EP3807512A1 - Procédé de détection d'usure et de pronostic prédictif d'usure d'actionneurs électromécaniques par rapport au temps de fonctionnement d'une machine à moteur à combustion interne - Google Patents
Procédé de détection d'usure et de pronostic prédictif d'usure d'actionneurs électromécaniques par rapport au temps de fonctionnement d'une machine à moteur à combustion interneInfo
- Publication number
- EP3807512A1 EP3807512A1 EP19731596.3A EP19731596A EP3807512A1 EP 3807512 A1 EP3807512 A1 EP 3807512A1 EP 19731596 A EP19731596 A EP 19731596A EP 3807512 A1 EP3807512 A1 EP 3807512A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wear
- combustion engine
- operating time
- electromechanical actuators
- forecast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 238000004393 prognosis Methods 0.000 title abstract 3
- 230000033001 locomotion Effects 0.000 claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 230000004044 response Effects 0.000 claims abstract description 5
- 238000012360 testing method Methods 0.000 claims description 32
- 238000009499 grossing Methods 0.000 claims description 19
- 238000012423 maintenance Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 238000000691 measurement method Methods 0.000 claims description 5
- 238000012731 temporal analysis Methods 0.000 claims description 2
- 238000000700 time series analysis Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 6
- 230000000638 stimulation Effects 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 3
- 101001095088 Homo sapiens Melanoma antigen preferentially expressed in tumors Proteins 0.000 description 2
- 102100037020 Melanoma antigen preferentially expressed in tumors Human genes 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1412—Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1423—Identification of model or controller parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/49—Detecting, diagnosing or indicating an abnormal function of the EGR system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/52—Systems for actuating EGR valves
- F02M26/53—Systems for actuating EGR valves using electric actuators, e.g. solenoids
- F02M26/54—Rotary actuators, e.g. step motors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0283—Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a method for wear detection and predictive wear forecast of electromechanical actuators at the operating time of a machine with an internal combustion engine.
- the invention has for its object to provide a method for wear detection and predictive wear forecast of electromechanical actuators at the operating time of a machine with an internal combustion engine.
- a method for wear detection and predictable wear forecast of electromechanical actuators becomes the operating time of a machine with an internal combustion engine with at least one engine control unit, comprising a first measurement method for identifying the actuator wear in the form of movement profiles and the number of different actuator movements within individual movement profiles, the number of different actuator movements being compared with reference data and a second measuring method, the production error in such a way recognizes that the electromechanical actuators are stimulated with a jump and the step response or the settling time of the actual position to the target position is measured and evaluated
- Figure 1 Composition of the global process as a schematic representation
- FIG. 5 System diagram interaction of systems and components
- Figure 6 Exemplary electromechanical actuator, electrical
- the global method can be divided into two different measurement methods, as shown in Figure 1.
- Measuring method 1 identifies the actuator wear in the form of movement profiles and the number of different actuator movements within individual movement profiles. This number is compared with reference data.
- the measurement procedure is used to detect and forecast wear on the electromechanical actuators.
- the measuring method 2 is used to detect accidental or production errors. This increases the robustness of the entire method, since random errors cannot be detected using measuring method 1.
- a diagnostic function is used which controls the respective electromechanical actuator and at the same time the reaction time of the z.
- Actuator gangs records. The response time is compared with values from the specification.
- Figure 1 shows the composition of the process in a schematic representation.
- Measuring method 1 is described below. This procedure can be divided into the following phases:
- the test cycle is defined in phase 1.
- a real test / load cycle field data of a fork-lift truck
- this load cycle contains the measurement data (e.g. consisting of the exhaust gas recirculation valve position on the Y axis in percent and the time on the X axis).
- the data are recorded using an engine control unit.
- the valve communicates the relative valve position using electrical voltage. This voltage is discretized in the engine control unit by means of an analog / digital converter.
- One movement corresponds to the relative valve position over time.
- the valve position can take values in the interval of [0%, 100%].
- 0% stands for the fully open state and 100% for the fully closed state of the valve (see Figure 6).
- the valve is regulated to the respective position depending on the load cycle of the internal combustion engine.
- the electric servomotor in the actuator opens or closes the valve.
- the adjustment of the valve position described here causes wear over the operating time of the internal combustion engine.
- commutator wear of the electric servomotor and mechanical wear in the gear (gear wheels) of the valve are predicted using the procedure described here.
