta (tan delta) des PEBA (moussés ou non) est calculé par le rapport du module dissipatif (ou « loss module », E”) sur le module élastique (ou « storage modulus », E’). Le module dissipatif E” et le module élastique E’ sont mesurés par analyse mécanique dynamique (DMA).
Exemple 1
Une mousse est formée à partir d’un PEBA A (appelée « PEBA A-1 moussé »). Le PEBA A-1 moussé a une densité de 0,65 g/cm3.
Le PEBA A est un copolymère à blocs de PA1 1 et à blocs de PTMG de densité 1 ,02 g/cm3, ayant une température de fusion de 135°C et une dureté de 32 Shore D 15s.
Le PEBA A-1 moussé est comparé au PEBA A non moussé.
Le tangente delta du PEBA A-1 moussé et du PEBA A non moussé est mesuré comme indiqué ci-dessus. Les conditions opératoires de la mesure du module dissipatif E” et du module élastique E’ par DMA sont les suivantes :
- Appareil utilisé : DMA Q800 2 ;
- Géométries (outils) : Tension / Dual Cantilever ;
- Test : Balayage en température avec rampe de 2°C/min ;
Fréquence : 1 Hz ;
- Amplitude : 20 pm.
Les résultats sont résumés dans le tableau ci-dessus.
Le PEBA A-1 moussé présente une tangente delta inférieure à celle du PEBA A non moussé, par conséquent il possède une meilleure propriété de filtrage des vibrations aux températures testées.
Exemple 2
Une mousse est formée à partir d’un PEBA B (appelée « PEBA B moussé »). Le PEBA B moussé a une densité de 0,1 g/cm3.
Le PEBA B est un copolymère à blocs de PA12 et à blocs de PTMG de densité 1 ,01 g/cm3, ayant une température de fusion de 159°C et une dureté de 50 Shore D 15 s.
Le PEBA B moussé est comparé au PEBA B non moussé.
La tangente delta du PEBA B moussé et du PEBA B non moussé est mesurée comme indiqué ci-dessus. Les conditions opératoires de la mesure du module dissipatif E” et du module élastique E’ par DMA sont identiques à celles de l’exemple 1.
Les résultats sont résumés en figure 1.
Le PEBA B moussé a une tangente delta inférieure à celui du PEBA B non moussé, par conséquent il possède une meilleure propriété de filtrage des vibrations aux températures testées.
Exemple 3
Une mousse est formée à partir du PEBA A (appelée « PEBA A-2 moussé »). Le PEBA A-2 moussé a une densité de 0,2 g/cm3. La tangente delta du PEBA A-2 moussé est mesurée comme indiqué ci-dessus. Les conditions opératoires de la mesure du module dissipatif E” et du module élastique E’ par DMA sont les suivantes :
Appareil utilisé: Q800 ;
- Outils : Compression sur plot de diamètre de 12 mm découpé dans les mousses ;
- Test : Balayage en fréquence de 10 Hz à 100 Hz ;
Température : 20°C ;
Déformation appliquée : 0,1 % ;
Force statique : 5 N.
Les résultats sont résumés en figure 2.
La mousse PEBA A-2 présente une très basse tangente delta sur une large gamme de fréquence à 20°C.

