EP3802130A1 - Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre - Google Patents

Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre

Info

Publication number
EP3802130A1
EP3802130A1 EP19737816.9A EP19737816A EP3802130A1 EP 3802130 A1 EP3802130 A1 EP 3802130A1 EP 19737816 A EP19737816 A EP 19737816A EP 3802130 A1 EP3802130 A1 EP 3802130A1
Authority
EP
European Patent Office
Prior art keywords
additive manufacturing
powder
tray
powder bed
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19737816.9A
Other languages
German (de)
English (en)
Inventor
Jean-Baptiste Mottin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AddUp SAS
Original Assignee
AddUp SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AddUp SAS filed Critical AddUp SAS
Publication of EP3802130A1 publication Critical patent/EP3802130A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0006Electron-beam welding or cutting specially adapted for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/002Devices involving relative movement between electronbeam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0026Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/08Removing material, e.g. by cutting, by hole drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/10Non-vacuum electron beam-welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3584Increasing rugosity, e.g. roughening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention lies in the field of powder-based additive manufacturing by melting the grains of this powder using one or more energy or heat sources such as a laser beam and / or a electron beam and / or diodes.
  • the invention is in the field of additive manufacturing by deposition of powder bed and it aims to prepare the production platform supporting different layers of additive manufacturing powder inside a machine. additive manufacturing by powder bed deposition.
  • the invention aims to improve the quality of the first layer of powder deposited on the additive manufacturing platform.
  • the quality of the first layer of powder deposited on the production plate is essential to ensure a good metallurgical bond between the parts to be manufactured and this plate.
  • the objective is to obtain a first layer of powder uniformly distributed over the entire upper surface of the additive manufacturing plate, that is to say a first layer of powder having a substantially constant powder thickness in all point of the upper surface of the additive manufacturing tray.
  • Different parameters can affect the quality of this first layer of powder: the particle size of the powder, the chemical composition of the powder, the degree of moisture of the powder, the type of device used to spread the powder (raclette or roll for example), the surface condition of the top surface of the production tray, etc.
  • the additive manufacturing trays are machined and rectified before being mounted in the additive manufacturing machine, in order to have the desired tolerance parallelism between the lower surface and the upper surface of the tray.
  • the present invention therefore provides a method of preparing an additive manufacturing plate by deposition of powder bed requiring no sanding machine or machining nor consumable to increase the roughness of the upper surface of the tray.
  • the subject of the invention is a method for preparing the upper surface of an additive manufacturing plate by deposition of a powder bed, this method comprising at least one step of increasing the roughness of the powder. at least one area of the upper surface of the tray by printing a pattern on that area.
  • the method of preparation provides that the printing of the pattern is performed inside the additive manufacturing machine by powder bed deposition in which the tray is then used for additive manufacturing by bed deposition of powder, the printing of the pattern being performed before a layer of powder is spread on the tray.
  • the method of preparation provides that the pattern is printed on the upper surface of the tray with the same source of energy or heat which is then used for the selective melting of the powder, this source being preferably a source emitting at least one laser beam.
  • the method of preparation according to the invention also provides that: the pattern rises above the upper surface of the tray, the pattern comprises at least a plurality of juxtaposed lines, the lines are straight, parallel and evenly spaced from each other, the spacing between two adjacent lines is between 1 and 5 millimeters, the pattern comprises a first group of juxtaposed lines and a second group of lines juxtaposed, at least one line of the first group crossing at least one line of the second group, the lines of the first group being rectilinear, parallel and regularly spaced, and the lines of the second group being rectilinear, parallel and regularly spaced, the lines of the first group cross the lines of the second group so that the pattern takes the form of a grid, the lines of the first group are perpendicular to the lines of the second group; group, the lines are continuous, the additive manufacturing machine by powder bed deposition comprising at least one powder spreading device moving in a longitudinal direction above the tray, a plurality of lines of the pattern extend in parallel at a transverse direction not perpendicular to
  • the present invention also covers an additive manufacturing process by powder bed deposition comprising a step of preparing a production plate implemented in accordance with this method of preparation.
  • FIG. 1 is a diagrammatic front view of an additive manufacturing machine according to the invention
  • FIG. 2 is a sectional view of a pattern printed in a manufacturing plate according to the method according to the invention
  • FIG. 3 is a top view of an additive manufacturing tray prepared according to the method according to the invention and with an open type pattern
  • FIG. 4 is a top view of an additive manufacturing tray prepared according to the method. according to the invention and with a closed type pattern
  • FIG. 5 is a detailed view of a closed elementary cell unit of triangular shape
  • FIG. 1 is a diagrammatic front view of an additive manufacturing machine according to the invention
  • FIG. 2 is a sectional view of a pattern printed in a manufacturing plate according to the method according to the invention
  • FIG. 3 is a top view of an additive manufacturing tray prepared according to the method according to the invention and with an open type pattern
  • FIG. 4 is a top view of an additive manufacturing tray prepared according to the method. according to the invention and with a closed type pattern
  • FIG. 5 is a detailed view
  • FIG. 6 is a detailed view of a pattern composed of crenellated lines and of partly closed elementary cells
  • FIG. 7 is a detailed view of a pattern composed of sinusoidal lines and partly closed elementary cells
  • FIG. 8 is a detailed view of a unit composed of elementary cells. closed and ellipsoid shaped.
  • the invention relates to a method for preparing a production plate used in an additive manufacturing machine for implementing an additive manufacturing process by deposition of powder bed.
  • Additive manufacturing by powder bed deposition is an additive manufacturing process in which one or more pieces are manufactured by the selective melting of different layers of additive manufacturing powder superimposed on each other.
  • the first layer of powder is deposited on a support such as a plate, then selectively sintered or fused using one or more sources of energy or heat in a first horizontal section of the part or parts to be manufactured.
  • a second layer of powder is deposited on the first layer of powder which has just been fused or sintered, and this second layer of powder is sintered or selectively fused in turn, and so on until the last layer of powder useful in the manufacture of the last horizontal section of the part or parts to be manufactured.
  • FIG. 1 illustrates an additive manufacturing machine 10 making it possible to performs an additive manufacturing of parts by deposition of powder bed.
  • This additive manufacturing machine 10 comprises a manufacturing chamber 12 and at least one source 14 of heat or energy used to selectively merge, via one or more beams 16, a layer of additive manufacturing powder deposited inside. of the manufacturing enclosure 12.
  • the source or sources of heat or energy 14 may take the form of sources capable of producing one or more electron beams and / or one or more laser beams. These sources are for example one or more electron guns and / or one or more sources capable of emitting a laser beam. In order to allow a selective melting and therefore a displacement of the energy or heat beam or beams 16, each source 14 comprises means for moving and controlling the beam (s) 16.
  • the manufacturing chamber 12 is a closed enclosure.
  • a wall of this manufacturing chamber 12 may include a window for observing the manufacturing in progress inside the enclosure.
  • At least one wall of this manufacturing chamber 12 comprises an opening giving access to the interior of the enclosure for maintenance or cleaning operations, this opening being able to be closed in a sealed manner by means of a door during a period of time.
  • manufacturing cycle. During a manufacturing cycle, the manufacturing chamber 12 may be filled with an inert gas such as nitrogen to avoid oxidizing the additive manufacturing powder and / or to avoid the risk of explosion.
  • the manufacturing chamber 12 can be maintained at a slight overpressure to prevent oxygen entry, or kept under vacuum to prevent outward leakage of powder or when an electron beam is used inside the chamber. enclosure for sintering or fusing the powder.
  • the additive manufacturing machine 10 comprises: a horizontal work plane 18 and at least one manufacturing zone 20 located in the work plane 18.
  • a manufacturing zone 20 is defined by an opening 21 provided in the horizontal work plane 18 and by a manufacturing jacket 22 and a production plate 24.
  • the jacket 22 extends vertically under the work plane 18 and it opens into the work plane 18 through the opening 21.
  • the manufacturing plate 24 slides vertically inside the manufacturing jacket 22 under the effect of an actuator 26 such a cylinder.
  • the additive manufacturing machine comprises two movable powder receiving surfaces 28 and able to move close to the manufacturing zone. 20 located in the manufacturing enclosure.
  • the additive manufacturing machine also includes a powder spreading device 30 for spreading the powder of the mobile receiving surfaces 28 to the manufacturing zone 20, and a powder dispensing device 32 provided above each movable receiving surface 28.