- the test cycle is defined below as the standard test cycle 200.
- the test cycle 200 is scaled in the next step so that it corresponds to a defined service life of the internal combustion engine. This is achieved by deleting constant valve positions (persistence of the valve for a long time, e.g.
- a real and application-oriented test cycle (as used in this description) is preferable to a synthesized cycle (non-contiguous or statistical movement stimulation). Because the real test cycle includes a logical and functional connection of the different movements. In other words, the information of the motion overlay is available in a real application.
- Phase 2 represents the load test (cf. Wöhler test). A certain number of the actuators in question (possibly several of the same type in order to obtain a sufficient sample size) are loaded with the test cycle 200 until the actuators either fail due to wear or outside work according to their specification.
- the actuator positions or movements from the test cycle 200 are specified by means of an H-bridge or a controllable voltage source in the form of an electrical voltage (which each represents a position). This means that the test cycle 200 as electrical. Voltage course is stimulated.
- Table 1 shows the number of movements of the test cycle 200.
- Table 1 Figure 3 shows the endurance test with the test cycle200.
- the ambient temperature is raised to 40 ° C during the stress test.
- the actuators are assessed by the manufacturer at the end of the test to confirm the respective wear.
- n ma xpx maximum number of movements per profile
- n px number of movements per profile
- T Cyci duration of the test cycle 200 [s]
- Table 2 shows the result of the endurance test with Testzyk- Ius200.
- Table 3 shows the calibratable thresholds of the maximum number of movements per movement profile (right column) according to Formula 1.
- Figure 4 shows the visualization of the endurance test results.
- Table 4 In phase 4 the predictions are calibrated and calculated. The reference values are now calibrated in the engine control unit. During the operating period, the control unit calculates the current status (remaining movements per actuator per movement profile) and predicts after how many more operating hours the maximum number of movements per actuator will have been reached. This information is communicated via an interface (e.g. CAN bus).
- an interface e.g. CAN bus.
- the method of time series analysis is used in combination with the method of exponential smoothing, which are explained below: The process created here (reduction of the profile movements through the load cycle of the internal combustion engine) is steady and monotonously falling. This is a consequence of the subsampling (sampling or calculation in multiples of the observation interval). The strong smoothing effect leads to a linear trend (model) (straight line equation).
- the process consists of the operating time of the internal combustion engine and the remaining movements per actuator per profile. Exponential smoothing is used to periodically predict the remaining movements per profile (the numbering or sequence of the formulas corresponds to the calculation sequence in the engine control unit): Calculation 1. Order as an intermediate value:
- the smoothing constants (a and ß) can be determined using field data and simulation of the process or with the help of an optimization process.
- Formula 4 is applied.
- the current smoothing factors at the time of the forecast horizon are smoothed again and multiplied by the forecast horizon.
- the Y-axis section is added and the result is the forecast (remaining movements) at time FCH (for example, after another 100 operating hours, the respective actuator will have reached 70% of its total movements).
- Forecast time [h] operating time in hours until the lower threshold is reached
- CW [h] forecast horizon (e.g. 10 5 (observation interval)
- Forecast vec [%] forecast vector of length FCH
- T 0 bserv [h] observation interval, one forecast calculation per toserv i bsrvMin b) (formula 5)
- the prediction result is continuously monitored during the runtime.
- the forecast error (MAPE, Mean Absolute Percentage Error, see Formula 4) is determined periodically. If an excessive deviation appears over several periods, the smoothing coefficients of the exponential smoothing are adjusted more, if the deviation is small, the smoothing factors are adjusted slightly or not.
- n number of forecasts
- the forecast of the remaining movements or the remaining operating time is compared with the regular maintenance interval of the internal combustion engine. If a regular maintenance interval cannot be reached due to the fact that the remaining operating time is less than the difference between the time of the regular maintenance interval and the remaining operating time, the time to be observed for the electromechanical actuator maintenance is communicated. If the regular maintenance interval can be reached, the status is communicated that the electromechanical actuators should be replaced during the next regular maintenance. If the electromechanical actuators are not serviced in good time, a diagnostic status is activated.
- Figure 5 shows the system diagram or the interaction of the systems and components.
- actuator 1 throttle valve
- actuator 2 exhaust gas recirculation valve
- actuator 3 exhaust gas valve
- actuator 4 pressure relief valve on the turbocharger.
