EP1599842A2 - Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement - Google Patents

Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement

Info

Publication number
EP1599842A2
EP1599842A2 EP04712485A EP04712485A EP1599842A2 EP 1599842 A2 EP1599842 A2 EP 1599842A2 EP 04712485 A EP04712485 A EP 04712485A EP 04712485 A EP04712485 A EP 04712485A EP 1599842 A2 EP1599842 A2 EP 1599842A2
Authority
EP
European Patent Office
Prior art keywords
maintenance
damage
load
maintenance unit
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04712485A
Other languages
German (de)
English (en)
Inventor
Herbert Depping
Matthias Maisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Turbo GmbH and Co KG
Original Assignee
Voith Turbo GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Turbo GmbH and Co KG filed Critical Voith Turbo GmbH and Co KG
Publication of EP1599842A2 publication Critical patent/EP1599842A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/006Indicating maintenance

Definitions

  • the invention relates to a method for setting maintenance intervals of motor vehicle assemblies or their subunits, which are to be replaced during the maintenance of the vehicle with a certain degree of wear or fatigue.
  • These subunits are referred to below as maintenance units, since they are typically replaced as a whole in maintenance tasks.
  • Maintenance intervals represent a considerable additional effort.
  • a decision to replace maintenance units is usually based only on one
  • BESTATIGUNGSKOPIE external appearance in connection with the subjective overall impression of the motor vehicle. It therefore depends on the inspector how accurately the risk of failure of a particular maintenance unit is assessed. Nonetheless, even in the case of extensive experience, precise information about the actual exposure history is missing in most cases
  • the invention has for its object a method for determining
  • the method can be implemented as simply as possible with existing electronic control components of motor vehicles.
  • the inventors have recognized that the intervals after which maintenance units have to be inspected or replaced can be determined in a suitable manner by a multi-stage method.
  • the relevant loads on a maintenance unit are analyzed, and the failure behavior associated with these loads is carried out by tests and calculations, in particular
  • Different criteria for the failure of a maintenance unit can be defined, such as for example inadmissible wear, breakage, deformation or an intolerable change in function.
  • the result of this first stage of the process is a map in which the failure behavior depending on the different load levels and Load frequency is shown. Depending on the selection of the relevant loads, the failure behavior is represented by a map with one or more parameters.
  • Loads on the maintenance unit determined. In the simplest case, this involves recording the frequency of the occurrence of a certain load. In many cases, however, a refined procedure is necessary in order to be able to record the occurring loads with sufficient accuracy, especially if there are several relevant load factors or if dynamic effects have to be taken into account.
  • the load can be divided into classes and the damage-related events counted for each of these classes.
  • This counting can be done in different ways, for example by determining the length of stay in the respective class, the frequency of exceeding the class limit or the reversal of the load in the respective class.
  • a load spectrum is created which is representative of the stress on the maintenance unit.
  • the load spectrum determined during driving operation is appropriately offset against the failure behavior of the maintenance unit known from the first stage.
  • the result is an abstract quantity called the sum of damage.
  • This sum of damage which increases during operation and can be stored in a simple manner, is the parameter in the method according to the invention which leads to an inspection of a maintenance unit, on the condition that the sum of damage exceeds a certain critical threshold.
  • the critical threshold can be determined by knowing the failure behavior from the first
  • a fourth stage of the method according to the invention according to which the failure behavior of the maintenance units can be determined in practice using a series of field data.
  • the damage amounts achieved in the field are determined and compared with the test results from the first stage of the process. Adjustments to the real failure behavior can either be made by changing the determination of the damage sum in the electronic control device or by moving the critical threshold of the damage sum.
  • each maintenance unit will be one with a low one
  • 1 shows a flow diagram of the method according to the invention for optimizing maintenance in a control device of a vehicle.
  • 2 schematically shows the subdivision of a motor vehicle assembly into
  • Fig. 3 shows schematically the relationship between the amount and frequency of loading on a maintenance unit and the
  • Fig. 4 shows an example of the division of a burden on a
  • Fig. 5 shows an example of the linkage of the load spectrum
  • Fig. 6 shows an example of the counting process for creating a
  • FIG. 7 shows an example of the probability of failure of two maintenance units as a function of the damage sum, as well as the
  • FIG. 2 shows the maintenance units (W1-W7) of an automatic transmission, which is used in the following as an example to illustrate the invention.
  • the division of the maintenance units shown in FIG. 2 is also only an example. In practice, it will result from the design of the motor vehicle assemblies, which also defines the procedure for maintenance work. For design reasons, only certain units as a whole can be inspected or replaced, with the installation position and interaction with other maintenance units playing an important role here. Another division into Maintenance units will result from the type of load during operation and the resulting signs of wear and tear or the fatigue of this component.
  • Maintenance intervals can also be used to classify motor vehicle assemblies into maintenance units so that the assignment of loads to damage amounts shown below can be carried out in a suitable manner. This means that the type of load on a maintenance unit should be classifiable as clearly as possible.
  • the operating data of the vehicle are the starting point for determining the load on a maintenance unit. This includes sensory data, for example on engine speeds, torques, temperatures of different vehicle components, but also vehicle dynamics data that characterize driving conditions. Furthermore, the operating data also include encoder signals which correspond to the driver's request, for example after acceleration. In today's vehicles, sensory data and encoder signals are available via communication networks, such as the CAN bus, and are used for vehicle control, such as optimizing the switching behavior in automatic transmissions.
  • the term operating data in the following book is understood to mean all information about the vehicle, its payload and the vehicle components, which is typically stored in control units and is accessible via the communication links mentioned. For example, these are characteristic curves of the motor, the gearbox, the axle and gear ratios, and moments of inertia, etc.
  • the loads on the respective maintenance units can be estimated.
  • the loads associated with the operating data or a part of these data must be stored in the control unit of the maintenance units or the motor vehicle modules.
  • the load effects result from the effect of Torque, speed, pressure, temperature on the maintenance unit and the resulting effects such as friction, tension or deformation.
  • Such an assignment between operating data and load is to be specified for each maintenance unit and is determined by the manufacturer of the maintenance unit as a load model.
  • These assigned load data can also be stored in a central control unit for all maintenance units.
