EP3814546B1 - Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys - Google Patents

Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys Download PDF

Info

Publication number
EP3814546B1
EP3814546B1 EP19735307.1A EP19735307A EP3814546B1 EP 3814546 B1 EP3814546 B1 EP 3814546B1 EP 19735307 A EP19735307 A EP 19735307A EP 3814546 B1 EP3814546 B1 EP 3814546B1
Authority
EP
European Patent Office
Prior art keywords
titanium
preparation
content
titanium alloys
oxide layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19735307.1A
Other languages
German (de)
French (fr)
Other versions
EP3814546A2 (en
Inventor
Tobias Mertens
Benedikt Langer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of EP3814546A2 publication Critical patent/EP3814546A2/en
Application granted granted Critical
Publication of EP3814546B1 publication Critical patent/EP3814546B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/64Treatment of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/20Other heavy metals
    • C23G1/205Other heavy metals refractory metals

Definitions

  • the invention relates to a method for surface pretreatment of an aircraft with an article made of titanium.
  • titanium in the aerospace industry has increased over the last 30 years, accounting for up to 15% of the structural weight in recent aircraft generations (e.g. Airbus 350 XWB, Boeing 787).
  • the reasons for the increase could be due to the need to replace aluminum structures at connection points between composites and metal structures due to problems caused by galvanic corrosion.
  • the corrosion resistance and strength-to-weight ratio of titanium and its alloys make it interesting for new design concepts. Titanium materials show problems with long-term stable adhesion. Rivet rash on titanium rivet heads, color loss at crack stops or delamination of fiber-metal laminates are some examples of this problem.
  • Mechanical surface treatments such as sandblasting are mainly used to create a macroscopically rough surface and to remove of residues.
  • chromic acid anodizing (CAA) with small amounts of fluorides in the electrolyte.
  • the nanostructures are produced by localized chemical dissolution (fluorine ions) with controlled field-assisted oxidation and dissolution reactions.
  • CAA leads to high bonding resistance.
  • alkaline electrolytes are discussed as a pretreatment for structural bonding of titanium.
  • Porous oxide layers could be produced on titanium using sodium hydroxide-based electrolytes. Good durability of adhesive bonds under moisture and stress can be achieved by sodium hydroxide anodizing.
  • DE 3427543 discloses the use of electrolytes containing sodium hydroxide with complexing agents such as ethylenediaminetetraacetic acid (EDTA) to increase the dissolution rate. This NaTESi process can achieve a highly porous oxide layer and good long-term stability.
  • EDTA ethylenediaminetetraacetic acid
  • DE102011106764B4 discloses an anodizing process based on sodium hydroxide, methylglycinediacetic acid and disodium tartrate dihydrate as well as penta-sodium phosphate.
  • DE 34 27 543 A1 discloses a method for surface treatment of workpieces made of titanium or titanium alloys by immersing the workpieces in an alkaline bath consisting of sodium hydroxide (NaOH) with a concentration of 0.5 to 10m, sodium tartrate with a concentration of 0.1 to 1m, and ethylenediaminetetraacetic acid (EDTA) with a concentration of 0.01 to 1m.
  • the alkaline bath is heated to a temperature between 30° and 110°C.
  • the treatment time is between 5 and 90 minutes.
  • the state of the art lacks a process that can ensure long-term stable adhesion to titanium without using an energy source such as a laser or an electric field or chemical components that do not permanently comply with regulations.
  • Anodizing processes are limited in terms of application. Due to physics (Faraday effect), they cannot be used in pipes, cavities or channels without additional effort. Shadow effects could also lead to a non-homogeneous oxide layer development. Often the anodizing parameters have to be adapted for each titanium alloy used.
  • Laser treatments can produce a nanostructured titanium surface that results in good long-term adhesion.
  • the laser is a line-of-sight method, perpendicular access to the surface must be ensured. For complex parts, this is not possible without great effort.
  • a laser also involves a melting process of the surface, which, even for nanosecond pulsed systems, causes a heat-affected zone with different properties compared to the base material.
  • the state of the art lacks a process that can ensure long-term stable adhesion to titanium without using an energy source such as a laser or an electric field or chemical components that do not permanently comply with regulations.
  • a preparation for the surface pretreatment of titanium or titanium alloys containing 200 to 400 g/l NaOH and 10 to 150 g/l MGDA in water and optionally a polymer thickener in concentrations of 2 to 40 g/l in water, the preparation having a pH value of at least 12, preferably at least 13, eliminates the disadvantages of the prior art.
  • Surface pretreatment in the sense of the present invention is a chemical conversion of oxide layers of titanium or titanium alloy. Titanium alloys consist predominantly of titanium, based on atomic %. Using the preparation, a conversion of the existing oxide layer, which is naturally occurring or can be produced artificially, into a nanostructured porous surface can be achieved.
  • Such nanostructured porous surfaces can also be referred to as a nanostructured network. These nanostructured porous surfaces can enable long-term stable adhesion of organic coatings to titanium substrates.
  • the preparation is free of buffers, such as citrate-citric acid buffer, contains no sulfate, contains no enzymes, in particular no amylases or proteases. The surfactant content is very low and does not exceed 5% by weight based on MGDA.
  • the preparation is also free of bleaching agents and silicates. The preparation can be used to treat surfaces of titanium or titanium alloys without current and/or at low temperatures.
  • MGDA is methylglycinediacetic acid, which also includes the salts of this acid, such as the trisodium salt.
  • the acid has the structural formula (HOOC-CH 2 -) 2 N-CH(CH 3 )-COOH.
  • Quantities given in this document refer to the trisodium salt of MGDA.
  • the invention comprises a method for surface pretreatment of an aircraft with an article made of titanium or titanium alloys comprising bringing the article made of titanium or titanium alloys into contact with a preparation containing 200 to 400 g/l NaOH and 10 to 150 g/l MGDA in water and optionally a polymeric thickener in concentrations of 2 to 40 g/l, wherein the content of further ingredients is less than 1 g/l and the pH of the preparation has a pH of at least 12, preferably at least 13, for 5 to 60 minutes at 20 to 80°C.
  • Contacting can be done by dipping, spraying or painting.
  • the method according to the invention can produce nanostructures with dimensions of less than 100 nm and thus achieve mechanical and chemical anchoring through an enlarged surface, which improves the durability and adhesion properties on titanium or titanium alloys treated in this way.
  • the fluoride content in the preparation is not detectable or is less than 0.001% by weight, based on the fluoride contained in the preparation used. It is also preferred if the NaOH content is 300 to 375 g/l, preferably 350 g/l, and the MGDA content is 30 to 100 g/l, preferably 60 g/l. It is also preferred if the preparation contains polymeric thickeners. It is preferred if xanthan gum or agar-agar is used as the thickener and/or the thickener is present in concentrations of preferably 10 to 15 g/l. It is also preferred if the content of other ingredients in the preparation is less than 0.5 g/l, preferably 0.3 g/l. It is also preferred if the contacting is carried out by dipping. It is also preferred if the contacting is carried out for 10 to 30 minutes at 40 to 70°C. Furthermore, it is preferred if the contact is carried out for 20 minutes at 60°C.
  • the method according to the invention particularly preferably comprises a pretreatment to ensure wettability of the titanium or titanium alloys, in particular with surface-active substances.
  • the method according to the invention further preferably comprises a post-treatment to wash off the preparation, in particular by washing off with aqua demin.
  • the examples show various treatments of different titanium alloys.
  • the conditions are given in each case.
  • the material samples were washed with isopropanol or with an alkaline degreasing agent (Metaclean T2001, only tests 7 and 8). After drying, they were treated with the specified aqueous solutions by immersion without movement or stirring. The solutions had a pH value of approx. 14. After treatment, the resulting surface was visually assessed.
  • An iridescent surface indicates a surface modification with characteristic dimensions in the range of the light wavelength (nanostructured surface).
  • Ti6Al4V 240 30 60 15 ++ green/blue iridescent surface 2 Ti6Al4V 240 60 60 15 ++ iridescent surface 3 Ti6Al4V 350 120 75 15 ++ iridescent surface 4 Ti6Al4V 350 - 65 15 Surface not nanostructured 5 Ti6Al4V 350 30 65 15 ++ iridescent surface 6 Ti6Al4V 450 30 65 15 + yellowish iridescent surface with violet spots 7 Ti6Al4V 200 30 65 15 ++ green/blue iridescent surface 8 Cp-Ti 200 30 65 15 ++ violet/blue iridescent surface 9 Ti6Al4V 350 60 60 15 ++ iridescent surface
  • SEM images of the surface obtained in experiment 5 show a sponge-like surface structure with pore sizes of 30 to 100 nm.
  • the pore walls are open and irregularly net-like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

Gebiet der ErfindungField of the invention

Die Erfindung betrifft ein Verfahren zur Oberflächenvorbehandlung eines Flugzeugs mit einem Artikel aus Titan.The invention relates to a method for surface pretreatment of an aircraft with an article made of titanium.

Hintergrund der ErfindungBackground of the invention

Der Einsatz von Titan in der Luft- und Raumfahrtindustrie hat in den letzten 30 Jahren zugenommen, was in jüngsten Flugzeuggenerationen (z.B. Airbus 350 XWB, Boeing 787) bis zu 15% des Strukturgewichts ausmacht. Die Gründe für den Anstieg könnten auf die Notwendigkeit zurückzuführen sein, Aluminiumstrukturen an Verbindungspunkten zwischen Verbundwerkstoffen und Metallstrukturen aufgrund von Problemen durch galvanische Korrosion zu ersetzen. Die Korrosionsbeständigkeit und das Verhältnis von Festigkeit zu Gewicht von Titan und seinen Legierungen machen es für neue Designkonzepte interessant. Titanwerkstoffe zeigen Probleme hinsichtlich langzeitstabiler Haftung. Nietausschlag an Titan- Nietköpfen, Farbverlust an Rissanschlägen oder Delamination von Fasermetall-Laminaten sind einige Beispiele für dieses Problem.The use of titanium in the aerospace industry has increased over the last 30 years, accounting for up to 15% of the structural weight in recent aircraft generations (e.g. Airbus 350 XWB, Boeing 787). The reasons for the increase could be due to the need to replace aluminum structures at connection points between composites and metal structures due to problems caused by galvanic corrosion. The corrosion resistance and strength-to-weight ratio of titanium and its alloys make it interesting for new design concepts. Titanium materials show problems with long-term stable adhesion. Rivet rash on titanium rivet heads, color loss at crack stops or delamination of fiber-metal laminates are some examples of this problem.

Daher ist die Oberflächenbehandlung der wichtigste Schritt, um dauerhafte Verbindungen zu gewährleisten. Um die Haltbarkeit zu erhöhen, wurden Behandlungen für die Oberflächenmodifikation von Titan entwickelt.Therefore, surface treatment is the most important step to ensure durable bonds. To increase durability, treatments for the surface modification of titanium have been developed.

Mechanische Oberflächenbehandlungen wie Sandstrahlen werden hauptsächlich zur Erzeugung einer makroskopisch rauen Oberfläche und zur Entfernung von Rückständen eingesetzt.Mechanical surface treatments such as sandblasting are mainly used to create a macroscopically rough surface and to remove of residues.

Zur Herstellung langzeitstabiler Klebeverbindungen werden meist physikalische (z. B. Plasma oder Laser) oder nasschemische Behandlungen (z. B. Ätzen oder Eloxieren) eingesetzt. Anodisierungsverfahren werden in der Luftfahrtindustrie für die Vorbehandlung von Titan verwendet. Das gebräuchlichste Verfahren zum Erreichen poröser Oxidschichten ist Chromsäureanodisierung (CAA) mit geringen Mengen an Fluoriden im Elektrolyten. Die Nanostrukturen werden durch lokalisierte chemische Auflösung (Fluorionen) mit kontrollierten feldunterstützten Oxidations- und Auflösungsreaktionen hergestellt. CAA führt zu einer hohen Bindungsbeständigkeit. Neben der Anodisierung in sauren Elektrolyten werden alkalische Elektrolyte als Vorbehandlung zur strukturellen Bindung von Titan diskutiert. Unter Verwendung von auf Natriumhydroxid basierenden Elektrolyten könnten poröse Oxidschichten auf Titan erzeugt werden. Durch Natriumhydroxid-Anodisierung kann eine gute Haltbarkeit von Klebeverbindungen bei Feuchtigkeit und Stress erreicht werden. DE 3427543 offenbart die Verwendung von Elektrolyten mit Natriumhydroxid mit Komplexbildnern wie Ethylendiamintetraessigsäure (EDTA), um die Auflösungsgeschwindigkeit zu erhöhen. Durch diesen NaTESi-Prozess kann eine hochporöse Oxidschicht und eine gute Langzeitbeständigkeit erreicht werden.Physical (e.g. plasma or laser) or wet chemical treatments (e.g. etching or anodizing) are usually used to produce long-term stable adhesive bonds. Anodizing processes are used in the aviation industry for the pretreatment of titanium. The most common method to achieve porous oxide layers is chromic acid anodizing (CAA) with small amounts of fluorides in the electrolyte. The nanostructures are produced by localized chemical dissolution (fluorine ions) with controlled field-assisted oxidation and dissolution reactions. CAA leads to high bonding resistance. In addition to anodizing in acidic electrolytes, alkaline electrolytes are discussed as a pretreatment for structural bonding of titanium. Porous oxide layers could be produced on titanium using sodium hydroxide-based electrolytes. Good durability of adhesive bonds under moisture and stress can be achieved by sodium hydroxide anodizing. DE 3427543 discloses the use of electrolytes containing sodium hydroxide with complexing agents such as ethylenediaminetetraacetic acid (EDTA) to increase the dissolution rate. This NaTESi process can achieve a highly porous oxide layer and good long-term stability.

DE102011106764B4 offenbart ein Eloxalverfahren auf Basis von Natriumhydroxid, Methylglycindiessigsäure und Di-Natriumtartrat-Dihydrat sowie Penta-Natriumphosphat. DE102011106764B4 discloses an anodizing process based on sodium hydroxide, methylglycinediacetic acid and disodium tartrate dihydrate as well as penta-sodium phosphate.

Weiter sind Sol-Gel-Prozesse, das Rocatec-Verfahren, Pyrosilbehandlung bekannt.Sol-gel processes, the Rocatec process and Pyrosil treatment are also known.

DE 34 27 543 A1 offenbart ein Verfahren zur Oberflächenbehandlung von Werkstücken auf Titan oder Titanlegierungen durch Eintauchen der Werkstücke in ein alkalisches Bad, das aus Natronlauge (NaOH) mit einer Konzentration von 0,5 bis 10m, Natriumtartrat mit einer Konzentration von 0,1 bis 1 m, und Ethylendiamintetraessigsäure (EDTA) mit einer Konzentration von 0,01 bis 1 m besteht. Das alkalische Bad wird auf eine Temperatur zwischen 30° bis 110° C aufgeheizt. Die Behandlungsdauer beträgt zwischen 5 und 90 Minuten. DE 34 27 543 A1 discloses a method for surface treatment of workpieces made of titanium or titanium alloys by immersing the workpieces in an alkaline bath consisting of sodium hydroxide (NaOH) with a concentration of 0.5 to 10m, sodium tartrate with a concentration of 0.1 to 1m, and ethylenediaminetetraacetic acid (EDTA) with a concentration of 0.01 to 1m. The alkaline bath is heated to a temperature between 30° and 110°C. The treatment time is between 5 and 90 minutes.

Es fehlt dem Stand der Technik an einem Verfahren, dass eine langzeitstabile Haftung auf Titan gewährleisten kann, ohne eine Energiequelle wie Laser oder ein elektrisches Feld oder nicht dauerhaft regelungskonforme chemische Komponenten zu verwenden.The state of the art lacks a process that can ensure long-term stable adhesion to titanium without using an energy source such as a laser or an electric field or chemical components that do not permanently comply with regulations.

Anodisierungsverfahren sind in Bezug auf die Anwendung beschränkt. Aufgrund der Physik (Faraday-Effekt) können sie ohne zusätzlichen Aufwand nicht in Rohren, Kavitäten oder Kanälen eingesetzt werden. Auch Schatteneffekte könnten zu einer nicht homogenen Oxidschichtentwicklung führen. Oft müssen die Anodisierungsparameter für jede verwendete Titanlegierung angepasst werden.Anodizing processes are limited in terms of application. Due to physics (Faraday effect), they cannot be used in pipes, cavities or channels without additional effort. Shadow effects could also lead to a non-homogeneous oxide layer development. Often the anodizing parameters have to be adapted for each titanium alloy used.

Laserbehandlungen können eine nanostrukturierte Titanoberfläche erzeugen, die zu einer guten Langzeithaftung führt. Da der Laser jedoch eine Sichtlinienmethode ist, muss ein senkrechter Zugang zur Oberfläche gewährleistet sein. Bei komplexen Teilen ist dies nicht ohne großen Aufwand möglich. Ein Laser umfasst auch einen Schmelzprozess der Oberfläche, der selbst für Nanosekunden-gepulste Systeme eine Wärmeeinflusszone mit unterschiedlichen Eigenschaften im Vergleich zum Basismaterial verursacht.Laser treatments can produce a nanostructured titanium surface that results in good long-term adhesion. However, since the laser is a line-of-sight method, perpendicular access to the surface must be ensured. For complex parts, this is not possible without great effort. A laser also involves a melting process of the surface, which, even for nanosecond pulsed systems, causes a heat-affected zone with different properties compared to the base material.

Es fehlt dem Stand der Technik an einem Verfahren, dass eine langzeitstabile Haftung auf Titan gewährleisten kann, ohne eine Energiequelle wie Laser oder ein elektrisches Feld oder nicht dauerhaft regelungskonforme chemische Komponenten zu verwenden.The state of the art lacks a process that can ensure long-term stable adhesion to titanium without using an energy source such as a laser or an electric field or chemical components that do not permanently comply with regulations.

Beschreibung der ErfindungDescription of the invention

Es hat sich nun für den Fachmann völlig überraschend herausgestellt, dass eine Zubereitung zur Oberflächenvorbehandlung von Titan oder Titanlegierungen enthaltend 200 bis 400 g/l NaOH und 10 bis 150 g/l MGDA in Wasser und optional einem polymeren Verdicker in Konzentrationen von 2 bis 40 g/l in Wasser, wobei die Zubereitung einen pH-Wert von wenigstens 12, bevorzugt wenigstens 13 aufweist, den Nachteilen des Standes der Technik abhilft. Unter Oberflächenvorbehandlung im Sinne der vorliegenden Erfindung ist eine chemische Konversion von Oxidschichten des Titans oder der Titanlegierung zu verstehen. Titanlegierungen bestehen überwiegend aus Titan, bezogen auf Atom%. Unter Verwendung der Zubereitung kann eine Umwandlung der vorhandenen Oxidschicht, die natürlich entstanden oder künstlich herstellbar ist in eine nanostrukturierte poröse Oberfläche erreicht werden. Solche nanostrukturierten porösen Oberflächen können auch als nanostrukturiertes Netzwerk bezeichnet werden. Diese nanostrukturierten porösen Oberflächen können eine langzeitstabile Haftung von organischen Beschichtungen auf Titansubstraten ermöglichen. Weiter ist die Zubereitung frei von Puffern, etwa Citrat-Zitronensäurepuffer, enthält kein Sulfat, enthält keine Enzyme, insbesondere keine Amylasen oder Proteasen. Der Tensidgehalt ist sehr gering und übersteigt nicht den Wert von 5 Gewichts-% bezogen auf MGDA. Die Zubereitung ist weiter frei von Bleichmitteln und Silikaten. Mit der Zubereitung können Oberflächen von Titan oder Titanlegierungen stromlos und/oder bei niedriger Temperatur behandelt werden. MGDA ist Methylglycindiessigsäure, damit sind auch die Salze dieser Säure gemeint, etwa das Trinatriumsalz. Die Säure hat die Strukturformel

        (HOOC-CH2-)2 N-CH(CH3)-COOH.

It has now been found, completely surprisingly for the person skilled in the art, that a preparation for the surface pretreatment of titanium or titanium alloys containing 200 to 400 g/l NaOH and 10 to 150 g/l MGDA in water and optionally a polymer thickener in concentrations of 2 to 40 g/l in water, the preparation having a pH value of at least 12, preferably at least 13, eliminates the disadvantages of the prior art. Surface pretreatment in the sense of the present invention is a chemical conversion of oxide layers of titanium or titanium alloy. Titanium alloys consist predominantly of titanium, based on atomic %. Using the preparation, a conversion of the existing oxide layer, which is naturally occurring or can be produced artificially, into a nanostructured porous surface can be achieved. Such nanostructured porous surfaces can also be referred to as a nanostructured network. These nanostructured porous surfaces can enable long-term stable adhesion of organic coatings to titanium substrates. Furthermore, the preparation is free of buffers, such as citrate-citric acid buffer, contains no sulfate, contains no enzymes, in particular no amylases or proteases. The surfactant content is very low and does not exceed 5% by weight based on MGDA. The preparation is also free of bleaching agents and silicates. The preparation can be used to treat surfaces of titanium or titanium alloys without current and/or at low temperatures. MGDA is methylglycinediacetic acid, which also includes the salts of this acid, such as the trisodium salt. The acid has the structural formula

(HOOC-CH 2 -) 2 N-CH(CH 3 )-COOH.

Es handelt sich um einen bioabbaubaren wasserenthärtenden Zusatz für Geschirrspülmittel, der zur Vermeidung des weniger umweltverträglichen Einsatzes von Phosphaten oder schlecht abbaubaren Wasserenthärtern in Maschinengeschirrspülmitteln entwickelt wurde.It is a biodegradable water softening additive for dishwashing detergents, which was developed to avoid the less environmentally friendly use of phosphates or poorly degradable water softeners in automatic dishwasher detergents.

Mengenangaben in dieser Schrift sind auf das Trinatriumsalz der MGDA bezogen.Quantities given in this document refer to the trisodium salt of MGDA.

Die Erfindung umfasst ein Verfahren zur Oberflächenvorbehandlung eines Flugzeugs mit einem Artikel aus Titan oder Titanlegierungen umfassend in Kontakt bringen des Artikels aus Titan oder Titanlegierungen mit einer Zubereitung enthaltend 200 bis 400 g/l NaOH und 10 bis 150 g/l MGDA in Wasser und optional einem polymeren Verdicker in Konzentrationen von 2 bis 40 g/l, wobei der Gehalt an weiteren Inhaltstoffen weniger als 1 g/l beträgt und der pH-Wert der Zubereitung einen pH-Wert von wenigstens 12, bevorzugt wenigstens 13 aufweist, für 5 bis 60 Minuten bei 20 bis 80°C.The invention comprises a method for surface pretreatment of an aircraft with an article made of titanium or titanium alloys comprising bringing the article made of titanium or titanium alloys into contact with a preparation containing 200 to 400 g/l NaOH and 10 to 150 g/l MGDA in water and optionally a polymeric thickener in concentrations of 2 to 40 g/l, wherein the content of further ingredients is less than 1 g/l and the pH of the preparation has a pH of at least 12, preferably at least 13, for 5 to 60 minutes at 20 to 80°C.

Kontaktieren kann dabei Tauchen, Besprühen, Bestreichen sein. Durch das erfindungsgemäße Verfahren können Nanostrukturen mit Abmessungen unter 100 nm erzeugt werden und somit eine mechanische und chemische Verankerung durch eine vergrößerte Oberfläche realisiert werden, wodurch die Haltbarkeit und Adhäsionseigenschaften auf so behandeltem Titan oder Titanlegierungen verbessert werden.Contacting can be done by dipping, spraying or painting. The method according to the invention can produce nanostructures with dimensions of less than 100 nm and thus achieve mechanical and chemical anchoring through an enlarged surface, which improves the durability and adhesion properties on titanium or titanium alloys treated in this way.