- the actuators 1 - 4 are regulated components of the internal combustion engine.
- the positions or movements of the actuators are regulated via the engine control unit depending on the load spectra requested (e.g. by the driver of a machine).
- the engine control unit identifies the individual movements in the respective profiles and calculates the forecast using formulas 2 to 8.
- the calculated forecast value is, for. B. via CAN bus (J1939) telegram made available to other systems (signaling).
- Measuring method 2 is described below.
- the triggering reaction time of the electromechanical actuators is checked in addition to the motion profiles (measurement process 1) (measurement process 2).
- the movement profiles make the wear and the wear forecast visible or measurable.
- accidental or production errors in the drive of the electromechanical actuator cannot be detected in this way.
- a further measuring method is now described in order to be able to recognize random errors in the actuator drive and thus to make the global method more robust with regard to errors that are due. Functioning of the measuring method 2: At a defined and favorable time, e.g. B.
- the step response more precisely the settling time of the actual position to the target position, is measured and evaluated.
- the required actuating time or settling time of the actuators when new can be found in the manufacturer's specification.
- the tolerance range (or series spread) of the settling time is 19% according to the specification.
- Table 4 shows the wear-related deviations of the actuators used from measurement method 1. It can be seen that the tolerance range of the settling time of 19% has been exceeded.
- the settling time is one of the features that is used to identify abnormalities in the individual actuators. Others are e.g. B.
- the settling time is the only one that is automatic during the operation of the internal combustion engine. can be measured (from the point of view of the engine control unit especially for non-intelligent electromechanical actuators such as H-bridge actuators).
- the settling time without the other mentioned features alone is too imprecise to represent exact forecasts or the exact wear. That is why it is used in this procedure for wear identification as additional information, but above all for the detection of random errors in the drive.
- a threshold in consultation with the manufacturer instead of 19%, 33%) is defined as to when a significant deviation of the settling time from the new condition but also from normal wear and tear (as shown in table 4) can be seen.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Engines (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018004805 | 2018-06-18 | ||
DE102019001627.0A DE102019001627A1 (de) | 2018-06-18 | 2019-03-08 | Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor |
PCT/EP2019/000177 WO2019242876A1 (fr) | 2018-06-18 | 2019-06-06 | Procédé de détection d'usure et de pronostic prédictif d'usure d'actionneurs électromécaniques par rapport au temps de fonctionnement d'une machine à moteur à combustion interne |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3807512A1 true EP3807512A1 (fr) | 2021-04-21 |
Family
ID=68724736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19731596.3A Withdrawn EP3807512A1 (fr) | 2018-06-18 | 2019-06-06 | Procédé de détection d'usure et de pronostic prédictif d'usure d'actionneurs électromécaniques par rapport au temps de fonctionnement d'une machine à moteur à combustion interne |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3807512A1 (fr) |
DE (1) | DE102019001627A1 (fr) |
WO (1) | WO2019242876A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021132840B4 (de) * | 2021-12-13 | 2024-05-23 | Rolls-Royce Solutions GmbH | Verfahren zum Überwachen eines Verschleißzustands einer Gaspfadregelvorrichtung, Steuervorrichtung zur Durchführung eines solchen Verfahrens und Energiewandlungsvorrichtung mit einer solchen Steuervorrichtung |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03210058A (ja) * | 1990-01-12 | 1991-09-13 | Nissan Motor Co Ltd | Egr装置の診断装置 |
JPH06264827A (ja) * | 1993-03-10 | 1994-09-20 | Nissan Motor Co Ltd | Egr制御装置 |
US6209390B1 (en) * | 1999-05-14 | 2001-04-03 | Larue Gerald Duane | Turbocharger fatigue life monitor |
DE10257793A1 (de) * | 2002-12-11 | 2004-07-22 | Daimlerchrysler Ag | Modellbasierter Lebensdauerbeobachter |