  • the hatched area in FIG. 2 extends from a lower threshold, at which the probability that a given pair of stress level and stress frequency leads to a failure is approximately 1%, to an upper threshold, which is accordingly characterized in that the -The probability of failure is 99%.
  • critical failure threshold 1 In the following for illustration
  • the critical Failure threshold is not assigned to the same failure probability across the entire map. If, for example, it is known from load tests that the actual failure behavior fluctuates significantly in statistical terms, the critical failure threshold can be corrected in areas of great variation by an average failure probability so that the critical failure threshold is shifted to a safe side. Essentially, the result of the first stage of the method according to the invention will therefore be to determine relevant loads that lead to failure in the accumulation and to assign them a critical failure threshold in a characteristic diagram.
  • Non-destructive measurement methods can be used to characterize the signs of fatigue during load tests.
  • An example of this is the X-ray refraction method, which can be used to detect microstructural defects such as microcracks resulting from the stress. Simulations of repeated component loads, damage accumulation calculations and plausibility assumptions are also suitable for establishing a quantitative relationship between load factors and damage.
  • the method is to determine the loads relevant for a maintenance unit within a time interval from the operating data and to classify them into a load pattern graded according to the load level. Based on this classification, the damage-relevant events can now be counted. This is what a counting means in the broadest sense
  • this frequency recording of a load in a class can also be a determination of the The length of time over which a load corresponding to the class occurs.
  • Another way of recording the frequency of the occurrence of a load belonging to a class can be to determine the frequency of crossing the class boundary in a defined or any direction or to reverse the load in the respective class.
  • the load history is shown in the form of a load collective, as is shown in a schematically simplified manner in FIG. 4.
  • Four different classes I - IV are shown with increasing load levels as well as a corresponding count of the load events assigned to the respective classes.
  • the failure behavior determined in method step 1 is shown in FIG. 5 with the aid of two curves which, depending on the load level and the frequency of occurrence of such a load, approximately describe a failure probability of 1% and 99%.
  • the load spectrum of the second process stage is added to FIG. The frequency Z ⁇ with a load from the highest is shown in dashed lines
  • / ZAI determined. Accordingly, an increase in the total damage is calculated as an increase in the frequency of exposure ⁇ Z
  • by ⁇ S ⁇ Z
  • a gear part which is loaded by torque fluctuations and which can be replaced as a maintenance unit is considered. It is further assumed that the torque fluctuations can be determined from the operating data or that these can be estimated at least indirectly via a model of the transmission and the measurement of the drive and driven torques.
  • the load is divided into classes, for example in the present case several threshold values can be set for the torque and an event is added to a load class when the torque threshold is exceeded from the lower to the higher torque.
  • Step sizes in the classification are advantageous in areas in which the failure behavior shows large variations with small parameter changes. This is particularly the case in the vicinity of maximum loads.
  • the procedure for counting load events in this illustrative example is illustrated with reference to FIG. 6.
  • the time curve of the torque and four threshold values for the torque are shown. Vertical arrows indicate that one of these threshold values has been exceeded and the corresponding assignment to a load class.
  • Damage total is calculated for each class, so that the total damage total for this maintenance unit is made up of the subtotals that result for the different classes.
  • the damage sum of a maintenance unit can consist of different contributions and thus of weighted partial damage sums if there are different, non-interacting damage mechanisms that cannot be meaningfully combined in a uniform load pattern. This applies in particular if the load factors have significantly different time constants and thus the increase in the partial damage sums are recorded with different time intervals.
  • a combination of permanent loads and stress events is also possible through the summation of separately determined partial damage sums to a damage sum assigned to the maintenance unit.
  • the method according to the invention has a fourth stage, in which a critical threshold value S for the damage sum is set on the basis of real field data in order to correct inaccuracies in the preceding method steps.
  • a critical threshold value S for the damage sum is set on the basis of real field data in order to correct inaccuracies in the preceding method steps.
  • the abstract size of the damage sum should best represent the actual load on a maintenance unit and thus its failure behavior. Accordingly, when recording the sum of damage during operation, this should be in a typical relationship with the probability of failure, which is shown schematically in FIG. 7. Two interpolated failure probabilities for component A and component B in
  • Figure 1 summarizes the inventive method. It shows the four process stages for determining maintenance intervals in the sequence in which they can be implemented in a control unit of a vehicle.
  • the control unit is connected to the sensor system of the vehicle and the control and regulation data of the maintenance units and also receives encoder signals. Additional vehicle data and load models for the maintenance units to be monitored are stored in the control unit. As shown in the flowchart, external and internal information is added
  • Load history for each assigned load collective are then linked to the failure behavior of the maintenance units known from the first method step, only the corresponding information about the failure behavior being stored in the control device and the corresponding tests and correlation calculations being carried out independently of the control device.
  • the combination of load collective and failure behavior in the control unit becomes the abstract, if possible the Determination of the amount of damage corresponding to the load history. This corresponds to the third stage of the process.
  • the subsequent fourth process stage is used to compare the damage sum with a critical threshold value S k . If this value is exceeded, a maintenance interval is completed and customer service with maintenance and possible replacement of the corresponding one
  • Maintenance unit is the result. If this is not immediately possible, at least one of the reaction options is to operate the maintenance unit carefully.
  • the procedural steps that are carried out in the motor vehicle itself are very simple and can usually be carried out using control devices that are already available. This is achieved by the complex procedural steps of creating a load model to estimate loads from the operating data, the procedure for classifying loads into load patterns as well as creating load collectives and assigning the loads to one
  • Threshold is carried out regardless of the vehicle.
  • the process can be verified by constant comparison with field data from customer service. It is thus possible to adapt the critical threshold values to the experiences that result from the care of a correspondingly large one with each service inspection
  • the driver or the control unit can inform the service center about the expiry of a maintenance interval via a wireless connection when the critical threshold value is reached.
  • operation of the component is only carried out in a gentle mode or a corresponding recommendation is signaled to the driver.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

