EP3807512A1 - Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor - Google Patents

Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor

Info

Publication number
EP3807512A1
EP3807512A1 EP19731596.3A EP19731596A EP3807512A1 EP 3807512 A1 EP3807512 A1 EP 3807512A1 EP 19731596 A EP19731596 A EP 19731596A EP 3807512 A1 EP3807512 A1 EP 3807512A1
Authority
EP
European Patent Office
Prior art keywords
wear
combustion engine
operating time
electromechanical actuators
forecast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19731596.3A
Other languages
English (en)
French (fr)
Inventor
Andreas Steinhausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutz AG
Original Assignee
Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutz AG filed Critical Deutz AG
Publication of EP3807512A1 publication Critical patent/EP3807512A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for wear detection and predictive wear forecast of electromechanical actuators at the operating time of a machine with an internal combustion engine.
  • the invention has for its object to provide a method for wear detection and predictive wear forecast of electromechanical actuators at the operating time of a machine with an internal combustion engine.
  • a method for wear detection and predictable wear forecast of electromechanical actuators becomes the operating time of a machine with an internal combustion engine with at least one engine control unit, comprising a first measurement method for identifying the actuator wear in the form of movement profiles and the number of different actuator movements within individual movement profiles, the number of different actuator movements being compared with reference data and a second measuring method, the production error in such a way recognizes that the electromechanical actuators are stimulated with a jump and the step response or the settling time of the actual position to the target position is measured and evaluated
  • Figure 1 Composition of the global process as a schematic representation
  • FIG. 5 System diagram interaction of systems and components
  • Figure 6 Exemplary electromechanical actuator, electrical
  • the global method can be divided into two different measurement methods, as shown in Figure 1.
  • Measuring method 1 identifies the actuator wear in the form of movement profiles and the number of different actuator movements within individual movement profiles. This number is compared with reference data.
  • the measurement procedure is used to detect and forecast wear on the electromechanical actuators.
  • the measuring method 2 is used to detect accidental or production errors. This increases the robustness of the entire method, since random errors cannot be detected using measuring method 1.
  • a diagnostic function is used which controls the respective electromechanical actuator and at the same time the reaction time of the z.
  • Actuator gangs records. The response time is compared with values from the specification.
  • Figure 1 shows the composition of the process in a schematic representation.
  • Measuring method 1 is described below. This procedure can be divided into the following phases:
  • the test cycle is defined in phase 1.
  • a real test / load cycle field data of a fork-lift truck
  • this load cycle contains the measurement data (e.g. consisting of the exhaust gas recirculation valve position on the Y axis in percent and the time on the X axis).
  • the data are recorded using an engine control unit.
  • the valve communicates the relative valve position using electrical voltage. This voltage is discretized in the engine control unit by means of an analog / digital converter.
  • One movement corresponds to the relative valve position over time.
  • the valve position can take values in the interval of [0%, 100%].
  • 0% stands for the fully open state and 100% for the fully closed state of the valve (see Figure 6).
  • the valve is regulated to the respective position depending on the load cycle of the internal combustion engine.
  • the electric servomotor in the actuator opens or closes the valve.
  • the adjustment of the valve position described here causes wear over the operating time of the internal combustion engine.
  • commutator wear of the electric servomotor and mechanical wear in the gear (gear wheels) of the valve are predicted using the procedure described here.
  • the test cycle is defined below as the standard test cycle 200.
  • the test cycle 200 is scaled in the next step so that it corresponds to a defined service life of the internal combustion engine. This is achieved by deleting constant valve positions (persistence of the valve for a long time, e.g.
  • a real and application-oriented test cycle (as used in this description) is preferable to a synthesized cycle (non-contiguous or statistical movement stimulation). Because the real test cycle includes a logical and functional connection of the different movements. In other words, the information of the motion overlay is available in a real application.
  • Phase 2 represents the load test (cf. Wöhler test). A certain number of the actuators in question (possibly several of the same type in order to obtain a sufficient sample size) are loaded with the test cycle 200 until the actuators either fail due to wear or outside work according to their specification.
  • the actuator positions or movements from the test cycle 200 are specified by means of an H-bridge or a controllable voltage source in the form of an electrical voltage (which each represents a position). This means that the test cycle 200 as electrical. Voltage course is stimulated.
  • Table 1 shows the number of movements of the test cycle 200.
  • Table 1 Figure 3 shows the endurance test with the test cycle200.
  • the ambient temperature is raised to 40 ° C during the stress test.
  • the actuators are assessed by the manufacturer at the end of the test to confirm the respective wear.
  • n ma xpx maximum number of movements per profile
  • n px number of movements per profile
  • T Cyci duration of the test cycle 200 [s]
  • Table 2 shows the result of the endurance test with Testzyk- Ius200.
  • Table 3 shows the calibratable thresholds of the maximum number of movements per movement profile (right column) according to Formula 1.