Dabei ist es bevorzugt, wenn in der Zubereitung ein Gehalt an Fluorid nicht feststellbar ist oder weniger als 0,001 Gew.% beträgt, bezogen auf das enthaltene Fluorid in der verwendeten Zubereitung. Weiter ist es bevorzugt, wenn der Gehalt an NaOH 300 bis 375 g/l, bevorzugt 350 g/l und der Gehalt an MGDA 30 bis 100 g/l, bevorzugt 60 g/l beträgt. Weiter ist es bevorzugt, wenn die Zubereitung einen Gehalt an polymeren Verdickern aufweist. Dabei ist es bevorzugt, wenn als Verdicker Xanthan Gummi oder Agar-Agar verwendet werden und/oder der Verdicker in Konzentrationen von bevorzugt 10 bis 15 g/l vorliegt. Weiter ist es bevorzugt, wenn der Gehalt an weiteren Inhaltstoffen in der Zubereitung weniger als 0,5 g/l, bevorzugt 0,3 g/l beträgt. Weiter ist es bevorzugt, wenn das Kontaktieren durch Tauchen erfolgt. Weiter ist es bevorzugt, wenn das Kontaktieren für 10 bis 30 Minuten bei 40 bis 70°C erfolgt. Weiter ist es bevorzugt, wenn das Kontaktieren für 20 Minuten bei 60°C erfolgt.It is preferred if the fluoride content in the preparation is not detectable or is less than 0.001% by weight, based on the fluoride contained in the preparation used. It is also preferred if the NaOH content is 300 to 375 g/l, preferably 350 g/l, and the MGDA content is 30 to 100 g/l, preferably 60 g/l. It is also preferred if the preparation contains polymeric thickeners. It is preferred if xanthan gum or agar-agar is used as the thickener and/or the thickener is present in concentrations of preferably 10 to 15 g/l. It is also preferred if the content of other ingredients in the preparation is less than 0.5 g/l, preferably 0.3 g/l. It is also preferred if the contacting is carried out by dipping. It is also preferred if the contacting is carried out for 10 to 30 minutes at 40 to 70°C. Furthermore, it is preferred if the contact is carried out for 20 minutes at 60°C.

Besonders bevorzugt umfasst das erfindungsgemäße Verfahren eine Vorbehandlung, um Benetzbarkeit des Titan oder der Titanlegierungen sicher zu stellen, insbesondere mit oberflächenaktiven Substanzen. Weiter bevorzugt umfasst das erfindungsgemäße Verfahren eine Nachbehandlung, um die Zubereitung abzuwaschen, insbesondere durch Abwaschen mit aqua demin.The method according to the invention particularly preferably comprises a pretreatment to ensure wettability of the titanium or titanium alloys, in particular with surface-active substances. The method according to the invention further preferably comprises a post-treatment to wash off the preparation, in particular by washing off with aqua demin.

Die oben beschriebenen Aspekte und weitere Aspekte, Merkmale und Vorteile der Erfindung können ebenfalls aus den Beispielen der Ausführungsformen entnommen werden, welche im Folgenden unter Bezugnahme auf die anhängenden Zeichnungen beschrieben werden.The aspects described above and other aspects, features and benefits of the invention can also be taken from the examples of embodiments which are described below with reference to the accompanying drawings.

BeispieleExamples

Die Beispiele zeigen verschiedene Behandlungen verschiedener Titanlegierungen. Die Bedingungen sind jeweils angegeben. Vor der Behandlung wurden die Materialproben mit Isopropanol oder mit einem alkalischen Entfettungsmittel (Metaclean T2001, nur Versuche 7 und 8) gewaschen. Nach Trocknung wurde mit den angegebenen wässrigen Lösungen durch Tauchen ohne Bewegung oder Rühren behandelt. Die Lösungen wiesen einen pH-Wert von ca. 14 auf. Nach der Behandlung erfolgte eine visuelle Beurteilung der erhaltenen Oberfläche. Eine irisierende Oberfläche deutet dabei auf eine Oberflächenmodifikation mit charakteristischen Dimensionen im Bereich der Lichtwellenlänge (nanostrukturierte Oberfläche) hin. # NaOH [g/l] MGDA [g/l] T [°C] T [min] Bewertung/Beobachtung 1 Ti6Al4V 240 30 60 15 ++ grün/blau irisierende Oberfläche 2 Ti6Al4V 240 60 60 15 ++ irisierende Oberfläche 3 Ti6Al4V 350 120 75 15 ++ irisierende Oberfläche 4 Ti6Al4V 350 - 65 15 Oberfläche nicht nanostrukturiert 5 Ti6Al4V 350 30 65 15 ++ irisierende Oberfläche 6 Ti6Al4V 450 30 65 15 + gelblich irisierende Oberfläche mit violetten Flecken 7 Ti6Al4V 200 30 65 15 ++ grün/blau irisierende Oberfläche 8 Cp-Ti 200 30 65 15 ++ violett/blau irisierende Oberfläche 9 Ti6Al4V 350 60 60 15 ++ irisierende Oberfläche The examples show various treatments of different titanium alloys. The conditions are given in each case. Before treatment, the material samples were washed with isopropanol or with an alkaline degreasing agent (Metaclean T2001, only tests 7 and 8). After drying, they were treated with the specified aqueous solutions by immersion without movement or stirring. The solutions had a pH value of approx. 14. After treatment, the resulting surface was visually assessed. An iridescent surface indicates a surface modification with characteristic dimensions in the range of the light wavelength (nanostructured surface). # NaOH [g/l] MDA [g/l] T [°C] T [min] Evaluation/Observation 1 Ti6Al4V 240 30 60 15 ++ green/blue iridescent surface 2 Ti6Al4V 240 60 60 15 ++ iridescent surface 3 Ti6Al4V 350 120 75 15 ++ iridescent surface 4 Ti6Al4V 350 - 65 15 Surface not nanostructured 5 Ti6Al4V 350 30 65 15 ++ iridescent surface 6 Ti6Al4V 450 30 65 15 + yellowish iridescent surface with violet spots 7 Ti6Al4V 200 30 65 15 ++ green/blue iridescent surface 8 Cp-Ti 200 30 65 15 ++ violet/blue iridescent surface 9 Ti6Al4V 350 60 60 15 ++ iridescent surface

Nur in Versuch 5 wurde ein Massenverlust beobachtet.Only in experiment 5 was a mass loss observed.

SEM Aufnahmen der in Versuch 5 erhaltenen Oberfläche zeigen eine schwammartige Oberflächenstruktur mit Porengrößen von 30 bis 100 nm. Dabei sind die Porenwände offen und irregulär netzartig ausgebildet.SEM images of the surface obtained in experiment 5 show a sponge-like surface structure with pore sizes of 30 to 100 nm. The pore walls are open and irregularly net-like.

Im Rollschälversuch nach DIN 2243-2 zeigte sich im Vergleich zu unbehandeltem Titanblech eine ausgezeichnete Haftung: bei Raumtemperatur kam es zum ausschließlichen Versagen der Klebeschicht, nicht zum Ablösen der Klebung und bei -55°C zu einem 95%igen Versagen der Klebung. (Oberflächenvorbehandlung durch alkalische Reinigung gefolgt von Behandlung mit HNO3/HF Mischung, dann analog Beispiel 5, Ti peel plate: 300*210*0.4 mm, Primer BR 127 (cytec), Kleber FM 94 (cytec); Raumtemperatur: 174,9 N (100% cohesive failure); -55 °C 141,2 N (95% cohesive failure).In the roll peel test according to DIN 2243-2, excellent adhesion was shown compared to untreated titanium sheet: at room temperature, only the adhesive layer failed, the bond did not come off, and at -55°C, 95% of the bond failed. (Surface pretreatment by alkaline cleaning followed by treatment with HNO 3 /HF mixture, then analogous to example 5, Ti peel plate: 300*210*0.4 mm, primer BR 127 (cytec), adhesive FM 94 (cytec); room temperature: 174.9 N (100% cohesive failure); -55 °C 141.2 N (95% cohesive failure).

Claims (9)

  1. Method for pretreating the surface of an aircraft with a titanium article or titanium alloys, by placing the titanium article overall or in contact titanium alloys with a preparation containing 200 to 400 g/l NaOH and 10 to 150 g/l trisodium salt of methylglycinediacetic acid (MGDA) and possibly a polymeric thickener at concentrations of 2 to 40 g/L in water, with the content of other ingredients is less than 1 g/l and the preparation has a pH of at least 12, preferably at least 13, for 5 to 60 minutes at 20 to 80°C.
  2. Method according to claim 1, characterized in that a fluoride content is less than 0.001% by weight, based on the fluoride contained in the preparation.
  3. Method according to claim 1 or 2, characterized in that the NaOH content is 300 to 375 g/l, preferably 350 g/l and the MGDA content is 30 to 100 g/l, preferably 60 g/l.
  4. Method according to one of the preceding claims, characterized in that xanthan gum or agar-agar can be used as a polymeric thickener.
  5. Method according to one of the preceding claims, characterized in that the polymeric thickener is present at concentrations of 10 to 15 g/l.
  6. Method according to one of the preceding claims, characterized in that the content of other ingredients is less than 0.5 g/l, preferably 0.3 g/l.
  7. Surface pretreatment method according to one of the preceding claims characterized in that the contacting is carried out by immersion.
  8. Surface pretreatment method according to one of the preceding claims characterized in that the contacting takes place for 10 to 30 minutes between 40 and 70°C.
  9. Surface pretreatment method according to one of the preceding claims characterized in that the contacting takes place for 20 minutes at 60°C.
EP19735307.1A 2018-06-29 2019-07-01 Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys Active EP3814546B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018005156.1A DE102018005156A1 (en) 2018-06-29 2018-06-29 Preparation for surface pretreatment by chemical conversion of the oxide layers of titanium or titanium alloys
PCT/EP2019/067602 WO2020002706A2 (en) 2018-06-29 2019-07-01 Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys

Publications (2)

Publication Number Publication Date
EP3814546A2 EP3814546A2 (en) 2021-05-05
EP3814546B1 true EP3814546B1 (en) 2024-09-25

Family

ID=67139756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19735307.1A Active EP3814546B1 (en) 2018-06-29 2019-07-01 Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys

Country Status (5)

Country Link
US (1) US20210262097A1 (en)
EP (1) EP3814546B1 (en)
CN (1) CN112368417A (en)
DE (1) DE102018005156A1 (en)
WO (1) WO2020002706A2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT177630B (en) * 1948-10-01 1954-02-25 Mettallgesellschaft Ag Process for refining iron and steel by chemical surface treatment and painting
ATE5780T1 (en) * 1980-02-14 1984-01-15 Akzo N.V. LIQUID COMPOSITION FOR PHOSPHATEING METAL SURFACES.
DE3427543A1 (en) 1983-12-01 1985-07-04 Messerschmitt-Bölkow-Blohm GmbH, 2800 Bremen METHOD FOR TREATMENT OF WORKPIECES FROM TITANIUM
US9127194B2 (en) * 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US7838485B2 (en) * 2007-03-08 2010-11-23 American Sterilizer Company Biodegradable alkaline disinfectant cleaner with analyzable surfactant
GB2491619B (en) * 2011-06-09 2014-10-01 Pq Silicas Bv Builder granules and process for their preparation
DE102011106764B4 (en) 2011-07-05 2013-03-14 Eads Deutschland Gmbh A method of making an adhesion promoting layer on a surface of a titanium material by anodic oxidation, using an anodic oxidation solution and adhesion promoting layer
CA2863454A1 (en) * 2012-02-13 2013-08-22 Akzo Nobel Chemicals International B.V. Improved corrosion resistance when using chelating agents in carbon steel-containing equipment
US9574163B2 (en) * 2012-10-26 2017-02-21 Ecolab Usa Inc. Caustic free low temperature ware wash detergent for reducing scale build-up
US9394508B2 (en) * 2012-10-26 2016-07-19 Ecolab Usa Inc. Phosphorus free low temperature ware wash detergent for reducing scale build-up
US10221347B2 (en) * 2014-12-03 2019-03-05 Halliburton Energy Services, Inc. Methods and systems for suppressing corrosion of sensitive metal surfaces
RU2729485C1 (en) * 2016-08-24 2020-08-07 Ппг Индастриз Огайо, Инк. Iron-containing cleaner composition
DE202019101351U1 (en) * 2018-04-27 2019-03-29 Dr. Schumacher Gmbh Cleaning system for surgical instruments

Also Published As

Publication number Publication date
EP3814546A2 (en) 2021-05-05
CN112368417A (en) 2021-02-12
WO2020002706A3 (en) 2020-04-23
DE102018005156A1 (en) 2020-01-02
US20210262097A1 (en) 2021-08-26
WO2020002706A2 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
DE102007057777B4 (en) Method for producing a component from aluminum and / or an aluminum alloy and use of the method
DE102012202787B4 (en) Method for painting a workpiece
KR101908320B1 (en) Surface treatment liquid and method of surface treatment for roof rack using it
DE60312025T2 (en) PRE-TREATMENT METHOD FOR ELECTRICALLY COATED MATERIAL AND METHOD FOR PRODUCING A GALVANIC COATED WORKPIECE
CN110565148A (en) Magnesium alloy black micro-arc oxidation film nano passivator and passivation method
DE3706711A1 (en) METHOD FOR CLEANING SURFACES OF AN ALUMINUM OBJECT
CH636131A5 (en) METHOD FOR TREATING ALUMINUM SURFACES BY OXIDATION WITH A FOLLOWING COMPACTION.
EP0347663B1 (en) Method for sealing-in anodised films on aluminium and aluminium alloys
EP3814546B1 (en) Preparation for pre-treating surfaces by chemically converting oxide layers of titanium or titanium alloys
DE102011106764B4 (en) A method of making an adhesion promoting layer on a surface of a titanium material by anodic oxidation, using an anodic oxidation solution and adhesion promoting layer
DE2540068A1 (en) METAL COATING PROCESS
EP0103234B1 (en) Process for densifying anodically produced oxide layers on aluminium or aluminium alloys
DE2123586A1 (en) Anodic treatment for stainless steel
EP1678345B1 (en) Coloured conversion layers devoid of chrome formed on metal surfaces
DE3213649A1 (en) METHOD FOR CLEANING AND GREASING AND ACTIVATING METAL SURFACES
DE102011055644A1 (en) Production of black ceramic oxide surface layer on component, involves forming surface layer by plasma chemical anodic oxidation using aqueous electrolyte of aqueous ammonia, citric acid, cobalt acetate and nickel acetate on component
DE102016008333A1 (en) Process for the low-hydrogen zinc-nickel coating of a high-strength tempered steel
DE3217145A1 (en) Method for cleaning, degreasing and activating metal surfaces
DE2647388A1 (en) PROCESS FOR LAMINATING A FLUOROCARBON RESIN FILM ON ALUMINUM OR ALUMINUM ALLOYS
DE102009017702A1 (en) Forming corrosion-protection layers on surfaces made of zinc, aluminum or magnesium and alloys of metals, comprises contacting surface of metals/metal alloys with solutions comprising chromium (III) ions, metal ions and complexing agent
DE2046708B2 (en) Process for the pretreatment of acrylonitrile-butadiene-styrene resins for electroless metal plating
DE813472C (en) Pretreatment of aluminum before the application of top layers
DE1014816B (en) Process for preparing metal surfaces for the application of enamels
DE2263038C3 (en) Process for coating aluminum or aluminum alloy material
DE1200641B (en) Process for the pretreatment of surfaces made of zinc and zinc alloys before the application of phosphate coatings

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210129

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019012196

Country of ref document: DE