L'invention concerne un procédé pour déterminer des intervalles de maintenance pour des organes de véhicules à moteur comprenant au moins une unité de maintenance. Chaque unité de maintenance correspond à une somme de dommages dont la valeur augmente avec le fonctionnement du véhicule. Les données de fonctionnement du véhicule ou une partie de ces données permettent de déterminer ou d'évaluer la sollicitation agissant sur une unité de maintenance dans un intervalle temporel sélectionné, et de la répartir en différentes catégories d'un modèle de sollicitations. Une comparaison subséquente du modèle de sollicitations d'un intervalle temporel avec des données mémorisées relatives au comportement de panne de l'unité de maintenance permet de calculer l'augmentation de la somme de dommages pour l'intervalle temporel concerné. L'intervalle temporel d'une unité de maintenance touche à sa fin lorsque la somme des dommages correspondante dépasse un seuil critique défini.
EP04712485A 2003-03-06 2004-02-19 Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement Withdrawn EP1599842A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10310116 2003-03-06
DE2003110116 DE10310116A1 (de) 2003-03-06 2003-03-06 Risikominimierung und Wartungsoptimierung durch Ermittlung von Schädigungsanteilen aus Betriebsdaten
PCT/EP2004/001575 WO2004078543A2 (fr) 2003-03-06 2004-02-19 Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement

Publications (1)

Publication Number Publication Date
EP1599842A2 true EP1599842A2 (fr) 2005-11-30

Family

ID=32891953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04712485A Withdrawn EP1599842A2 (fr) 2003-03-06 2004-02-19 Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement

Country Status (3)