  • Figure 4 shows the visualization of the endurance test results.
  • Table 4 In phase 4 the predictions are calibrated and calculated. The reference values are now calibrated in the engine control unit. During the operating period, the control unit calculates the current status (remaining movements per actuator per movement profile) and predicts after how many more operating hours the maximum number of movements per actuator will have been reached. This information is communicated via an interface (e.g. CAN bus).
  • an interface e.g. CAN bus.
  • the method of time series analysis is used in combination with the method of exponential smoothing, which are explained below: The process created here (reduction of the profile movements through the load cycle of the internal combustion engine) is steady and monotonously falling. This is a consequence of the subsampling (sampling or calculation in multiples of the observation interval). The strong smoothing effect leads to a linear trend (model) (straight line equation).
  • the process consists of the operating time of the internal combustion engine and the remaining movements per actuator per profile. Exponential smoothing is used to periodically predict the remaining movements per profile (the numbering or sequence of the formulas corresponds to the calculation sequence in the engine control unit): Calculation 1. Order as an intermediate value:
  • the smoothing constants (a and ß) can be determined using field data and simulation of the process or with the help of an optimization process.
  • Formula 4 is applied.
  • the current smoothing factors at the time of the forecast horizon are smoothed again and multiplied by the forecast horizon.
  • the Y-axis section is added and the result is the forecast (remaining movements) at time FCH (for example, after another 100 operating hours, the respective actuator will have reached 70% of its total movements).
  • Forecast time [h] operating time in hours until the lower threshold is reached
  • CW [h] forecast horizon (e.g. 10 5 (observation interval)
  • Forecast vec [%] forecast vector of length FCH
  • T 0 bserv [h] observation interval, one forecast calculation per toserv i bsrvMin b) (formula 5)
  • the prediction result is continuously monitored during the runtime.
  • the forecast error (MAPE, Mean Absolute Percentage Error, see Formula 4) is determined periodically. If an excessive deviation appears over several periods, the smoothing coefficients of the exponential smoothing are adjusted more, if the deviation is small, the smoothing factors are adjusted slightly or not.
  • n number of forecasts
  • the forecast of the remaining movements or the remaining operating time is compared with the regular maintenance interval of the internal combustion engine. If a regular maintenance interval cannot be reached due to the fact that the remaining operating time is less than the difference between the time of the regular maintenance interval and the remaining operating time, the time to be observed for the electromechanical actuator maintenance is communicated. If the regular maintenance interval can be reached, the status is communicated that the electromechanical actuators should be replaced during the next regular maintenance. If the electromechanical actuators are not serviced in good time, a diagnostic status is activated.
  • Figure 5 shows the system diagram or the interaction of the systems and components.
  • actuator 1 throttle valve
  • actuator 2 exhaust gas recirculation valve
  • actuator 3 exhaust gas valve
  • actuator 4 pressure relief valve on the turbocharger.
  • the actuators 1 - 4 are regulated components of the internal combustion engine.
  • the positions or movements of the actuators are regulated via the engine control unit depending on the load spectra requested (e.g. by the driver of a machine).
  • the engine control unit identifies the individual movements in the respective profiles and calculates the forecast using formulas 2 to 8.
  • the calculated forecast value is, for. B. via CAN bus (J1939) telegram made available to other systems (signaling).
  • Measuring method 2 is described below.
  • the triggering reaction time of the electromechanical actuators is checked in addition to the motion profiles (measurement process 1) (measurement process 2).
  • the movement profiles make the wear and the wear forecast visible or measurable.
  • accidental or production errors in the drive of the electromechanical actuator cannot be detected in this way.
  • a further measuring method is now described in order to be able to recognize random errors in the actuator drive and thus to make the global method more robust with regard to errors that are due. Functioning of the measuring method 2: At a defined and favorable time, e.g. B.
  • the step response more precisely the settling time of the actual position to the target position, is measured and evaluated.
  • the required actuating time or settling time of the actuators when new can be found in the manufacturer's specification.
  • the tolerance range (or series spread) of the settling time is 19% according to the specification.
  • Table 4 shows the wear-related deviations of the actuators used from measurement method 1. It can be seen that the tolerance range of the settling time of 19% has been exceeded.
  • the settling time is one of the features that is used to identify abnormalities in the individual actuators. Others are e.g. B.
  • the settling time is the only one that is automatic during the operation of the internal combustion engine. can be measured (from the point of view of the engine control unit especially for non-intelligent electromechanical actuators such as H-bridge actuators).
  • the settling time without the other mentioned features alone is too imprecise to represent exact forecasts or the exact wear. That is why it is used in this procedure for wear identification as additional information, but above all for the detection of random errors in the drive.
  • a threshold in consultation with the manufacturer instead of 19%, 33%) is defined as to when a significant deviation of the settling time from the new condition but also from normal wear and tear (as shown in table 4) can be seen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Engines (AREA)

Abstract

1. Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor 2. Beschrieben wird ein Verfahren zur Verschleißerkennung und vorhersagbaren Verschleißprognose von elektromechanischen Aktuatoren (vor allem Drosselklappe, Abgasrückführungsventil, Abgasklappe und Überdruckventil am Turbolader oder anderen) zur Betriebszeit einer Maschine mit Verbrennungsmotor mit wenigstens einem Motorsteuergerät, umfassend ein erstes Messverfahren zur Identifizierung des Aktuatorenverschleißes in Form von Bewegungsprofilen und der Anzahl der unterschiedlichen Aktuatorenbewegungen innerhalb einzelner Bewegungsprofile, wobei die Anzahl der unterschiedlichen Aktuatorenbewegungen mit Referenzdaten verglichen wird und eines zweiten Messverfahrens, das Produktionsfehler in der Weise erkennt, dass die elektromechanischen Aktuatoren mit einem Sprung stimuliert werden und die Sprungantwort, bzw. die Einschwingzeit der Ist-Position zur Soll-Position gemessen und bewertet wird.

Description

Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor
B E S C H R E I B U N G
Die Erfindung betrifft ein Verfahren zur Verschleißerkennung und prädikti- ven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor.
Aus dem Stand der Technik sind keine Verfahren bekannt, es ist keine Verschleißerkennung möglich, da es kein integriertes Verfahren zur Verschleißerkennung gibt. Somit ist auch keine Verschleißprognose möglich.
Die Erfindung hat die Aufgabe, ein Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor zu schaffen.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Weitere erfindungsgemäße Ausgestaltungen und Vorteile gehen aus den Unteransprüchen hervor.
Demnach wird ein Verfahren zur Verschleißerkennung und vorhersagbaren Verschleißprognose von elektromechanischen Aktuatoren (vor allem Dros selklappe, Abgasrückführungsventil, Abgasklappe und Überdruckventil am Turbolader oder anderen) zur Betriebszeit einer Maschine mit Verbren nungsmotor mit wenigstens einem Motorsteuergerät, umfassend ein erstes Messverfahren zur Identifizierung des Aktuatorenverschleißes in Form von Bewegungsprofilen und der Anzahl der unterschiedlichen Aktuatorenbewegungen innerhalb einzelner Bewegungsprofile, wobei die Anzahl der unterschiedlichen Aktuatorenbewegungen mit Referenzdaten verglichen wird und eines zweiten Messverfahrens, das Produktionsfehler in der Weise erkennt, dass die elektromechanischen Aktuatoren mit einem Sprung stimuliert werden und die Sprungantwort, bzw. die Einschwingzeit der Ist- Position zur Soll-Position gemessen und bewertet wird, vorgeschlagen
Die Erfindung wird anhand der beigefügten Figuren beispielhaft näher erläutert. Es zeigen:
Abbildung 1 : Zusammensetzung des globalen Verfahrens als schematische Darstellung
Abbildung 2: Testzyklus200 entstanden aus realen Felddaten
Abbildung 3: Dauerbelastungstest mit Testzyklus200
Abbildung 4: Visualisierung der Dauerlastlauf-Ergebnisse
Abbildung 5: Systemschaubild Zusammenspiel der Systeme und Komponenten
Abbildung 6: Beispielhafter elektromechanischer Aktuator, elektrisches
Abgasrückführungsventil, 0 % Stellerposition = Ventil voll ständig geöffnet, 100 % Stellerposition = Ventil vollständig geschlossen, Zwischenpositionen sind möglich z.B. 33 % = Ventil zu einem Drittel geschlossen
Das globale Verfahren kann in zwei unterschiedliche Messverfahren auf geteilt werden, wie dies in Abbildung 1 dargestellt wird. Messverfahren 1 identifiziert den Aktuatorenverschleiß in Form von Bewegungsprofilen und der Anzahl der unterschiedlichen Aktuatorenbewegungen innerhalb einzelner Bewegungsprofile. Diese Anzahl wird mit Referenzdaten verglichen.
Das Messverfahren dient der Verschleißerkennung und Verschleißprognose der elektromechanischen Aktuatoren.
Das Messverfahren 2 dient dazu, zufällige bzw. Produktionsfehler zu erkennen. Dies erhöht die Robustheit des gesamten Verfahrens, da zufällige Fehler nicht mit dem Messverfahren 1 erkannt werden können. Hierfür wird eine Diagnosefunktion verwendet, die den jeweiligen elektromechanischen Aktuator ansteuert und gleichzeitig die Reaktionszeit des z. B. Stellvor- gangs aufzeichnet. Die Reaktionszeit wird mit Werten aus der Spezifikation verglichen. Abbildung 1 zeigt die Zusammensetzung des Verfahrens in schematischer Darstellung.
Nachfolgend wird das Messverfahren 1 beschrieben. Dieses Verfahren kann in die folgenden Phasen gegliedert werden:
In Phase 1 erfolgt die Definition des Testzyklus. Zunächst wird ein realer Test / Lastzyklus (Felddaten eines Gabel-Staplers) vermessen, welcher einem Worst-Case-Szenario - also dem schlimmsten Fall, der in Zukunft eintreten kann, entspricht - wie dies in Abbildung 2 gezeigt wird. Dieser Lastzyklus beinhaltet in diesem konkreten Beispiel die Messdaten (z. B. bestehend aus der Abgasrückführungsventil-Position auf der Y-Achse in Prozent und der Zeit auf der X-Achse). Die Daten werden mittels Motor steuergerät aufgezeichnet. Die relative Ventilposition wird vom Ventil mittels elektrischer Spannung kommuniziert. Diese Spannung wird im Motorsteuergerät mittels Analog- / Digital-Wandler diskretisiert. Eine Bewegung entspricht der relativen Ventilposition über der Zeit. Die Ventilposition kann Werte im Intervall von [0%,100%] annehmen. 0% steht für den gänzlich ge öffneten Zustand und 100% steht für den gänzlich geschlossenen Zustand des Ventils (vgl. Abbildung 6). Das Ventil wird in Abhängigkeit des Lastzyklus des Verbrennungsmotors auf die jeweilige Position geregelt. Dabei öffnet bzw. schließt der im Aktuator vorhandene elektrische Stellmotor das Ventil. Das hier beschriebene Verstellen der Ventilposition verursacht über die Betriebszeit des Verbrennungsmotors Verschleiß. Insbesondere Kom mutator-Verschleiß des elektrischen Stellmotors und mechanischen Verschleiß im Getriebe (Zahnräder) des Ventils. Diese Verschleißarten werden mit dem hier beschriebenen Verfahren prognostiziert. Der Testzyklus wird im Folgenden als Standard Testzyklus200 definiert. Der Testzyklus200 wird im nächsten Schritt skaliert, damit er einer definierten Lebensdauer des Verbrennungsmotors entspricht. Dies wird dadurch erreicht, dass konstante Ventilpositionen (Verharrung des Ventils über längere Zeit, z. B. eine Sekunde in ein und derselben Position) aus den diskretisierten Messdaten ge löscht werden. Sämtliche Bewegungen werden (zeitlich) auf 200 ms Stell- zeit gestaucht. Durch Verdichtung und vielfache Wiederholung des Zyklus kann die Lebensdauer des Verbrennungsmotors in kurzer Zeit simuliert werden. Abbildung 2 offenbart den Testzyklus200, der aus realen Felddaten entsteht.
Ein realer und anwendungsnaher Testzyklus (wie in dieser Beschreibung verwendet) ist einem synthetisierten Zyklus (nicht zusammenhängender bzw. statistischer Bewegungsstimulierung) zu bevorzugen. Denn der reale Testzyklus beinhaltet einen logischen und funktionalen Zusammenhang der verschiedenen Bewegungen. Anders ausgedrückt, bei einer realen Anwendung ist die Information der Bewegungsüberlagerung vorhanden. Die Phase 2 stellt den Belastungstest (vgl. Wöhlerversuch) dar. Es wird eine bestimmte Anzahl der betreffenden Aktuatoren (möglichst mehrere desselben Typs, um einen ausreichenden Stichprobenumfang zu erhalten) mit dem Testzyklus200 so lange belastet, bis die Aktuatoren entweder ver schleißbedingt ausfallen oder außerhalb ihrer Spezifikation arbeiten. Die Stellerpositionen bzw. Bewegungen aus dem Testzyklus200 werden mittels H-Brücke oder steuerbaren Spannungsquelle in Form einer elektrischen Spannung (die je für eine Position steht) vorgegeben. Das bedeutet, dass der Testzyklus200 als elektr. Spannungsverlauf stimuliert wird. Während des Tests werden die Funktionen der Aktuatoren permanent überwacht und aufgezeichnet, wie dies in Abbildung 3 demonstriert wird. Tabelle 1 zeigt die Anzahl der Bewegungen des Testzyklus200.
Testzyklus200 _ Laufzeit = 200 ms · 100 Bewegungen = _ 20,0 [s] große Bewegung 26
mittlere Bewegung 37
kleine Bewegung 37
Summe 100
Tabelle 1 In Abbildung 3 wird der Dauerbelastungstest mit dem Testzyklus200 dargestellt. Um dem Anspruch des Worst-Case Szenarios gerecht zu werden, wird die Umgebungstemperatur während des Belastungstests auf 40 °C angehoben. Die Aktuatoren werden am Ende des Tests durch den Hersteller befundet, um den jeweiligen Verschleiß zu bestätigen.
In Phase 3 werden Referenzdaten wie folgt erzeugt: Es werden mehrere Bewegungsprofile definiert (Anzahl bzw. Granularität der Profile kann in Abhängigkeit zum Testzyklus variieren). Bewegungsprofil 1 große Bewegungen (z. B. > 30 %), Bewegungsprofil 2 mittlere Bewegungen (z. B. <= 30 % und > 10 %), Bewegungsprofil 3 kleine Bewegungen (z. B. <= 10 %) (vgl. Tabelle 3). Anhand der Bewegungsprofile können nun die maximal getätigten Bewegungen innerhalb des Dauerlaufs bzw. Belastungstests absolut bestimmt werden (vgl. Tabelle 1 ). Beispiel: Aktuator 4 massiver Verschleiß nach 830 Betriebsstunden (vgl. Abbildung 4). Von allen Aktuatoren hat dieser die geringste Betriebszeit. Folglich wird als erste Approximation - Worst-Case-Betrachtung - die Zeitschwelle von 800 Betriebsstunden definiert (vgl. Tabelle 2). Nachfolgend kann die maximale Bewegungsanzahl je Profil (Referenzwerte) nach Formel 1 errechnet werden (vgl. Tabelle 3): (Formel 1 )
nmaxpx = Maximale Bewegungsanzahl je Profil
npx = Anzahl Bewegungen pro Profil
tmax = Zeitschwelle [h]
ct = Zeitkonstante = 3600
T Cyci = Dauer des Testzyklus200 [s]
In Tabelle 2 wird das Ergebnis des Dauerbelastungstests mit Testzyk- Ius200 aufgezeigt.
Tabelle 2
Tabelle 3 stellt die kalibrierbare Schwellen der maximalen Bewegungs anzahl pro Bewegungsprofil (rechte Spalte) nach Formel 1 dar.
Tabelle 3
Abbildung 4 zeigt die Visualisierung der Dauerlastlauf-Ergebnisse.
Tabelle 4 In Phase 4 erfolgt die Kalibrierung und Berechnung der Vorhersagen. Die Referenzwerte werden nun in das Motorsteuergerät kalibriert. Das Steuer gerät berechnet während der Betriebslaufzeit den aktuellen Zustand (verbleibende Bewegungen je Aktuator je Bewegungsprofil) und prognostiziert, nach wie vielen weiteren Betriebsstunden die maximale Bewegungsanzahl je Aktuator erreicht sein wird. Diese Informationen werden über eine Schnittstelle (z. B. CAN Bus) kommuniziert. Für die Prognose wird das Verfahren der Zeitreihenanalyse in Kombination mit dem Verfahren der Exponentiellen Glättung verwendet, welche nachfolgend erläutert werden: Der hier erschaffene Prozess (Reduktion der Profilbewegungen durch den Lastzyklus des Verbrennungsmotors) ist stetig und monoton fallend. Dies ist eine Folge aus der Unterabtastung (Abtastung bzw. Berechnung in Vielfachen des Beobachtungsintervalls). Die stark glättende Wirkung führt zu einem linearen Trend(-modell) (Geradengleichung). Der Prozess setzt sich aus Betriebszeit des Verbrennungsmotors und der verbleibenden Bewe gungen je Aktuator je Profil zusammen. Zur periodischen Vorhersage der verbleibenden Bewegungen je Profil wird die Exponentielle Glättung verwendet (die Nummerierung bzw. Reihenfolge der Formeln entspricht der Berechnungsreihenfolge im Motorsteuergerät): Berechnung 1 . Ordnung als Zwischenwert:
Z11 [%3 = Zwischenwert der Exponentiellen Glättung 1 . Ordnung
a = Glättungskonstante für Exponentiellen Glättung 1 . Ordnung
Obsrv [%] = derzeitiger gemessener/berechneter Ist-Wert der verbleibenden
Bewegungen
Z1 t-i [%] = vorheriger Zwischenwert (Formel 2)
Berechnung 2. Ordnung:
Z2t [%] = Zwischenwert der Exponentiellen Glättung 2. Ordnung
ß = Glättungskonstante für Exponentiellen Glättung 2. Ordnung
Z1t [%] = Zwischenwert der Exponentiellen Glättung 1 . Ordnung
Z2t-i [%] = vorheriger Zwischenwert 21— ß · Zlt + (1— ß) · Z2t- 1 (Formel 3)
Die Glättungskonstanten (a und ß) können mittels Felddaten und Simula tion des Prozesses oder mit Hilfe eines Optimierungsverfahrens ermittelt werden.
Nachdem die Exponentielle Glättung berechnet wurde (für den gesamten Forecast Horizont), wird Formel 4 angewandt. Die aktuellen Glättungs faktoren zum Zeitpunkt des Forecast Horizonts werden wiederum geglät tet und mit dem Forecast Horizont multipliziert. Dazu wird der Y-Achsen- abschnitt addiert und das Ergebnis ist der Forecast (verbleibende Rest bewegungen) zum Zeitpunkt FCH (beispielsweise nach weiteren 100 Be triebsstunden wird der jeweilige Aktuator 70% seiner Gesamtbewegungen erreicht haben).
(Formel 4) Berechnung des Ausfallzeitpunktes:
Eine weitere Möglichkeit besteht darin, den Zeitpunkt des vollkommenen Verschleißes zu berechnen. Anders ausgedrückt, wann bzw. zu welchem Zeitpunkt wird das jeweilige Bauteil die maximale Bewegungsanzahl erreicht haben. Dies gelingt durch Anwendung der Formeln 5 bis 7. Es wird die Steigung m (mittlere Steigung) über den gesamten Forecast Horizont und der Y-Achsenabschnitt berechnet. Dann wird die Geradengleichung nach der (Rest-) Betriebszeit aufgelöst. °bsrvMin entspricht in diesem Fall 0 % Restbewegungen.
Forecasttime [h] = Betriebszeit in Stunden bis Erreichen der unteren Schwelle
QbsrvMin
°bsrvMin [%] = untere Schwelle des Verschleißes, hier: 0% Restbewegungen
= Steigung
b [%] = Y-Achsenabschnitt
I t + FCw[%] = Zwischenwert der Exp. Glättung 1. Ordnung zum Zeitpunkt FCH
CW[h] = Forecast Horizont (z. B. 10 5 (Beobachtungsintervall)
= 50 = FCH
Z2t+fCH-i[%] = Zwischenwert der Exp. Glättung 2. Ordnung zum Zeitpunkt FCH - 1
Forecastvec[%] = Forecast Vektor der Länge FCH
T0bserv[ h] = Beobachtungsintervall, eine Forecast Berechnung je Tobserv i bsrvMin b) (Formel 5)
Forecastfine =
m
Mit:
Y-Achsenabschnitt b: (Formel 6)
Steigung m:
Forecastvec [end] - Forecastvec [start]
m = -
Tobserv length (Forecastvec) (Formel 7)