  • the spreading device 30 takes the form of a squeegee and / or one or more rollers 34 mounted on a carriage 35.
  • This carriage 35 is mounted to be movable in translation in a longitudinal direction D35 above the manufacturing zone 20.
  • the carriage 35 may be motorized, or set in motion by a motor located inside or preferably outside the enclosure of manufacturing 12 and via a motion transmission system such as pulleys and a belt.
  • a movable powder receiving surface 28 takes the form of a drawer 36 mounted to be movable in translation in a direction preferably perpendicular to the longitudinal direction D35 of movement of the carriage 35 of the powder spreading device 30.
  • a drawer 36 moves between a retracted position in which this drawer is located outside the path of the powder spreading device 30 and an extended position in which this drawer extends at least partly in the path of the powder spreading device 30.
  • a powder dispensing device 32 is provided above each drawer 36, and therefore above each movable receiving surface 28.
  • Each drawer 36 is mounted movable in translation in a groove 38 provided in the work plane 18 of the manufacturing chamber 12 near the manufacturing zone 20.
  • Each groove 38 is arranged so that the surface mobile drawer 28 formed by each drawer moves in the working plane 18. In other words, when a drawer 36 is in the deployed position, the receiving surface 28 formed by this drawer is located in the extension of the upper surface. S18 of the work plan.
  • each slide 36 Being mounted movably in translation near the manufacturing zone 20 and in the work plane 18, each slide 36 occupies a very small footprint near the manufacturing zone 20.
  • Each movable receiving surface 28 takes the form of a movable drawer in translation
  • the manufacturing zone 20 preferably takes a rectangular shape and the manufacturing plate 24 is preferably parallelepipedal.
  • the manufacturing zone 20 and thus the production platform 24 can also take other forms that are more adapted to the shapes of the part or parts to be manufactured, such as for example a shape circular, ellipsoidal, or annular.
  • a powder dispensing device 32 deposits a bead of powder on the mobile receiving surface 28.
  • the mobile receiving surface 28 moves under the powder delivery device 32 and the powder delivery device 32 delivers a stable and controlled powder flow rate at at least one distribution point under which the moving powder receiving surface 28 moves.
  • the squeegee and / or the roller or rollers of the powder spreading device spread the bead of powder on the production plate 24, and more precisely on the upper surface 40 of this plate.
  • the present invention relates to a method for preparing the upper surface 40 of an additive manufacturing plate 24 to ensure a homogeneous distribution of the first layer of powder on this plate.
  • the method of preparation comprises at least one step of increasing the roughness of at least one area of the upper surface 40 of the plate 24 by printing a pattern M on this area.
  • the method of preparation according to the invention provides that the printing of the pattern M is performed inside the additive manufacturing machine 10 by deposition of powder bed in which the plate 24 is then used for additive manufacturing by powder bed deposition. According to the invention, the printing of the pattern M is carried out before a layer of powder is spread on the plate 24.
  • the powder bed deposition additive manufacturing machine 10 comprising at least one energy or heat source 14 used to selectively fuse a layer of additive manufacturing powder, the method of preparation according to the invention.
  • the invention provides that the pattern M is printed on the upper surface 40 of the tray with the energy or heat source 14 which is then used for the selective melting of the powder.
  • the additive manufacturing machine 10 by deposition of bed of powder comprising at least one source 14 emitting at least one laser beam 16 used to selectively fuse a layer of additive manufacturing powder, the pattern M is printed on the upper surface 40 of the plate 24 with a laser beam 16 then used for the selective melting of the powder.
  • the method of preparation provides that the pattern M rises to above the upper surface of the tray.
  • Figure 2 illustrates the realization of a pattern M on the upper surface 40 of the plate with a laser beam 16.
  • the dimensional proportions between the pattern M and the thickness of the plate 24 are not respected and they do not correspond to reality.
  • the material of the plate is fused and displaced by the energy of the beam.
  • These protuberances are formed from the material of the tray. These protuberances P rise above the upper surface 40 and they extend in at least one direction parallel to the upper surface 40 of the plate 24.
  • protuberances P may be contiguous to a groove G dug by the action of the laser beam in the upper surface 40 of the plate.
  • the protrusion or P rise a few tens of micrometers above the upper surface 40, while the thickness of a plate 24 is several centimeters. It is these protuberances P which will make it possible to retain the grains of powder on the upper surface 40 of the plate 24 facing the action of the powder spreading device 30.
  • the pattern M comprises at least a plurality of lines L juxtaposed.
  • the dimensional proportions between the lines L of the pattern M and the dimensions (length and width) of the plate 24 are not respected and they do not correspond to reality.
  • the lines L are preferably straight, parallel and evenly spaced from each other.
  • the spacing E between two adjacent lines L is preferably between 1 and 5 millimeters.
  • the pattern M comprises a first group G1 of juxtaposed lines L1 and a second group G2 of lines L2 juxtaposed, at least a line L1 of the first group crossing at least one line L2 of the second group.
  • the lines L1 of the first group G1 being rectilinear, parallel and regularly spaced apart, and the lines L2 of the second group G2 being rectilinear, parallel and regularly spaced, the lines of the first group cross the lines of the second group so as to that the pattern M takes the form of a grid.
  • a grid forms a plurality of elementary cells CE making it possible to greatly favor the attachment of the first layer of powder to the plate 24.
  • the lines L1 of the first group G1 are preferably perpendicular to the lines L2 of the second group G2.
  • the lines L, L1, L2 are preferably continuous.
  • both the lines L1 of the first group G1 and the lines L2 of the second group G2 extend parallel to respective transverse directions DT1 and DT2 that are not perpendicular to the longitudinal direction D35.
  • At least a plurality of lines L, L1, L2 of M pattern extend parallel to a transverse direction DT, DT1, DT2 whose respective inclination angle a, a1, a2 clockwise or counterclockwise with respect to the longitudinal direction D35 is between twenty-five and sixty -five degrees.
  • the lines L1 of a first group G1 of lines of the pattern M extend parallel to a first transverse direction DT1 inclined by forty-five degrees clockwise with respect to the longitudinal direction D35, and the lines L2 of a second group G2 lines of the pattern M extend parallel to a second transverse direction DT2 inclined forty-five degrees counterclockwise with respect to the longitudinal direction D35.
  • an elementary cell CE takes a triangular shape.
  • non-straight lines can be used to create closed or partially closed CE element cells.
  • Figure 6 illustrates an example of pattern M in which crenellated lines LC are used to create a plurality of partially closed EC elementary cells.
  • Fig. 7 illustrates an exemplary pattern M in which sinusoidal lines LS are used to create a plurality of partially closed EC elementary cells.
  • the pattern M is formed by a plurality of elementary patterns ME can substantially correspond to the elementary cells CE.
  • the elementary patterns ME may have a closed or partially closed contour.
  • the elementary patterns ME can take different forms: ellipsoidal (FIG. 8), circular, polygonal, notably in parallelogram, rhombus, hexagon, etc.
  • the pattern M comprises a plurality of elementary cells CE juxtaposed and each elementary cell CE has a contour C at least partially closed, in order to effectively retain the first layer of powder on the board.
  • the contour C of each elementary cell is closed over at least 50% of its length.
  • the surface of each elementary cell CE is between 4 and 25 mm 2 .
  • the pattern M is preferably printed on the entire upper surface 40 of the additive manufacturing tray.
  • the present invention covers an additive manufacturing platform 24 by powder bed deposition which is prepared in accordance with the method of preparation which has just been described.
  • the production plate 24 prepared according to the invention differs in roughness created by protuberances P rising above the upper surface 40 of the tray and providing better retention of powder grains than hollow shapes such as micro-grooves or microcavities.
  • the present invention also covers an additive manufacturing process by powder bed deposition comprising a stage of preparation of the production plate 24 implemented in accordance with the method of preparation which has just been described.
  • a manufacturing method is for example implemented inside an additive manufacturing machine 10 comprising a production plate 24, a device 30 for spreading a layer of additive manufacturing powder on this production plate. and at least one energy or heat source 14 used to selectively fuse an additive manufacturing powder layer.
  • the plate 24 is mounted in the additive manufacturing machine 10 and then prepared according to the method of preparation just described.
  • the plate 24 is prepared according to the method of preparation just described, and then used for manufacturing Additive parts by powder bed deposition.
  • the plate 24 is mounted in the additive manufacturing machine 10, prepared according to the method of preparation just described, and then used for the additive manufacturing of parts by deposit of powder bed.
  • the method of preparation, the plate 24 prepared with this method, and the additive manufacturing process incorporating this method of preparation are particularly advantageous when used with powders having a particle size of less than 50 micrometers because they make it possible to guarantee a homogeneous distribution of such powders even if their particle size is relatively small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Purses, Travelling Bags, Baskets, Or Suitcases (AREA)