GB2534201A (en) * | 2015-01-16 | 2016-07-20 | Caterpillar Inc | Determining an expected lifetime of a valve device |
DE102015009248B4 (de) * | 2015-07-17 | 2020-01-02 | Mtu Friedrichshafen Gmbh | Verfahren zur Ausführung mit dem Betrieb einer Brennkraftmaschine |
US10167803B2 (en) * | 2016-06-01 | 2019-01-01 | GM Global Technology Operations LLC | Systems and methods for performing prognosis of fuel delivery |
DE102016218278A1 (de) * | 2016-09-22 | 2018-03-22 | Robert Bosch Gmbh | Funktionsüberwachung von Magnetventilen für Kraftstoffeinspritzsysteme |
-
2019
- 2019-03-08 DE DE102019001627.0A patent/DE102019001627A1/de not_active Withdrawn
- 2019-06-06 WO PCT/EP2019/000177 patent/WO2019242876A1/fr unknown
- 2019-06-06 EP EP19731596.3A patent/EP3807512A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
WO2019242876A1 (fr) | 2019-12-26 |
DE102019001627A1 (de) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19964424B3 (de) | Vorrichtung zum Diagnostizieren von Störungen und Fehlerbedingungen in einer Kraftstoffanlage einer Verbrennungskraftmaschine | |
DE102011008561A1 (de) | Funktionsüberwachtes Führungssystem zur Verstellung zumindest einer Systemkomponente sowie Verfahren zur Funktionsüberwachung eines solchen Führungssystems | |
DE102010038351B4 (de) | Verfahren und Vorrichtung zum Betreiben eines hybriden Antriebssystems | |
DE102013211543A1 (de) | Verfahren zum alterungs- und energieeffizienten Betrieb insbesondere eines Kraftfahrzeugs | |
EP1599842A2 (fr) | Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement | |
DE102020106880A1 (de) | Verfahren und Vorrichtung zum Kalibrieren eines Steuer- und Regelvorrichtungssystems zur Steuer- und Regelung eines Betriebszustandes | |
DE102007023553B3 (de) | Vorrichtung und Verfahren zum Steuern eines Antriebsaggregats | |
EP3807512A1 (fr) | Procédé de détection d'usure et de pronostic prédictif d'usure d'actionneurs électromécaniques par rapport au temps de fonctionnement d'une machine à moteur à combustion interne | |
DE102008005154B4 (de) | Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit | |
EP3891368B1 (fr) | Procédé permettant de déterminer et de prédire la périodicité individuelle des vidanges d'un moteur à combustion interne | |
WO2018178196A1 (fr) | Procédé de détermination d'une incertitude de mesure d'endommagement d'un véhicule automobile | |
DE10349307B3 (de) | Diagnoseverfahren für einen elektromechanischen Aktor | |
DE102010055660A1 (de) | Stochastische Detektion einer Schlupfdrehzahl eines Drehmomentwandlers und zugehörige Regelung | |
EP4448948A1 (fr) | Procédé permettant de surveiller un état d'usure d'un dispositif de commande de trajet de gaz, dispositif de commande permettant de mettre en oeuvre un tel procédé et dispositif de conversion d'énergie équipé d'un tel dispositif de commande | |
DE102004053265A1 (de) | Verfahren und Vorrichtung zur Adaption eines Anschlags eines elektrisch angesteuerten Stellgliedes | |
EP1431927A1 (fr) | Méthode pour estimer la durée de vie résiduelle d'un appareil | |
WO2021122560A1 (fr) | Procédé et dispositif de commande pour faire fonctionner un certain nombre d'ensembles, chacun ayant une unité de conversion d'énergie de carburant, et certain nombre d'ensembles, chacun ayant une unité de conversion d'énergie de carburant avec un dispositif de commande | |
DE102004002495A1 (de) | Betriebsdatenerfassungsverfahren zur Bewertung des Antriebsenergieverbrauchs von motorbetriebenen Kraftfahrzeugen bei Berücksichtigung des Fahrerverhaltens | |
DE102018104665A1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine | |
DE102011017215A1 (de) | Verbrennungskraftmaschine für einen Kraftwagen sowie Verfahren zum Überprüfen einer Stelleinrichtung einer solchen Verbrennungskraftmaschine | |
EP2434185A1 (fr) | Procédé d'actionnement d'un composant d'un engrenage | |
DE102022103980A1 (de) | Verfahren zum Betrieb von elektromechanischen Stelleinheiten für Fahrzeugbremsen | |
DE102010031323A1 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine | |
EP3608737B1 (fr) | Détermination d'au moins un indicateur de processus de formage d'une servopresse | |
DE102017009197A1 (de) | Verfahren zur Prüfung eines Hydrauliksystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201203 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230621 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20231005 |