Das Vorhersageergebnis wird während der Laufzeit permanent überwacht. Dazu wird der Prognosefehler (MAPE, Mean Absolut Percentage Error, siehe Formel 4) periodisch bestimmt. Zeichnet sich eine zu hohe Abweichung über mehrere Perioden ab, werden die Glättungskoeffizienten der Exponentiellen Glättung stärker angepasst, ist die Abweichung gering, werden die Glättungsfaktoren gering bis nicht angepasst.
M = MAPE [%]
n = Anzahl der Prognosen
At = aktuell bestimmter Wert der verbleibenden Bewegungen [%]
Ft = prognostizierter Wert der verbleibenden Bewegungen [%]
(Formel 8)
Die Prognose der verbleibenden Bewegungen bzw. der restlichen Betriebs zeit wird mit dem Regelwartungsintervall des Verbrennungsmotors abgegli chen. Kann ein Regelwartungsintervall zeitlich nicht erreicht werden, da die verbleibende Betriebszeit geringer ist als die Differenz aus Zeitpunkt des Regelwartungsintervalls und verbleibende Betriebszeit, wird der einzuhaltende Zeitpunkt der elektromechanischen Aktuatoren Wartung kommuniziert. Kann das Regelwartungsintervall zeitlich erreicht werden, wird der Status kommuniziert, dass die elektromechanischen Aktuatoren bei der nächsten Regelwartung getauscht werden sollten. Wird keine rechtzeitige Wartung der elektromechanischen Aktuatoren durchgeführt, wird ein Diagnosestatus aktiviert.
In Abbildung 5 wird das Systemschaubild bzw. das Zusammenspiel der Systeme und Komponenten dargestellt. Z. B. Aktuator 1 = Drosselklappe, Aktuator 2 = Abgasrückführungsventil, Aktuator 3 = Abgasklappe, Aktuator 4 = Überdruckventil am Turbolader. Die Aktuatoren 1 - 4 sind geregelte Komponenten des Verbrennungsmotors. Die Positionen bzw. Bewegungen der Aktuatoren werden über das Motorsteuergerät in Abhängigkeit der angeforderten Lastkollektive (z. B. durch den Fahrer einer Maschine) geregelt. Das Motorsteuergerät identifiziert die einzelnen Bewegungen in den jeweiligen Profilen und berechnet die Prognose mittels Formeln 2 bis 8. Der berechnete Prognosewert wird z. B. via CAN-Bus (J1939) Telegramm anderen Systemen zur Verfügung gestellt (Signalisierung).
Nachfolgend wird das Messverfahren 2 beschrieben. Um die Robustheit des globalen Verfahrens zu erhöhen, wird zusätzlich zu den Bewegungsprofilen (Messverfahren 1 ) die Ansteuerreaktionszeit der elektromechanischen Aktuatoren geprüft (Messverfahren 2). Die Bewegungsprofile machen den Verschleiß und die Verschleißprognose sichtbar bzw. messbar. Zufällige bzw. Produktionsfehler im Antrieb des elektromechanischen Aktuators können so jedoch nicht detektiert werden. Darum wird nun ein weiteres Messverfahren beschrieben, um zufällige Fehler im Antrieb des Aktuators erkennen zu können und somit das globale Verfahren hinsichtlich zu fälliger Fehler robuster zu gestalten. Funktionsweise des Messverfahrens 2: Zu einem definierten und günstigen Zeitpunkt, z. B. nach (Nachlaufzeit) oder vor der Betriebszeit des Verbrennungsmotors, werden die elektromechanischen Aktuatoren mit einem Sprung (von 0 % = geschlossen auf 100 % = komplett geöffnet) stimuliert. Die Sprungantwort, genauer gesagt die Einschwingzeit der Ist-Position zur Soll-Position, wird gemessen und evaluiert. Die benötigte Stellzeit bzw. Einschwingzeit der Aktuatoren im Neuzustand ist der Spezifikation des Herstellers zu entnehmen. Der Tole ranzbereich (oder Serienstreuung) der Einschwingzeit beträgt laut Spezifi kation 19 %. Tabelle 4 zeigt die verschleißbedingten Abweichungen der verwendeten Aktuatoren aus dem Messverfahren 1 . Man erkennt, dass der Toleranzbereich der Einschwingzeit von 19 % überschritten wurde. Die Einschwingzeit ist eines der Merkmale, die dazu verwendet wird, Auffälligkeiten der einzelnen Aktuatoren zu identifizieren. Weitere sind z. B. Innenwiderstand des Aktuators, Drehmoment, Drehzahl usw. Die Einschwingzeit ist die einzige, die während des Betriebes des Verbrennungsmotors automati- siert gemessen werden kann (aus Sicht des Motorsteuergeräts speziell auch für nicht intelligente elektromechanische Aktuatoren wie z. B. H-Brü- cken Aktuatoren). Die Einschwingzeit ohne die weiteren genannten Merkmale ist allein betrachtet zu ungenau, um genaue Prognosen oder den ge- nauen Verschleiß darzustellen. Darum wird sie bei diesem Verfahren für die Verschleißidentifikation als weitere Information, aber vor allem zur Detektion von zufälligen Fehlern des Antriebs verwendet. Dafür wird eine Schwelle (in Absprache mit dem Hersteller statt 19 %, 33 %) definiert, ab wann eine signifikante Abweichung der Einschwingzeit vom Neuzustand aber auch vom gewöhnlichen Verschleiß (wie in Tabelle 4 dargestellt) zu erkennen ist.