Abstract

L'invention concerne une méthode de préparation de la surface supérieure (40) d'un plateau de fabrication additive (24) par dépôt de lit de poudre, la méthode comprenant au moins une étape consistant à augmenter la rugosité d'au moins une zone de la surface supérieure du plateau en imprimant un motif (M) sur cette zone. Selon l'invention, l'impression du motif est réalisée à l'intérieur de la machine de fabrication additive (10) par dépôt de lit de poudre dans laquelle le plateau est utilisé ensuite pour la fabrication additive par dépôt de lit de poudre.

Description

METHODE DE PREPARATION DE LA SURFACE SUPERIEURE D’UN PLATEAU DE FABRICATION ADDITIVE PAR DEPOT DE LIT DE POUDRE
[001] L’ invention se situe dans le domaine de la fabrication additive à base de poudre par fusion des grains de cette poudre à l’aide d’une ou plusieurs sources d’énergie ou de chaleur comme un faisceau laser et/ou un faisceau d’électrons et/ou des diodes.
[002] Plus précisément, l’invention se situe dans le domaine de la fabrication additive par dépôt de lit de poudre et elle vise à préparer le plateau de fabrication supportant différentes couches de poudre de fabrication additive à l’intérieur d’une machine de fabrication additive par dépôt de lit de poudre.
[003] Plus précisément encore, l’invention vise à améliorer la qualité de la première couche de poudre déposée sur le plateau de fabrication additive. En effet, dans le cadre de la fabrication additive par dépôt de lit de poudre, la qualité de la première couche de poudre déposée sur le plateau de fabrication est primordiale pour garantir une bonne liaison métallurgique entre les pièces à fabriquer et ce plateau.
[004] Par qualité de la première couche de poudre, il est entendu la qualité de répartition de cette première couche de poudre sur la surface supérieure du plateau de fabrication. Plus en détail, l’objectif est d’obtenir une première couche de poudre uniformément répartie sur toute la surface supérieure du plateau de fabrication additive, c’est-à-dire une première couche de poudre offrant une épaisseur de poudre sensiblement constante en tout point de la surface supérieure du plateau de fabrication additive.
[005] Différents paramètres peuvent influer sur la qualité de cette première couche de poudre : la granulométrie de la poudre, la composition chimique de la poudre, le degré d’humidité de la poudre, le type de dispositif utilisé pour étaler la poudre (raclette ou rouleau par exemple), l’état de surface de la surface supérieure du plateau de fabrication, etc.
[006] De façon connue, les plateaux de fabrication additives sont usinés et rectifiés avant d’être montés dans la machine de fabrication additive, ceci afin d’avoir la tolérance de parallélisme souhaitée entre la surface inférieure et la surface supérieure du plateau.
[007] Afin d’obtenir une première couche de bonne qualité, il est connu de dégrader l’état de surface de la surface supérieure du plateau par sablage ou par usinage (fraisage par exemple) afin d’augmenter la rugosité de la surface supérieure du plateau. Les rugosités ainsi créées permettent de retenir les grains de poudre sur la surface supérieure du plateau de fabrication additive, facilitant ainsi l’accroche de la première couche de poudre sur le plateau et donc l’obtention d’une première couche de poudre uniformément répartie.
[008] Ces deux méthodes de l’art antérieur ont comme inconvénient de nécessiter une machine de sablage ou d’usinage, et les consommables nécessaires à l’utilisation de ces machines. [009] La présente invention propose donc une méthode de préparation d’un plateau de fabrication additive par dépôt de lit de poudre ne nécessitant ni machine de sablage ou d’usinage ni consommable pour augmenter la rugosité de la surface supérieure du plateau.
[010] A cet effet, l’invention a pour objet une méthode de préparation de la surface supérieure d’un plateau de fabrication additive par dépôt de lit de poudre, cette méthode comprenant au moins une étape consistant à augmenter la rugosité d’au moins une zone de la surface supérieure du plateau en imprimant un motif sur cette zone.
[011] Plus particulièrement, la méthode de préparation prévoit que l’impression du motif est réalisée à l’intérieur de la machine de fabrication additive par dépôt de lit de poudre dans laquelle le plateau est utilisé ensuite pour la fabrication additive par dépôt de lit de poudre, l’impression du motif étant réalisée avant qu’une couche de poudre ne soit étalée sur le plateau.
[012] Avantageusement, la méthode de préparation prévoit que le motif est imprimé sur la surface supérieure du plateau avec la même source d’énergie ou de chaleur qui est utilisée ensuite pour la fusion sélective de la poudre, cette source étant de préférence une source émettant au moins un faisceau laser.
[013] La méthode de préparation selon l’invention prévoit aussi que : le motif s’élève au-dessus de la surface supérieure du plateau, le motif comprend au moins une pluralité de lignes juxtaposées, les lignes sont rectilignes, parallèles et régulièrement espacées les unes des autres, l’espacement entre deux lignes adjacentes est compris entre 1 et 5 millimètres, le motif comprend un premier groupe de lignes juxtaposées et un second groupe de lignes juxtaposées, au moins une ligne du premier groupe croisant au moins une ligne du second groupe, les lignes du premier groupe étant rectilignes, parallèles et régulièrement espacées, et les lignes du second groupe étant rectilignes, parallèles et régulièrement espacées, les lignes du premier groupe croisent les lignes du second groupe de manière à ce que le motif prenne la forme d’une grille, les lignes du premier groupe sont perpendiculaires aux lignes du second groupe, les lignes sont continues, la machine de fabrication additive par dépôt de lit de poudre comprenant au moins un dispositif d’étalement de poudre se déplaçant dans une direction longitudinale au-dessus du plateau, une pluralité de lignes du motif s’étendent parallèlement à une direction transversale non-perpendiculaire à la direction longitudinale, une pluralité de lignes du motif s’étendent parallèlement à une direction transversale dont l’angle d’inclinaison en sens horaire ou en sens antihoraire par rapport à la direction longitudinale est compris entre vingt-cinq et soixante-cinq degrés, les lignes d’un premier groupe de lignes du motif s’étendent parallèlement à une première direction transversale inclinée de quarante-cinq degrés en sens horaire par rapport à la direction longitudinale, et les lignes d’un second groupe de lignes du motif s’étendent parallèlement à une seconde direction transversale inclinée de quarante-cinq degrés en sens antihoraire par rapport à la direction longitudinale, le motif comprenant une pluralité de cellules élémentaires juxtaposées, chaque cellule élémentaire présente un contour au moins partiellement fermé, le contour de chaque cellule élémentaire est fermé sur au moins 50% de sa longueur, le contour de chaque cellule élémentaire est fermé sur la totalité de sa longueur, la surface de chaque cellule élémentaire est comprise entre 4 et 25 mm2, le motif est imprimé sur toute la surface du plateau de fabrication additive.
[014] La présente invention couvre aussi un procédé de fabrication additive par dépôt de lit de poudre comprenant une étape de préparation d’un plateau de fabrication mise en oeuvre conformément à cette méthode de préparation.
[015] D’autres caractéristiques et avantages de l’invention apparaîtront dans la description qui va suivre. Cette description, donnée à titre d’exemple et non limitative, se réfère aux dessins joints en annexe sur lesquels : la figure 1 est une vue de face schématique d’une machine de fabrication additive selon l’invention, la figure 2 est une vue en coupe d’un motif imprimé dans un plateau de fabrication conformément à la méthode selon l’invention, la figure 3 est une vue de dessus d’un plateau de fabrication additive préparé conformément à la méthode selon l’invention et avec un motif de type ouvert, la figure 4 est une vue de dessus d’un plateau de fabrication additive préparé conformément à la méthode selon l’invention et avec un motif de type fermé, la figure 5 est une vue de détail d’un motif à cellule élémentaire fermée de forme triangulaire, la figure 6 est une vue de détail d’un motif composé de lignes crénelées et de cellules élémentaires partiellement fermées, la figure 7 est une vue de détail d’un motif composé de lignes sinusoïdales et de cellules élémentaires partiellement fermées, et la figure 8 est une vue de détail d’un motif composé de cellules élémentaires fermées et de forme ellipsoïdale.
[016] L’ invention est relative à une méthode de préparation d’un plateau de fabrication utilisée dans une machine de fabrication additive pour la mise en oeuvre d’un procédé de fabrication additive par dépôt de lit de poudre.
[017] La fabrication additive par dépôt de lit de poudre est un procédé de fabrication additif dans lequel une ou plusieurs pièces sont fabriquées par la fusion sélective de différentes couches de poudre de fabrication additive superposées les unes sur les autres. La première couche de poudre est déposée sur un support tel un plateau, puis frittée ou fusionnée sélectivement à l’aide d’une ou plusieurs sources d’énergie ou de chaleur selon une première section horizontale de la ou des pièces à fabriquer. Puis, une deuxième couche de poudre est déposée sur la première couche de poudre qui vient d’être fusionnée ou frittée, et cette deuxième couche de poudre est frittée ou fusionnée sélectivement à son tour, et ainsi de suite jusqu’à la dernière couche de poudre utile à la fabrication de la dernière section horizontale de la ou des pièces à fabriquer.
[018] La figure 1 illustre une machine 10 de fabrication additive permettant de mettre en œuvre une fabrication additive de pièces par dépôt de lit de poudre. Cette machine 10 de fabrication additive comprend une enceinte de fabrication 12 et au moins une source 14 de chaleur ou d’énergie utilisée pour fusionner de manière sélective, via un ou plusieurs faisceaux 16, une couche de poudre de fabrication additive déposée à l’intérieur de l’enceinte de fabrication 12.
[019] La ou les sources de chaleur ou d’énergie 14 peuvent prendre la forme de sources capables de produire un ou plusieurs faisceaux d’électrons et/ou un ou plusieurs faisceaux laser. Ces sources sont par exemple un ou plusieurs canons d’électrons et/ou une ou plusieurs sources capables d’émettre un faisceau laser. Afin de permettre une fusion sélective et donc un déplacement du ou des faisceaux d’énergie ou de chaleur 16, chaque source 14 comprend des moyens de déplacement et de contrôle du ou des faisceaux 16.
[020] L’ enceinte de fabrication 12 est une enceinte fermée. Une paroi de cette enceinte de fabrication 12 peut comprendre une vitre permettant d’observer la fabrication en cours à l’intérieur de l’enceinte. Au moins une paroi de cette enceinte de fabrication 12 comprend une ouverture donnant accès à l’intérieur de l’enceinte pour des opérations de maintenance ou de nettoyage, cette ouverture pouvant être refermée de manière étanche à l’aide d’une porte pendant un cycle de fabrication. Pendant un cycle de fabrication, l’enceinte de fabrication 12 peut être remplie avec un gaz inerte tel l’azote pour éviter d’oxyder la poudre de fabrication additive et/ou pour éviter les risques d’explosion. L’enceinte de fabrication 12 peut être maintenue en légère surpression pour éviter les entrées d’oxygène, ou maintenue sous vide pour éviter les fuites de poudre vers l’extérieur ou lorsqu’un faisceau d’électrons est utilisé à l’intérieur de l’enceinte pour fritter ou fusionner la poudre.
[021] A l’intérieur de l’enceinte de fabrication 12, la machine 10 de fabrication additive comprend : un plan de travail horizontal 18 et au moins une zone de fabrication 20 se situant dans le plan de travail 18. Une zone de fabrication 20 est définie par une ouverture 21 prévue dans le plan de travail horizontal 18 et par une chemise de fabrication 22 et un plateau de fabrication 24. La chemise 22 s’étend verticalement sous le plan de travail 18 et elle débouche dans le plan de travail 18 par l’ouverture 21. Le plateau de fabrication 24 coulisse verticalement à l’intérieur de la chemise de fabrication 22 sous l’effet d’un actionneur 26 tel un vérin.
[022] Afin de réaliser les différentes couches de poudre utiles à la fabrication additive de la ou des pièces à fabriquer, la machine de fabrication additive comprend deux surfaces de réception de poudre mobile 28 et aptes à se déplacer à proximité de la zone de fabrication 20 située dans l’enceinte de fabrication. La machine de fabrication additive comprend aussi un dispositif d’étalement de poudre 30 permettant d’étaler la poudre des surfaces de réception mobile 28 vers la zone de fabrication 20, et un dispositif de distribution de poudre 32 prévu au-dessus de chaque surface de réception mobile 28.
[023] Le dispositif d’étalement 30 prend la forme d’une raclette et/ou d’un ou plusieurs rouleaux 34 montés sur un chariot 35. Ce chariot 35 est monté mobile en translation dans une direction longitudinale D35 au-dessus de la zone de fabrication 20. Afin d’être entraîné en translation dans la direction longitudinale D35, le chariot 35 peut être motorisé, ou mis en mouvement par un moteur se situant à l’intérieur ou de préférence à l’extérieur de l’enceinte de fabrication 12 et via un système de transmission de mouvement tels des poulies et une courroie.
[024] Une surface de réception de poudre mobile 28 prend la forme d’un tiroir 36 monté mobile en translation dans une direction de préférence perpendiculaire à la direction longitudinale D35 de déplacement du chariot 35 du dispositif d’étalement 30 de poudre. Plus en détail, un tiroir 36 se déplace entre une position rétractée dans laquelle ce tiroir se situe en dehors de la trajectoire du dispositif d’étalement de poudre 30 et une position déployée dans laquelle ce tiroir s’étend au moins en partie dans la trajectoire du dispositif d’étalement de poudre 30.
[025] Un dispositif de distribution de poudre 32 est prévu au-dessus de chaque tiroir 36, et donc au-dessus de chaque surface de réception mobile 28.
[026] Chaque tiroir 36 est monté mobile en translation dans une rainure 38 prévue dans le plan de travail 18 de l’enceinte de fabrication 12 à proximité de la zone de fabrication 20. Chaque rainure 38 est agencée de manière à ce que la surface de réception de poudre mobile 28 formée par chaque tiroir se déplace dans le plan de travail 18. Autrement dit, lorsqu’un tiroir 36 est en position déployée, la surface de réception 28 formée par ce tiroir se situe dans le prolongement de la surface supérieure S18 du plan de travail.
[027] En étant monté mobile en translation à proximité de la zone de fabrication 20 et dans le plan de travail 18, chaque tiroir 36 occupe un encombrement très réduit à proximité de la zone de fabrication 20.
[028] Chaque surface de réception mobile 28 prenant la forme d’un tiroir mobile en translation, la zone de fabrication 20 prend de préférence une forme rectangulaire et le plateau de fabrication 24 est de préférence parallélépipédique. Toutefois, la zone de fabrication 20 et donc le plateau de fabrication 24 peuvent aussi prendre d’autres formes plus adaptées aux formes de la ou des pièces à fabriquer, comme par exemple une forme circulaire, ellipsoïdale, ou annulaire.
[029] En vue de la réalisation de la première couche de poudre sur le plateau de fabrication 24, un dispositif de distribution de poudre 32 dépose un cordon de poudre sur la surface de réception mobile 28. A cet effet, la surface de réception mobile 28 se déplace sous le dispositif de distribution de poudre 32 et le dispositif de distribution de poudre 32 délivre un débit de poudre stable et maîtrisé en au moins un point de distribution sous lequel se déplace la surface de réception de poudre mobile 28. Puis, la raclette et/ou le ou les rouleaux du dispositif d’étalement de poudre étalent le cordon de poudre sur le plateau de fabrication 24, et plus précisément sur la surface supérieure 40 de ce plateau.
[030] La présente invention est relative à une méthode de préparation de la surface supérieure 40 d’un plateau de fabrication additive 24 visant à garantir une répartition homogène de la première couche de poudre sur ce plateau.
[031] A cet effet, la méthode de préparation comprend au moins une étape consistant à augmenter la rugosité d’au moins une zone de la surface supérieure 40 du plateau 24 en imprimant un motif M sur cette zone.
[032] De plus, la méthode de préparation selon l’invention prévoit que l’impression du motif M est réalisée à l’intérieur de la machine 10 de fabrication additive par dépôt de lit de poudre dans laquelle le plateau 24 est utilisé ensuite pour la fabrication additive par dépôt de lit de poudre. Selon l’invention, l’impression du motif M est réalisée avant qu’une couche de poudre ne soit étalée sur le plateau 24.
[033] En évitant l’utilisation d’une machine de sablage ou d’usinage et de consommables, on réduit le coût de préparation du plateau de fabrication 24. De plus, en réalisant le motif M directement dans la machine utilisée ensuite pour la mise en oeuvre du procédé de fabrication additive par dépôt de lit poudre, on réduit aussi le temps de préparation de ce plateau de fabrication 24.
[034] Plus en détail, la machine de fabrication additive 10 par dépôt de lit de poudre comprenant au moins une source d’énergie ou de chaleur 14 utilisée pour fusionner de manière sélective une couche de poudre de fabrication additive, la méthode de préparation selon l’invention prévoit que le motif M est imprimé sur la surface supérieure 40 du plateau avec la source d’énergie ou de chaleur 14 qui est utilisée ensuite pour la fusion sélective de la poudre.
[035] Plus en détail encore, la machine de fabrication additive 10 par dépôt de lit de poudre comprenant au moins une source 14 émettant au moins un faisceau laser 16 utilisé pour fusionner de manière sélective une couche de poudre de fabrication additive, le motif M est imprimé sur la surface supérieure 40 du plateau 24 avec un faisceau laser 16 utilisé ensuite pour la fusion sélective de la poudre.
[036] L’ utilisation du faisceau laser 16 utilisé ensuite pour la fusion sélective de la poudre garantit une bonne précision de réalisation du motif M et une bonne répétabilité de la réalisation de ce motif M.
[037] La bonne précision de réalisation du motif M et la bonne répétabilité de la réalisation de ce motif M sont aussi garanties par le montage du plateau dans la machine qui implique une mise en référence du plateau par rapport à la source d’énergie ou de chaleur 14, et donc un positionnement précis du plateau par rapport à la source d’énergie ou de chaleur 14.
[038] Afin de créer des rugosités, c’est-à-dire des formes en relief, permettant de retenir les grains de poudre sur la surface supérieure 40 du plateau, la méthode de préparation prévoit que le motif M s’élève au-dessus de la surface supérieure du plateau.
[039] La figure 2 illustre la réalisation d’un motif M sur la surface supérieure 40 du plateau avec un faisceau laser 16. Pour des raisons de lisibilité, les proportions dimensionnelles entre le motif M et l’épaisseur du plateau 24 ne sont pas respectées et elles ne correspondent pas à la réalité. Plus en détail, au point d’impact du faisceau sur le plateau 24, la matière du plateau est fusionnée et refoulée par l’énergie du faisceau. Cela aboutit à un motif M formé dans la surface supérieure 40 par au moins une protubérance P, deux dans l’exemple représenté en figure 2. Ces protubérances sont formées à partir de la matière du plateau. Ces protubérances P s’élèvent au-dessus de la surface supérieure 40 et elles s’étendent dans au moins une direction parallèle à la surface supérieure 40 du plateau 24. Cette ou ces protubérances P peuvent être accolées à une gorge G creusée par l’action du faisceau laser dans la surface supérieure 40 du plateau. Pour donner un ordre d’idées, la ou les protubérances P s’élèvent de quelques dizaines de micromètres au-dessus de la surface supérieure 40, alors que l’épaisseur d’un plateau 24 est de plusieurs centimètres. Ce sont ces protubérances P qui vont permettre de retenir les grains de poudre sur la surface supérieure 40 du plateau 24 face à l’action du dispositif d’étalement de poudre 30.
[040] Selon une première variante obtenue avec une puissance très réduite du faisceau laser, un motif M est formé au-dessus de la surface supérieure 40 du plateau 24 par une unique protubérance P obtenue par refoulement de matière. Selon d’autres variantes obtenues avec une puissance plus élevée du faisceau laser, un motif M est formé au-dessus de la surface supérieure 40 du plateau 24 par une unique protubérance P accolée à une gorge G ou par deux protubérances P situées de part et d’autre d’une gorge G.
[041] Comme l’illustre la figure 3, le motif M comprend au moins une pluralité de lignes L juxtaposées. Pour des raisons de lisibilité des figures 3 et 4, les proportions dimensionnelles entre les lignes L du motif M et les dimensions (longueur et largeur) du plateau 24 ne sont pas respectées et elles ne correspondent pas à la réalité.
[042] Pour réduire le temps de préparation du plateau et favoriser une répartition uniforme de la poudre sur le plateau 24, les lignes L sont de préférence rectilignes, parallèles et régulièrement espacées les unes des autres.
[043] Pour donner un ordre d’idées, et pour permettre l’accroche des poudres ayant une granulométrie inférieure à cent micromètres, l’espacement E entre deux lignes adjacentes L est de préférence compris entre 1 et 5 millimètres.
[044] Comme l’illustre la figure 4 et afin de favoriser davantage une répartition uniforme de la poudre sur le plateau 24, le motif M comprend un premier groupe G1 de lignes L1 juxtaposées et un second groupe G2 de lignes L2 juxtaposées, au moins une ligne L1 du premier groupe croisant au moins une ligne L2 du second groupe.