Country Link
EP (1) EP1599842A2 (fr)
DE (1) DE10310116A1 (fr)
WO (1) WO2004078543A2 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047241A1 (de) * 2004-09-29 2006-04-06 Abb Patent Gmbh Verfahren und Einrichtung zur Diagnose von innerhalb einer industriellen Anlage angeordneten technischen Geräten
BRPI0700362A (pt) * 2007-01-15 2008-09-02 Tenneco Automotive Operating dispositivo de monitoramento de desgaste de suspensão automotiva (slm)
DE102007002801B4 (de) * 2007-01-18 2011-02-17 Audi Ag Verfahren zum Bestimmen einer Ausfallwahrscheinlichkeit mindestens eines Bauteils einer Antriebsvorrichtung
US7852201B2 (en) * 2007-03-15 2010-12-14 Gm Global Technology Operations, Inc. Apparatus and method for determining the remaining useful life of a transmission filter
DE102007017614A1 (de) 2007-04-12 2008-10-16 Wittenstein Ag Verfahren zum optimalen Betreiben von Getrieben
GB0807775D0 (en) * 2008-04-29 2008-06-04 Romax Technology Ltd Methods for model-based diagnosis of gearbox
DE102008030870A1 (de) * 2008-06-30 2009-12-31 Continental Automotive Gmbh Diagnose bei Brennkraftmaschinen
SE533913C2 (sv) * 2009-07-09 2011-03-01 Leine & Linde Ab Förfarande för drift av ett pulsgivaresystem samt ett pulsgivaresystem
DE102009058331A1 (de) 2009-12-15 2011-06-16 Robert Bosch Gmbh Steuergerät mit belastungsabhängiger Betriebslebensdauer und Verfahren zur Aktualisierung einer maximalen Betriebslebensdauer
EP2767815B1 (fr) * 2013-02-18 2018-06-20 IVECO S.p.A. Système de surveillance de l'usure des engrenages d'une transmission de véhicule
ES2666319T3 (es) * 2013-02-18 2018-05-04 Iveco S.P.A. Método y dispositivo y programa informático y medios legibles por ordenador para monitorizar el desgaste del embrague de una transmisión manual o manual automatizada, en particular para vehículos pesados
AT514683B1 (de) * 2013-10-11 2015-03-15 Avl List Gmbh Verfahren zur Abschätzung der Schädigung zumindest eines technischen Bauteiles einer Brennkraftmaschine
DE102015120203A1 (de) * 2015-11-23 2017-05-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und System zur Bestimmung einer Beanspruchung eines Fahrzeugs
SE541415C2 (en) * 2016-09-26 2019-09-24 Scania Cv Ab Method and system for prediction of a drainage valve malfunction probability
DE102017200274A1 (de) * 2017-01-10 2018-07-12 Zf Friedrichshafen Ag Verfahren zum Ermitteln der Lebensdauer von Bauteilen
EP3584656B1 (fr) * 2017-03-30 2022-03-30 TLV Co., Ltd. Dispositif d'évaluation de risque, procédé d'évaluation de risque et programme d'évaluation de risque
DE102017004424B4 (de) * 2017-05-08 2020-07-09 Mtu Friedrichshafen Gmbh Verfahren zur bedarfsgerechten Wartung eines Injektors
DE102017214821B4 (de) * 2017-08-24 2022-05-19 Volkswagen Aktiengesellschaft Diagnoseverfahren zur Zustandsbestimmung von wenigstens einem Zugmittel, Computerprogrammprodukt, Speichermittel, Motorsteuergerät und Fahrzeug
DE102017222545A1 (de) * 2017-12-13 2019-06-13 Zf Friedrichshafen Ag Verfahren und Steuergerät zur Schädigungsbewertung eines lastführenden Bauteils
DE102018102710B4 (de) 2018-02-07 2023-09-21 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Ermittlung eines Instandsetzungsbedarfs einer Bremse
DE102018104667A1 (de) * 2018-03-01 2019-09-05 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102018104665B4 (de) * 2018-03-01 2022-12-01 Rolls-Royce Solutions GmbH Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
CN111855383B (zh) * 2020-07-29 2023-09-05 石河子大学 一种风力机叶片覆冰载荷下疲劳寿命预测方法
DE102022203250A1 (de) 2022-04-01 2023-10-05 Zf Friedrichshafen Ag Verfahren zur Nutzung von Betriebsdaten
EP4276559A1 (fr) 2022-05-12 2023-11-15 BAUER Maschinen GmbH Procédé et système de détermination d'un état critique de fatigue de matériel dans une machine de travaux de génie civil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3128971C2 (de) * 1981-07-22 1986-02-13 Vdo Adolf Schindling Ag, 6000 Frankfurt Vorrichtung zur Anzeige des Erfordernisses von Wartungsarbeiten bei einem Verbrennungsmotor
DE3234727A1 (de) * 1982-09-18 1984-03-22 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Verfahren zum festlegen des zeitpunktes fuer die wartung eines kraftfahrzeugs
US4847768A (en) * 1988-08-29 1989-07-11 General Motors Corporation Automatic engine oil change indicator system
DE4038972C1 (fr) * 1990-12-06 1991-11-07 Man Nutzfahrzeuge Ag, 8000 Muenchen, De
DE4305172A1 (de) * 1993-02-19 1994-08-25 Autent Ingenieurgesellschaft F Vorrichtung zur Überwachung eines sicherheitsrelevanten Elements eines Kraftfahrzeugs
US5642284A (en) * 1994-08-12 1997-06-24 Caterpillar Inc. Maintenance monitor system
DE19709445B4 (de) * 1997-03-07 2004-01-15 Volkswagen Ag Vorrichtung und Verfahren zur Berechnung und Anzeige von Service-Intervallen
DE10129457C1 (de) * 2001-06-19 2002-12-19 Daimler Chrysler Ag Verfahren zur Festlegung von Zeitpunkt und Umfang von Wartungsvorgängen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004078543A3 *