Claims

Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor A N S P R Ü C H E
1 . Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor mit wenigstens einem Motorsteuergerät, umfassend ein erstes Messverfahren zur Identifizierung des Aktuatorenver- schleißes (vor allem Drosselklappe, Abgasrückführungsventil, Abgasklappe und Überdruckventil am Turbolader oder anderen) in Form von Bewe gungsprofilen und der Anzahl der unterschiedlichen Aktuatorenbewegun gen innerhalb einzelner Bewegungsprofile, wobei die Anzahl der unter schiedlichen Aktuatorenbewegungen mit Referenzdaten verglichen wird, und eines zweiten Messverfahrens, das Produktionsfehler in der Weise erkennt, dass die elektromechanischen Aktuatoren mit einem Sprung stimuliert werden und die Sprungantwort, bzw. die Einchwingzeit der Ist- Position zur Soll-Position gemessen und bewertet wird.
2. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach Anspruch 1 ,
dadurch gekennzeichnet, dass ein realer Test- bzw. Lastzyklus vermessen wird.
3. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche, dadurch gekennzeichnet, dass der reale Test- bzw. Lastzyklus digitalisiert und skaliert wird, damit er einer definierten Lebensdauer des Verbren nungsmotors entspricht.
4. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass die betreffenden Aktuatoren (möglichst mehrere desselben Typs, um einen ausreichenden Stichprobenumfang zu erhalten) mit dem Test bzw. Lastzyklus so lange belastet werden, bis die Aktuatoren entweder verschleißbedingt ausfallen oder außerhalb ihrer Spezifikation arbeiten.
5. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass während des Tests die Funktionen der Ak tuatoren permanent überwacht und aufgezeichnet werden.
6. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass zum Erzeugen von Referenzdaten mehrere Bewegungsprofile definiert werden.
7. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass die Referenzdaten in das Motorsteuergerät kalibriert werden.
8. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass das Steuergerät während der Betriebslauf zeit den aktuellen Zustand bzw. die verbleibenden Bewegungen pro Aktu ator und pro Bewegungsprofil berechnet und prognostiziert, nach wie vielen weiteren Betriebsstunden die maximale Bewegungsanzahl je Aktuator er reicht sein wird.
9. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass für die Verschleißprognose das Verfahren der Zeitreihenanalyse in Kombination mit dem Verfahren der Exponentiel len Glättung verwendet wird.
10. Verfahren zur Verschleißerkennung und vorhersagbaren Verschleiß prognose von elektromechanischen Aktuatoren zur Betriebszeit einer Ma schine mit Verbrennungsmotor nach einem oder mehreren der vorgenann ten Ansprüche,
dadurch gekennzeichnet, dass die Prognose der verbleibenden Bewegun gen bzw. der restlichen Betriebszeit mit dem Regelwartungsintervall des Verbrennungsmotors abgeglichen wird. Kann ein Regelwartungsintervall zeitlich nicht erreicht werden, da die verbleibende Betriebszeit geringer ist als die Differenz aus Zeitpunkt des Regelwartungsintervalls und die verblei bende Betriebszeit, so wird der einzuhaltende Zeitpunkt der elektromecha nischen Aktuatoren mit einem rechtzeitigen Wartungshinweis kommuni ziert. Kann das Regelwartungsintervall zeitlich erreicht werden, so wird der Status kommuniziert, dass die elektromechanischen Aktuatoren bei der nächsten Regelwartung ausgetauscht werden sollten. Sollte keine rechtzei- tige Wartung der elektromechanischen Aktuatoren durchgeführt werden, so wird ein Diagnosestatus aktiviert und kommuniziert.
EP19731596.3A 2018-06-18 2019-06-06 Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor Withdrawn EP3807512A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018004805 2018-06-18
DE102019001627.0A DE102019001627A1 (de) 2018-06-18 2019-03-08 Verfahren zur Verschleißerkennung und prädiktiven Verschleißprognose von elektromechanischen Aktuatoren zur Betriebszeit einer Maschine mit Verbrennungsmotor
PCT/EP2019/000177 WO2019242876A1 (de) 2018-06-18 2019-06-06 Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor

Publications (1)

Publication Number Publication Date
EP3807512A1 true EP3807512A1 (de) 2021-04-21

Family

ID=68724736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19731596.3A Withdrawn EP3807512A1 (de) 2018-06-18 2019-06-06 Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor

Country Status (3)

Country Link
EP (1) EP3807512A1 (de)
DE (1) DE102019001627A1 (de)
WO (1) WO2019242876A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021132840B4 (de) * 2021-12-13 2024-05-23 Rolls-Royce Solutions GmbH Verfahren zum Überwachen eines Verschleißzustands einer Gaspfadregelvorrichtung, Steuervorrichtung zur Durchführung eines solchen Verfahrens und Energiewandlungsvorrichtung mit einer solchen Steuervorrichtung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210058A (ja) * 1990-01-12 1991-09-13 Nissan Motor Co Ltd Egr装置の診断装置
JPH06264827A (ja) * 1993-03-10 1994-09-20 Nissan Motor Co Ltd Egr制御装置
US6209390B1 (en) * 1999-05-14 2001-04-03 Larue Gerald Duane Turbocharger fatigue life monitor
DE10257793A1 (de) * 2002-12-11 2004-07-22 Daimlerchrysler Ag Modellbasierter Lebensdauerbeobachter
GB2534201A (en) * 2015-01-16 2016-07-20 Caterpillar Inc Determining an expected lifetime of a valve device
DE102015009248B4 (de) * 2015-07-17 2020-01-02 Mtu Friedrichshafen Gmbh Verfahren zur Ausführung mit dem Betrieb einer Brennkraftmaschine
US10167803B2 (en) * 2016-06-01 2019-01-01 GM Global Technology Operations LLC Systems and methods for performing prognosis of fuel delivery
DE102016218278A1 (de) * 2016-09-22 2018-03-22 Robert Bosch Gmbh Funktionsüberwachung von Magnetventilen für Kraftstoffeinspritzsysteme

Also Published As

Publication number Publication date
DE102019001627A1 (de) 2019-12-19
WO2019242876A1 (de) 2019-12-26

Similar Documents

Publication Publication Date Title
DE19964424B3 (de) Vorrichtung zum Diagnostizieren von Störungen und Fehlerbedingungen in einer Kraftstoffanlage einer Verbrennungskraftmaschine
DE102011008561A1 (de) Funktionsüberwachtes Führungssystem zur Verstellung zumindest einer Systemkomponente sowie Verfahren zur Funktionsüberwachung eines solchen Führungssystems
DE102013211543A1 (de) Verfahren zum alterungs- und energieeffizienten Betrieb insbesondere eines Kraftfahrzeugs
DE102010038351B4 (de) Verfahren und Vorrichtung zum Betreiben eines hybriden Antriebssystems
EP1599842A2 (de) Risikominimierung und wartungsoptimierung durch ermittlung von schädigungsanteilen aus betriebsdaten
DE102020106880A1 (de) Verfahren und Vorrichtung zum Kalibrieren eines Steuer- und Regelvorrichtungssystems zur Steuer- und Regelung eines Betriebszustandes
DE102018213114A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem Common-Rail-Einspritzsystem
DE102007023553B3 (de) Vorrichtung und Verfahren zum Steuern eines Antriebsaggregats
EP3807512A1 (de) Verfahren zur verschleisserkennung und prädiktiven verschleissprognose von elektromechanischen aktuatoren zur betriebszeit einer maschine mit verbrennungsmotor
EP3891368B1 (de) Verfahren zur bestimmung und prädiktion des individuellen ölwechselintervalls eines verbrennungsmotors
DE10349307B3 (de) Diagnoseverfahren für einen elektromechanischen Aktor
DE102010055660A1 (de) Stochastische Detektion einer Schlupfdrehzahl eines Drehmomentwandlers und zugehörige Regelung
DE102008005154B4 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
DE102004053265A1 (de) Verfahren und Vorrichtung zur Adaption eines Anschlags eines elektrisch angesteuerten Stellgliedes
DE102004002495A1 (de) Betriebsdatenerfassungsverfahren zur Bewertung des Antriebsenergieverbrauchs von motorbetriebenen Kraftfahrzeugen bei Berücksichtigung des Fahrerverhaltens
DE10100412A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102021132840B4 (de) Verfahren zum Überwachen eines Verschleißzustands einer Gaspfadregelvorrichtung, Steuervorrichtung zur Durchführung eines solchen Verfahrens und Energiewandlungsvorrichtung mit einer solchen Steuervorrichtung
DE102011017215A1 (de) Verbrennungskraftmaschine für einen Kraftwagen sowie Verfahren zum Überprüfen einer Stelleinrichtung einer solchen Verbrennungskraftmaschine
EP2434185A1 (de) Verfahren zum Betätigen einer Baugruppe eines Getriebes
DE102022103980A1 (de) Verfahren zum Betrieb von elektromechanischen Stelleinheiten für Fahrzeugbremsen
DE102010031323A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP3608737B1 (de) Bestimmung mindestens einer umformprozesskennzahl einer servopresse
DE102017009197A1 (de) Verfahren zur Prüfung eines Hydrauliksystems
DE102018104665B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine, Steuereinrichtung und Brennkraftmaschine
DE102017009194B4 (de) Verfahren zur Prüfung eines Hydrauliksystems

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230621

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20231005