[045] De préférence, les lignes L1 du premier groupe G1 étant rectilignes, parallèles et régulièrement espacées, et les lignes L2 du second groupe G2 étant rectilignes, parallèles et régulièrement espacées, les lignes du premier groupe croisent les lignes du second groupe de manière à ce que le motif M prenne la forme d’une grille. Une telle grille forme une pluralité de cellules élémentaires CE permettant de favoriser grandement l’accroche de la première couche de poudre sur le plateau 24.
[046] Toujours en vue de favoriser davantage une répartition uniforme de la poudre sur le plateau 24, les lignes L1 du premier groupe G1 sont de préférence perpendiculaires aux lignes L2 du second groupe G2.
[047] Pour réduire le temps de travail du laser et donc le temps de préparation du plateau 24, les lignes L,L1 ,L2 sont de préférence continues.
[048] Pour s’assurer que les lignes L , L 1 , L2 permettent bien de retenir les grains de poudre face à l’action du dispositif d’étalement de poudre 30, au moins une pluralité de lignes L du motif M s’étendent parallèlement à une direction transversale DT non- perpendiculaire à la direction longitudinale D35. [049] De préférence, à la fois les lignes L1 du premier groupe G1 et les lignes L2 du second groupe G2 s’étendent parallèlement à des directions transversales respectives DT1 et DT2 non-perpendiculaires à la direction longitudinale D35.
[050] Pour s’assurer que les lignes L , L 1 , L2 retiennent de manière optimale les grains de poudre face à l’action du dispositif d’étalement de poudre 30, au moins une pluralité de lignes L,L1 ,L2 du motif M s’étendent parallèlement à une direction transversale DT,DT1 ,DT2 dont l’angle d’inclinaison respectif a,a1 ,a2 en sens horaire ou en sens antihoraire par rapport à la direction longitudinale D35 est compris entre vingt-cinq et soixante-cinq degrés.
[051] Dans une variante du motif M susceptible de permettre une répartition homogène des poudres difficiles à étaler uniformément (en raison d’une granulométrie très faible, par exemple inférieure à vingt micromètres, ou en raison de leur fort degré d’humidité), les lignes L1 d’un premier groupe G1 de lignes du motif M s’étendent parallèlement à une première direction transversale DT1 inclinée de quarante-cinq degrés en sens horaire par rapport à la direction longitudinale D35, et les lignes L2 d’un second groupe G2 de lignes du motif M s’étendent parallèlement à une seconde direction transversale DT2 inclinée de quarante-cinq degrés en sens antihoraire par rapport à la direction longitudinale D35.
[052] Afin de multiplier les cellules élémentaires CE et comme l’illustre la figure 5, on peut multiplier le nombre de groupes G1 ,G2,G3 de lignes L1 ,L2,L3 qui s’entrecroisent, trois groupes de lignes dans l’exemple représenté. Dans cet exemple, une cellule élémentaire CE prend une forme triangulaire.
[053] En variante, des lignes non rectilignes peuvent être utilisées pour créer des cellules élémentaires CE fermées ou partiellement fermées.
[054] La figure 6 illustre un exemple de motif M dans lequel des lignes crénelées LC sont utilisées pour créer une pluralité de cellules élémentaires CE partiellement fermées.
[055] La figure 7 illustre un exemple de motif M dans lequel des lignes sinusoïdales LS sont utilisées pour créer une pluralité de cellules élémentaires CE partiellement fermées.
[056] Dans une autre variante illustrée par exemple par la figure 8, le motif M est formé par une pluralité de motifs élémentaires ME pouvant correspondre sensiblement aux cellules élémentaires CE. Comme les cellules élémentaires CE, les motifs élémentaires ME peuvent avoir un contour fermé ou partiellement fermé. Comme les cellules élémentaires CE, les motifs élémentaires ME peuvent prendre différentes formes : ellipsoïdale (figure 8), circulaire, polygonale, notamment en parallélogramme, en losange, en hexagone, etc. [057] Quelles soient formées à partir de lignes ou par des motifs élémentaires ME, le motif M comprend une pluralité de cellules élémentaires CE juxtaposées et chaque cellule élémentaire CE présente un contour C au moins partiellement fermé, ceci afin de permettre de retenir efficacement la première couche de poudre sur le plateau.
[058] Afin de garantir une bonne accroche de la première couche de poudre sur le plateau 24, le contour C de chaque cellule élémentaire est fermé sur au moins 50% de sa longueur.
[059] En vue d’une répartition optimale des poudres ayant une granulométrie inférieure à cent micromètres, la surface de chaque cellule élémentaire CE est comprise entre 4 et 25 mm2.
[060] Généralement, on cherche à optimiser l'utilisation de la surface supérieure 40 du plateau 24 lors d’une fabrication additive par dépôt de lit de poudre. Aussi, le motif M est de préférence imprimé sur toute la surface supérieure 40 du plateau de fabrication additive.
[061] La présente invention couvre un plateau de fabrication additive 24 par dépôt de lit de poudre qui est préparé conformément à la méthode de préparation qui vient d’être décrite. En comparaison des plateaux ayant subi un sablage ou un usinage visant à créer des rugosités par enlèvement de matière, le plateau de fabrication 24 préparé conformément à l’invention se différencie par des rugosités créées par des protubérances P s’élevant au- dessus de la surface supérieure 40 du plateau et offrant une meilleure retenue des grains de poudre que des formes creuses comme des micro-rainures ou des microcavités.
[062] La présente invention couvre aussi un procédé de fabrication additive par dépôt de lit de poudre comprenant une étape de préparation du plateau de fabrication 24 mise en oeuvre conformément à la méthode de préparation qui vient d’être décrite. Un tel procédé de fabrication est par exemple mis en oeuvre à l’intérieur d’une machine de fabrication additive 10 comprenant un plateau de fabrication 24, un dispositif d’étalement 30 d’une couche de poudre de fabrication additive sur ce plateau de fabrication et au moins une source d’énergie ou de chaleur 14 utilisée pour fusionner de manière sélective une couche de poudre de fabrication additive.
[063] Selon ce procédé de fabrication, le plateau 24 est monté dans la machine de fabrication additive 10 puis préparé conformément à la méthode de préparation qui vient d’être décrite.
[064] Toujours selon ce procédé de fabrication, le plateau 24 est préparé conformément à la méthode de préparation qui vient d’être décrite, puis utilisé ensuite pour la fabrication additive de pièces par dépôt de lit de poudre.
[065] Idéalement, selon ce procédé de fabrication, le plateau 24 est monté dans la machine de fabrication additive 10, préparé conformément à la méthode de préparation qui vient d’être décrite, puis utilisé ensuite pour la fabrication additive de pièces par dépôt de lit de poudre.
[066] La méthode de préparation, le plateau 24 préparé avec cette méthode, et le procédé de fabrication additive intégrant cette méthode de préparation sont particulièrement intéressants lorsqu’ils sont utilisés avec des poudres ayant une granulométrie inférieure à 50 micromètres car ils permettent de garantir une répartition homogène de telles poudres même si leur granulométrie est relativement faible.

Claims

REVENDICATIONS
1. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre, la méthode comprenant au moins une étape consistant à augmenter la rugosité d’au moins une zone de la surface supérieure du plateau en imprimant un motif (M) sur cette zone, la méthode de préparation étant caractérisée en ce que l’impression du motif est réalisée à l’intérieur de la machine de fabrication additive (10) par dépôt de lit de poudre dans laquelle le plateau est utilisé ensuite pour la fabrication additive par dépôt de lit de poudre, l’impression du motif (M) étant réalisée avant qu’une couche de poudre ne soit étalée sur le plateau (24).
2. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 1 , dans laquelle, la machine de fabrication additive (10) par dépôt de lit de poudre comprenant au moins une source d’énergie ou de chaleur (14) utilisée pour fusionner de manière sélective une couche de poudre de fabrication additive, le motif (M) est imprimé sur la surface supérieure (40) du plateau avec la source d’énergie ou de chaleur qui est utilisée ensuite pour la fusion sélective de la poudre.
3. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 1 ou la revendication 2, dans laquelle, la machine de fabrication additive (10) par dépôt de lit de poudre comprenant au moins une source (14) émettant au moins un faisceau laser (16) utilisé pour fusionner de manière sélective une couche de poudre de fabrication additive, le motif (M) est imprimé sur la surface supérieure (40) du plateau avec un faisceau laser utilisé ensuite pour la fusion sélective de la poudre.
4. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications précédentes, dans laquelle le motif (M) s’élève au-dessus de la surface supérieure (40) du plateau.
5. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications précédentes, dans laquelle le motif (M) comprend au moins une pluralité de lignes (L) juxtaposées.
6. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 5, dans laquelle les lignes (L) sont rectilignes, parallèles et régulièrement espacées les unes des autres.
7. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 6, dans laquelle l’espacement (E) entre deux lignes adjacentes (L) est compris entre 1 et 5 millimètres.
8. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications 5 à 7, dans laquelle le motif (M) comprend un premier groupe (G1 ) de lignes (L1 ) juxtaposées et un second groupe (G2) de lignes (L2) juxtaposées, au moins une ligne (L1 ) du premier groupe croisant au moins une ligne (L2) du second groupe.
9. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 8, dans laquelle, les lignes (L1 ) du premier groupe (G1 ) étant rectilignes, parallèles et régulièrement espacées, et les lignes (L2) du second groupe (G2) étant rectilignes, parallèles et régulièrement espacées, les lignes du premier groupe croisent les lignes du second groupe de manière à ce que le motif (M) prenne la forme d’une grille.
10. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 9, dans laquelle les lignes (L1 ) du premier groupe sont perpendiculaires aux lignes (L2) du second groupe.
1 1. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications 5 à 10, dans laquelle les lignes (L,L1 ,L2) sont continues.
12. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications 5 à 1 1 , dans laquelle, la machine de fabrication additive (10) par dépôt de lit de poudre comprenant au moins un dispositif d’étalement de poudre (30) se déplaçant dans une direction longitudinale (D35) au-dessus du plateau, une pluralité de lignes (L,L1 ,L2) du motif (M) s’étendent parallèlement à une direction transversale (DT,DT1 ,DT2) non- perpendiculaire à la direction longitudinale (D35).
13. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 12, dans laquelle une pluralité de lignes (L,L1 ,L2) du motif (M) s’étendent parallèlement à une direction transversale (DT,DT1 ,DT2) dont l’angle d’inclinaison (a,a1 ,a2) en sens horaire ou en sens antihoraire par rapport à la direction longitudinale (D35) est compris entre vingt- cinq et soixante-cinq degrés.
14. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 13, dans laquelle les lignes (L1 ) d’un premier groupe (G1 ) de lignes du motif (M) s’étendent parallèlement à une première direction transversale (DT1 ) inclinée de quarante-cinq degrés en sens horaire par rapport à la direction longitudinale (D35), et dans laquelle les lignes (L2) d’un second groupe (G2) de lignes du motif (M) s’étendent parallèlement à une seconde direction transversale (DT2) inclinée de quarante-cinq degrés en sens antihoraire par rapport à la direction longitudinale (D35).
15. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications précédentes, dans laquelle, le motif (M) comprenant une pluralité de cellules élémentaires (CE) juxtaposées, chaque cellule élémentaire présente un contour (C) au moins partiellement fermé.
16. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 15, dans laquelle le contour (C) de chaque cellule élémentaire est fermé sur au moins 50% de sa longueur.
17. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon la revendication 16, dans laquelle le contour (C) de chaque cellule élémentaire est fermé sur la totalité de sa longueur.
18. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications 15 à 17, dans laquelle la surface de chaque cellule élémentaire (CE) est comprise entre 4 et 25 mm2.
19. Méthode de préparation de la surface supérieure (40) d’un plateau de fabrication additive (24) par dépôt de lit de poudre selon l’une des revendications précédentes, dans laquelle le motif est imprimé sur toute la surface supérieure (40) du plateau de fabrication additive.
20. Procédé de fabrication additive par dépôt de lit de poudre, le procédé de fabrication additive étant mis en oeuvre à l’intérieur d’une machine de fabrication additive (10) comprenant un plateau de fabrication (24), un dispositif d’étalement (30) d’une couche de poudre de fabrication additive sur ce plateau de fabrication et au moins une source d’énergie ou de chaleur (14) utilisée pour fusionner de manière sélective une couche de poudre de fabrication additive, le procédé de fabrication étant caractérisé en ce qu’il comprend une étape de préparation du plateau de fabrication (24) mise en oeuvre conformément à la méthode de préparation selon l’une des revendications 1 à 19.
21. Procédé de fabrication additive par dépôt de lit de poudre selon la revendication 20, dans lequel le plateau (24) est monté dans la machine de fabrication additive (10) puis préparé conformément à la méthode de préparation selon l’une des revendications 1 à 19.
22. Procédé de fabrication additive par dépôt de lit de poudre selon la revendication 20 ou la revendication 21 , dans lequel le plateau (24) est préparé conformément à la méthode de préparation selon l’une des revendications 1 à 19, puis utilisé ensuite pour la fabrication additive de pièces par dépôt de lit de poudre.
23. Procédé de fabrication additive par dépôt de lit de poudre selon l’une des revendications 20 à 22, dans lequel la poudre de fabrication additive utilisée par le procédé de fabrication a une granulométrie inférieure à 50 micromètres.
EP19737816.9A 2018-05-25 2019-05-23 Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre Pending EP3802130A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854445A FR3081375B1 (fr) 2018-05-25 2018-05-25 Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre
PCT/FR2019/051194 WO2019224497A1 (fr) 2018-05-25 2019-05-23 Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre

Publications (1)

Publication Number Publication Date
EP3802130A1 true EP3802130A1 (fr) 2021-04-14

Family

ID=63407371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19737816.9A Pending EP3802130A1 (fr) 2018-05-25 2019-05-23 Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre

Country Status (7)

Country Link
US (1) US20210213536A1 (fr)
EP (1) EP3802130A1 (fr)
JP (1) JP2021525313A (fr)
KR (1) KR20210013562A (fr)
CN (1) CN112188962A (fr)
FR (1) FR3081375B1 (fr)
WO (1) WO2019224497A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2930572C (fr) * 2013-11-14 2019-07-02 General Electric Company Fabrication en couches de composants en alliage monocristallin
EP4110586A4 (fr) * 2020-02-24 2023-11-08 Hewlett-Packard Development Company, L.P. Application de rugosité de surface

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491627B2 (ja) * 2001-06-26 2004-01-26 松下電工株式会社 三次元形状造形物の製造方法
JP2008240074A (ja) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
US9789540B2 (en) * 2008-02-13 2017-10-17 Materials Solutions Limited Method of forming an article
GB2458745B (en) * 2008-02-13 2013-03-20 Materials Solutions A method of forming an article
CA2859232C (fr) * 2011-12-16 2018-03-27 Herbert Jennissen Substrat a surface structuree et procedes de fabrication, procedes permettant d'en determiner les proprietes de mouillabilite
GB2500412A (en) * 2012-03-21 2013-09-25 Eads Uk Ltd Build Plate for an additive manufacturing process
CN108515182B (zh) * 2013-02-14 2021-05-25 瑞尼斯豪公司 选择性激光固化设备及方法
JP2017536476A (ja) * 2014-10-01 2017-12-07 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 積層造形装置および方法
US20160332250A1 (en) * 2014-12-30 2016-11-17 Yuanmeng Precision Technology (Shenzhen) Institute Multi-electron-beam melting and milling composite 3d printing apparatus
TWI726940B (zh) * 2015-11-20 2021-05-11 美商泰坦脊柱股份有限公司 積層製造整形外科植入物之方法
CN105328913A (zh) * 2015-11-30 2016-02-17 天津清研智束科技有限公司 一种铺粉装置以及增材制造装置
DE102016207893A1 (de) * 2016-05-09 2017-11-09 Siemens Aktiengesellschaft Bauplattform für die additive Herstellung und Verfahren
CN105880594A (zh) * 2016-06-21 2016-08-24 广东电网有限责任公司电力科学研究院 一种铜合金粉末3d打印方法
WO2017221912A1 (fr) * 2016-06-22 2017-12-28 パナソニックIpマネジメント株式会社 Procédé de fabrication d'objet moulé de forme tridimensionnelle
CN105935769B (zh) * 2016-07-07 2017-11-28 四川三阳激光增材制造技术有限公司 一种用于3d打印成形件的激光熔覆刻蚀制备方法
JP6824652B2 (ja) * 2016-07-08 2021-02-03 キヤノン株式会社 3次元造形方法、および3次元造形物の製造装置
DE102016222555A1 (de) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung eines Bauteils und computerlesbares Medium
CN206474675U (zh) * 2016-11-22 2017-09-08 上海航天精密机械研究所 一种增材制造微细粉末双刮刀铺粉装置
WO2020210353A1 (fr) * 2019-04-11 2020-10-15 Smith & Nephew, Inc. Dispositifs médicaux et procédés de formation de dispositifs médicaux contenant une plaque de construction

Also Published As

Publication number Publication date
KR20210013562A (ko) 2021-02-04
CN112188962A (zh) 2021-01-05
JP2021525313A (ja) 2021-09-24
FR3081375A1 (fr) 2019-11-29
FR3081375B1 (fr) 2021-12-24
WO2019224497A1 (fr) 2019-11-28
US20210213536A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
EP2454040B1 (fr) Dispositif de mise en couches minces et procédé d'utilisation d'un tel dispositif
EP2156942B1 (fr) Procédé de réalisation d'une pièce par fusion ou frittage sélectif par laser de poudres de matériaux différents
WO2016071265A1 (fr) Machine et procédé pour la fabrication additive à base de poudre
FR2980380A1 (fr) Strategie de fabrication d'une piece metallique par fusion selective d'une poudre
EP2794151B1 (fr) Procede et appareil pour realiser des objets tridimensionnels
EP3077179B1 (fr) Machine pour la fabrication additive à base de poudre
EP3174652B1 (fr) Procédé de fabrication additive à base de poudre d'une pièce, notamment d'une lamelle de garniture pour moule de pneumatiques
EP4045211B1 (fr) Machine de fabrication additive comprenant une distribution de poudre mobile et regulee
CA2621704C (fr) Procede de rechargement d'une piece en alliage d'aluminium
WO2017118806A1 (fr) Procédé de fabrication de pièce par fabrication additive
WO2012143365A2 (fr) Procédé de fabrication d'un objet par solidification d'une poudre à l'aide d'un laser
CA3003368A1 (fr) Procede de fabrication d'une preforme d'aube, d'une aube et d'un secteur de distributeur par fusion selective sur lit de poudre
WO2019224497A1 (fr) Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre
EP3365131A1 (fr) Procede de fabrication par fusion et compression isostatique a chaud
FR3052375B1 (fr) Plateau de fabrication additive equipe d'un raidisseur
FR3021568A1 (fr) Procede de fabrication d'un objet tridimensionnel par solidification de poudre
EP2552705B1 (fr) Procede de depot du type impression par jet d'encre
EP3953149B1 (fr) Machine de fabrication additive comprenant une surface de réception de poudre mobile et optimisée pour retenir les grains de poudre
FR3098751A1 (fr) Procédé de fabrication additive utilisant un pochoir
FR3102078A1 (fr) Installation et procede de fabrication additive sur lit de poudre de piece a etat de surface ameliore
WO2022023629A1 (fr) Machine et procede de traitement de pieces de differentes formes
FR3117387A1 (fr) Pièce fabriquée additivement et optimisée topologiquement, notamment pour sa fabrication avec un procédé de fabrication additive.
FR3114037A1 (fr) Fabrication additive sur ebauche de piece de turbomachine comportant une zone rugueuse
WO2016120562A1 (fr) Procede et dispositif de fabrication d'une piece a partir de poudre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ADDUP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230203