Claims

REVENDICATIONS
1. Utilisation d’une mousse de copolymère à blocs polyamides et à blocs polyéthers pour le filtrage des vibrations.
2. Utilisation selon la revendication 1 , dans laquelle la mousse est non réticulée.
3. Utilisation selon la revendication 1 ou 2, dans lequel les blocs polyamides sont des blocs de polyamide 6, de polyamide 11 , de polyamide 12, de polyamide 5.4, de polyamide 5.9, de polyamide 5.10, de polyamide 5.12, de polyamide 5.13, de polyamide 5.14, de polyamide 5.16, de polyamide 5.18, de polyamide 5.36, de polyamide 6.4, de polyamide 6.9, de polyamide 6.10, de polyamide 6.12, de polyamide 6.13, de polyamide 6.14, de polyamide 6.16, de polyamide 6.18, de polyamide 6.36, de polyamide 10.4, de polyamide 10.9, de polyamide 10.10, de polyamide 10.12, de polyamide 10.13, de polyamide 10.14, de polyamide 10.16, de polyamide 10.18, de polyamide 10.36, de polyamide 10.T, de polyamide 12.4, de polyamide 12.9, de polyamide 12.10, de polyamide 12.12, de polyamide 12.13, de polyamide 12.14, de polyamide 12.16, de polyamide 12.18, de polyamide 12.36, de polyamide 12.T ou des mélanges, ou des copolymères, de ceux-ci, de préférence de polyamide 11 , de polyamide 12, de polyamide 6, ou de polyamide 6.10.
4. Utilisation selon l’une des revendications 1 à 3, dans laquelle les blocs polyéthers sont des blocs de polyéthylène glycol, de propylène glycol, de polytriméthylène glycol, de polytétrahydrofurane, ou des mélanges, ou des copolymères, de ceux-ci, de préférence de polyéthylène glycol ou de polytétrahydrofurane.
5. Utilisation selon l’une des revendications 1 à 4, dans laquelle
- les blocs polyamides du copolymère ont une masse molaire moyenne en nombre de 100 à 20000 g/mol, de préférence de 200 à 10000 g/mol, encore plus préférentiellement de 200 à 1500 g/mol ; et/ou
- les blocs polyéthers du copolymère ont une masse molaire moyenne en nombre de 100 à 6000 g/mol, de préférence de 200 à 3000 g/mol, encore plus préférentiellement de 800 à 2500 g/mol.
6. Utilisation selon l’une des revendications 1 à 5, dans laquelle le rapport massique des blocs polyamides par rapport aux blocs polyéthers du copolymère est de 0,1 à 10, de préférence de 0,3 à 3, encore plus préférentiellement de 0,3 à 0,9.
7. Utilisation selon l’une des revendications 1 à 6, dans laquelle la mousse présente une densité inférieure ou égale à 800 kg/m3, de préférence inférieure ou égale à 600 kg/m3, plus préférentiellement inférieure ou égale à 400 kg/m3, de manière plus particulièrement préférée inférieure ou égale à 300 kg/m3.
8. Utilisation selon l’une des revendications 1 à 7, dans laquelle la mousse contient également un ou plusieurs additifs, de préférence choisis parmi les copolymères d’éthylène et acétate de vinyle, les copolymères d’éthylène et d’acrylate, et les copolymères d’éthylène et d’alkyl(méth)acrylate.
9. Pièce de filtrage de vibrations constituée d’une mousse de copolymère à blocs polyamides et à blocs polyéthers telle que définie dans l’une des revendications 1 à 8.
10. Pièce de filtrage de vibrations comprenant au moins un élément constitué d’une mousse de copolymère à blocs polyamides et à blocs polyéthers telle que définie dans l’une des revendications 1 à 8.
11. Pièce de filtrage de vibrations selon la revendication 9 ou 10 choisie parmi les pieds de robot ménagers, tels que les mélangeurs et les mixeurs, les pièces automobiles ou de tout véhicule, tels que les dispositifs de suspension des boîtes de vitesse de véhicule automobile, ou les dispositifs de suspension des boîtes de transmission d’hélicoptère.
EP19753138.7A 2018-07-03 2019-07-02 Utilisation de mousses de peba pour le filtrage des vibrations Pending EP3818096A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856127A FR3083540B1 (fr) 2018-07-03 2018-07-03 Utilisation de mousses de peba pour le filtrage des vibrations
PCT/FR2019/051626 WO2020008134A1 (fr) 2018-07-03 2019-07-02 Utilisation de mousses de peba pour le filtrage des vibrations

Publications (1)

Publication Number Publication Date
EP3818096A1 true EP3818096A1 (fr) 2021-05-12

Family

ID=63312147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19753138.7A Pending EP3818096A1 (fr) 2018-07-03 2019-07-02 Utilisation de mousses de peba pour le filtrage des vibrations

Country Status (5)

Country Link
EP (1) EP3818096A1 (fr)
CN (1) CN112368319B (fr)
FR (1) FR3083540B1 (fr)
TW (1) TWI808212B (fr)
WO (1) WO2020008134A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3688067B1 (fr) * 2018-12-19 2021-12-01 Evonik Operations GmbH Matière de moulage contenant des amides de polyéther séquencé (peba)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2748207A1 (de) * 1976-11-05 1978-05-18 Ciba Geigy Ag Sulfonyl-tetrazole als chemische treibmittel
DE3808275A1 (de) * 1988-03-12 1989-09-21 Bayer Ag Brandschutzelemente
US5128073A (en) * 1989-10-26 1992-07-07 General Electric Company Expanding thermoplastic resin beads with very high frequency energy
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
DE4428520C2 (de) * 1994-08-11 1998-09-17 Inventa Ag Schwingungsdämpfendes Bau- oder Funktionselement
EP1318008B1 (fr) * 2001-12-05 2006-07-12 JSP Corporation Revêtement multicouche à mousse de polyoléfine
FR2846332B1 (fr) 2002-10-23 2004-12-03 Atofina Copolymeres transparents a blocs polyamides et blocs polyethers
JP4193588B2 (ja) 2003-05-26 2008-12-10 宇部興産株式会社 ポリアミド系エラストマー
US7056975B2 (en) 2003-05-27 2006-06-06 Ube Industries, Ltd. Thermoplastic resin composition having improved resistance to hydrolysis
JP4161802B2 (ja) 2003-05-27 2008-10-08 宇部興産株式会社 ポリアミド組成物
EP1833566A2 (fr) * 2004-12-20 2007-09-19 Meridian Research and Development Articles detectables par rayonnement et de protection
EP1783156A1 (fr) * 2005-11-03 2007-05-09 Arkema France Procédé de fabrication de copolymères ayant des blocs polyamide et polyether
CN105080781A (zh) * 2014-05-22 2015-11-25 劲捷生物科技股份有限公司 加速黏合剂固化反应的涂布器及方法
FR3047245B1 (fr) * 2016-01-29 2018-02-23 Arkema France Mousse de copolymere a blocs polyamides et a blocs polyethers
CN106084447B (zh) * 2016-05-13 2018-08-14 宁波大学 一种热塑性高分子组合物发泡开孔材料及其制备方法
CN107778516A (zh) * 2017-10-19 2018-03-09 宁波致微新材料科技有限公司 一种聚合物微孔发泡材料的制备方法

Also Published As

Publication number Publication date
CN112368319A (zh) 2021-02-12
TW202006020A (zh) 2020-02-01
WO2020008134A1 (fr) 2020-01-09
FR3083540A1 (fr) 2020-01-10
FR3083540B1 (fr) 2021-01-08
TWI808212B (zh) 2023-07-11
CN112368319B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
EP3408317B1 (fr) Mousse de copolymère à blocs polyamides et à blocs polyéthers
EP3580266B1 (fr) Composition de mousse de copolymère à blocs polyamides et à blocs polyéthers non réticule
EP1460109B1 (fr) Mélanges de polyamide et de polyoléfine à matrice polyamide et contenant des nanocharges
WO2007093752A2 (fr) Nouvelles utilisations d'un copolymere comprenant des blocs polyamide et des blocs polyethers provenant au moins en partie du polytrimethylene ether glycol
FR2841630A1 (fr) Tuyaux flexibles en polyamide pour l'air comprime
FR3019553A1 (fr) Nouvelle composition thermoplastique modifiee choc presentant une plus grande fluidite a l'etat fondu
EP1459885A1 (fr) Structure multicouche à base de polyamides et de copolymères greffés à blocs polyamides
WO2019138202A1 (fr) Composition thermoplastique élastomère - silicone
EP0742809A1 (fr) Films a base de polyamide et de polymeres a blocs polyamides et blocs polyethers
WO2006108959A1 (fr) Melanges a base d’elastomeres thermoplastiques
WO2020008134A1 (fr) Utilisation de mousses de peba pour le filtrage des vibrations
EP3197938B1 (fr) Utilisation d'un copolymere a blocs pour la protection de pieces a base de metaux
EP0787761A1 (fr) Films a base de polyamides et de polyoléfines
EP1496299A1 (fr) Tube multicouche a base de polyamides pour le transport de fluides
EP3720909A1 (fr) Gaine externe de flexible offshore comportant au moins un copolymere a blocs
EP3720897A1 (fr) Copolymere a blocs resistant a l'hydrolyse et permeable au co2
WO2020008133A1 (fr) Procede de fabrication d'une mousse de copolymere a blocs polyamides et a blocs polyethers
EP3938433A1 (fr) Procédé de fabrication d'une mousse de copolymère à blocs polyamides et à blocs polyéthers
WO2020188210A1 (fr) Copolymères à blocs rigides et à blocs souples branchés
EP4284620A1 (fr) Copolymère à blocs polyamides et à blocs polyéthers pour la fabrication d'un article moussé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)