Also Published As

Publication number Publication date
WO2004078543A2 (fr) 2004-09-16
DE10310116A1 (de) 2004-09-23
WO2004078543A3 (fr) 2005-06-23

Similar Documents

Publication Publication Date Title
EP1599842A2 (fr) Minimisation des risques et optimisation de la maintenance par la determination de pourcentages de deterioration a partir de donnees de fonctionnement
EP1607192B1 (fr) Méthode et système pour estimer l'usure des articulations d'un bras de robot
DE102008006370A1 (de) Verfahren und Vorrichtung zum Überwachen einer Maschine
EP4416562A1 (fr) Procédé de surveillance de l'état d'une machine-outil
DE10348608A1 (de) Spindelvorrichtung mit Zustandsüberwachung sowie entsprechendes Überwachungsverfahren und -system
EP3390259B1 (fr) Procede de surveillance d'un circuit de securite d'un ascenseur et dispositif de surveillance d'un circuit de securite d'un ascenseur
WO2020064712A1 (fr) Procédé pour l'amélioration de la priorisation de messages, composant logiciel, système de commande et d'observation et système d'automatisation
EP1405147B1 (fr) Surveillance d'un signal de mesure, en particulier dans la technique d'automatisation
DE112018002549T5 (de) Elektronisches Steuergerät
EP1528447B1 (fr) Procédé et dispositf de diagnostic pour la surveillance du fonctionnement d'une boucle de réglage
EP2638444A1 (fr) Visualisation intelligente dans la surveillance de grandeurs de processus et/ou d'installations
EP3056957B1 (fr) Procédé et dispositif de diagnostic destinés à la surveillance du fonctionnement d'un circuit régulateur
EP1262760B1 (fr) Méthode de détermination de la viscosité d'in fluide de travail d'un moteur à combustion
DE60117650T2 (de) Verfahren zur Detektion streifiger Fehler in einer laufenden Papierbahn
EP1431927A1 (fr) Méthode pour estimer la durée de vie résiduelle d'un appareil
DE102012211722A1 (de) Verfahren zur Diagnose eines Bauteils, eines Systems oder einer Systemkomponente einer Brennkraftmaschine
DE102019107242A1 (de) Diagnoseverfahren, Diagnosesystem und Kraftfahrzeug
EP3872721A1 (fr) Procédés et systèmes d'optimisation de l'entretien de machines industrielles
DE102019114488A1 (de) Verfahren zum Betreiben einer Abfüllanlage und Abfüllanlage
DE10014740B4 (de) Verfahren und Vorrichtung zur Überwachung der Ressourcen in einem mehrstufigen Fertigungsprozeß
DE102019001627A1 (de) Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor
WO2019115342A1 (fr) Procédé et dispositif permettant de prédire l'instant de défaillance de la soupape de limitation de pression d'une pompe à carburant haute pression d'un véhicule automobile
EP4381266A1 (fr) Procédé et dispositif de détermination de la durée de vie restante de mécanisme d'engrenage
DE10138240A1 (de) Adaptionsverfahren für die Steuerung von Schaltelementen
DE10022163A1 (de) Verfahren zur Diagnose einer Antriebs-oder Funktionskomponente und Steuer-und/oder Schmiermittel und/oder Betriebsmittelversorgungssystem für Antriebs-oder Funktionskomponenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050808

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060506

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE